xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision bed9efed71b954047aa11d5ed02af433dd9971cf)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCDecoderOps.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/TargetRegistry.h"
33 #include "llvm/Support/AMDHSAKernelDescriptor.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "amdgpu-disassembler"
38 
39 #define SGPR_MAX                                                               \
40   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
41                  : AMDGPU::EncValues::SGPR_MAX_SI)
42 
43 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
44 
45 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
46                                        MCContext &Ctx,
47                                        MCInstrInfo const *MCII) :
48   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
49   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
50 
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
95     Offset = Imm & 0xFFFFF;
96   } else {                    // GFX9+ supports 21-bit signed offsets.
97     Offset = SignExtend64<21>(Imm);
98   }
99   return addOperand(Inst, MCOperand::createImm(Offset));
100 }
101 
102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
103                                   const MCDisassembler *Decoder) {
104   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
105   return addOperand(Inst, DAsm->decodeBoolReg(Val));
106 }
107 
108 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
109   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
110                                         uint64_t /*Addr*/,                     \
111                                         const MCDisassembler *Decoder) {       \
112     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
113     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
114   }
115 
116 #define DECODE_OPERAND_REG(RegClass) \
117 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
118 
119 DECODE_OPERAND_REG(VGPR_32)
120 DECODE_OPERAND_REG(VRegOrLds_32)
121 DECODE_OPERAND_REG(VS_32)
122 DECODE_OPERAND_REG(VS_64)
123 DECODE_OPERAND_REG(VS_128)
124 
125 DECODE_OPERAND_REG(VReg_64)
126 DECODE_OPERAND_REG(VReg_96)
127 DECODE_OPERAND_REG(VReg_128)
128 DECODE_OPERAND_REG(VReg_256)
129 DECODE_OPERAND_REG(VReg_512)
130 DECODE_OPERAND_REG(VReg_1024)
131 
132 DECODE_OPERAND_REG(SReg_32)
133 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
134 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
135 DECODE_OPERAND_REG(SRegOrLds_32)
136 DECODE_OPERAND_REG(SReg_64)
137 DECODE_OPERAND_REG(SReg_64_XEXEC)
138 DECODE_OPERAND_REG(SReg_128)
139 DECODE_OPERAND_REG(SReg_256)
140 DECODE_OPERAND_REG(SReg_512)
141 
142 DECODE_OPERAND_REG(AGPR_32)
143 DECODE_OPERAND_REG(AReg_64)
144 DECODE_OPERAND_REG(AReg_128)
145 DECODE_OPERAND_REG(AReg_256)
146 DECODE_OPERAND_REG(AReg_512)
147 DECODE_OPERAND_REG(AReg_1024)
148 DECODE_OPERAND_REG(AV_32)
149 DECODE_OPERAND_REG(AV_64)
150 DECODE_OPERAND_REG(AV_128)
151 DECODE_OPERAND_REG(AVDst_128)
152 DECODE_OPERAND_REG(AVDst_512)
153 
154 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
155                                          uint64_t Addr,
156                                          const MCDisassembler *Decoder) {
157   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
158   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
159 }
160 
161 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
162                                            uint64_t Addr,
163                                            const MCDisassembler *Decoder) {
164   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
165   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
166 }
167 
168 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
169                                            uint64_t Addr,
170                                            const MCDisassembler *Decoder) {
171   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
172   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
173 }
174 
175 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
176                                         uint64_t Addr,
177                                         const MCDisassembler *Decoder) {
178   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
179   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
180 }
181 
182 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
183                                         uint64_t Addr,
184                                         const MCDisassembler *Decoder) {
185   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
186   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
187 }
188 
189 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
190                                           uint64_t Addr,
191                                           const MCDisassembler *Decoder) {
192   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
193   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
194 }
195 
196 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
197                                            uint64_t Addr,
198                                            const MCDisassembler *Decoder) {
199   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
200   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
201 }
202 
203 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
204                                            uint64_t Addr,
205                                            const MCDisassembler *Decoder) {
206   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
207   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
208 }
209 
210 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
211                                            uint64_t Addr,
212                                            const MCDisassembler *Decoder) {
213   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
214   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
215 }
216 
217 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
218                                             uint64_t Addr,
219                                             const MCDisassembler *Decoder) {
220   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
221   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
222 }
223 
224 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
225                                           uint64_t Addr,
226                                           const MCDisassembler *Decoder) {
227   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
228   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
229 }
230 
231 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
232                                            uint64_t Addr,
233                                            const MCDisassembler *Decoder) {
234   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
235   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
236 }
237 
238 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
239                                            uint64_t Addr,
240                                            const MCDisassembler *Decoder) {
241   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
242   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
243 }
244 
245 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
246                                            uint64_t Addr,
247                                            const MCDisassembler *Decoder) {
248   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
249   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
250 }
251 
252 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
253                                             uint64_t Addr,
254                                             const MCDisassembler *Decoder) {
255   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
256   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
257 }
258 
259 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
260                                           uint64_t Addr,
261                                           const MCDisassembler *Decoder) {
262   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
263   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
264 }
265 
266 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
267                                           uint64_t Addr,
268                                           const MCDisassembler *Decoder) {
269   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
270   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
271 }
272 
273 static DecodeStatus
274 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
275                              const MCDisassembler *Decoder) {
276   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
277   return addOperand(
278       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
279 }
280 
281 static DecodeStatus
282 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
283                              const MCDisassembler *Decoder) {
284   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
285   return addOperand(
286       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
287 }
288 
289 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
290                           const MCRegisterInfo *MRI) {
291   if (OpIdx < 0)
292     return false;
293 
294   const MCOperand &Op = Inst.getOperand(OpIdx);
295   if (!Op.isReg())
296     return false;
297 
298   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
299   auto Reg = Sub ? Sub : Op.getReg();
300   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
301 }
302 
303 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
304                                              AMDGPUDisassembler::OpWidthTy Opw,
305                                              const MCDisassembler *Decoder) {
306   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
307   if (!DAsm->isGFX90A()) {
308     Imm &= 511;
309   } else {
310     // If atomic has both vdata and vdst their register classes are tied.
311     // The bit is decoded along with the vdst, first operand. We need to
312     // change register class to AGPR if vdst was AGPR.
313     // If a DS instruction has both data0 and data1 their register classes
314     // are also tied.
315     unsigned Opc = Inst.getOpcode();
316     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
317     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
318                                                         : AMDGPU::OpName::vdata;
319     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
320     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
321     if ((int)Inst.getNumOperands() == DataIdx) {
322       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
323       if (IsAGPROperand(Inst, DstIdx, MRI))
324         Imm |= 512;
325     }
326 
327     if (TSFlags & SIInstrFlags::DS) {
328       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
329       if ((int)Inst.getNumOperands() == Data2Idx &&
330           IsAGPROperand(Inst, DataIdx, MRI))
331         Imm |= 512;
332     }
333   }
334   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
335 }
336 
337 static DecodeStatus
338 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
339                              const MCDisassembler *Decoder) {
340   return decodeOperand_AVLdSt_Any(Inst, Imm,
341                                   AMDGPUDisassembler::OPW32, Decoder);
342 }
343 
344 static DecodeStatus
345 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
346                              const MCDisassembler *Decoder) {
347   return decodeOperand_AVLdSt_Any(Inst, Imm,
348                                   AMDGPUDisassembler::OPW64, Decoder);
349 }
350 
351 static DecodeStatus
352 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
353                              const MCDisassembler *Decoder) {
354   return decodeOperand_AVLdSt_Any(Inst, Imm,
355                                   AMDGPUDisassembler::OPW96, Decoder);
356 }
357 
358 static DecodeStatus
359 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
360                               const MCDisassembler *Decoder) {
361   return decodeOperand_AVLdSt_Any(Inst, Imm,
362                                   AMDGPUDisassembler::OPW128, Decoder);
363 }
364 
365 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
366                                           uint64_t Addr,
367                                           const MCDisassembler *Decoder) {
368   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
369   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
370 }
371 
372 #define DECODE_SDWA(DecName) \
373 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
374 
375 DECODE_SDWA(Src32)
376 DECODE_SDWA(Src16)
377 DECODE_SDWA(VopcDst)
378 
379 #include "AMDGPUGenDisassemblerTables.inc"
380 
381 //===----------------------------------------------------------------------===//
382 //
383 //===----------------------------------------------------------------------===//
384 
385 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
386   assert(Bytes.size() >= sizeof(T));
387   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
388   Bytes = Bytes.slice(sizeof(T));
389   return Res;
390 }
391 
392 // The disassembler is greedy, so we need to check FI operand value to
393 // not parse a dpp if the correct literal is not set. For dpp16 the
394 // autogenerated decoder checks the dpp literal
395 static bool isValidDPP8(const MCInst &MI) {
396   using namespace llvm::AMDGPU::DPP;
397   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
398   assert(FiIdx != -1);
399   if ((unsigned)FiIdx >= MI.getNumOperands())
400     return false;
401   unsigned Fi = MI.getOperand(FiIdx).getImm();
402   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
403 }
404 
405 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
406                                                 ArrayRef<uint8_t> Bytes_,
407                                                 uint64_t Address,
408                                                 raw_ostream &CS) const {
409   CommentStream = &CS;
410   bool IsSDWA = false;
411 
412   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
413   Bytes = Bytes_.slice(0, MaxInstBytesNum);
414 
415   DecodeStatus Res = MCDisassembler::Fail;
416   do {
417     // ToDo: better to switch encoding length using some bit predicate
418     // but it is unknown yet, so try all we can
419 
420     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
421     // encodings
422     if (Bytes.size() >= 8) {
423       const uint64_t QW = eatBytes<uint64_t>(Bytes);
424 
425       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
426         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
427         if (Res) {
428           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
429               == -1)
430             break;
431           if (convertDPP8Inst(MI) == MCDisassembler::Success)
432             break;
433           MI = MCInst(); // clear
434         }
435       }
436 
437       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
438       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
439         break;
440 
441       MI = MCInst(); // clear
442 
443       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
444       if (Res) break;
445 
446       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
447       if (Res) { IsSDWA = true;  break; }
448 
449       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
450       if (Res) { IsSDWA = true;  break; }
451 
452       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
453       if (Res) { IsSDWA = true;  break; }
454 
455       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
456         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
457         if (Res)
458           break;
459       }
460 
461       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
462       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
463       // table first so we print the correct name.
464       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
465         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
466         if (Res)
467           break;
468       }
469     }
470 
471     // Reinitialize Bytes as DPP64 could have eaten too much
472     Bytes = Bytes_.slice(0, MaxInstBytesNum);
473 
474     // Try decode 32-bit instruction
475     if (Bytes.size() < 4) break;
476     const uint32_t DW = eatBytes<uint32_t>(Bytes);
477     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
478     if (Res) break;
479 
480     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
481     if (Res) break;
482 
483     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
484     if (Res) break;
485 
486     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
487       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
488       if (Res)
489         break;
490     }
491 
492     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
493       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
494       if (Res) break;
495     }
496 
497     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
498     if (Res) break;
499 
500     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
501     if (Res) break;
502 
503     if (Bytes.size() < 4) break;
504     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
505 
506     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
507       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
508       if (Res)
509         break;
510     }
511 
512     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
513     if (Res) break;
514 
515     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
516     if (Res) break;
517 
518     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
519     if (Res) break;
520 
521     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
522     if (Res) break;
523 
524     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
525   } while (false);
526 
527   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
528               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
529               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
530               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
531               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
532               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
533               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
534               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
535               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
536               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
537               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
538     // Insert dummy unused src2_modifiers.
539     insertNamedMCOperand(MI, MCOperand::createImm(0),
540                          AMDGPU::OpName::src2_modifiers);
541   }
542 
543   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
544           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
545     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
546                                              AMDGPU::OpName::cpol);
547     if (CPolPos != -1) {
548       unsigned CPol =
549           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
550               AMDGPU::CPol::GLC : 0;
551       if (MI.getNumOperands() <= (unsigned)CPolPos) {
552         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
553                              AMDGPU::OpName::cpol);
554       } else if (CPol) {
555         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
556       }
557     }
558   }
559 
560   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
561               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
562              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
563     // GFX90A lost TFE, its place is occupied by ACC.
564     int TFEOpIdx =
565         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
566     if (TFEOpIdx != -1) {
567       auto TFEIter = MI.begin();
568       std::advance(TFEIter, TFEOpIdx);
569       MI.insert(TFEIter, MCOperand::createImm(0));
570     }
571   }
572 
573   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
574               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
575     int SWZOpIdx =
576         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
577     if (SWZOpIdx != -1) {
578       auto SWZIter = MI.begin();
579       std::advance(SWZIter, SWZOpIdx);
580       MI.insert(SWZIter, MCOperand::createImm(0));
581     }
582   }
583 
584   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
585     int VAddr0Idx =
586         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
587     int RsrcIdx =
588         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
589     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
590     if (VAddr0Idx >= 0 && NSAArgs > 0) {
591       unsigned NSAWords = (NSAArgs + 3) / 4;
592       if (Bytes.size() < 4 * NSAWords) {
593         Res = MCDisassembler::Fail;
594       } else {
595         for (unsigned i = 0; i < NSAArgs; ++i) {
596           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
597                     decodeOperand_VGPR_32(Bytes[i]));
598         }
599         Bytes = Bytes.slice(4 * NSAWords);
600       }
601     }
602 
603     if (Res)
604       Res = convertMIMGInst(MI);
605   }
606 
607   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
608     Res = convertEXPInst(MI);
609 
610   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
611     Res = convertVINTERPInst(MI);
612 
613   if (Res && IsSDWA)
614     Res = convertSDWAInst(MI);
615 
616   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
617                                               AMDGPU::OpName::vdst_in);
618   if (VDstIn_Idx != -1) {
619     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
620                            MCOI::OperandConstraint::TIED_TO);
621     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
622          !MI.getOperand(VDstIn_Idx).isReg() ||
623          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
624       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
625         MI.erase(&MI.getOperand(VDstIn_Idx));
626       insertNamedMCOperand(MI,
627         MCOperand::createReg(MI.getOperand(Tied).getReg()),
628         AMDGPU::OpName::vdst_in);
629     }
630   }
631 
632   int ImmLitIdx =
633       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
634   if (Res && ImmLitIdx != -1)
635     Res = convertFMAanyK(MI, ImmLitIdx);
636 
637   // if the opcode was not recognized we'll assume a Size of 4 bytes
638   // (unless there are fewer bytes left)
639   Size = Res ? (MaxInstBytesNum - Bytes.size())
640              : std::min((size_t)4, Bytes_.size());
641   return Res;
642 }
643 
644 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
645   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
646     // The MCInst still has these fields even though they are no longer encoded
647     // in the GFX11 instruction.
648     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
649     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
650   }
651   return MCDisassembler::Success;
652 }
653 
654 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
655   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
656       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
657       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
658       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
659     // The MCInst has this field that is not directly encoded in the
660     // instruction.
661     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
662   }
663   return MCDisassembler::Success;
664 }
665 
666 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
667   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
668       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
669     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
670       // VOPC - insert clamp
671       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
672   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
673     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
674     if (SDst != -1) {
675       // VOPC - insert VCC register as sdst
676       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
677                            AMDGPU::OpName::sdst);
678     } else {
679       // VOP1/2 - insert omod if present in instruction
680       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
681     }
682   }
683   return MCDisassembler::Success;
684 }
685 
686 // We must check FI == literal to reject not genuine dpp8 insts, and we must
687 // first add optional MI operands to check FI
688 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
689   unsigned Opc = MI.getOpcode();
690   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
691 
692   // Insert dummy unused src modifiers.
693   if (MI.getNumOperands() < DescNumOps &&
694       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
695     insertNamedMCOperand(MI, MCOperand::createImm(0),
696                          AMDGPU::OpName::src0_modifiers);
697 
698   if (MI.getNumOperands() < DescNumOps &&
699       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
700     insertNamedMCOperand(MI, MCOperand::createImm(0),
701                          AMDGPU::OpName::src1_modifiers);
702 
703   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
704 }
705 
706 // Note that before gfx10, the MIMG encoding provided no information about
707 // VADDR size. Consequently, decoded instructions always show address as if it
708 // has 1 dword, which could be not really so.
709 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
710 
711   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
712                                            AMDGPU::OpName::vdst);
713 
714   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
715                                             AMDGPU::OpName::vdata);
716   int VAddr0Idx =
717       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
718   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
719                                             AMDGPU::OpName::dmask);
720 
721   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
722                                             AMDGPU::OpName::tfe);
723   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
724                                             AMDGPU::OpName::d16);
725 
726   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
727   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
728       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
729 
730   assert(VDataIdx != -1);
731   if (BaseOpcode->BVH) {
732     // Add A16 operand for intersect_ray instructions
733     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
734       addOperand(MI, MCOperand::createImm(1));
735     }
736     return MCDisassembler::Success;
737   }
738 
739   bool IsAtomic = (VDstIdx != -1);
740   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
741   bool IsNSA = false;
742   unsigned AddrSize = Info->VAddrDwords;
743 
744   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
745     unsigned DimIdx =
746         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
747     int A16Idx =
748         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
749     const AMDGPU::MIMGDimInfo *Dim =
750         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
751     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
752 
753     AddrSize =
754         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
755 
756     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
757     if (!IsNSA) {
758       if (AddrSize > 8)
759         AddrSize = 16;
760     } else {
761       if (AddrSize > Info->VAddrDwords) {
762         // The NSA encoding does not contain enough operands for the combination
763         // of base opcode / dimension. Should this be an error?
764         return MCDisassembler::Success;
765       }
766     }
767   }
768 
769   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
770   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
771 
772   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
773   if (D16 && AMDGPU::hasPackedD16(STI)) {
774     DstSize = (DstSize + 1) / 2;
775   }
776 
777   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
778     DstSize += 1;
779 
780   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
781     return MCDisassembler::Success;
782 
783   int NewOpcode =
784       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
785   if (NewOpcode == -1)
786     return MCDisassembler::Success;
787 
788   // Widen the register to the correct number of enabled channels.
789   unsigned NewVdata = AMDGPU::NoRegister;
790   if (DstSize != Info->VDataDwords) {
791     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
792 
793     // Get first subregister of VData
794     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
795     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
796     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
797 
798     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
799                                        &MRI.getRegClass(DataRCID));
800     if (NewVdata == AMDGPU::NoRegister) {
801       // It's possible to encode this such that the low register + enabled
802       // components exceeds the register count.
803       return MCDisassembler::Success;
804     }
805   }
806 
807   unsigned NewVAddr0 = AMDGPU::NoRegister;
808   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
809       AddrSize != Info->VAddrDwords) {
810     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
811     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
812     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
813 
814     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
815     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
816                                         &MRI.getRegClass(AddrRCID));
817     if (NewVAddr0 == AMDGPU::NoRegister)
818       return MCDisassembler::Success;
819   }
820 
821   MI.setOpcode(NewOpcode);
822 
823   if (NewVdata != AMDGPU::NoRegister) {
824     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
825 
826     if (IsAtomic) {
827       // Atomic operations have an additional operand (a copy of data)
828       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
829     }
830   }
831 
832   if (NewVAddr0 != AMDGPU::NoRegister) {
833     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
834   } else if (IsNSA) {
835     assert(AddrSize <= Info->VAddrDwords);
836     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
837              MI.begin() + VAddr0Idx + Info->VAddrDwords);
838   }
839 
840   return MCDisassembler::Success;
841 }
842 
843 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
844                                                 int ImmLitIdx) const {
845   assert(HasLiteral && "Should have decoded a literal");
846   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
847   unsigned DescNumOps = Desc.getNumOperands();
848   assert(DescNumOps == MI.getNumOperands());
849   for (unsigned I = 0; I < DescNumOps; ++I) {
850     auto &Op = MI.getOperand(I);
851     auto OpType = Desc.OpInfo[I].OperandType;
852     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
853                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
854     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
855         IsDeferredOp)
856       Op.setImm(Literal);
857   }
858   return MCDisassembler::Success;
859 }
860 
861 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
862   return getContext().getRegisterInfo()->
863     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
864 }
865 
866 inline
867 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
868                                          const Twine& ErrMsg) const {
869   *CommentStream << "Error: " + ErrMsg;
870 
871   // ToDo: add support for error operands to MCInst.h
872   // return MCOperand::createError(V);
873   return MCOperand();
874 }
875 
876 inline
877 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
878   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
879 }
880 
881 inline
882 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
883                                                unsigned Val) const {
884   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
885   if (Val >= RegCl.getNumRegs())
886     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
887                            ": unknown register " + Twine(Val));
888   return createRegOperand(RegCl.getRegister(Val));
889 }
890 
891 inline
892 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
893                                                 unsigned Val) const {
894   // ToDo: SI/CI have 104 SGPRs, VI - 102
895   // Valery: here we accepting as much as we can, let assembler sort it out
896   int shift = 0;
897   switch (SRegClassID) {
898   case AMDGPU::SGPR_32RegClassID:
899   case AMDGPU::TTMP_32RegClassID:
900     break;
901   case AMDGPU::SGPR_64RegClassID:
902   case AMDGPU::TTMP_64RegClassID:
903     shift = 1;
904     break;
905   case AMDGPU::SGPR_128RegClassID:
906   case AMDGPU::TTMP_128RegClassID:
907   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
908   // this bundle?
909   case AMDGPU::SGPR_256RegClassID:
910   case AMDGPU::TTMP_256RegClassID:
911     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
912   // this bundle?
913   case AMDGPU::SGPR_512RegClassID:
914   case AMDGPU::TTMP_512RegClassID:
915     shift = 2;
916     break;
917   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
918   // this bundle?
919   default:
920     llvm_unreachable("unhandled register class");
921   }
922 
923   if (Val % (1 << shift)) {
924     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
925                    << ": scalar reg isn't aligned " << Val;
926   }
927 
928   return createRegOperand(SRegClassID, Val >> shift);
929 }
930 
931 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
932   return decodeSrcOp(OPW32, Val);
933 }
934 
935 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
936   return decodeSrcOp(OPW64, Val);
937 }
938 
939 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
940   return decodeSrcOp(OPW128, Val);
941 }
942 
943 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
944   return decodeSrcOp(OPW16, Val);
945 }
946 
947 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
948   return decodeSrcOp(OPWV216, Val);
949 }
950 
951 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
952   return decodeSrcOp(OPWV232, Val);
953 }
954 
955 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
956   // Some instructions have operand restrictions beyond what the encoding
957   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
958   // high bit.
959   Val &= 255;
960 
961   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
962 }
963 
964 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
965   return decodeSrcOp(OPW32, Val);
966 }
967 
968 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
969   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
970 }
971 
972 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
973   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
974 }
975 
976 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
977   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
978 }
979 
980 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
981   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
982 }
983 
984 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
985   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
986 }
987 
988 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
989   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
990 }
991 
992 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
993   return decodeSrcOp(OPW32, Val);
994 }
995 
996 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
997   return decodeSrcOp(OPW64, Val);
998 }
999 
1000 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1001   return decodeSrcOp(OPW128, Val);
1002 }
1003 
1004 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1005   using namespace AMDGPU::EncValues;
1006   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1007   return decodeSrcOp(OPW128, Val | IS_VGPR);
1008 }
1009 
1010 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1011   using namespace AMDGPU::EncValues;
1012   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1013   return decodeSrcOp(OPW512, Val | IS_VGPR);
1014 }
1015 
1016 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1017   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1018 }
1019 
1020 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1021   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1022 }
1023 
1024 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1025   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1026 }
1027 
1028 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1029   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1030 }
1031 
1032 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1033   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1034 }
1035 
1036 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1037   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1038 }
1039 
1040 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1041   // table-gen generated disassembler doesn't care about operand types
1042   // leaving only registry class so SSrc_32 operand turns into SReg_32
1043   // and therefore we accept immediates and literals here as well
1044   return decodeSrcOp(OPW32, Val);
1045 }
1046 
1047 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1048   unsigned Val) const {
1049   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1050   return decodeOperand_SReg_32(Val);
1051 }
1052 
1053 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1054   unsigned Val) const {
1055   // SReg_32_XM0 is SReg_32 without EXEC_HI
1056   return decodeOperand_SReg_32(Val);
1057 }
1058 
1059 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1060   // table-gen generated disassembler doesn't care about operand types
1061   // leaving only registry class so SSrc_32 operand turns into SReg_32
1062   // and therefore we accept immediates and literals here as well
1063   return decodeSrcOp(OPW32, Val);
1064 }
1065 
1066 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1067   return decodeSrcOp(OPW64, Val);
1068 }
1069 
1070 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1071   return decodeSrcOp(OPW64, Val);
1072 }
1073 
1074 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1075   return decodeSrcOp(OPW128, Val);
1076 }
1077 
1078 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1079   return decodeDstOp(OPW256, Val);
1080 }
1081 
1082 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1083   return decodeDstOp(OPW512, Val);
1084 }
1085 
1086 // Decode Literals for insts which always have a literal in the encoding
1087 MCOperand
1088 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1089   if (HasLiteral) {
1090     if (Literal != Val)
1091       return errOperand(Val, "More than one unique literal is illegal");
1092   }
1093   HasLiteral = true;
1094   Literal = Val;
1095   return MCOperand::createImm(Literal);
1096 }
1097 
1098 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1099   // For now all literal constants are supposed to be unsigned integer
1100   // ToDo: deal with signed/unsigned 64-bit integer constants
1101   // ToDo: deal with float/double constants
1102   if (!HasLiteral) {
1103     if (Bytes.size() < 4) {
1104       return errOperand(0, "cannot read literal, inst bytes left " +
1105                         Twine(Bytes.size()));
1106     }
1107     HasLiteral = true;
1108     Literal = eatBytes<uint32_t>(Bytes);
1109   }
1110   return MCOperand::createImm(Literal);
1111 }
1112 
1113 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1114   using namespace AMDGPU::EncValues;
1115 
1116   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1117   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1118     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1119     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1120       // Cast prevents negative overflow.
1121 }
1122 
1123 static int64_t getInlineImmVal32(unsigned Imm) {
1124   switch (Imm) {
1125   case 240:
1126     return FloatToBits(0.5f);
1127   case 241:
1128     return FloatToBits(-0.5f);
1129   case 242:
1130     return FloatToBits(1.0f);
1131   case 243:
1132     return FloatToBits(-1.0f);
1133   case 244:
1134     return FloatToBits(2.0f);
1135   case 245:
1136     return FloatToBits(-2.0f);
1137   case 246:
1138     return FloatToBits(4.0f);
1139   case 247:
1140     return FloatToBits(-4.0f);
1141   case 248: // 1 / (2 * PI)
1142     return 0x3e22f983;
1143   default:
1144     llvm_unreachable("invalid fp inline imm");
1145   }
1146 }
1147 
1148 static int64_t getInlineImmVal64(unsigned Imm) {
1149   switch (Imm) {
1150   case 240:
1151     return DoubleToBits(0.5);
1152   case 241:
1153     return DoubleToBits(-0.5);
1154   case 242:
1155     return DoubleToBits(1.0);
1156   case 243:
1157     return DoubleToBits(-1.0);
1158   case 244:
1159     return DoubleToBits(2.0);
1160   case 245:
1161     return DoubleToBits(-2.0);
1162   case 246:
1163     return DoubleToBits(4.0);
1164   case 247:
1165     return DoubleToBits(-4.0);
1166   case 248: // 1 / (2 * PI)
1167     return 0x3fc45f306dc9c882;
1168   default:
1169     llvm_unreachable("invalid fp inline imm");
1170   }
1171 }
1172 
1173 static int64_t getInlineImmVal16(unsigned Imm) {
1174   switch (Imm) {
1175   case 240:
1176     return 0x3800;
1177   case 241:
1178     return 0xB800;
1179   case 242:
1180     return 0x3C00;
1181   case 243:
1182     return 0xBC00;
1183   case 244:
1184     return 0x4000;
1185   case 245:
1186     return 0xC000;
1187   case 246:
1188     return 0x4400;
1189   case 247:
1190     return 0xC400;
1191   case 248: // 1 / (2 * PI)
1192     return 0x3118;
1193   default:
1194     llvm_unreachable("invalid fp inline imm");
1195   }
1196 }
1197 
1198 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1199   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1200       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1201 
1202   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1203   switch (Width) {
1204   case OPW32:
1205   case OPW128: // splat constants
1206   case OPW512:
1207   case OPW1024:
1208   case OPWV232:
1209     return MCOperand::createImm(getInlineImmVal32(Imm));
1210   case OPW64:
1211   case OPW256:
1212     return MCOperand::createImm(getInlineImmVal64(Imm));
1213   case OPW16:
1214   case OPWV216:
1215     return MCOperand::createImm(getInlineImmVal16(Imm));
1216   default:
1217     llvm_unreachable("implement me");
1218   }
1219 }
1220 
1221 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1222   using namespace AMDGPU;
1223 
1224   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1225   switch (Width) {
1226   default: // fall
1227   case OPW32:
1228   case OPW16:
1229   case OPWV216:
1230     return VGPR_32RegClassID;
1231   case OPW64:
1232   case OPWV232: return VReg_64RegClassID;
1233   case OPW96: return VReg_96RegClassID;
1234   case OPW128: return VReg_128RegClassID;
1235   case OPW160: return VReg_160RegClassID;
1236   case OPW256: return VReg_256RegClassID;
1237   case OPW512: return VReg_512RegClassID;
1238   case OPW1024: return VReg_1024RegClassID;
1239   }
1240 }
1241 
1242 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1243   using namespace AMDGPU;
1244 
1245   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1246   switch (Width) {
1247   default: // fall
1248   case OPW32:
1249   case OPW16:
1250   case OPWV216:
1251     return AGPR_32RegClassID;
1252   case OPW64:
1253   case OPWV232: return AReg_64RegClassID;
1254   case OPW96: return AReg_96RegClassID;
1255   case OPW128: return AReg_128RegClassID;
1256   case OPW160: return AReg_160RegClassID;
1257   case OPW256: return AReg_256RegClassID;
1258   case OPW512: return AReg_512RegClassID;
1259   case OPW1024: return AReg_1024RegClassID;
1260   }
1261 }
1262 
1263 
1264 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1265   using namespace AMDGPU;
1266 
1267   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1268   switch (Width) {
1269   default: // fall
1270   case OPW32:
1271   case OPW16:
1272   case OPWV216:
1273     return SGPR_32RegClassID;
1274   case OPW64:
1275   case OPWV232: return SGPR_64RegClassID;
1276   case OPW96: return SGPR_96RegClassID;
1277   case OPW128: return SGPR_128RegClassID;
1278   case OPW160: return SGPR_160RegClassID;
1279   case OPW256: return SGPR_256RegClassID;
1280   case OPW512: return SGPR_512RegClassID;
1281   }
1282 }
1283 
1284 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1285   using namespace AMDGPU;
1286 
1287   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1288   switch (Width) {
1289   default: // fall
1290   case OPW32:
1291   case OPW16:
1292   case OPWV216:
1293     return TTMP_32RegClassID;
1294   case OPW64:
1295   case OPWV232: return TTMP_64RegClassID;
1296   case OPW128: return TTMP_128RegClassID;
1297   case OPW256: return TTMP_256RegClassID;
1298   case OPW512: return TTMP_512RegClassID;
1299   }
1300 }
1301 
1302 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1303   using namespace AMDGPU::EncValues;
1304 
1305   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1306   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1307 
1308   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1309 }
1310 
1311 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1312                                           bool MandatoryLiteral) const {
1313   using namespace AMDGPU::EncValues;
1314 
1315   assert(Val < 1024); // enum10
1316 
1317   bool IsAGPR = Val & 512;
1318   Val &= 511;
1319 
1320   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1321     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1322                                    : getVgprClassId(Width), Val - VGPR_MIN);
1323   }
1324   if (Val <= SGPR_MAX) {
1325     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1326     static_assert(SGPR_MIN == 0, "");
1327     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1328   }
1329 
1330   int TTmpIdx = getTTmpIdx(Val);
1331   if (TTmpIdx >= 0) {
1332     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1333   }
1334 
1335   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1336     return decodeIntImmed(Val);
1337 
1338   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1339     return decodeFPImmed(Width, Val);
1340 
1341   if (Val == LITERAL_CONST) {
1342     if (MandatoryLiteral)
1343       // Keep a sentinel value for deferred setting
1344       return MCOperand::createImm(LITERAL_CONST);
1345     else
1346       return decodeLiteralConstant();
1347   }
1348 
1349   switch (Width) {
1350   case OPW32:
1351   case OPW16:
1352   case OPWV216:
1353     return decodeSpecialReg32(Val);
1354   case OPW64:
1355   case OPWV232:
1356     return decodeSpecialReg64(Val);
1357   default:
1358     llvm_unreachable("unexpected immediate type");
1359   }
1360 }
1361 
1362 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1363   using namespace AMDGPU::EncValues;
1364 
1365   assert(Val < 128);
1366   assert(Width == OPW256 || Width == OPW512);
1367 
1368   if (Val <= SGPR_MAX) {
1369     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1370     static_assert(SGPR_MIN == 0, "");
1371     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1372   }
1373 
1374   int TTmpIdx = getTTmpIdx(Val);
1375   if (TTmpIdx >= 0) {
1376     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1377   }
1378 
1379   llvm_unreachable("unknown dst register");
1380 }
1381 
1382 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1383   using namespace AMDGPU;
1384 
1385   switch (Val) {
1386   case 102: return createRegOperand(FLAT_SCR_LO);
1387   case 103: return createRegOperand(FLAT_SCR_HI);
1388   case 104: return createRegOperand(XNACK_MASK_LO);
1389   case 105: return createRegOperand(XNACK_MASK_HI);
1390   case 106: return createRegOperand(VCC_LO);
1391   case 107: return createRegOperand(VCC_HI);
1392   case 108: return createRegOperand(TBA_LO);
1393   case 109: return createRegOperand(TBA_HI);
1394   case 110: return createRegOperand(TMA_LO);
1395   case 111: return createRegOperand(TMA_HI);
1396   case 124:
1397     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1398   case 125:
1399     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1400   case 126: return createRegOperand(EXEC_LO);
1401   case 127: return createRegOperand(EXEC_HI);
1402   case 235: return createRegOperand(SRC_SHARED_BASE);
1403   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1404   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1405   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1406   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1407   case 251: return createRegOperand(SRC_VCCZ);
1408   case 252: return createRegOperand(SRC_EXECZ);
1409   case 253: return createRegOperand(SRC_SCC);
1410   case 254: return createRegOperand(LDS_DIRECT);
1411   default: break;
1412   }
1413   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1414 }
1415 
1416 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1417   using namespace AMDGPU;
1418 
1419   switch (Val) {
1420   case 102: return createRegOperand(FLAT_SCR);
1421   case 104: return createRegOperand(XNACK_MASK);
1422   case 106: return createRegOperand(VCC);
1423   case 108: return createRegOperand(TBA);
1424   case 110: return createRegOperand(TMA);
1425   case 124:
1426     if (isGFX11Plus())
1427       return createRegOperand(SGPR_NULL);
1428     break;
1429   case 125:
1430     if (!isGFX11Plus())
1431       return createRegOperand(SGPR_NULL);
1432     break;
1433   case 126: return createRegOperand(EXEC);
1434   case 235: return createRegOperand(SRC_SHARED_BASE);
1435   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1436   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1437   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1438   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1439   case 251: return createRegOperand(SRC_VCCZ);
1440   case 252: return createRegOperand(SRC_EXECZ);
1441   case 253: return createRegOperand(SRC_SCC);
1442   default: break;
1443   }
1444   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1445 }
1446 
1447 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1448                                             const unsigned Val) const {
1449   using namespace AMDGPU::SDWA;
1450   using namespace AMDGPU::EncValues;
1451 
1452   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1453       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1454     // XXX: cast to int is needed to avoid stupid warning:
1455     // compare with unsigned is always true
1456     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1457         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1458       return createRegOperand(getVgprClassId(Width),
1459                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1460     }
1461     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1462         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1463                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1464       return createSRegOperand(getSgprClassId(Width),
1465                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1466     }
1467     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1468         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1469       return createSRegOperand(getTtmpClassId(Width),
1470                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1471     }
1472 
1473     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1474 
1475     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1476       return decodeIntImmed(SVal);
1477 
1478     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1479       return decodeFPImmed(Width, SVal);
1480 
1481     return decodeSpecialReg32(SVal);
1482   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1483     return createRegOperand(getVgprClassId(Width), Val);
1484   }
1485   llvm_unreachable("unsupported target");
1486 }
1487 
1488 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1489   return decodeSDWASrc(OPW16, Val);
1490 }
1491 
1492 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1493   return decodeSDWASrc(OPW32, Val);
1494 }
1495 
1496 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1497   using namespace AMDGPU::SDWA;
1498 
1499   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1500           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1501          "SDWAVopcDst should be present only on GFX9+");
1502 
1503   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1504 
1505   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1506     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1507 
1508     int TTmpIdx = getTTmpIdx(Val);
1509     if (TTmpIdx >= 0) {
1510       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1511       return createSRegOperand(TTmpClsId, TTmpIdx);
1512     } else if (Val > SGPR_MAX) {
1513       return IsWave64 ? decodeSpecialReg64(Val)
1514                       : decodeSpecialReg32(Val);
1515     } else {
1516       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1517     }
1518   } else {
1519     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1520   }
1521 }
1522 
1523 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1524   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1525     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1526 }
1527 
1528 bool AMDGPUDisassembler::isVI() const {
1529   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1530 }
1531 
1532 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1533 
1534 bool AMDGPUDisassembler::isGFX90A() const {
1535   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1536 }
1537 
1538 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1539 
1540 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1541 
1542 bool AMDGPUDisassembler::isGFX10Plus() const {
1543   return AMDGPU::isGFX10Plus(STI);
1544 }
1545 
1546 bool AMDGPUDisassembler::isGFX11() const {
1547   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1548 }
1549 
1550 bool AMDGPUDisassembler::isGFX11Plus() const {
1551   return AMDGPU::isGFX11Plus(STI);
1552 }
1553 
1554 
1555 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1556   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1557 }
1558 
1559 //===----------------------------------------------------------------------===//
1560 // AMDGPU specific symbol handling
1561 //===----------------------------------------------------------------------===//
1562 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1563   do {                                                                         \
1564     KdStream << Indent << DIRECTIVE " "                                        \
1565              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1566   } while (0)
1567 
1568 // NOLINTNEXTLINE(readability-identifier-naming)
1569 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1570     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1571   using namespace amdhsa;
1572   StringRef Indent = "\t";
1573 
1574   // We cannot accurately backward compute #VGPRs used from
1575   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1576   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1577   // simply calculate the inverse of what the assembler does.
1578 
1579   uint32_t GranulatedWorkitemVGPRCount =
1580       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1581       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1582 
1583   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1584                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1585 
1586   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1587 
1588   // We cannot backward compute values used to calculate
1589   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1590   // directives can't be computed:
1591   // .amdhsa_reserve_vcc
1592   // .amdhsa_reserve_flat_scratch
1593   // .amdhsa_reserve_xnack_mask
1594   // They take their respective default values if not specified in the assembly.
1595   //
1596   // GRANULATED_WAVEFRONT_SGPR_COUNT
1597   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1598   //
1599   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1600   // are set to 0. So while disassembling we consider that:
1601   //
1602   // GRANULATED_WAVEFRONT_SGPR_COUNT
1603   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1604   //
1605   // The disassembler cannot recover the original values of those 3 directives.
1606 
1607   uint32_t GranulatedWavefrontSGPRCount =
1608       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1609       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1610 
1611   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1612     return MCDisassembler::Fail;
1613 
1614   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1615                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1616 
1617   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1618   if (!hasArchitectedFlatScratch())
1619     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1620   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1621   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1622 
1623   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1624     return MCDisassembler::Fail;
1625 
1626   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1627                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1628   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1629                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1630   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1631                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1632   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1633                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1634 
1635   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1636     return MCDisassembler::Fail;
1637 
1638   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1639 
1640   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1641     return MCDisassembler::Fail;
1642 
1643   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1644 
1645   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1646     return MCDisassembler::Fail;
1647 
1648   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1649     return MCDisassembler::Fail;
1650 
1651   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1652 
1653   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1654     return MCDisassembler::Fail;
1655 
1656   if (isGFX10Plus()) {
1657     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1658                     COMPUTE_PGM_RSRC1_WGP_MODE);
1659     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1660     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1661   }
1662   return MCDisassembler::Success;
1663 }
1664 
1665 // NOLINTNEXTLINE(readability-identifier-naming)
1666 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1667     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1668   using namespace amdhsa;
1669   StringRef Indent = "\t";
1670   if (hasArchitectedFlatScratch())
1671     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1672                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1673   else
1674     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1675                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1676   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1677                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1678   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1679                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1680   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1681                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1682   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1683                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1684   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1685                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1686 
1687   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1688     return MCDisassembler::Fail;
1689 
1690   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1691     return MCDisassembler::Fail;
1692 
1693   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1694     return MCDisassembler::Fail;
1695 
1696   PRINT_DIRECTIVE(
1697       ".amdhsa_exception_fp_ieee_invalid_op",
1698       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1699   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1700                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1701   PRINT_DIRECTIVE(
1702       ".amdhsa_exception_fp_ieee_div_zero",
1703       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1704   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1705                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1706   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1707                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1708   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1709                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1710   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1711                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1712 
1713   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1714     return MCDisassembler::Fail;
1715 
1716   return MCDisassembler::Success;
1717 }
1718 
1719 #undef PRINT_DIRECTIVE
1720 
1721 MCDisassembler::DecodeStatus
1722 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1723     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1724     raw_string_ostream &KdStream) const {
1725 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1726   do {                                                                         \
1727     KdStream << Indent << DIRECTIVE " "                                        \
1728              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1729   } while (0)
1730 
1731   uint16_t TwoByteBuffer = 0;
1732   uint32_t FourByteBuffer = 0;
1733 
1734   StringRef ReservedBytes;
1735   StringRef Indent = "\t";
1736 
1737   assert(Bytes.size() == 64);
1738   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1739 
1740   switch (Cursor.tell()) {
1741   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1742     FourByteBuffer = DE.getU32(Cursor);
1743     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1744              << '\n';
1745     return MCDisassembler::Success;
1746 
1747   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1748     FourByteBuffer = DE.getU32(Cursor);
1749     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1750              << FourByteBuffer << '\n';
1751     return MCDisassembler::Success;
1752 
1753   case amdhsa::KERNARG_SIZE_OFFSET:
1754     FourByteBuffer = DE.getU32(Cursor);
1755     KdStream << Indent << ".amdhsa_kernarg_size "
1756              << FourByteBuffer << '\n';
1757     return MCDisassembler::Success;
1758 
1759   case amdhsa::RESERVED0_OFFSET:
1760     // 4 reserved bytes, must be 0.
1761     ReservedBytes = DE.getBytes(Cursor, 4);
1762     for (int I = 0; I < 4; ++I) {
1763       if (ReservedBytes[I] != 0) {
1764         return MCDisassembler::Fail;
1765       }
1766     }
1767     return MCDisassembler::Success;
1768 
1769   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1770     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1771     // So far no directive controls this for Code Object V3, so simply skip for
1772     // disassembly.
1773     DE.skip(Cursor, 8);
1774     return MCDisassembler::Success;
1775 
1776   case amdhsa::RESERVED1_OFFSET:
1777     // 20 reserved bytes, must be 0.
1778     ReservedBytes = DE.getBytes(Cursor, 20);
1779     for (int I = 0; I < 20; ++I) {
1780       if (ReservedBytes[I] != 0) {
1781         return MCDisassembler::Fail;
1782       }
1783     }
1784     return MCDisassembler::Success;
1785 
1786   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1787     // COMPUTE_PGM_RSRC3
1788     //  - Only set for GFX10, GFX6-9 have this to be 0.
1789     //  - Currently no directives directly control this.
1790     FourByteBuffer = DE.getU32(Cursor);
1791     if (!isGFX10Plus() && FourByteBuffer) {
1792       return MCDisassembler::Fail;
1793     }
1794     return MCDisassembler::Success;
1795 
1796   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1797     FourByteBuffer = DE.getU32(Cursor);
1798     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1799         MCDisassembler::Fail) {
1800       return MCDisassembler::Fail;
1801     }
1802     return MCDisassembler::Success;
1803 
1804   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1805     FourByteBuffer = DE.getU32(Cursor);
1806     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1807         MCDisassembler::Fail) {
1808       return MCDisassembler::Fail;
1809     }
1810     return MCDisassembler::Success;
1811 
1812   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1813     using namespace amdhsa;
1814     TwoByteBuffer = DE.getU16(Cursor);
1815 
1816     if (!hasArchitectedFlatScratch())
1817       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1818                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1819     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1820                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1821     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1822                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1823     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1824                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1825     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1826                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1827     if (!hasArchitectedFlatScratch())
1828       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1829                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1830     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1831                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1832 
1833     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1834       return MCDisassembler::Fail;
1835 
1836     // Reserved for GFX9
1837     if (isGFX9() &&
1838         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1839       return MCDisassembler::Fail;
1840     } else if (isGFX10Plus()) {
1841       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1842                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1843     }
1844 
1845     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1846       return MCDisassembler::Fail;
1847 
1848     return MCDisassembler::Success;
1849 
1850   case amdhsa::RESERVED2_OFFSET:
1851     // 6 bytes from here are reserved, must be 0.
1852     ReservedBytes = DE.getBytes(Cursor, 6);
1853     for (int I = 0; I < 6; ++I) {
1854       if (ReservedBytes[I] != 0)
1855         return MCDisassembler::Fail;
1856     }
1857     return MCDisassembler::Success;
1858 
1859   default:
1860     llvm_unreachable("Unhandled index. Case statements cover everything.");
1861     return MCDisassembler::Fail;
1862   }
1863 #undef PRINT_DIRECTIVE
1864 }
1865 
1866 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1867     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1868   // CP microcode requires the kernel descriptor to be 64 aligned.
1869   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1870     return MCDisassembler::Fail;
1871 
1872   std::string Kd;
1873   raw_string_ostream KdStream(Kd);
1874   KdStream << ".amdhsa_kernel " << KdName << '\n';
1875 
1876   DataExtractor::Cursor C(0);
1877   while (C && C.tell() < Bytes.size()) {
1878     MCDisassembler::DecodeStatus Status =
1879         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1880 
1881     cantFail(C.takeError());
1882 
1883     if (Status == MCDisassembler::Fail)
1884       return MCDisassembler::Fail;
1885   }
1886   KdStream << ".end_amdhsa_kernel\n";
1887   outs() << KdStream.str();
1888   return MCDisassembler::Success;
1889 }
1890 
1891 Optional<MCDisassembler::DecodeStatus>
1892 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1893                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1894                                   raw_ostream &CStream) const {
1895   // Right now only kernel descriptor needs to be handled.
1896   // We ignore all other symbols for target specific handling.
1897   // TODO:
1898   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1899   // Object V2 and V3 when symbols are marked protected.
1900 
1901   // amd_kernel_code_t for Code Object V2.
1902   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1903     Size = 256;
1904     return MCDisassembler::Fail;
1905   }
1906 
1907   // Code Object V3 kernel descriptors.
1908   StringRef Name = Symbol.Name;
1909   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1910     Size = 64; // Size = 64 regardless of success or failure.
1911     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1912   }
1913   return None;
1914 }
1915 
1916 //===----------------------------------------------------------------------===//
1917 // AMDGPUSymbolizer
1918 //===----------------------------------------------------------------------===//
1919 
1920 // Try to find symbol name for specified label
1921 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
1922     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
1923     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
1924     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
1925 
1926   if (!IsBranch) {
1927     return false;
1928   }
1929 
1930   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1931   if (!Symbols)
1932     return false;
1933 
1934   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1935     return Val.Addr == static_cast<uint64_t>(Value) &&
1936            Val.Type == ELF::STT_NOTYPE;
1937   });
1938   if (Result != Symbols->end()) {
1939     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1940     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1941     Inst.addOperand(MCOperand::createExpr(Add));
1942     return true;
1943   }
1944   // Add to list of referenced addresses, so caller can synthesize a label.
1945   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1946   return false;
1947 }
1948 
1949 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1950                                                        int64_t Value,
1951                                                        uint64_t Address) {
1952   llvm_unreachable("unimplemented");
1953 }
1954 
1955 //===----------------------------------------------------------------------===//
1956 // Initialization
1957 //===----------------------------------------------------------------------===//
1958 
1959 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1960                               LLVMOpInfoCallback /*GetOpInfo*/,
1961                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1962                               void *DisInfo,
1963                               MCContext *Ctx,
1964                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1965   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1966 }
1967 
1968 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1969                                                 const MCSubtargetInfo &STI,
1970                                                 MCContext &Ctx) {
1971   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1972 }
1973 
1974 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1975   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1976                                          createAMDGPUDisassembler);
1977   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1978                                        createAMDGPUSymbolizer);
1979 }
1980