xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision be1082c6d54dfc47975b370b521d4fc3affde8ce)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VRegOrLds_32)
123 DECODE_OPERAND_REG(VS_32)
124 DECODE_OPERAND_REG(VS_64)
125 DECODE_OPERAND_REG(VS_128)
126 
127 DECODE_OPERAND_REG(VReg_64)
128 DECODE_OPERAND_REG(VReg_96)
129 DECODE_OPERAND_REG(VReg_128)
130 DECODE_OPERAND_REG(VReg_256)
131 DECODE_OPERAND_REG(VReg_512)
132 DECODE_OPERAND_REG(VReg_1024)
133 
134 DECODE_OPERAND_REG(SReg_32)
135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
137 DECODE_OPERAND_REG(SRegOrLds_32)
138 DECODE_OPERAND_REG(SReg_64)
139 DECODE_OPERAND_REG(SReg_64_XEXEC)
140 DECODE_OPERAND_REG(SReg_128)
141 DECODE_OPERAND_REG(SReg_256)
142 DECODE_OPERAND_REG(SReg_512)
143 
144 DECODE_OPERAND_REG(AGPR_32)
145 DECODE_OPERAND_REG(AReg_64)
146 DECODE_OPERAND_REG(AReg_128)
147 DECODE_OPERAND_REG(AReg_256)
148 DECODE_OPERAND_REG(AReg_512)
149 DECODE_OPERAND_REG(AReg_1024)
150 DECODE_OPERAND_REG(AV_32)
151 DECODE_OPERAND_REG(AV_64)
152 DECODE_OPERAND_REG(AV_128)
153 DECODE_OPERAND_REG(AVDst_128)
154 DECODE_OPERAND_REG(AVDst_512)
155 
156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
157                                          uint64_t Addr,
158                                          const MCDisassembler *Decoder) {
159   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
161 }
162 
163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
164                                            uint64_t Addr,
165                                            const MCDisassembler *Decoder) {
166   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
167   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
168 }
169 
170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
171                                            uint64_t Addr,
172                                            const MCDisassembler *Decoder) {
173   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
175 }
176 
177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
178                                         uint64_t Addr,
179                                         const MCDisassembler *Decoder) {
180   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
182 }
183 
184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
185                                         uint64_t Addr,
186                                         const MCDisassembler *Decoder) {
187   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190 
191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
192                                           uint64_t Addr,
193                                           const MCDisassembler *Decoder) {
194   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
195   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
196 }
197 
198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
199                                            uint64_t Addr,
200                                            const MCDisassembler *Decoder) {
201   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
202   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
203 }
204 
205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
206                                            uint64_t Addr,
207                                            const MCDisassembler *Decoder) {
208   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
209   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
210 }
211 
212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
213                                            uint64_t Addr,
214                                            const MCDisassembler *Decoder) {
215   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218 
219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
220                                             uint64_t Addr,
221                                             const MCDisassembler *Decoder) {
222   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
223   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
224 }
225 
226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
227                                           uint64_t Addr,
228                                           const MCDisassembler *Decoder) {
229   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
231 }
232 
233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
234                                            uint64_t Addr,
235                                            const MCDisassembler *Decoder) {
236   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
237   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
238 }
239 
240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
241                                            uint64_t Addr,
242                                            const MCDisassembler *Decoder) {
243   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
245 }
246 
247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
248                                            uint64_t Addr,
249                                            const MCDisassembler *Decoder) {
250   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
251   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
252 }
253 
254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
255                                             uint64_t Addr,
256                                             const MCDisassembler *Decoder) {
257   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
258   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
259 }
260 
261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
262                                           uint64_t Addr,
263                                           const MCDisassembler *Decoder) {
264   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
265   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
266 }
267 
268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
269                                           uint64_t Addr,
270                                           const MCDisassembler *Decoder) {
271   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
272   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
273 }
274 
275 static DecodeStatus
276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
277                              const MCDisassembler *Decoder) {
278   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
279   return addOperand(
280       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
281 }
282 
283 static DecodeStatus
284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
285                              const MCDisassembler *Decoder) {
286   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(
288       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
289 }
290 
291 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
292                           const MCRegisterInfo *MRI) {
293   if (OpIdx < 0)
294     return false;
295 
296   const MCOperand &Op = Inst.getOperand(OpIdx);
297   if (!Op.isReg())
298     return false;
299 
300   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
301   auto Reg = Sub ? Sub : Op.getReg();
302   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
303 }
304 
305 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
306                                              AMDGPUDisassembler::OpWidthTy Opw,
307                                              const MCDisassembler *Decoder) {
308   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
309   if (!DAsm->isGFX90A()) {
310     Imm &= 511;
311   } else {
312     // If atomic has both vdata and vdst their register classes are tied.
313     // The bit is decoded along with the vdst, first operand. We need to
314     // change register class to AGPR if vdst was AGPR.
315     // If a DS instruction has both data0 and data1 their register classes
316     // are also tied.
317     unsigned Opc = Inst.getOpcode();
318     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
319     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
320                                                         : AMDGPU::OpName::vdata;
321     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
322     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
323     if ((int)Inst.getNumOperands() == DataIdx) {
324       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
325       if (IsAGPROperand(Inst, DstIdx, MRI))
326         Imm |= 512;
327     }
328 
329     if (TSFlags & SIInstrFlags::DS) {
330       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
331       if ((int)Inst.getNumOperands() == Data2Idx &&
332           IsAGPROperand(Inst, DataIdx, MRI))
333         Imm |= 512;
334     }
335   }
336   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
337 }
338 
339 static DecodeStatus
340 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
341                              const MCDisassembler *Decoder) {
342   return decodeOperand_AVLdSt_Any(Inst, Imm,
343                                   AMDGPUDisassembler::OPW32, Decoder);
344 }
345 
346 static DecodeStatus
347 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
348                              const MCDisassembler *Decoder) {
349   return decodeOperand_AVLdSt_Any(Inst, Imm,
350                                   AMDGPUDisassembler::OPW64, Decoder);
351 }
352 
353 static DecodeStatus
354 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
355                              const MCDisassembler *Decoder) {
356   return decodeOperand_AVLdSt_Any(Inst, Imm,
357                                   AMDGPUDisassembler::OPW96, Decoder);
358 }
359 
360 static DecodeStatus
361 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
362                               const MCDisassembler *Decoder) {
363   return decodeOperand_AVLdSt_Any(Inst, Imm,
364                                   AMDGPUDisassembler::OPW128, Decoder);
365 }
366 
367 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
368                                           uint64_t Addr,
369                                           const MCDisassembler *Decoder) {
370   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
371   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
372 }
373 
374 #define DECODE_SDWA(DecName) \
375 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
376 
377 DECODE_SDWA(Src32)
378 DECODE_SDWA(Src16)
379 DECODE_SDWA(VopcDst)
380 
381 #include "AMDGPUGenDisassemblerTables.inc"
382 
383 //===----------------------------------------------------------------------===//
384 //
385 //===----------------------------------------------------------------------===//
386 
387 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
388   assert(Bytes.size() >= sizeof(T));
389   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
390   Bytes = Bytes.slice(sizeof(T));
391   return Res;
392 }
393 
394 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
395   assert(Bytes.size() >= 12);
396   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
397       Bytes.data());
398   Bytes = Bytes.slice(8);
399   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
400       Bytes.data());
401   Bytes = Bytes.slice(4);
402   return DecoderUInt128(Lo, Hi);
403 }
404 
405 // The disassembler is greedy, so we need to check FI operand value to
406 // not parse a dpp if the correct literal is not set. For dpp16 the
407 // autogenerated decoder checks the dpp literal
408 static bool isValidDPP8(const MCInst &MI) {
409   using namespace llvm::AMDGPU::DPP;
410   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
411   assert(FiIdx != -1);
412   if ((unsigned)FiIdx >= MI.getNumOperands())
413     return false;
414   unsigned Fi = MI.getOperand(FiIdx).getImm();
415   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
416 }
417 
418 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
419                                                 ArrayRef<uint8_t> Bytes_,
420                                                 uint64_t Address,
421                                                 raw_ostream &CS) const {
422   CommentStream = &CS;
423   bool IsSDWA = false;
424 
425   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
426   Bytes = Bytes_.slice(0, MaxInstBytesNum);
427 
428   DecodeStatus Res = MCDisassembler::Fail;
429   do {
430     // ToDo: better to switch encoding length using some bit predicate
431     // but it is unknown yet, so try all we can
432 
433     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
434     // encodings
435     if (isGFX11Plus() && Bytes.size() >= 12 ) {
436       DecoderUInt128 DecW = eat12Bytes(Bytes);
437       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
438                                           Address);
439       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
440         break;
441       MI = MCInst(); // clear
442       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
443                                           Address);
444       if (Res) {
445         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
446           convertVOP3PDPPInst(MI);
447         else if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
448           convertVOPCDPPInst(MI);
449         break;
450       }
451     }
452     // Reinitialize Bytes
453     Bytes = Bytes_.slice(0, MaxInstBytesNum);
454 
455     if (Bytes.size() >= 8) {
456       const uint64_t QW = eatBytes<uint64_t>(Bytes);
457 
458       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
459         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
460         if (Res) {
461           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
462               == -1)
463             break;
464           if (convertDPP8Inst(MI) == MCDisassembler::Success)
465             break;
466           MI = MCInst(); // clear
467         }
468       }
469 
470       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
471       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
472         break;
473       MI = MCInst(); // clear
474 
475       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
476       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
477         break;
478       MI = MCInst(); // clear
479 
480       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
481       if (Res) break;
482 
483       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
484       if (Res) {
485         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
486           convertVOPCDPPInst(MI);
487         break;
488       }
489 
490       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
491       if (Res) { IsSDWA = true;  break; }
492 
493       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
494       if (Res) { IsSDWA = true;  break; }
495 
496       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
497       if (Res) { IsSDWA = true;  break; }
498 
499       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
500         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
501         if (Res)
502           break;
503       }
504 
505       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
506       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
507       // table first so we print the correct name.
508       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
509         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
510         if (Res)
511           break;
512       }
513     }
514 
515     // Reinitialize Bytes as DPP64 could have eaten too much
516     Bytes = Bytes_.slice(0, MaxInstBytesNum);
517 
518     // Try decode 32-bit instruction
519     if (Bytes.size() < 4) break;
520     const uint32_t DW = eatBytes<uint32_t>(Bytes);
521     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
522     if (Res) break;
523 
524     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
525     if (Res) break;
526 
527     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
528     if (Res) break;
529 
530     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
531       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
532       if (Res)
533         break;
534     }
535 
536     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
537       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
538       if (Res) break;
539     }
540 
541     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
542     if (Res) break;
543 
544     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
545     if (Res) break;
546 
547     if (Bytes.size() < 4) break;
548     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
549 
550     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
551       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
552       if (Res)
553         break;
554     }
555 
556     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
557     if (Res) break;
558 
559     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
560     if (Res) break;
561 
562     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
563     if (Res) break;
564 
565     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
566     if (Res) break;
567 
568     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
569   } while (false);
570 
571   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
572               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
573               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
574               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
575               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
576               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
577               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
578               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
579               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
580               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
581               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
582               MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
583               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
584               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx11)) {
585     // Insert dummy unused src2_modifiers.
586     insertNamedMCOperand(MI, MCOperand::createImm(0),
587                          AMDGPU::OpName::src2_modifiers);
588   }
589 
590   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
591           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
592     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
593                                              AMDGPU::OpName::cpol);
594     if (CPolPos != -1) {
595       unsigned CPol =
596           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
597               AMDGPU::CPol::GLC : 0;
598       if (MI.getNumOperands() <= (unsigned)CPolPos) {
599         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
600                              AMDGPU::OpName::cpol);
601       } else if (CPol) {
602         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
603       }
604     }
605   }
606 
607   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
608               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
609              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
610     // GFX90A lost TFE, its place is occupied by ACC.
611     int TFEOpIdx =
612         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
613     if (TFEOpIdx != -1) {
614       auto TFEIter = MI.begin();
615       std::advance(TFEIter, TFEOpIdx);
616       MI.insert(TFEIter, MCOperand::createImm(0));
617     }
618   }
619 
620   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
621               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
622     int SWZOpIdx =
623         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
624     if (SWZOpIdx != -1) {
625       auto SWZIter = MI.begin();
626       std::advance(SWZIter, SWZOpIdx);
627       MI.insert(SWZIter, MCOperand::createImm(0));
628     }
629   }
630 
631   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
632     int VAddr0Idx =
633         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
634     int RsrcIdx =
635         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
636     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
637     if (VAddr0Idx >= 0 && NSAArgs > 0) {
638       unsigned NSAWords = (NSAArgs + 3) / 4;
639       if (Bytes.size() < 4 * NSAWords) {
640         Res = MCDisassembler::Fail;
641       } else {
642         for (unsigned i = 0; i < NSAArgs; ++i) {
643           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
644           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
645           MI.insert(MI.begin() + VAddrIdx,
646                     createRegOperand(VAddrRCID, Bytes[i]));
647         }
648         Bytes = Bytes.slice(4 * NSAWords);
649       }
650     }
651 
652     if (Res)
653       Res = convertMIMGInst(MI);
654   }
655 
656   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
657     Res = convertEXPInst(MI);
658 
659   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
660     Res = convertVINTERPInst(MI);
661 
662   if (Res && IsSDWA)
663     Res = convertSDWAInst(MI);
664 
665   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
666                                               AMDGPU::OpName::vdst_in);
667   if (VDstIn_Idx != -1) {
668     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
669                            MCOI::OperandConstraint::TIED_TO);
670     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
671          !MI.getOperand(VDstIn_Idx).isReg() ||
672          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
673       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
674         MI.erase(&MI.getOperand(VDstIn_Idx));
675       insertNamedMCOperand(MI,
676         MCOperand::createReg(MI.getOperand(Tied).getReg()),
677         AMDGPU::OpName::vdst_in);
678     }
679   }
680 
681   int ImmLitIdx =
682       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
683   if (Res && ImmLitIdx != -1)
684     Res = convertFMAanyK(MI, ImmLitIdx);
685 
686   // if the opcode was not recognized we'll assume a Size of 4 bytes
687   // (unless there are fewer bytes left)
688   Size = Res ? (MaxInstBytesNum - Bytes.size())
689              : std::min((size_t)4, Bytes_.size());
690   return Res;
691 }
692 
693 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
694   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
695     // The MCInst still has these fields even though they are no longer encoded
696     // in the GFX11 instruction.
697     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
698     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
699   }
700   return MCDisassembler::Success;
701 }
702 
703 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
704   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
705       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
706       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
707       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
708     // The MCInst has this field that is not directly encoded in the
709     // instruction.
710     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
711   }
712   return MCDisassembler::Success;
713 }
714 
715 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
716   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
717       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
718     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
719       // VOPC - insert clamp
720       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
721   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
722     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
723     if (SDst != -1) {
724       // VOPC - insert VCC register as sdst
725       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
726                            AMDGPU::OpName::sdst);
727     } else {
728       // VOP1/2 - insert omod if present in instruction
729       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
730     }
731   }
732   return MCDisassembler::Success;
733 }
734 
735 // We must check FI == literal to reject not genuine dpp8 insts, and we must
736 // first add optional MI operands to check FI
737 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
738   unsigned Opc = MI.getOpcode();
739   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
740   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
741     convertVOP3PDPPInst(MI);
742   } else if (MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) {
743     convertVOPCDPPInst(MI);
744   } else {
745     // Insert dummy unused src modifiers.
746     if (MI.getNumOperands() < DescNumOps &&
747         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
748       insertNamedMCOperand(MI, MCOperand::createImm(0),
749                            AMDGPU::OpName::src0_modifiers);
750 
751     if (MI.getNumOperands() < DescNumOps &&
752         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
753       insertNamedMCOperand(MI, MCOperand::createImm(0),
754                            AMDGPU::OpName::src1_modifiers);
755   }
756   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
757 }
758 
759 // Note that before gfx10, the MIMG encoding provided no information about
760 // VADDR size. Consequently, decoded instructions always show address as if it
761 // has 1 dword, which could be not really so.
762 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
763 
764   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
765                                            AMDGPU::OpName::vdst);
766 
767   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
768                                             AMDGPU::OpName::vdata);
769   int VAddr0Idx =
770       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
771   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
772                                             AMDGPU::OpName::dmask);
773 
774   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
775                                             AMDGPU::OpName::tfe);
776   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
777                                             AMDGPU::OpName::d16);
778 
779   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
780   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
781       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
782 
783   assert(VDataIdx != -1);
784   if (BaseOpcode->BVH) {
785     // Add A16 operand for intersect_ray instructions
786     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
787       addOperand(MI, MCOperand::createImm(1));
788     }
789     return MCDisassembler::Success;
790   }
791 
792   bool IsAtomic = (VDstIdx != -1);
793   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
794   bool IsNSA = false;
795   unsigned AddrSize = Info->VAddrDwords;
796 
797   if (isGFX10Plus()) {
798     unsigned DimIdx =
799         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
800     int A16Idx =
801         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
802     const AMDGPU::MIMGDimInfo *Dim =
803         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
804     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
805 
806     AddrSize =
807         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
808 
809     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
810             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
811     if (!IsNSA) {
812       if (AddrSize > 8)
813         AddrSize = 16;
814     } else {
815       if (AddrSize > Info->VAddrDwords) {
816         // The NSA encoding does not contain enough operands for the combination
817         // of base opcode / dimension. Should this be an error?
818         return MCDisassembler::Success;
819       }
820     }
821   }
822 
823   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
824   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
825 
826   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
827   if (D16 && AMDGPU::hasPackedD16(STI)) {
828     DstSize = (DstSize + 1) / 2;
829   }
830 
831   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
832     DstSize += 1;
833 
834   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
835     return MCDisassembler::Success;
836 
837   int NewOpcode =
838       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
839   if (NewOpcode == -1)
840     return MCDisassembler::Success;
841 
842   // Widen the register to the correct number of enabled channels.
843   unsigned NewVdata = AMDGPU::NoRegister;
844   if (DstSize != Info->VDataDwords) {
845     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
846 
847     // Get first subregister of VData
848     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
849     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
850     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
851 
852     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
853                                        &MRI.getRegClass(DataRCID));
854     if (NewVdata == AMDGPU::NoRegister) {
855       // It's possible to encode this such that the low register + enabled
856       // components exceeds the register count.
857       return MCDisassembler::Success;
858     }
859   }
860 
861   // If not using NSA on GFX10+, widen address register to correct size.
862   unsigned NewVAddr0 = AMDGPU::NoRegister;
863   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
864     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
865     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
866     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
867 
868     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
869     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
870                                         &MRI.getRegClass(AddrRCID));
871     if (NewVAddr0 == AMDGPU::NoRegister)
872       return MCDisassembler::Success;
873   }
874 
875   MI.setOpcode(NewOpcode);
876 
877   if (NewVdata != AMDGPU::NoRegister) {
878     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
879 
880     if (IsAtomic) {
881       // Atomic operations have an additional operand (a copy of data)
882       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
883     }
884   }
885 
886   if (NewVAddr0 != AMDGPU::NoRegister) {
887     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
888   } else if (IsNSA) {
889     assert(AddrSize <= Info->VAddrDwords);
890     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
891              MI.begin() + VAddr0Idx + Info->VAddrDwords);
892   }
893 
894   return MCDisassembler::Success;
895 }
896 
897 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
898 // decoder only adds to src_modifiers, so manually add the bits to the other
899 // operands.
900 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
901   unsigned Opc = MI.getOpcode();
902   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
903 
904   if (MI.getNumOperands() < DescNumOps &&
905       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1)
906     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
907 
908   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
909                         AMDGPU::OpName::src1_modifiers,
910                         AMDGPU::OpName::src2_modifiers};
911   unsigned OpSel = 0;
912   unsigned OpSelHi = 0;
913   unsigned NegLo = 0;
914   unsigned NegHi = 0;
915   for (int J = 0; J < 3; ++J) {
916     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
917     if (OpIdx == -1)
918       break;
919     unsigned Val = MI.getOperand(OpIdx).getImm();
920 
921     OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
922     OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
923     NegLo |= !!(Val & SISrcMods::NEG) << J;
924     NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
925   }
926 
927   if (MI.getNumOperands() < DescNumOps &&
928       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1)
929     insertNamedMCOperand(MI, MCOperand::createImm(OpSel),
930                          AMDGPU::OpName::op_sel);
931   if (MI.getNumOperands() < DescNumOps &&
932       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1)
933     insertNamedMCOperand(MI, MCOperand::createImm(OpSelHi),
934                          AMDGPU::OpName::op_sel_hi);
935   if (MI.getNumOperands() < DescNumOps &&
936       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1)
937     insertNamedMCOperand(MI, MCOperand::createImm(NegLo),
938                          AMDGPU::OpName::neg_lo);
939   if (MI.getNumOperands() < DescNumOps &&
940       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1)
941     insertNamedMCOperand(MI, MCOperand::createImm(NegHi),
942                          AMDGPU::OpName::neg_hi);
943 
944   return MCDisassembler::Success;
945 }
946 
947 // Create dummy old operand and insert optional operands
948 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
949   unsigned Opc = MI.getOpcode();
950   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
951 
952   if (MI.getNumOperands() < DescNumOps &&
953       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::old) != -1)
954     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
955 
956   if (MI.getNumOperands() < DescNumOps &&
957       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
958     insertNamedMCOperand(MI, MCOperand::createImm(0),
959                          AMDGPU::OpName::src0_modifiers);
960 
961   if (MI.getNumOperands() < DescNumOps &&
962       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
963     insertNamedMCOperand(MI, MCOperand::createImm(0),
964                          AMDGPU::OpName::src1_modifiers);
965   return MCDisassembler::Success;
966 }
967 
968 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
969                                                 int ImmLitIdx) const {
970   assert(HasLiteral && "Should have decoded a literal");
971   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
972   unsigned DescNumOps = Desc.getNumOperands();
973   assert(DescNumOps == MI.getNumOperands());
974   for (unsigned I = 0; I < DescNumOps; ++I) {
975     auto &Op = MI.getOperand(I);
976     auto OpType = Desc.OpInfo[I].OperandType;
977     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
978                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
979     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
980         IsDeferredOp)
981       Op.setImm(Literal);
982   }
983   return MCDisassembler::Success;
984 }
985 
986 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
987   return getContext().getRegisterInfo()->
988     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
989 }
990 
991 inline
992 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
993                                          const Twine& ErrMsg) const {
994   *CommentStream << "Error: " + ErrMsg;
995 
996   // ToDo: add support for error operands to MCInst.h
997   // return MCOperand::createError(V);
998   return MCOperand();
999 }
1000 
1001 inline
1002 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1003   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1004 }
1005 
1006 inline
1007 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1008                                                unsigned Val) const {
1009   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1010   if (Val >= RegCl.getNumRegs())
1011     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1012                            ": unknown register " + Twine(Val));
1013   return createRegOperand(RegCl.getRegister(Val));
1014 }
1015 
1016 inline
1017 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1018                                                 unsigned Val) const {
1019   // ToDo: SI/CI have 104 SGPRs, VI - 102
1020   // Valery: here we accepting as much as we can, let assembler sort it out
1021   int shift = 0;
1022   switch (SRegClassID) {
1023   case AMDGPU::SGPR_32RegClassID:
1024   case AMDGPU::TTMP_32RegClassID:
1025     break;
1026   case AMDGPU::SGPR_64RegClassID:
1027   case AMDGPU::TTMP_64RegClassID:
1028     shift = 1;
1029     break;
1030   case AMDGPU::SGPR_128RegClassID:
1031   case AMDGPU::TTMP_128RegClassID:
1032   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1033   // this bundle?
1034   case AMDGPU::SGPR_256RegClassID:
1035   case AMDGPU::TTMP_256RegClassID:
1036     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1037   // this bundle?
1038   case AMDGPU::SGPR_512RegClassID:
1039   case AMDGPU::TTMP_512RegClassID:
1040     shift = 2;
1041     break;
1042   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1043   // this bundle?
1044   default:
1045     llvm_unreachable("unhandled register class");
1046   }
1047 
1048   if (Val % (1 << shift)) {
1049     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1050                    << ": scalar reg isn't aligned " << Val;
1051   }
1052 
1053   return createRegOperand(SRegClassID, Val >> shift);
1054 }
1055 
1056 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1057   return decodeSrcOp(OPW32, Val);
1058 }
1059 
1060 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1061   return decodeSrcOp(OPW64, Val);
1062 }
1063 
1064 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1065   return decodeSrcOp(OPW128, Val);
1066 }
1067 
1068 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1069   return decodeSrcOp(OPW16, Val);
1070 }
1071 
1072 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1073   return decodeSrcOp(OPWV216, Val);
1074 }
1075 
1076 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1077   return decodeSrcOp(OPWV232, Val);
1078 }
1079 
1080 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1081   // Some instructions have operand restrictions beyond what the encoding
1082   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1083   // high bit.
1084   Val &= 255;
1085 
1086   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1087 }
1088 
1089 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1090   return decodeSrcOp(OPW32, Val);
1091 }
1092 
1093 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1094   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1095 }
1096 
1097 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1098   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1099 }
1100 
1101 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1102   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1103 }
1104 
1105 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1106   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1107 }
1108 
1109 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1110   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1111 }
1112 
1113 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1114   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1115 }
1116 
1117 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1118   return decodeSrcOp(OPW32, Val);
1119 }
1120 
1121 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1122   return decodeSrcOp(OPW64, Val);
1123 }
1124 
1125 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1126   return decodeSrcOp(OPW128, Val);
1127 }
1128 
1129 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1130   using namespace AMDGPU::EncValues;
1131   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1132   return decodeSrcOp(OPW128, Val | IS_VGPR);
1133 }
1134 
1135 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1136   using namespace AMDGPU::EncValues;
1137   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1138   return decodeSrcOp(OPW512, Val | IS_VGPR);
1139 }
1140 
1141 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1142   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1143 }
1144 
1145 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1146   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1147 }
1148 
1149 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1150   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1151 }
1152 
1153 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1154   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1155 }
1156 
1157 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1158   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1159 }
1160 
1161 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1162   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1163 }
1164 
1165 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1166   // table-gen generated disassembler doesn't care about operand types
1167   // leaving only registry class so SSrc_32 operand turns into SReg_32
1168   // and therefore we accept immediates and literals here as well
1169   return decodeSrcOp(OPW32, Val);
1170 }
1171 
1172 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1173   unsigned Val) const {
1174   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1175   return decodeOperand_SReg_32(Val);
1176 }
1177 
1178 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1179   unsigned Val) const {
1180   // SReg_32_XM0 is SReg_32 without EXEC_HI
1181   return decodeOperand_SReg_32(Val);
1182 }
1183 
1184 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1185   // table-gen generated disassembler doesn't care about operand types
1186   // leaving only registry class so SSrc_32 operand turns into SReg_32
1187   // and therefore we accept immediates and literals here as well
1188   return decodeSrcOp(OPW32, Val);
1189 }
1190 
1191 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1192   return decodeSrcOp(OPW64, Val);
1193 }
1194 
1195 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1196   return decodeSrcOp(OPW64, Val);
1197 }
1198 
1199 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1200   return decodeSrcOp(OPW128, Val);
1201 }
1202 
1203 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1204   return decodeDstOp(OPW256, Val);
1205 }
1206 
1207 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1208   return decodeDstOp(OPW512, Val);
1209 }
1210 
1211 // Decode Literals for insts which always have a literal in the encoding
1212 MCOperand
1213 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1214   if (HasLiteral) {
1215     if (Literal != Val)
1216       return errOperand(Val, "More than one unique literal is illegal");
1217   }
1218   HasLiteral = true;
1219   Literal = Val;
1220   return MCOperand::createImm(Literal);
1221 }
1222 
1223 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1224   // For now all literal constants are supposed to be unsigned integer
1225   // ToDo: deal with signed/unsigned 64-bit integer constants
1226   // ToDo: deal with float/double constants
1227   if (!HasLiteral) {
1228     if (Bytes.size() < 4) {
1229       return errOperand(0, "cannot read literal, inst bytes left " +
1230                         Twine(Bytes.size()));
1231     }
1232     HasLiteral = true;
1233     Literal = eatBytes<uint32_t>(Bytes);
1234   }
1235   return MCOperand::createImm(Literal);
1236 }
1237 
1238 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1239   using namespace AMDGPU::EncValues;
1240 
1241   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1242   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1243     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1244     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1245       // Cast prevents negative overflow.
1246 }
1247 
1248 static int64_t getInlineImmVal32(unsigned Imm) {
1249   switch (Imm) {
1250   case 240:
1251     return FloatToBits(0.5f);
1252   case 241:
1253     return FloatToBits(-0.5f);
1254   case 242:
1255     return FloatToBits(1.0f);
1256   case 243:
1257     return FloatToBits(-1.0f);
1258   case 244:
1259     return FloatToBits(2.0f);
1260   case 245:
1261     return FloatToBits(-2.0f);
1262   case 246:
1263     return FloatToBits(4.0f);
1264   case 247:
1265     return FloatToBits(-4.0f);
1266   case 248: // 1 / (2 * PI)
1267     return 0x3e22f983;
1268   default:
1269     llvm_unreachable("invalid fp inline imm");
1270   }
1271 }
1272 
1273 static int64_t getInlineImmVal64(unsigned Imm) {
1274   switch (Imm) {
1275   case 240:
1276     return DoubleToBits(0.5);
1277   case 241:
1278     return DoubleToBits(-0.5);
1279   case 242:
1280     return DoubleToBits(1.0);
1281   case 243:
1282     return DoubleToBits(-1.0);
1283   case 244:
1284     return DoubleToBits(2.0);
1285   case 245:
1286     return DoubleToBits(-2.0);
1287   case 246:
1288     return DoubleToBits(4.0);
1289   case 247:
1290     return DoubleToBits(-4.0);
1291   case 248: // 1 / (2 * PI)
1292     return 0x3fc45f306dc9c882;
1293   default:
1294     llvm_unreachable("invalid fp inline imm");
1295   }
1296 }
1297 
1298 static int64_t getInlineImmVal16(unsigned Imm) {
1299   switch (Imm) {
1300   case 240:
1301     return 0x3800;
1302   case 241:
1303     return 0xB800;
1304   case 242:
1305     return 0x3C00;
1306   case 243:
1307     return 0xBC00;
1308   case 244:
1309     return 0x4000;
1310   case 245:
1311     return 0xC000;
1312   case 246:
1313     return 0x4400;
1314   case 247:
1315     return 0xC400;
1316   case 248: // 1 / (2 * PI)
1317     return 0x3118;
1318   default:
1319     llvm_unreachable("invalid fp inline imm");
1320   }
1321 }
1322 
1323 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1324   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1325       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1326 
1327   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1328   switch (Width) {
1329   case OPW32:
1330   case OPW128: // splat constants
1331   case OPW512:
1332   case OPW1024:
1333   case OPWV232:
1334     return MCOperand::createImm(getInlineImmVal32(Imm));
1335   case OPW64:
1336   case OPW256:
1337     return MCOperand::createImm(getInlineImmVal64(Imm));
1338   case OPW16:
1339   case OPWV216:
1340     return MCOperand::createImm(getInlineImmVal16(Imm));
1341   default:
1342     llvm_unreachable("implement me");
1343   }
1344 }
1345 
1346 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1347   using namespace AMDGPU;
1348 
1349   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1350   switch (Width) {
1351   default: // fall
1352   case OPW32:
1353   case OPW16:
1354   case OPWV216:
1355     return VGPR_32RegClassID;
1356   case OPW64:
1357   case OPWV232: return VReg_64RegClassID;
1358   case OPW96: return VReg_96RegClassID;
1359   case OPW128: return VReg_128RegClassID;
1360   case OPW160: return VReg_160RegClassID;
1361   case OPW256: return VReg_256RegClassID;
1362   case OPW512: return VReg_512RegClassID;
1363   case OPW1024: return VReg_1024RegClassID;
1364   }
1365 }
1366 
1367 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1368   using namespace AMDGPU;
1369 
1370   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1371   switch (Width) {
1372   default: // fall
1373   case OPW32:
1374   case OPW16:
1375   case OPWV216:
1376     return AGPR_32RegClassID;
1377   case OPW64:
1378   case OPWV232: return AReg_64RegClassID;
1379   case OPW96: return AReg_96RegClassID;
1380   case OPW128: return AReg_128RegClassID;
1381   case OPW160: return AReg_160RegClassID;
1382   case OPW256: return AReg_256RegClassID;
1383   case OPW512: return AReg_512RegClassID;
1384   case OPW1024: return AReg_1024RegClassID;
1385   }
1386 }
1387 
1388 
1389 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1390   using namespace AMDGPU;
1391 
1392   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1393   switch (Width) {
1394   default: // fall
1395   case OPW32:
1396   case OPW16:
1397   case OPWV216:
1398     return SGPR_32RegClassID;
1399   case OPW64:
1400   case OPWV232: return SGPR_64RegClassID;
1401   case OPW96: return SGPR_96RegClassID;
1402   case OPW128: return SGPR_128RegClassID;
1403   case OPW160: return SGPR_160RegClassID;
1404   case OPW256: return SGPR_256RegClassID;
1405   case OPW512: return SGPR_512RegClassID;
1406   }
1407 }
1408 
1409 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1410   using namespace AMDGPU;
1411 
1412   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1413   switch (Width) {
1414   default: // fall
1415   case OPW32:
1416   case OPW16:
1417   case OPWV216:
1418     return TTMP_32RegClassID;
1419   case OPW64:
1420   case OPWV232: return TTMP_64RegClassID;
1421   case OPW128: return TTMP_128RegClassID;
1422   case OPW256: return TTMP_256RegClassID;
1423   case OPW512: return TTMP_512RegClassID;
1424   }
1425 }
1426 
1427 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1428   using namespace AMDGPU::EncValues;
1429 
1430   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1431   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1432 
1433   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1434 }
1435 
1436 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1437                                           bool MandatoryLiteral) const {
1438   using namespace AMDGPU::EncValues;
1439 
1440   assert(Val < 1024); // enum10
1441 
1442   bool IsAGPR = Val & 512;
1443   Val &= 511;
1444 
1445   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1446     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1447                                    : getVgprClassId(Width), Val - VGPR_MIN);
1448   }
1449   if (Val <= SGPR_MAX) {
1450     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1451     static_assert(SGPR_MIN == 0, "");
1452     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1453   }
1454 
1455   int TTmpIdx = getTTmpIdx(Val);
1456   if (TTmpIdx >= 0) {
1457     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1458   }
1459 
1460   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1461     return decodeIntImmed(Val);
1462 
1463   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1464     return decodeFPImmed(Width, Val);
1465 
1466   if (Val == LITERAL_CONST) {
1467     if (MandatoryLiteral)
1468       // Keep a sentinel value for deferred setting
1469       return MCOperand::createImm(LITERAL_CONST);
1470     else
1471       return decodeLiteralConstant();
1472   }
1473 
1474   switch (Width) {
1475   case OPW32:
1476   case OPW16:
1477   case OPWV216:
1478     return decodeSpecialReg32(Val);
1479   case OPW64:
1480   case OPWV232:
1481     return decodeSpecialReg64(Val);
1482   default:
1483     llvm_unreachable("unexpected immediate type");
1484   }
1485 }
1486 
1487 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1488   using namespace AMDGPU::EncValues;
1489 
1490   assert(Val < 128);
1491   assert(Width == OPW256 || Width == OPW512);
1492 
1493   if (Val <= SGPR_MAX) {
1494     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1495     static_assert(SGPR_MIN == 0, "");
1496     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1497   }
1498 
1499   int TTmpIdx = getTTmpIdx(Val);
1500   if (TTmpIdx >= 0) {
1501     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1502   }
1503 
1504   llvm_unreachable("unknown dst register");
1505 }
1506 
1507 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1508   using namespace AMDGPU;
1509 
1510   switch (Val) {
1511   case 102: return createRegOperand(FLAT_SCR_LO);
1512   case 103: return createRegOperand(FLAT_SCR_HI);
1513   case 104: return createRegOperand(XNACK_MASK_LO);
1514   case 105: return createRegOperand(XNACK_MASK_HI);
1515   case 106: return createRegOperand(VCC_LO);
1516   case 107: return createRegOperand(VCC_HI);
1517   case 108: return createRegOperand(TBA_LO);
1518   case 109: return createRegOperand(TBA_HI);
1519   case 110: return createRegOperand(TMA_LO);
1520   case 111: return createRegOperand(TMA_HI);
1521   case 124:
1522     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1523   case 125:
1524     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1525   case 126: return createRegOperand(EXEC_LO);
1526   case 127: return createRegOperand(EXEC_HI);
1527   case 235: return createRegOperand(SRC_SHARED_BASE);
1528   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1529   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1530   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1531   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1532   case 251: return createRegOperand(SRC_VCCZ);
1533   case 252: return createRegOperand(SRC_EXECZ);
1534   case 253: return createRegOperand(SRC_SCC);
1535   case 254: return createRegOperand(LDS_DIRECT);
1536   default: break;
1537   }
1538   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1539 }
1540 
1541 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1542   using namespace AMDGPU;
1543 
1544   switch (Val) {
1545   case 102: return createRegOperand(FLAT_SCR);
1546   case 104: return createRegOperand(XNACK_MASK);
1547   case 106: return createRegOperand(VCC);
1548   case 108: return createRegOperand(TBA);
1549   case 110: return createRegOperand(TMA);
1550   case 124:
1551     if (isGFX11Plus())
1552       return createRegOperand(SGPR_NULL);
1553     break;
1554   case 125:
1555     if (!isGFX11Plus())
1556       return createRegOperand(SGPR_NULL);
1557     break;
1558   case 126: return createRegOperand(EXEC);
1559   case 235: return createRegOperand(SRC_SHARED_BASE);
1560   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1561   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1562   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1563   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1564   case 251: return createRegOperand(SRC_VCCZ);
1565   case 252: return createRegOperand(SRC_EXECZ);
1566   case 253: return createRegOperand(SRC_SCC);
1567   default: break;
1568   }
1569   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1570 }
1571 
1572 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1573                                             const unsigned Val) const {
1574   using namespace AMDGPU::SDWA;
1575   using namespace AMDGPU::EncValues;
1576 
1577   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1578       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1579     // XXX: cast to int is needed to avoid stupid warning:
1580     // compare with unsigned is always true
1581     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1582         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1583       return createRegOperand(getVgprClassId(Width),
1584                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1585     }
1586     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1587         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1588                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1589       return createSRegOperand(getSgprClassId(Width),
1590                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1591     }
1592     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1593         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1594       return createSRegOperand(getTtmpClassId(Width),
1595                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1596     }
1597 
1598     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1599 
1600     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1601       return decodeIntImmed(SVal);
1602 
1603     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1604       return decodeFPImmed(Width, SVal);
1605 
1606     return decodeSpecialReg32(SVal);
1607   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1608     return createRegOperand(getVgprClassId(Width), Val);
1609   }
1610   llvm_unreachable("unsupported target");
1611 }
1612 
1613 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1614   return decodeSDWASrc(OPW16, Val);
1615 }
1616 
1617 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1618   return decodeSDWASrc(OPW32, Val);
1619 }
1620 
1621 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1622   using namespace AMDGPU::SDWA;
1623 
1624   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1625           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1626          "SDWAVopcDst should be present only on GFX9+");
1627 
1628   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1629 
1630   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1631     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1632 
1633     int TTmpIdx = getTTmpIdx(Val);
1634     if (TTmpIdx >= 0) {
1635       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1636       return createSRegOperand(TTmpClsId, TTmpIdx);
1637     } else if (Val > SGPR_MAX) {
1638       return IsWave64 ? decodeSpecialReg64(Val)
1639                       : decodeSpecialReg32(Val);
1640     } else {
1641       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1642     }
1643   } else {
1644     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1645   }
1646 }
1647 
1648 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1649   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1650     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1651 }
1652 
1653 bool AMDGPUDisassembler::isVI() const {
1654   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1655 }
1656 
1657 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1658 
1659 bool AMDGPUDisassembler::isGFX90A() const {
1660   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1661 }
1662 
1663 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1664 
1665 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1666 
1667 bool AMDGPUDisassembler::isGFX10Plus() const {
1668   return AMDGPU::isGFX10Plus(STI);
1669 }
1670 
1671 bool AMDGPUDisassembler::isGFX11() const {
1672   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1673 }
1674 
1675 bool AMDGPUDisassembler::isGFX11Plus() const {
1676   return AMDGPU::isGFX11Plus(STI);
1677 }
1678 
1679 
1680 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1681   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1682 }
1683 
1684 //===----------------------------------------------------------------------===//
1685 // AMDGPU specific symbol handling
1686 //===----------------------------------------------------------------------===//
1687 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1688   do {                                                                         \
1689     KdStream << Indent << DIRECTIVE " "                                        \
1690              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1691   } while (0)
1692 
1693 // NOLINTNEXTLINE(readability-identifier-naming)
1694 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1695     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1696   using namespace amdhsa;
1697   StringRef Indent = "\t";
1698 
1699   // We cannot accurately backward compute #VGPRs used from
1700   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1701   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1702   // simply calculate the inverse of what the assembler does.
1703 
1704   uint32_t GranulatedWorkitemVGPRCount =
1705       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1706       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1707 
1708   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1709                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1710 
1711   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1712 
1713   // We cannot backward compute values used to calculate
1714   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1715   // directives can't be computed:
1716   // .amdhsa_reserve_vcc
1717   // .amdhsa_reserve_flat_scratch
1718   // .amdhsa_reserve_xnack_mask
1719   // They take their respective default values if not specified in the assembly.
1720   //
1721   // GRANULATED_WAVEFRONT_SGPR_COUNT
1722   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1723   //
1724   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1725   // are set to 0. So while disassembling we consider that:
1726   //
1727   // GRANULATED_WAVEFRONT_SGPR_COUNT
1728   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1729   //
1730   // The disassembler cannot recover the original values of those 3 directives.
1731 
1732   uint32_t GranulatedWavefrontSGPRCount =
1733       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1734       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1735 
1736   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1737     return MCDisassembler::Fail;
1738 
1739   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1740                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1741 
1742   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1743   if (!hasArchitectedFlatScratch())
1744     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1745   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1746   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1747 
1748   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1749     return MCDisassembler::Fail;
1750 
1751   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1752                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1753   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1754                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1755   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1756                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1757   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1758                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1759 
1760   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1761     return MCDisassembler::Fail;
1762 
1763   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1764 
1765   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1766     return MCDisassembler::Fail;
1767 
1768   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1769 
1770   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1771     return MCDisassembler::Fail;
1772 
1773   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1774     return MCDisassembler::Fail;
1775 
1776   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1777 
1778   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1779     return MCDisassembler::Fail;
1780 
1781   if (isGFX10Plus()) {
1782     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1783                     COMPUTE_PGM_RSRC1_WGP_MODE);
1784     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1785     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1786   }
1787   return MCDisassembler::Success;
1788 }
1789 
1790 // NOLINTNEXTLINE(readability-identifier-naming)
1791 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1792     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1793   using namespace amdhsa;
1794   StringRef Indent = "\t";
1795   if (hasArchitectedFlatScratch())
1796     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1797                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1798   else
1799     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1800                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1801   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1802                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1803   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1804                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1805   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1806                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1807   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1808                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1809   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1810                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1811 
1812   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1813     return MCDisassembler::Fail;
1814 
1815   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1816     return MCDisassembler::Fail;
1817 
1818   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1819     return MCDisassembler::Fail;
1820 
1821   PRINT_DIRECTIVE(
1822       ".amdhsa_exception_fp_ieee_invalid_op",
1823       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1824   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1825                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1826   PRINT_DIRECTIVE(
1827       ".amdhsa_exception_fp_ieee_div_zero",
1828       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1829   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1830                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1831   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1832                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1833   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1834                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1835   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1836                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1837 
1838   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1839     return MCDisassembler::Fail;
1840 
1841   return MCDisassembler::Success;
1842 }
1843 
1844 #undef PRINT_DIRECTIVE
1845 
1846 MCDisassembler::DecodeStatus
1847 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1848     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1849     raw_string_ostream &KdStream) const {
1850 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1851   do {                                                                         \
1852     KdStream << Indent << DIRECTIVE " "                                        \
1853              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1854   } while (0)
1855 
1856   uint16_t TwoByteBuffer = 0;
1857   uint32_t FourByteBuffer = 0;
1858 
1859   StringRef ReservedBytes;
1860   StringRef Indent = "\t";
1861 
1862   assert(Bytes.size() == 64);
1863   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1864 
1865   switch (Cursor.tell()) {
1866   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1867     FourByteBuffer = DE.getU32(Cursor);
1868     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1869              << '\n';
1870     return MCDisassembler::Success;
1871 
1872   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1873     FourByteBuffer = DE.getU32(Cursor);
1874     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1875              << FourByteBuffer << '\n';
1876     return MCDisassembler::Success;
1877 
1878   case amdhsa::KERNARG_SIZE_OFFSET:
1879     FourByteBuffer = DE.getU32(Cursor);
1880     KdStream << Indent << ".amdhsa_kernarg_size "
1881              << FourByteBuffer << '\n';
1882     return MCDisassembler::Success;
1883 
1884   case amdhsa::RESERVED0_OFFSET:
1885     // 4 reserved bytes, must be 0.
1886     ReservedBytes = DE.getBytes(Cursor, 4);
1887     for (int I = 0; I < 4; ++I) {
1888       if (ReservedBytes[I] != 0) {
1889         return MCDisassembler::Fail;
1890       }
1891     }
1892     return MCDisassembler::Success;
1893 
1894   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1895     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1896     // So far no directive controls this for Code Object V3, so simply skip for
1897     // disassembly.
1898     DE.skip(Cursor, 8);
1899     return MCDisassembler::Success;
1900 
1901   case amdhsa::RESERVED1_OFFSET:
1902     // 20 reserved bytes, must be 0.
1903     ReservedBytes = DE.getBytes(Cursor, 20);
1904     for (int I = 0; I < 20; ++I) {
1905       if (ReservedBytes[I] != 0) {
1906         return MCDisassembler::Fail;
1907       }
1908     }
1909     return MCDisassembler::Success;
1910 
1911   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1912     // COMPUTE_PGM_RSRC3
1913     //  - Only set for GFX10, GFX6-9 have this to be 0.
1914     //  - Currently no directives directly control this.
1915     FourByteBuffer = DE.getU32(Cursor);
1916     if (!isGFX10Plus() && FourByteBuffer) {
1917       return MCDisassembler::Fail;
1918     }
1919     return MCDisassembler::Success;
1920 
1921   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1922     FourByteBuffer = DE.getU32(Cursor);
1923     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1924         MCDisassembler::Fail) {
1925       return MCDisassembler::Fail;
1926     }
1927     return MCDisassembler::Success;
1928 
1929   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1930     FourByteBuffer = DE.getU32(Cursor);
1931     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1932         MCDisassembler::Fail) {
1933       return MCDisassembler::Fail;
1934     }
1935     return MCDisassembler::Success;
1936 
1937   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1938     using namespace amdhsa;
1939     TwoByteBuffer = DE.getU16(Cursor);
1940 
1941     if (!hasArchitectedFlatScratch())
1942       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1943                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1944     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1945                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1946     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1947                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1948     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1949                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1950     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1951                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1952     if (!hasArchitectedFlatScratch())
1953       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1954                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1955     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1956                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1957 
1958     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1959       return MCDisassembler::Fail;
1960 
1961     // Reserved for GFX9
1962     if (isGFX9() &&
1963         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1964       return MCDisassembler::Fail;
1965     } else if (isGFX10Plus()) {
1966       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1967                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1968     }
1969 
1970     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1971       return MCDisassembler::Fail;
1972 
1973     return MCDisassembler::Success;
1974 
1975   case amdhsa::RESERVED2_OFFSET:
1976     // 6 bytes from here are reserved, must be 0.
1977     ReservedBytes = DE.getBytes(Cursor, 6);
1978     for (int I = 0; I < 6; ++I) {
1979       if (ReservedBytes[I] != 0)
1980         return MCDisassembler::Fail;
1981     }
1982     return MCDisassembler::Success;
1983 
1984   default:
1985     llvm_unreachable("Unhandled index. Case statements cover everything.");
1986     return MCDisassembler::Fail;
1987   }
1988 #undef PRINT_DIRECTIVE
1989 }
1990 
1991 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1992     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1993   // CP microcode requires the kernel descriptor to be 64 aligned.
1994   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1995     return MCDisassembler::Fail;
1996 
1997   std::string Kd;
1998   raw_string_ostream KdStream(Kd);
1999   KdStream << ".amdhsa_kernel " << KdName << '\n';
2000 
2001   DataExtractor::Cursor C(0);
2002   while (C && C.tell() < Bytes.size()) {
2003     MCDisassembler::DecodeStatus Status =
2004         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2005 
2006     cantFail(C.takeError());
2007 
2008     if (Status == MCDisassembler::Fail)
2009       return MCDisassembler::Fail;
2010   }
2011   KdStream << ".end_amdhsa_kernel\n";
2012   outs() << KdStream.str();
2013   return MCDisassembler::Success;
2014 }
2015 
2016 Optional<MCDisassembler::DecodeStatus>
2017 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2018                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2019                                   raw_ostream &CStream) const {
2020   // Right now only kernel descriptor needs to be handled.
2021   // We ignore all other symbols for target specific handling.
2022   // TODO:
2023   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2024   // Object V2 and V3 when symbols are marked protected.
2025 
2026   // amd_kernel_code_t for Code Object V2.
2027   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2028     Size = 256;
2029     return MCDisassembler::Fail;
2030   }
2031 
2032   // Code Object V3 kernel descriptors.
2033   StringRef Name = Symbol.Name;
2034   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2035     Size = 64; // Size = 64 regardless of success or failure.
2036     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2037   }
2038   return None;
2039 }
2040 
2041 //===----------------------------------------------------------------------===//
2042 // AMDGPUSymbolizer
2043 //===----------------------------------------------------------------------===//
2044 
2045 // Try to find symbol name for specified label
2046 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2047     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2048     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2049     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2050 
2051   if (!IsBranch) {
2052     return false;
2053   }
2054 
2055   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2056   if (!Symbols)
2057     return false;
2058 
2059   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2060     return Val.Addr == static_cast<uint64_t>(Value) &&
2061            Val.Type == ELF::STT_NOTYPE;
2062   });
2063   if (Result != Symbols->end()) {
2064     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2065     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2066     Inst.addOperand(MCOperand::createExpr(Add));
2067     return true;
2068   }
2069   // Add to list of referenced addresses, so caller can synthesize a label.
2070   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2071   return false;
2072 }
2073 
2074 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2075                                                        int64_t Value,
2076                                                        uint64_t Address) {
2077   llvm_unreachable("unimplemented");
2078 }
2079 
2080 //===----------------------------------------------------------------------===//
2081 // Initialization
2082 //===----------------------------------------------------------------------===//
2083 
2084 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2085                               LLVMOpInfoCallback /*GetOpInfo*/,
2086                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2087                               void *DisInfo,
2088                               MCContext *Ctx,
2089                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2090   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2091 }
2092 
2093 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2094                                                 const MCSubtargetInfo &STI,
2095                                                 MCContext &Ctx) {
2096   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2097 }
2098 
2099 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2100   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2101                                          createAMDGPUDisassembler);
2102   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2103                                        createAMDGPUSymbolizer);
2104 }
2105