1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, 49 MCInstrInfo const *MCII) : 50 MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 51 TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) { 52 53 // ToDo: AMDGPUDisassembler supports only VI ISA. 54 if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus()) 55 report_fatal_error("Disassembly not yet supported for subtarget"); 56 } 57 58 inline static MCDisassembler::DecodeStatus 59 addOperand(MCInst &Inst, const MCOperand& Opnd) { 60 Inst.addOperand(Opnd); 61 return Opnd.isValid() ? 62 MCDisassembler::Success : 63 MCDisassembler::Fail; 64 } 65 66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 67 uint16_t NameIdx) { 68 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 69 if (OpIdx != -1) { 70 auto I = MI.begin(); 71 std::advance(I, OpIdx); 72 MI.insert(I, Op); 73 } 74 return OpIdx; 75 } 76 77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm, 78 uint64_t Addr, 79 const MCDisassembler *Decoder) { 80 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 81 82 // Our branches take a simm16, but we need two extra bits to account for the 83 // factor of 4. 84 APInt SignedOffset(18, Imm * 4, true); 85 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 86 87 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 88 return MCDisassembler::Success; 89 return addOperand(Inst, MCOperand::createImm(Imm)); 90 } 91 92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 93 const MCDisassembler *Decoder) { 94 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 95 int64_t Offset; 96 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 111 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 112 uint64_t /*Addr*/, \ 113 const MCDisassembler *Decoder) { \ 114 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 115 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 116 } 117 118 #define DECODE_OPERAND_REG(RegClass) \ 119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass) 120 121 DECODE_OPERAND_REG(VGPR_32) 122 DECODE_OPERAND_REG(VRegOrLds_32) 123 DECODE_OPERAND_REG(VS_32) 124 DECODE_OPERAND_REG(VS_64) 125 DECODE_OPERAND_REG(VS_128) 126 127 DECODE_OPERAND_REG(VReg_64) 128 DECODE_OPERAND_REG(VReg_96) 129 DECODE_OPERAND_REG(VReg_128) 130 DECODE_OPERAND_REG(VReg_256) 131 DECODE_OPERAND_REG(VReg_512) 132 DECODE_OPERAND_REG(VReg_1024) 133 134 DECODE_OPERAND_REG(SReg_32) 135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC) 136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI) 137 DECODE_OPERAND_REG(SRegOrLds_32) 138 DECODE_OPERAND_REG(SReg_64) 139 DECODE_OPERAND_REG(SReg_64_XEXEC) 140 DECODE_OPERAND_REG(SReg_128) 141 DECODE_OPERAND_REG(SReg_256) 142 DECODE_OPERAND_REG(SReg_512) 143 144 DECODE_OPERAND_REG(AGPR_32) 145 DECODE_OPERAND_REG(AReg_64) 146 DECODE_OPERAND_REG(AReg_128) 147 DECODE_OPERAND_REG(AReg_256) 148 DECODE_OPERAND_REG(AReg_512) 149 DECODE_OPERAND_REG(AReg_1024) 150 DECODE_OPERAND_REG(AV_32) 151 DECODE_OPERAND_REG(AV_64) 152 DECODE_OPERAND_REG(AV_128) 153 DECODE_OPERAND_REG(AVDst_128) 154 DECODE_OPERAND_REG(AVDst_512) 155 156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm, 157 uint64_t Addr, 158 const MCDisassembler *Decoder) { 159 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 160 return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm)); 161 } 162 163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm, 164 uint64_t Addr, 165 const MCDisassembler *Decoder) { 166 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 167 return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm)); 168 } 169 170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm, 171 uint64_t Addr, 172 const MCDisassembler *Decoder) { 173 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 174 return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm)); 175 } 176 177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm, 178 uint64_t Addr, 179 const MCDisassembler *Decoder) { 180 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 181 return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm)); 182 } 183 184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm, 185 uint64_t Addr, 186 const MCDisassembler *Decoder) { 187 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 188 return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm)); 189 } 190 191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm, 192 uint64_t Addr, 193 const MCDisassembler *Decoder) { 194 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 195 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512)); 196 } 197 198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm, 199 uint64_t Addr, 200 const MCDisassembler *Decoder) { 201 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 202 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512)); 203 } 204 205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm, 206 uint64_t Addr, 207 const MCDisassembler *Decoder) { 208 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 209 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512)); 210 } 211 212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm, 213 uint64_t Addr, 214 const MCDisassembler *Decoder) { 215 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 216 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512)); 217 } 218 219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm, 220 uint64_t Addr, 221 const MCDisassembler *Decoder) { 222 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 223 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512)); 224 } 225 226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm, 227 uint64_t Addr, 228 const MCDisassembler *Decoder) { 229 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 230 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm)); 231 } 232 233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm, 234 uint64_t Addr, 235 const MCDisassembler *Decoder) { 236 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 237 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm)); 238 } 239 240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm, 241 uint64_t Addr, 242 const MCDisassembler *Decoder) { 243 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 244 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm)); 245 } 246 247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm, 248 uint64_t Addr, 249 const MCDisassembler *Decoder) { 250 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 251 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm)); 252 } 253 254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm, 255 uint64_t Addr, 256 const MCDisassembler *Decoder) { 257 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 258 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm)); 259 } 260 261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm, 262 uint64_t Addr, 263 const MCDisassembler *Decoder) { 264 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 265 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 266 } 267 268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm, 269 uint64_t Addr, 270 const MCDisassembler *Decoder) { 271 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 272 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 273 } 274 275 static DecodeStatus 276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr, 277 const MCDisassembler *Decoder) { 278 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 279 return addOperand( 280 Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true)); 281 } 282 283 static DecodeStatus 284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr, 285 const MCDisassembler *Decoder) { 286 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 287 return addOperand( 288 Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true)); 289 } 290 291 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 292 const MCRegisterInfo *MRI) { 293 if (OpIdx < 0) 294 return false; 295 296 const MCOperand &Op = Inst.getOperand(OpIdx); 297 if (!Op.isReg()) 298 return false; 299 300 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 301 auto Reg = Sub ? Sub : Op.getReg(); 302 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 303 } 304 305 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 306 AMDGPUDisassembler::OpWidthTy Opw, 307 const MCDisassembler *Decoder) { 308 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 309 if (!DAsm->isGFX90A()) { 310 Imm &= 511; 311 } else { 312 // If atomic has both vdata and vdst their register classes are tied. 313 // The bit is decoded along with the vdst, first operand. We need to 314 // change register class to AGPR if vdst was AGPR. 315 // If a DS instruction has both data0 and data1 their register classes 316 // are also tied. 317 unsigned Opc = Inst.getOpcode(); 318 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 319 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 320 : AMDGPU::OpName::vdata; 321 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 322 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 323 if ((int)Inst.getNumOperands() == DataIdx) { 324 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 325 if (IsAGPROperand(Inst, DstIdx, MRI)) 326 Imm |= 512; 327 } 328 329 if (TSFlags & SIInstrFlags::DS) { 330 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 331 if ((int)Inst.getNumOperands() == Data2Idx && 332 IsAGPROperand(Inst, DataIdx, MRI)) 333 Imm |= 512; 334 } 335 } 336 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 337 } 338 339 static DecodeStatus 340 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 341 const MCDisassembler *Decoder) { 342 return decodeOperand_AVLdSt_Any(Inst, Imm, 343 AMDGPUDisassembler::OPW32, Decoder); 344 } 345 346 static DecodeStatus 347 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 348 const MCDisassembler *Decoder) { 349 return decodeOperand_AVLdSt_Any(Inst, Imm, 350 AMDGPUDisassembler::OPW64, Decoder); 351 } 352 353 static DecodeStatus 354 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 355 const MCDisassembler *Decoder) { 356 return decodeOperand_AVLdSt_Any(Inst, Imm, 357 AMDGPUDisassembler::OPW96, Decoder); 358 } 359 360 static DecodeStatus 361 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 362 const MCDisassembler *Decoder) { 363 return decodeOperand_AVLdSt_Any(Inst, Imm, 364 AMDGPUDisassembler::OPW128, Decoder); 365 } 366 367 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm, 368 uint64_t Addr, 369 const MCDisassembler *Decoder) { 370 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 371 return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm)); 372 } 373 374 #define DECODE_SDWA(DecName) \ 375 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 376 377 DECODE_SDWA(Src32) 378 DECODE_SDWA(Src16) 379 DECODE_SDWA(VopcDst) 380 381 #include "AMDGPUGenDisassemblerTables.inc" 382 383 //===----------------------------------------------------------------------===// 384 // 385 //===----------------------------------------------------------------------===// 386 387 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 388 assert(Bytes.size() >= sizeof(T)); 389 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); 390 Bytes = Bytes.slice(sizeof(T)); 391 return Res; 392 } 393 394 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 395 assert(Bytes.size() >= 12); 396 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>( 397 Bytes.data()); 398 Bytes = Bytes.slice(8); 399 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>( 400 Bytes.data()); 401 Bytes = Bytes.slice(4); 402 return DecoderUInt128(Lo, Hi); 403 } 404 405 // The disassembler is greedy, so we need to check FI operand value to 406 // not parse a dpp if the correct literal is not set. For dpp16 the 407 // autogenerated decoder checks the dpp literal 408 static bool isValidDPP8(const MCInst &MI) { 409 using namespace llvm::AMDGPU::DPP; 410 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 411 assert(FiIdx != -1); 412 if ((unsigned)FiIdx >= MI.getNumOperands()) 413 return false; 414 unsigned Fi = MI.getOperand(FiIdx).getImm(); 415 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 416 } 417 418 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 419 ArrayRef<uint8_t> Bytes_, 420 uint64_t Address, 421 raw_ostream &CS) const { 422 CommentStream = &CS; 423 bool IsSDWA = false; 424 425 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 426 Bytes = Bytes_.slice(0, MaxInstBytesNum); 427 428 DecodeStatus Res = MCDisassembler::Fail; 429 do { 430 // ToDo: better to switch encoding length using some bit predicate 431 // but it is unknown yet, so try all we can 432 433 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 434 // encodings 435 if (isGFX11Plus() && Bytes.size() >= 12 ) { 436 DecoderUInt128 DecW = eat12Bytes(Bytes); 437 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, 438 Address); 439 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 440 break; 441 MI = MCInst(); // clear 442 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, 443 Address); 444 if (Res) { 445 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 446 convertVOP3PDPPInst(MI); 447 else if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 448 convertVOPCDPPInst(MI); 449 break; 450 } 451 } 452 // Reinitialize Bytes 453 Bytes = Bytes_.slice(0, MaxInstBytesNum); 454 455 if (Bytes.size() >= 8) { 456 const uint64_t QW = eatBytes<uint64_t>(Bytes); 457 458 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 459 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address); 460 if (Res) { 461 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 462 == -1) 463 break; 464 if (convertDPP8Inst(MI) == MCDisassembler::Success) 465 break; 466 MI = MCInst(); // clear 467 } 468 } 469 470 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address); 471 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 472 break; 473 MI = MCInst(); // clear 474 475 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address); 476 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 477 break; 478 MI = MCInst(); // clear 479 480 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address); 481 if (Res) break; 482 483 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address); 484 if (Res) { 485 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 486 convertVOPCDPPInst(MI); 487 break; 488 } 489 490 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address); 491 if (Res) { IsSDWA = true; break; } 492 493 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address); 494 if (Res) { IsSDWA = true; break; } 495 496 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address); 497 if (Res) { IsSDWA = true; break; } 498 499 if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) { 500 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address); 501 if (Res) 502 break; 503 } 504 505 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 506 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 507 // table first so we print the correct name. 508 if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) { 509 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address); 510 if (Res) 511 break; 512 } 513 } 514 515 // Reinitialize Bytes as DPP64 could have eaten too much 516 Bytes = Bytes_.slice(0, MaxInstBytesNum); 517 518 // Try decode 32-bit instruction 519 if (Bytes.size() < 4) break; 520 const uint32_t DW = eatBytes<uint32_t>(Bytes); 521 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address); 522 if (Res) break; 523 524 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address); 525 if (Res) break; 526 527 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address); 528 if (Res) break; 529 530 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 531 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address); 532 if (Res) 533 break; 534 } 535 536 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 537 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address); 538 if (Res) break; 539 } 540 541 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address); 542 if (Res) break; 543 544 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address); 545 if (Res) break; 546 547 if (Bytes.size() < 4) break; 548 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 549 550 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 551 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address); 552 if (Res) 553 break; 554 } 555 556 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address); 557 if (Res) break; 558 559 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address); 560 if (Res) break; 561 562 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address); 563 if (Res) break; 564 565 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address); 566 if (Res) break; 567 568 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address); 569 } while (false); 570 571 if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi || 572 MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 || 573 MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 || 574 MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 || 575 MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 || 576 MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi || 577 MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a || 578 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi || 579 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 || 580 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 || 581 MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 || 582 MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 || 583 MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 || 584 MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx11)) { 585 // Insert dummy unused src2_modifiers. 586 insertNamedMCOperand(MI, MCOperand::createImm(0), 587 AMDGPU::OpName::src2_modifiers); 588 } 589 590 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 591 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 592 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 593 AMDGPU::OpName::cpol); 594 if (CPolPos != -1) { 595 unsigned CPol = 596 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 597 AMDGPU::CPol::GLC : 0; 598 if (MI.getNumOperands() <= (unsigned)CPolPos) { 599 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 600 AMDGPU::OpName::cpol); 601 } else if (CPol) { 602 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 603 } 604 } 605 } 606 607 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 608 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 609 (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) { 610 // GFX90A lost TFE, its place is occupied by ACC. 611 int TFEOpIdx = 612 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 613 if (TFEOpIdx != -1) { 614 auto TFEIter = MI.begin(); 615 std::advance(TFEIter, TFEOpIdx); 616 MI.insert(TFEIter, MCOperand::createImm(0)); 617 } 618 } 619 620 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 621 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 622 int SWZOpIdx = 623 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 624 if (SWZOpIdx != -1) { 625 auto SWZIter = MI.begin(); 626 std::advance(SWZIter, SWZOpIdx); 627 MI.insert(SWZIter, MCOperand::createImm(0)); 628 } 629 } 630 631 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 632 int VAddr0Idx = 633 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 634 int RsrcIdx = 635 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 636 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 637 if (VAddr0Idx >= 0 && NSAArgs > 0) { 638 unsigned NSAWords = (NSAArgs + 3) / 4; 639 if (Bytes.size() < 4 * NSAWords) { 640 Res = MCDisassembler::Fail; 641 } else { 642 for (unsigned i = 0; i < NSAArgs; ++i) { 643 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 644 auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass; 645 MI.insert(MI.begin() + VAddrIdx, 646 createRegOperand(VAddrRCID, Bytes[i])); 647 } 648 Bytes = Bytes.slice(4 * NSAWords); 649 } 650 } 651 652 if (Res) 653 Res = convertMIMGInst(MI); 654 } 655 656 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 657 Res = convertEXPInst(MI); 658 659 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 660 Res = convertVINTERPInst(MI); 661 662 if (Res && IsSDWA) 663 Res = convertSDWAInst(MI); 664 665 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 666 AMDGPU::OpName::vdst_in); 667 if (VDstIn_Idx != -1) { 668 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 669 MCOI::OperandConstraint::TIED_TO); 670 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 671 !MI.getOperand(VDstIn_Idx).isReg() || 672 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 673 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 674 MI.erase(&MI.getOperand(VDstIn_Idx)); 675 insertNamedMCOperand(MI, 676 MCOperand::createReg(MI.getOperand(Tied).getReg()), 677 AMDGPU::OpName::vdst_in); 678 } 679 } 680 681 int ImmLitIdx = 682 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 683 if (Res && ImmLitIdx != -1) 684 Res = convertFMAanyK(MI, ImmLitIdx); 685 686 // if the opcode was not recognized we'll assume a Size of 4 bytes 687 // (unless there are fewer bytes left) 688 Size = Res ? (MaxInstBytesNum - Bytes.size()) 689 : std::min((size_t)4, Bytes_.size()); 690 return Res; 691 } 692 693 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 694 if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) { 695 // The MCInst still has these fields even though they are no longer encoded 696 // in the GFX11 instruction. 697 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 698 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 699 } 700 return MCDisassembler::Success; 701 } 702 703 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 704 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 705 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 706 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 707 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) { 708 // The MCInst has this field that is not directly encoded in the 709 // instruction. 710 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 711 } 712 return MCDisassembler::Success; 713 } 714 715 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 716 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 717 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 718 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1) 719 // VOPC - insert clamp 720 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 721 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 722 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 723 if (SDst != -1) { 724 // VOPC - insert VCC register as sdst 725 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 726 AMDGPU::OpName::sdst); 727 } else { 728 // VOP1/2 - insert omod if present in instruction 729 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 730 } 731 } 732 return MCDisassembler::Success; 733 } 734 735 // We must check FI == literal to reject not genuine dpp8 insts, and we must 736 // first add optional MI operands to check FI 737 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 738 unsigned Opc = MI.getOpcode(); 739 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 740 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 741 convertVOP3PDPPInst(MI); 742 } else if (MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) { 743 convertVOPCDPPInst(MI); 744 } else { 745 // Insert dummy unused src modifiers. 746 if (MI.getNumOperands() < DescNumOps && 747 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1) 748 insertNamedMCOperand(MI, MCOperand::createImm(0), 749 AMDGPU::OpName::src0_modifiers); 750 751 if (MI.getNumOperands() < DescNumOps && 752 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1) 753 insertNamedMCOperand(MI, MCOperand::createImm(0), 754 AMDGPU::OpName::src1_modifiers); 755 } 756 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 757 } 758 759 // Note that before gfx10, the MIMG encoding provided no information about 760 // VADDR size. Consequently, decoded instructions always show address as if it 761 // has 1 dword, which could be not really so. 762 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 763 764 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 765 AMDGPU::OpName::vdst); 766 767 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 768 AMDGPU::OpName::vdata); 769 int VAddr0Idx = 770 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 771 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 772 AMDGPU::OpName::dmask); 773 774 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 775 AMDGPU::OpName::tfe); 776 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 777 AMDGPU::OpName::d16); 778 779 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 780 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 781 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 782 783 assert(VDataIdx != -1); 784 if (BaseOpcode->BVH) { 785 // Add A16 operand for intersect_ray instructions 786 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) { 787 addOperand(MI, MCOperand::createImm(1)); 788 } 789 return MCDisassembler::Success; 790 } 791 792 bool IsAtomic = (VDstIdx != -1); 793 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; 794 bool IsNSA = false; 795 unsigned AddrSize = Info->VAddrDwords; 796 797 if (isGFX10Plus()) { 798 unsigned DimIdx = 799 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 800 int A16Idx = 801 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 802 const AMDGPU::MIMGDimInfo *Dim = 803 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 804 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 805 806 AddrSize = 807 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 808 809 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 810 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA; 811 if (!IsNSA) { 812 if (AddrSize > 8) 813 AddrSize = 16; 814 } else { 815 if (AddrSize > Info->VAddrDwords) { 816 // The NSA encoding does not contain enough operands for the combination 817 // of base opcode / dimension. Should this be an error? 818 return MCDisassembler::Success; 819 } 820 } 821 } 822 823 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 824 unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u); 825 826 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 827 if (D16 && AMDGPU::hasPackedD16(STI)) { 828 DstSize = (DstSize + 1) / 2; 829 } 830 831 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 832 DstSize += 1; 833 834 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 835 return MCDisassembler::Success; 836 837 int NewOpcode = 838 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 839 if (NewOpcode == -1) 840 return MCDisassembler::Success; 841 842 // Widen the register to the correct number of enabled channels. 843 unsigned NewVdata = AMDGPU::NoRegister; 844 if (DstSize != Info->VDataDwords) { 845 auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass; 846 847 // Get first subregister of VData 848 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 849 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 850 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 851 852 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 853 &MRI.getRegClass(DataRCID)); 854 if (NewVdata == AMDGPU::NoRegister) { 855 // It's possible to encode this such that the low register + enabled 856 // components exceeds the register count. 857 return MCDisassembler::Success; 858 } 859 } 860 861 // If not using NSA on GFX10+, widen address register to correct size. 862 unsigned NewVAddr0 = AMDGPU::NoRegister; 863 if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) { 864 unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg(); 865 unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0); 866 VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0; 867 868 auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass; 869 NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0, 870 &MRI.getRegClass(AddrRCID)); 871 if (NewVAddr0 == AMDGPU::NoRegister) 872 return MCDisassembler::Success; 873 } 874 875 MI.setOpcode(NewOpcode); 876 877 if (NewVdata != AMDGPU::NoRegister) { 878 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 879 880 if (IsAtomic) { 881 // Atomic operations have an additional operand (a copy of data) 882 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 883 } 884 } 885 886 if (NewVAddr0 != AMDGPU::NoRegister) { 887 MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0); 888 } else if (IsNSA) { 889 assert(AddrSize <= Info->VAddrDwords); 890 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 891 MI.begin() + VAddr0Idx + Info->VAddrDwords); 892 } 893 894 return MCDisassembler::Success; 895 } 896 897 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 898 // decoder only adds to src_modifiers, so manually add the bits to the other 899 // operands. 900 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 901 unsigned Opc = MI.getOpcode(); 902 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 903 904 if (MI.getNumOperands() < DescNumOps && 905 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1) 906 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 907 908 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 909 AMDGPU::OpName::src1_modifiers, 910 AMDGPU::OpName::src2_modifiers}; 911 unsigned OpSel = 0; 912 unsigned OpSelHi = 0; 913 unsigned NegLo = 0; 914 unsigned NegHi = 0; 915 for (int J = 0; J < 3; ++J) { 916 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 917 if (OpIdx == -1) 918 break; 919 unsigned Val = MI.getOperand(OpIdx).getImm(); 920 921 OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 922 OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 923 NegLo |= !!(Val & SISrcMods::NEG) << J; 924 NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 925 } 926 927 if (MI.getNumOperands() < DescNumOps && 928 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1) 929 insertNamedMCOperand(MI, MCOperand::createImm(OpSel), 930 AMDGPU::OpName::op_sel); 931 if (MI.getNumOperands() < DescNumOps && 932 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1) 933 insertNamedMCOperand(MI, MCOperand::createImm(OpSelHi), 934 AMDGPU::OpName::op_sel_hi); 935 if (MI.getNumOperands() < DescNumOps && 936 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1) 937 insertNamedMCOperand(MI, MCOperand::createImm(NegLo), 938 AMDGPU::OpName::neg_lo); 939 if (MI.getNumOperands() < DescNumOps && 940 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1) 941 insertNamedMCOperand(MI, MCOperand::createImm(NegHi), 942 AMDGPU::OpName::neg_hi); 943 944 return MCDisassembler::Success; 945 } 946 947 // Create dummy old operand and insert optional operands 948 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 949 unsigned Opc = MI.getOpcode(); 950 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 951 952 if (MI.getNumOperands() < DescNumOps && 953 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::old) != -1) 954 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 955 956 if (MI.getNumOperands() < DescNumOps && 957 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1) 958 insertNamedMCOperand(MI, MCOperand::createImm(0), 959 AMDGPU::OpName::src0_modifiers); 960 961 if (MI.getNumOperands() < DescNumOps && 962 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1) 963 insertNamedMCOperand(MI, MCOperand::createImm(0), 964 AMDGPU::OpName::src1_modifiers); 965 return MCDisassembler::Success; 966 } 967 968 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 969 int ImmLitIdx) const { 970 assert(HasLiteral && "Should have decoded a literal"); 971 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 972 unsigned DescNumOps = Desc.getNumOperands(); 973 assert(DescNumOps == MI.getNumOperands()); 974 for (unsigned I = 0; I < DescNumOps; ++I) { 975 auto &Op = MI.getOperand(I); 976 auto OpType = Desc.OpInfo[I].OperandType; 977 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 978 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 979 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 980 IsDeferredOp) 981 Op.setImm(Literal); 982 } 983 return MCDisassembler::Success; 984 } 985 986 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 987 return getContext().getRegisterInfo()-> 988 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 989 } 990 991 inline 992 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 993 const Twine& ErrMsg) const { 994 *CommentStream << "Error: " + ErrMsg; 995 996 // ToDo: add support for error operands to MCInst.h 997 // return MCOperand::createError(V); 998 return MCOperand(); 999 } 1000 1001 inline 1002 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1003 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1004 } 1005 1006 inline 1007 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1008 unsigned Val) const { 1009 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1010 if (Val >= RegCl.getNumRegs()) 1011 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1012 ": unknown register " + Twine(Val)); 1013 return createRegOperand(RegCl.getRegister(Val)); 1014 } 1015 1016 inline 1017 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1018 unsigned Val) const { 1019 // ToDo: SI/CI have 104 SGPRs, VI - 102 1020 // Valery: here we accepting as much as we can, let assembler sort it out 1021 int shift = 0; 1022 switch (SRegClassID) { 1023 case AMDGPU::SGPR_32RegClassID: 1024 case AMDGPU::TTMP_32RegClassID: 1025 break; 1026 case AMDGPU::SGPR_64RegClassID: 1027 case AMDGPU::TTMP_64RegClassID: 1028 shift = 1; 1029 break; 1030 case AMDGPU::SGPR_128RegClassID: 1031 case AMDGPU::TTMP_128RegClassID: 1032 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1033 // this bundle? 1034 case AMDGPU::SGPR_256RegClassID: 1035 case AMDGPU::TTMP_256RegClassID: 1036 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1037 // this bundle? 1038 case AMDGPU::SGPR_512RegClassID: 1039 case AMDGPU::TTMP_512RegClassID: 1040 shift = 2; 1041 break; 1042 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1043 // this bundle? 1044 default: 1045 llvm_unreachable("unhandled register class"); 1046 } 1047 1048 if (Val % (1 << shift)) { 1049 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1050 << ": scalar reg isn't aligned " << Val; 1051 } 1052 1053 return createRegOperand(SRegClassID, Val >> shift); 1054 } 1055 1056 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const { 1057 return decodeSrcOp(OPW32, Val); 1058 } 1059 1060 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const { 1061 return decodeSrcOp(OPW64, Val); 1062 } 1063 1064 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const { 1065 return decodeSrcOp(OPW128, Val); 1066 } 1067 1068 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const { 1069 return decodeSrcOp(OPW16, Val); 1070 } 1071 1072 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const { 1073 return decodeSrcOp(OPWV216, Val); 1074 } 1075 1076 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const { 1077 return decodeSrcOp(OPWV232, Val); 1078 } 1079 1080 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const { 1081 // Some instructions have operand restrictions beyond what the encoding 1082 // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra 1083 // high bit. 1084 Val &= 255; 1085 1086 return createRegOperand(AMDGPU::VGPR_32RegClassID, Val); 1087 } 1088 1089 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const { 1090 return decodeSrcOp(OPW32, Val); 1091 } 1092 1093 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const { 1094 return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255); 1095 } 1096 1097 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const { 1098 return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255); 1099 } 1100 1101 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const { 1102 return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255); 1103 } 1104 1105 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const { 1106 return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255); 1107 } 1108 1109 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const { 1110 return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255); 1111 } 1112 1113 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const { 1114 return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255); 1115 } 1116 1117 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const { 1118 return decodeSrcOp(OPW32, Val); 1119 } 1120 1121 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const { 1122 return decodeSrcOp(OPW64, Val); 1123 } 1124 1125 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const { 1126 return decodeSrcOp(OPW128, Val); 1127 } 1128 1129 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const { 1130 using namespace AMDGPU::EncValues; 1131 assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1. 1132 return decodeSrcOp(OPW128, Val | IS_VGPR); 1133 } 1134 1135 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const { 1136 using namespace AMDGPU::EncValues; 1137 assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1. 1138 return decodeSrcOp(OPW512, Val | IS_VGPR); 1139 } 1140 1141 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const { 1142 return createRegOperand(AMDGPU::VReg_64RegClassID, Val); 1143 } 1144 1145 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const { 1146 return createRegOperand(AMDGPU::VReg_96RegClassID, Val); 1147 } 1148 1149 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const { 1150 return createRegOperand(AMDGPU::VReg_128RegClassID, Val); 1151 } 1152 1153 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const { 1154 return createRegOperand(AMDGPU::VReg_256RegClassID, Val); 1155 } 1156 1157 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const { 1158 return createRegOperand(AMDGPU::VReg_512RegClassID, Val); 1159 } 1160 1161 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const { 1162 return createRegOperand(AMDGPU::VReg_1024RegClassID, Val); 1163 } 1164 1165 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const { 1166 // table-gen generated disassembler doesn't care about operand types 1167 // leaving only registry class so SSrc_32 operand turns into SReg_32 1168 // and therefore we accept immediates and literals here as well 1169 return decodeSrcOp(OPW32, Val); 1170 } 1171 1172 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC( 1173 unsigned Val) const { 1174 // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI 1175 return decodeOperand_SReg_32(Val); 1176 } 1177 1178 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI( 1179 unsigned Val) const { 1180 // SReg_32_XM0 is SReg_32 without EXEC_HI 1181 return decodeOperand_SReg_32(Val); 1182 } 1183 1184 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const { 1185 // table-gen generated disassembler doesn't care about operand types 1186 // leaving only registry class so SSrc_32 operand turns into SReg_32 1187 // and therefore we accept immediates and literals here as well 1188 return decodeSrcOp(OPW32, Val); 1189 } 1190 1191 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const { 1192 return decodeSrcOp(OPW64, Val); 1193 } 1194 1195 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const { 1196 return decodeSrcOp(OPW64, Val); 1197 } 1198 1199 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const { 1200 return decodeSrcOp(OPW128, Val); 1201 } 1202 1203 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const { 1204 return decodeDstOp(OPW256, Val); 1205 } 1206 1207 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const { 1208 return decodeDstOp(OPW512, Val); 1209 } 1210 1211 // Decode Literals for insts which always have a literal in the encoding 1212 MCOperand 1213 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1214 if (HasLiteral) { 1215 if (Literal != Val) 1216 return errOperand(Val, "More than one unique literal is illegal"); 1217 } 1218 HasLiteral = true; 1219 Literal = Val; 1220 return MCOperand::createImm(Literal); 1221 } 1222 1223 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { 1224 // For now all literal constants are supposed to be unsigned integer 1225 // ToDo: deal with signed/unsigned 64-bit integer constants 1226 // ToDo: deal with float/double constants 1227 if (!HasLiteral) { 1228 if (Bytes.size() < 4) { 1229 return errOperand(0, "cannot read literal, inst bytes left " + 1230 Twine(Bytes.size())); 1231 } 1232 HasLiteral = true; 1233 Literal = eatBytes<uint32_t>(Bytes); 1234 } 1235 return MCOperand::createImm(Literal); 1236 } 1237 1238 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1239 using namespace AMDGPU::EncValues; 1240 1241 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1242 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1243 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1244 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1245 // Cast prevents negative overflow. 1246 } 1247 1248 static int64_t getInlineImmVal32(unsigned Imm) { 1249 switch (Imm) { 1250 case 240: 1251 return FloatToBits(0.5f); 1252 case 241: 1253 return FloatToBits(-0.5f); 1254 case 242: 1255 return FloatToBits(1.0f); 1256 case 243: 1257 return FloatToBits(-1.0f); 1258 case 244: 1259 return FloatToBits(2.0f); 1260 case 245: 1261 return FloatToBits(-2.0f); 1262 case 246: 1263 return FloatToBits(4.0f); 1264 case 247: 1265 return FloatToBits(-4.0f); 1266 case 248: // 1 / (2 * PI) 1267 return 0x3e22f983; 1268 default: 1269 llvm_unreachable("invalid fp inline imm"); 1270 } 1271 } 1272 1273 static int64_t getInlineImmVal64(unsigned Imm) { 1274 switch (Imm) { 1275 case 240: 1276 return DoubleToBits(0.5); 1277 case 241: 1278 return DoubleToBits(-0.5); 1279 case 242: 1280 return DoubleToBits(1.0); 1281 case 243: 1282 return DoubleToBits(-1.0); 1283 case 244: 1284 return DoubleToBits(2.0); 1285 case 245: 1286 return DoubleToBits(-2.0); 1287 case 246: 1288 return DoubleToBits(4.0); 1289 case 247: 1290 return DoubleToBits(-4.0); 1291 case 248: // 1 / (2 * PI) 1292 return 0x3fc45f306dc9c882; 1293 default: 1294 llvm_unreachable("invalid fp inline imm"); 1295 } 1296 } 1297 1298 static int64_t getInlineImmVal16(unsigned Imm) { 1299 switch (Imm) { 1300 case 240: 1301 return 0x3800; 1302 case 241: 1303 return 0xB800; 1304 case 242: 1305 return 0x3C00; 1306 case 243: 1307 return 0xBC00; 1308 case 244: 1309 return 0x4000; 1310 case 245: 1311 return 0xC000; 1312 case 246: 1313 return 0x4400; 1314 case 247: 1315 return 0xC400; 1316 case 248: // 1 / (2 * PI) 1317 return 0x3118; 1318 default: 1319 llvm_unreachable("invalid fp inline imm"); 1320 } 1321 } 1322 1323 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) { 1324 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1325 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1326 1327 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1328 switch (Width) { 1329 case OPW32: 1330 case OPW128: // splat constants 1331 case OPW512: 1332 case OPW1024: 1333 case OPWV232: 1334 return MCOperand::createImm(getInlineImmVal32(Imm)); 1335 case OPW64: 1336 case OPW256: 1337 return MCOperand::createImm(getInlineImmVal64(Imm)); 1338 case OPW16: 1339 case OPWV216: 1340 return MCOperand::createImm(getInlineImmVal16(Imm)); 1341 default: 1342 llvm_unreachable("implement me"); 1343 } 1344 } 1345 1346 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1347 using namespace AMDGPU; 1348 1349 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1350 switch (Width) { 1351 default: // fall 1352 case OPW32: 1353 case OPW16: 1354 case OPWV216: 1355 return VGPR_32RegClassID; 1356 case OPW64: 1357 case OPWV232: return VReg_64RegClassID; 1358 case OPW96: return VReg_96RegClassID; 1359 case OPW128: return VReg_128RegClassID; 1360 case OPW160: return VReg_160RegClassID; 1361 case OPW256: return VReg_256RegClassID; 1362 case OPW512: return VReg_512RegClassID; 1363 case OPW1024: return VReg_1024RegClassID; 1364 } 1365 } 1366 1367 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1368 using namespace AMDGPU; 1369 1370 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1371 switch (Width) { 1372 default: // fall 1373 case OPW32: 1374 case OPW16: 1375 case OPWV216: 1376 return AGPR_32RegClassID; 1377 case OPW64: 1378 case OPWV232: return AReg_64RegClassID; 1379 case OPW96: return AReg_96RegClassID; 1380 case OPW128: return AReg_128RegClassID; 1381 case OPW160: return AReg_160RegClassID; 1382 case OPW256: return AReg_256RegClassID; 1383 case OPW512: return AReg_512RegClassID; 1384 case OPW1024: return AReg_1024RegClassID; 1385 } 1386 } 1387 1388 1389 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1390 using namespace AMDGPU; 1391 1392 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1393 switch (Width) { 1394 default: // fall 1395 case OPW32: 1396 case OPW16: 1397 case OPWV216: 1398 return SGPR_32RegClassID; 1399 case OPW64: 1400 case OPWV232: return SGPR_64RegClassID; 1401 case OPW96: return SGPR_96RegClassID; 1402 case OPW128: return SGPR_128RegClassID; 1403 case OPW160: return SGPR_160RegClassID; 1404 case OPW256: return SGPR_256RegClassID; 1405 case OPW512: return SGPR_512RegClassID; 1406 } 1407 } 1408 1409 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1410 using namespace AMDGPU; 1411 1412 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1413 switch (Width) { 1414 default: // fall 1415 case OPW32: 1416 case OPW16: 1417 case OPWV216: 1418 return TTMP_32RegClassID; 1419 case OPW64: 1420 case OPWV232: return TTMP_64RegClassID; 1421 case OPW128: return TTMP_128RegClassID; 1422 case OPW256: return TTMP_256RegClassID; 1423 case OPW512: return TTMP_512RegClassID; 1424 } 1425 } 1426 1427 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1428 using namespace AMDGPU::EncValues; 1429 1430 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1431 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1432 1433 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1434 } 1435 1436 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1437 bool MandatoryLiteral) const { 1438 using namespace AMDGPU::EncValues; 1439 1440 assert(Val < 1024); // enum10 1441 1442 bool IsAGPR = Val & 512; 1443 Val &= 511; 1444 1445 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1446 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1447 : getVgprClassId(Width), Val - VGPR_MIN); 1448 } 1449 if (Val <= SGPR_MAX) { 1450 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1451 static_assert(SGPR_MIN == 0, ""); 1452 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1453 } 1454 1455 int TTmpIdx = getTTmpIdx(Val); 1456 if (TTmpIdx >= 0) { 1457 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1458 } 1459 1460 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1461 return decodeIntImmed(Val); 1462 1463 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1464 return decodeFPImmed(Width, Val); 1465 1466 if (Val == LITERAL_CONST) { 1467 if (MandatoryLiteral) 1468 // Keep a sentinel value for deferred setting 1469 return MCOperand::createImm(LITERAL_CONST); 1470 else 1471 return decodeLiteralConstant(); 1472 } 1473 1474 switch (Width) { 1475 case OPW32: 1476 case OPW16: 1477 case OPWV216: 1478 return decodeSpecialReg32(Val); 1479 case OPW64: 1480 case OPWV232: 1481 return decodeSpecialReg64(Val); 1482 default: 1483 llvm_unreachable("unexpected immediate type"); 1484 } 1485 } 1486 1487 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const { 1488 using namespace AMDGPU::EncValues; 1489 1490 assert(Val < 128); 1491 assert(Width == OPW256 || Width == OPW512); 1492 1493 if (Val <= SGPR_MAX) { 1494 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1495 static_assert(SGPR_MIN == 0, ""); 1496 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1497 } 1498 1499 int TTmpIdx = getTTmpIdx(Val); 1500 if (TTmpIdx >= 0) { 1501 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1502 } 1503 1504 llvm_unreachable("unknown dst register"); 1505 } 1506 1507 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1508 using namespace AMDGPU; 1509 1510 switch (Val) { 1511 case 102: return createRegOperand(FLAT_SCR_LO); 1512 case 103: return createRegOperand(FLAT_SCR_HI); 1513 case 104: return createRegOperand(XNACK_MASK_LO); 1514 case 105: return createRegOperand(XNACK_MASK_HI); 1515 case 106: return createRegOperand(VCC_LO); 1516 case 107: return createRegOperand(VCC_HI); 1517 case 108: return createRegOperand(TBA_LO); 1518 case 109: return createRegOperand(TBA_HI); 1519 case 110: return createRegOperand(TMA_LO); 1520 case 111: return createRegOperand(TMA_HI); 1521 case 124: 1522 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1523 case 125: 1524 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1525 case 126: return createRegOperand(EXEC_LO); 1526 case 127: return createRegOperand(EXEC_HI); 1527 case 235: return createRegOperand(SRC_SHARED_BASE); 1528 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1529 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1530 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1531 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1532 case 251: return createRegOperand(SRC_VCCZ); 1533 case 252: return createRegOperand(SRC_EXECZ); 1534 case 253: return createRegOperand(SRC_SCC); 1535 case 254: return createRegOperand(LDS_DIRECT); 1536 default: break; 1537 } 1538 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1539 } 1540 1541 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1542 using namespace AMDGPU; 1543 1544 switch (Val) { 1545 case 102: return createRegOperand(FLAT_SCR); 1546 case 104: return createRegOperand(XNACK_MASK); 1547 case 106: return createRegOperand(VCC); 1548 case 108: return createRegOperand(TBA); 1549 case 110: return createRegOperand(TMA); 1550 case 124: 1551 if (isGFX11Plus()) 1552 return createRegOperand(SGPR_NULL); 1553 break; 1554 case 125: 1555 if (!isGFX11Plus()) 1556 return createRegOperand(SGPR_NULL); 1557 break; 1558 case 126: return createRegOperand(EXEC); 1559 case 235: return createRegOperand(SRC_SHARED_BASE); 1560 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1561 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1562 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1563 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1564 case 251: return createRegOperand(SRC_VCCZ); 1565 case 252: return createRegOperand(SRC_EXECZ); 1566 case 253: return createRegOperand(SRC_SCC); 1567 default: break; 1568 } 1569 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1570 } 1571 1572 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1573 const unsigned Val) const { 1574 using namespace AMDGPU::SDWA; 1575 using namespace AMDGPU::EncValues; 1576 1577 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1578 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 1579 // XXX: cast to int is needed to avoid stupid warning: 1580 // compare with unsigned is always true 1581 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1582 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1583 return createRegOperand(getVgprClassId(Width), 1584 Val - SDWA9EncValues::SRC_VGPR_MIN); 1585 } 1586 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1587 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1588 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1589 return createSRegOperand(getSgprClassId(Width), 1590 Val - SDWA9EncValues::SRC_SGPR_MIN); 1591 } 1592 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1593 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1594 return createSRegOperand(getTtmpClassId(Width), 1595 Val - SDWA9EncValues::SRC_TTMP_MIN); 1596 } 1597 1598 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1599 1600 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1601 return decodeIntImmed(SVal); 1602 1603 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1604 return decodeFPImmed(Width, SVal); 1605 1606 return decodeSpecialReg32(SVal); 1607 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 1608 return createRegOperand(getVgprClassId(Width), Val); 1609 } 1610 llvm_unreachable("unsupported target"); 1611 } 1612 1613 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1614 return decodeSDWASrc(OPW16, Val); 1615 } 1616 1617 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1618 return decodeSDWASrc(OPW32, Val); 1619 } 1620 1621 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1622 using namespace AMDGPU::SDWA; 1623 1624 assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1625 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) && 1626 "SDWAVopcDst should be present only on GFX9+"); 1627 1628 bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64]; 1629 1630 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1631 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1632 1633 int TTmpIdx = getTTmpIdx(Val); 1634 if (TTmpIdx >= 0) { 1635 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1636 return createSRegOperand(TTmpClsId, TTmpIdx); 1637 } else if (Val > SGPR_MAX) { 1638 return IsWave64 ? decodeSpecialReg64(Val) 1639 : decodeSpecialReg32(Val); 1640 } else { 1641 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1642 } 1643 } else { 1644 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1645 } 1646 } 1647 1648 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1649 return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ? 1650 decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val); 1651 } 1652 1653 bool AMDGPUDisassembler::isVI() const { 1654 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1655 } 1656 1657 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1658 1659 bool AMDGPUDisassembler::isGFX90A() const { 1660 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; 1661 } 1662 1663 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1664 1665 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1666 1667 bool AMDGPUDisassembler::isGFX10Plus() const { 1668 return AMDGPU::isGFX10Plus(STI); 1669 } 1670 1671 bool AMDGPUDisassembler::isGFX11() const { 1672 return STI.getFeatureBits()[AMDGPU::FeatureGFX11]; 1673 } 1674 1675 bool AMDGPUDisassembler::isGFX11Plus() const { 1676 return AMDGPU::isGFX11Plus(STI); 1677 } 1678 1679 1680 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1681 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; 1682 } 1683 1684 //===----------------------------------------------------------------------===// 1685 // AMDGPU specific symbol handling 1686 //===----------------------------------------------------------------------===// 1687 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1688 do { \ 1689 KdStream << Indent << DIRECTIVE " " \ 1690 << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1691 } while (0) 1692 1693 // NOLINTNEXTLINE(readability-identifier-naming) 1694 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1695 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1696 using namespace amdhsa; 1697 StringRef Indent = "\t"; 1698 1699 // We cannot accurately backward compute #VGPRs used from 1700 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1701 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1702 // simply calculate the inverse of what the assembler does. 1703 1704 uint32_t GranulatedWorkitemVGPRCount = 1705 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >> 1706 COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT; 1707 1708 uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) * 1709 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI); 1710 1711 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1712 1713 // We cannot backward compute values used to calculate 1714 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1715 // directives can't be computed: 1716 // .amdhsa_reserve_vcc 1717 // .amdhsa_reserve_flat_scratch 1718 // .amdhsa_reserve_xnack_mask 1719 // They take their respective default values if not specified in the assembly. 1720 // 1721 // GRANULATED_WAVEFRONT_SGPR_COUNT 1722 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1723 // 1724 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1725 // are set to 0. So while disassembling we consider that: 1726 // 1727 // GRANULATED_WAVEFRONT_SGPR_COUNT 1728 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1729 // 1730 // The disassembler cannot recover the original values of those 3 directives. 1731 1732 uint32_t GranulatedWavefrontSGPRCount = 1733 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >> 1734 COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT; 1735 1736 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1737 return MCDisassembler::Fail; 1738 1739 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1740 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1741 1742 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1743 if (!hasArchitectedFlatScratch()) 1744 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1745 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1746 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1747 1748 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1749 return MCDisassembler::Fail; 1750 1751 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1752 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1753 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1754 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1755 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1756 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1757 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1758 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1759 1760 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1761 return MCDisassembler::Fail; 1762 1763 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); 1764 1765 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1766 return MCDisassembler::Fail; 1767 1768 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); 1769 1770 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1771 return MCDisassembler::Fail; 1772 1773 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1774 return MCDisassembler::Fail; 1775 1776 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); 1777 1778 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) 1779 return MCDisassembler::Fail; 1780 1781 if (isGFX10Plus()) { 1782 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1783 COMPUTE_PGM_RSRC1_WGP_MODE); 1784 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); 1785 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); 1786 } 1787 return MCDisassembler::Success; 1788 } 1789 1790 // NOLINTNEXTLINE(readability-identifier-naming) 1791 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1792 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1793 using namespace amdhsa; 1794 StringRef Indent = "\t"; 1795 if (hasArchitectedFlatScratch()) 1796 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1797 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1798 else 1799 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1800 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1801 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1802 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1803 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1804 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1805 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1806 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1807 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1808 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1809 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1810 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1811 1812 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1813 return MCDisassembler::Fail; 1814 1815 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1816 return MCDisassembler::Fail; 1817 1818 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1819 return MCDisassembler::Fail; 1820 1821 PRINT_DIRECTIVE( 1822 ".amdhsa_exception_fp_ieee_invalid_op", 1823 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1824 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1825 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1826 PRINT_DIRECTIVE( 1827 ".amdhsa_exception_fp_ieee_div_zero", 1828 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1829 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1830 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1831 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1832 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1833 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1834 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1835 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1836 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1837 1838 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1839 return MCDisassembler::Fail; 1840 1841 return MCDisassembler::Success; 1842 } 1843 1844 #undef PRINT_DIRECTIVE 1845 1846 MCDisassembler::DecodeStatus 1847 AMDGPUDisassembler::decodeKernelDescriptorDirective( 1848 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 1849 raw_string_ostream &KdStream) const { 1850 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1851 do { \ 1852 KdStream << Indent << DIRECTIVE " " \ 1853 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1854 } while (0) 1855 1856 uint16_t TwoByteBuffer = 0; 1857 uint32_t FourByteBuffer = 0; 1858 1859 StringRef ReservedBytes; 1860 StringRef Indent = "\t"; 1861 1862 assert(Bytes.size() == 64); 1863 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 1864 1865 switch (Cursor.tell()) { 1866 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 1867 FourByteBuffer = DE.getU32(Cursor); 1868 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 1869 << '\n'; 1870 return MCDisassembler::Success; 1871 1872 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 1873 FourByteBuffer = DE.getU32(Cursor); 1874 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 1875 << FourByteBuffer << '\n'; 1876 return MCDisassembler::Success; 1877 1878 case amdhsa::KERNARG_SIZE_OFFSET: 1879 FourByteBuffer = DE.getU32(Cursor); 1880 KdStream << Indent << ".amdhsa_kernarg_size " 1881 << FourByteBuffer << '\n'; 1882 return MCDisassembler::Success; 1883 1884 case amdhsa::RESERVED0_OFFSET: 1885 // 4 reserved bytes, must be 0. 1886 ReservedBytes = DE.getBytes(Cursor, 4); 1887 for (int I = 0; I < 4; ++I) { 1888 if (ReservedBytes[I] != 0) { 1889 return MCDisassembler::Fail; 1890 } 1891 } 1892 return MCDisassembler::Success; 1893 1894 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 1895 // KERNEL_CODE_ENTRY_BYTE_OFFSET 1896 // So far no directive controls this for Code Object V3, so simply skip for 1897 // disassembly. 1898 DE.skip(Cursor, 8); 1899 return MCDisassembler::Success; 1900 1901 case amdhsa::RESERVED1_OFFSET: 1902 // 20 reserved bytes, must be 0. 1903 ReservedBytes = DE.getBytes(Cursor, 20); 1904 for (int I = 0; I < 20; ++I) { 1905 if (ReservedBytes[I] != 0) { 1906 return MCDisassembler::Fail; 1907 } 1908 } 1909 return MCDisassembler::Success; 1910 1911 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 1912 // COMPUTE_PGM_RSRC3 1913 // - Only set for GFX10, GFX6-9 have this to be 0. 1914 // - Currently no directives directly control this. 1915 FourByteBuffer = DE.getU32(Cursor); 1916 if (!isGFX10Plus() && FourByteBuffer) { 1917 return MCDisassembler::Fail; 1918 } 1919 return MCDisassembler::Success; 1920 1921 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 1922 FourByteBuffer = DE.getU32(Cursor); 1923 if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) == 1924 MCDisassembler::Fail) { 1925 return MCDisassembler::Fail; 1926 } 1927 return MCDisassembler::Success; 1928 1929 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 1930 FourByteBuffer = DE.getU32(Cursor); 1931 if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) == 1932 MCDisassembler::Fail) { 1933 return MCDisassembler::Fail; 1934 } 1935 return MCDisassembler::Success; 1936 1937 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 1938 using namespace amdhsa; 1939 TwoByteBuffer = DE.getU16(Cursor); 1940 1941 if (!hasArchitectedFlatScratch()) 1942 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 1943 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 1944 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 1945 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 1946 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 1947 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 1948 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 1949 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 1950 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 1951 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 1952 if (!hasArchitectedFlatScratch()) 1953 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 1954 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 1955 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 1956 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 1957 1958 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 1959 return MCDisassembler::Fail; 1960 1961 // Reserved for GFX9 1962 if (isGFX9() && 1963 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 1964 return MCDisassembler::Fail; 1965 } else if (isGFX10Plus()) { 1966 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 1967 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1968 } 1969 1970 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 1971 return MCDisassembler::Fail; 1972 1973 return MCDisassembler::Success; 1974 1975 case amdhsa::RESERVED2_OFFSET: 1976 // 6 bytes from here are reserved, must be 0. 1977 ReservedBytes = DE.getBytes(Cursor, 6); 1978 for (int I = 0; I < 6; ++I) { 1979 if (ReservedBytes[I] != 0) 1980 return MCDisassembler::Fail; 1981 } 1982 return MCDisassembler::Success; 1983 1984 default: 1985 llvm_unreachable("Unhandled index. Case statements cover everything."); 1986 return MCDisassembler::Fail; 1987 } 1988 #undef PRINT_DIRECTIVE 1989 } 1990 1991 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 1992 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 1993 // CP microcode requires the kernel descriptor to be 64 aligned. 1994 if (Bytes.size() != 64 || KdAddress % 64 != 0) 1995 return MCDisassembler::Fail; 1996 1997 std::string Kd; 1998 raw_string_ostream KdStream(Kd); 1999 KdStream << ".amdhsa_kernel " << KdName << '\n'; 2000 2001 DataExtractor::Cursor C(0); 2002 while (C && C.tell() < Bytes.size()) { 2003 MCDisassembler::DecodeStatus Status = 2004 decodeKernelDescriptorDirective(C, Bytes, KdStream); 2005 2006 cantFail(C.takeError()); 2007 2008 if (Status == MCDisassembler::Fail) 2009 return MCDisassembler::Fail; 2010 } 2011 KdStream << ".end_amdhsa_kernel\n"; 2012 outs() << KdStream.str(); 2013 return MCDisassembler::Success; 2014 } 2015 2016 Optional<MCDisassembler::DecodeStatus> 2017 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2018 ArrayRef<uint8_t> Bytes, uint64_t Address, 2019 raw_ostream &CStream) const { 2020 // Right now only kernel descriptor needs to be handled. 2021 // We ignore all other symbols for target specific handling. 2022 // TODO: 2023 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2024 // Object V2 and V3 when symbols are marked protected. 2025 2026 // amd_kernel_code_t for Code Object V2. 2027 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2028 Size = 256; 2029 return MCDisassembler::Fail; 2030 } 2031 2032 // Code Object V3 kernel descriptors. 2033 StringRef Name = Symbol.Name; 2034 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { 2035 Size = 64; // Size = 64 regardless of success or failure. 2036 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2037 } 2038 return None; 2039 } 2040 2041 //===----------------------------------------------------------------------===// 2042 // AMDGPUSymbolizer 2043 //===----------------------------------------------------------------------===// 2044 2045 // Try to find symbol name for specified label 2046 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2047 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2048 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2049 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2050 2051 if (!IsBranch) { 2052 return false; 2053 } 2054 2055 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2056 if (!Symbols) 2057 return false; 2058 2059 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2060 return Val.Addr == static_cast<uint64_t>(Value) && 2061 Val.Type == ELF::STT_NOTYPE; 2062 }); 2063 if (Result != Symbols->end()) { 2064 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2065 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2066 Inst.addOperand(MCOperand::createExpr(Add)); 2067 return true; 2068 } 2069 // Add to list of referenced addresses, so caller can synthesize a label. 2070 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2071 return false; 2072 } 2073 2074 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2075 int64_t Value, 2076 uint64_t Address) { 2077 llvm_unreachable("unimplemented"); 2078 } 2079 2080 //===----------------------------------------------------------------------===// 2081 // Initialization 2082 //===----------------------------------------------------------------------===// 2083 2084 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2085 LLVMOpInfoCallback /*GetOpInfo*/, 2086 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2087 void *DisInfo, 2088 MCContext *Ctx, 2089 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2090 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2091 } 2092 2093 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2094 const MCSubtargetInfo &STI, 2095 MCContext &Ctx) { 2096 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2097 } 2098 2099 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2100 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2101 createAMDGPUDisassembler); 2102 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2103 createAMDGPUSymbolizer); 2104 } 2105