xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision bcbffd99c48ed0cabd1b94e9ff252680f0968fc3)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)),
51       CodeObjectVersion(AMDGPU::getDefaultAMDHSACodeObjectVersion()) {
52   // ToDo: AMDGPUDisassembler supports only VI ISA.
53   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
54     report_fatal_error("Disassembly not yet supported for subtarget");
55 }
56 
57 void AMDGPUDisassembler::setABIVersion(unsigned Version) {
58   CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(Version);
59 }
60 
61 inline static MCDisassembler::DecodeStatus
62 addOperand(MCInst &Inst, const MCOperand& Opnd) {
63   Inst.addOperand(Opnd);
64   return Opnd.isValid() ?
65     MCDisassembler::Success :
66     MCDisassembler::Fail;
67 }
68 
69 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
70                                 uint16_t NameIdx) {
71   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
72   if (OpIdx != -1) {
73     auto I = MI.begin();
74     std::advance(I, OpIdx);
75     MI.insert(I, Op);
76   }
77   return OpIdx;
78 }
79 
80 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
81                                        uint64_t Addr,
82                                        const MCDisassembler *Decoder) {
83   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
84 
85   // Our branches take a simm16, but we need two extra bits to account for the
86   // factor of 4.
87   APInt SignedOffset(18, Imm * 4, true);
88   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
89 
90   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
91     return MCDisassembler::Success;
92   return addOperand(Inst, MCOperand::createImm(Imm));
93 }
94 
95 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
96                                      const MCDisassembler *Decoder) {
97   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
98   int64_t Offset;
99   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
100     Offset = SignExtend64<24>(Imm);
101   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
102     Offset = Imm & 0xFFFFF;
103   } else { // GFX9+ supports 21-bit signed offsets.
104     Offset = SignExtend64<21>(Imm);
105   }
106   return addOperand(Inst, MCOperand::createImm(Offset));
107 }
108 
109 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
110                                   const MCDisassembler *Decoder) {
111   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
112   return addOperand(Inst, DAsm->decodeBoolReg(Val));
113 }
114 
115 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
116                                        uint64_t Addr,
117                                        const MCDisassembler *Decoder) {
118   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
119   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
120 }
121 
122 static DecodeStatus decodeDpp8FI(MCInst &Inst, unsigned Val, uint64_t Addr,
123                                  const MCDisassembler *Decoder) {
124   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
125   return addOperand(Inst, DAsm->decodeDpp8FI(Val));
126 }
127 
128 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
129   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
130                                         uint64_t /*Addr*/,                     \
131                                         const MCDisassembler *Decoder) {       \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
134   }
135 
136 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
137 // number of register. Used by VGPR only and AGPR only operands.
138 #define DECODE_OPERAND_REG_8(RegClass)                                         \
139   static DecodeStatus Decode##RegClass##RegisterClass(                         \
140       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
141       const MCDisassembler *Decoder) {                                         \
142     assert(Imm < (1 << 8) && "8-bit encoding");                                \
143     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
144     return addOperand(                                                         \
145         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
146   }
147 
148 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
149                      ImmWidth)                                                 \
150   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
151                            const MCDisassembler *Decoder) {                    \
152     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
153     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
154     return addOperand(Inst,                                                    \
155                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
156                                         MandatoryLiteral, ImmWidth));          \
157   }
158 
159 static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize,
160                                 AMDGPUDisassembler::OpWidthTy OpWidth,
161                                 unsigned Imm, unsigned EncImm,
162                                 bool MandatoryLiteral, unsigned ImmWidth,
163                                 AMDGPU::OperandSemantics Sema,
164                                 const MCDisassembler *Decoder) {
165   assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!");
166   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
167   return addOperand(Inst, DAsm->decodeSrcOp(OpWidth, EncImm, MandatoryLiteral,
168                                             ImmWidth, Sema));
169 }
170 
171 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
172 // get register class. Used by SGPR only operands.
173 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
174   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
175 
176 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
177 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
178 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
179 // Used by AV_ register classes (AGPR or VGPR only register operands).
180 template <AMDGPUDisassembler::OpWidthTy OpWidth>
181 static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
182                                const MCDisassembler *Decoder) {
183   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm | AMDGPU::EncValues::IS_VGPR,
184                      false, 0, AMDGPU::OperandSemantics::INT, Decoder);
185 }
186 
187 // Decoder for Src(9-bit encoding) registers only.
188 template <AMDGPUDisassembler::OpWidthTy OpWidth>
189 static DecodeStatus decodeSrcReg9(MCInst &Inst, unsigned Imm,
190                                   uint64_t /* Addr */,
191                                   const MCDisassembler *Decoder) {
192   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, 0,
193                      AMDGPU::OperandSemantics::INT, Decoder);
194 }
195 
196 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
197 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
198 // only.
199 template <AMDGPUDisassembler::OpWidthTy OpWidth>
200 static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
201                                 const MCDisassembler *Decoder) {
202   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, 0,
203                      AMDGPU::OperandSemantics::INT, Decoder);
204 }
205 
206 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
207 // Imm{9} is acc, registers only.
208 template <AMDGPUDisassembler::OpWidthTy OpWidth>
209 static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm,
210                                   uint64_t /* Addr */,
211                                   const MCDisassembler *Decoder) {
212   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm, false, 0,
213                      AMDGPU::OperandSemantics::INT, Decoder);
214 }
215 
216 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
217 // register from RegClass or immediate. Registers that don't belong to RegClass
218 // will be decoded and InstPrinter will report warning. Immediate will be
219 // decoded into constant of size ImmWidth, should match width of immediate used
220 // by OperandType (important for floating point types).
221 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
222           unsigned OperandSemantics>
223 static DecodeStatus decodeSrcRegOrImm9(MCInst &Inst, unsigned Imm,
224                                        uint64_t /* Addr */,
225                                        const MCDisassembler *Decoder) {
226   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, ImmWidth,
227                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
228 }
229 
230 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
231 // and decode using 'enum10' from decodeSrcOp.
232 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
233           unsigned OperandSemantics>
234 static DecodeStatus decodeSrcRegOrImmA9(MCInst &Inst, unsigned Imm,
235                                         uint64_t /* Addr */,
236                                         const MCDisassembler *Decoder) {
237   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, ImmWidth,
238                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
239 }
240 
241 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
242           unsigned OperandSemantics>
243 static DecodeStatus decodeSrcRegOrImmDeferred9(MCInst &Inst, unsigned Imm,
244                                                uint64_t /* Addr */,
245                                                const MCDisassembler *Decoder) {
246   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, true, ImmWidth,
247                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
248 }
249 
250 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
251 // when RegisterClass is used as an operand. Most often used for destination
252 // operands.
253 
254 DECODE_OPERAND_REG_8(VGPR_32)
255 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
256 DECODE_OPERAND_REG_8(VReg_64)
257 DECODE_OPERAND_REG_8(VReg_96)
258 DECODE_OPERAND_REG_8(VReg_128)
259 DECODE_OPERAND_REG_8(VReg_256)
260 DECODE_OPERAND_REG_8(VReg_288)
261 DECODE_OPERAND_REG_8(VReg_352)
262 DECODE_OPERAND_REG_8(VReg_384)
263 DECODE_OPERAND_REG_8(VReg_512)
264 DECODE_OPERAND_REG_8(VReg_1024)
265 
266 DECODE_OPERAND_REG_7(SReg_32, OPW32)
267 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
268 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
269 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
270 DECODE_OPERAND_REG_7(SReg_64, OPW64)
271 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
272 DECODE_OPERAND_REG_7(SReg_96, OPW96)
273 DECODE_OPERAND_REG_7(SReg_128, OPW128)
274 DECODE_OPERAND_REG_7(SReg_256, OPW256)
275 DECODE_OPERAND_REG_7(SReg_512, OPW512)
276 
277 DECODE_OPERAND_REG_8(AGPR_32)
278 DECODE_OPERAND_REG_8(AReg_64)
279 DECODE_OPERAND_REG_8(AReg_128)
280 DECODE_OPERAND_REG_8(AReg_256)
281 DECODE_OPERAND_REG_8(AReg_512)
282 DECODE_OPERAND_REG_8(AReg_1024)
283 
284 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
285                                                uint64_t /*Addr*/,
286                                                const MCDisassembler *Decoder) {
287   assert(isUInt<10>(Imm) && "10-bit encoding expected");
288   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
289 
290   bool IsHi = Imm & (1 << 9);
291   unsigned RegIdx = Imm & 0xff;
292   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
293   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
294 }
295 
296 static DecodeStatus
297 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
298                                  const MCDisassembler *Decoder) {
299   assert(isUInt<8>(Imm) && "8-bit encoding expected");
300 
301   bool IsHi = Imm & (1 << 7);
302   unsigned RegIdx = Imm & 0x7f;
303   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
304   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
305 }
306 
307 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
308                                                 uint64_t /*Addr*/,
309                                                 const MCDisassembler *Decoder) {
310   assert(isUInt<9>(Imm) && "9-bit encoding expected");
311 
312   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
313   bool IsVGPR = Imm & (1 << 8);
314   if (IsVGPR) {
315     bool IsHi = Imm & (1 << 7);
316     unsigned RegIdx = Imm & 0x7f;
317     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
318   }
319   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
320                                                    Imm & 0xFF, false, 16));
321 }
322 
323 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
324                                           uint64_t /*Addr*/,
325                                           const MCDisassembler *Decoder) {
326   assert(isUInt<10>(Imm) && "10-bit encoding expected");
327 
328   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
329   bool IsVGPR = Imm & (1 << 8);
330   if (IsVGPR) {
331     bool IsHi = Imm & (1 << 9);
332     unsigned RegIdx = Imm & 0xff;
333     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
334   }
335   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
336                                                    Imm & 0xFF, false, 16));
337 }
338 
339 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
340                                          uint64_t Addr,
341                                          const MCDisassembler *Decoder) {
342   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
343   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
344 }
345 
346 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
347                                           uint64_t Addr, const void *Decoder) {
348   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
349   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
350 }
351 
352 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
353                           const MCRegisterInfo *MRI) {
354   if (OpIdx < 0)
355     return false;
356 
357   const MCOperand &Op = Inst.getOperand(OpIdx);
358   if (!Op.isReg())
359     return false;
360 
361   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
362   auto Reg = Sub ? Sub : Op.getReg();
363   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
364 }
365 
366 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
367                                  AMDGPUDisassembler::OpWidthTy Opw,
368                                  const MCDisassembler *Decoder) {
369   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
370   if (!DAsm->isGFX90A()) {
371     Imm &= 511;
372   } else {
373     // If atomic has both vdata and vdst their register classes are tied.
374     // The bit is decoded along with the vdst, first operand. We need to
375     // change register class to AGPR if vdst was AGPR.
376     // If a DS instruction has both data0 and data1 their register classes
377     // are also tied.
378     unsigned Opc = Inst.getOpcode();
379     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
380     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
381                                                         : AMDGPU::OpName::vdata;
382     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
383     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
384     if ((int)Inst.getNumOperands() == DataIdx) {
385       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
386       if (IsAGPROperand(Inst, DstIdx, MRI))
387         Imm |= 512;
388     }
389 
390     if (TSFlags & SIInstrFlags::DS) {
391       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
392       if ((int)Inst.getNumOperands() == Data2Idx &&
393           IsAGPROperand(Inst, DataIdx, MRI))
394         Imm |= 512;
395     }
396   }
397   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
398 }
399 
400 template <AMDGPUDisassembler::OpWidthTy Opw>
401 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
402                                  uint64_t /* Addr */,
403                                  const MCDisassembler *Decoder) {
404   return decodeAVLdSt(Inst, Imm, Opw, Decoder);
405 }
406 
407 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
408                                            uint64_t Addr,
409                                            const MCDisassembler *Decoder) {
410   assert(Imm < (1 << 9) && "9-bit encoding");
411   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
412   return addOperand(Inst,
413                     DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64,
414                                       AMDGPU::OperandSemantics::FP64));
415 }
416 
417 #define DECODE_SDWA(DecName) \
418 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
419 
420 DECODE_SDWA(Src32)
421 DECODE_SDWA(Src16)
422 DECODE_SDWA(VopcDst)
423 
424 #include "AMDGPUGenDisassemblerTables.inc"
425 
426 //===----------------------------------------------------------------------===//
427 //
428 //===----------------------------------------------------------------------===//
429 
430 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
431   assert(Bytes.size() >= sizeof(T));
432   const auto Res =
433       support::endian::read<T, llvm::endianness::little>(Bytes.data());
434   Bytes = Bytes.slice(sizeof(T));
435   return Res;
436 }
437 
438 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
439   assert(Bytes.size() >= 12);
440   uint64_t Lo =
441       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
442   Bytes = Bytes.slice(8);
443   uint64_t Hi =
444       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
445   Bytes = Bytes.slice(4);
446   return DecoderUInt128(Lo, Hi);
447 }
448 
449 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
450                                                 ArrayRef<uint8_t> Bytes_,
451                                                 uint64_t Address,
452                                                 raw_ostream &CS) const {
453   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
454   Bytes = Bytes_.slice(0, MaxInstBytesNum);
455 
456   DecodeStatus Res = MCDisassembler::Fail;
457   do {
458     // ToDo: better to switch encoding length using some bit predicate
459     // but it is unknown yet, so try all we can
460 
461     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
462     // encodings
463     if (isGFX11Plus() && Bytes.size() >= 12 ) {
464       DecoderUInt128 DecW = eat12Bytes(Bytes);
465       Res =
466           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
467                         MI, DecW, Address, CS);
468       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
469         break;
470       Res =
471           tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
472                         MI, DecW, Address, CS);
473       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
474         break;
475 
476       const auto convertVOPDPP = [&]() {
477         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) {
478           convertVOP3PDPPInst(MI);
479         } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) {
480           convertVOPCDPPInst(MI); // Special VOP3 case
481         } else {
482           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
483           convertVOP3DPPInst(MI); // Regular VOP3 case
484         }
485       };
486       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
487                           MI, DecW, Address, CS);
488       if (Res) {
489         convertVOPDPP();
490         break;
491       }
492       Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
493                           MI, DecW, Address, CS);
494       if (Res) {
495         convertVOPDPP();
496         break;
497       }
498       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
499       if (Res)
500         break;
501 
502       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
503       if (Res)
504         break;
505 
506       Res = tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS);
507       if (Res)
508         break;
509     }
510     // Reinitialize Bytes
511     Bytes = Bytes_.slice(0, MaxInstBytesNum);
512 
513     if (Bytes.size() >= 8) {
514       const uint64_t QW = eatBytes<uint64_t>(Bytes);
515 
516       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
517         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
518         if (Res) {
519           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
520               == -1)
521             break;
522           if (convertDPP8Inst(MI) == MCDisassembler::Success)
523             break;
524         }
525       }
526 
527       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
528       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
529         break;
530 
531       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
532                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
533       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
534         break;
535 
536       Res = tryDecodeInst(DecoderTableDPP8GFX1264,
537                           DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
538       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
539         break;
540 
541       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
542       if (Res) break;
543 
544       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
545                           MI, QW, Address, CS);
546       if (Res) {
547         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
548           convertVOPCDPPInst(MI);
549         break;
550       }
551 
552       Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
553                           MI, QW, Address, CS);
554       if (Res) {
555         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
556           convertVOPCDPPInst(MI);
557         break;
558       }
559 
560       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
561         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
562         if (Res)
563           break;
564       }
565 
566       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
567       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
568       // table first so we print the correct name.
569       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
570         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
571         if (Res)
572           break;
573       }
574 
575       if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
576         Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
577         if (Res)
578           break;
579       }
580 
581       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
582         Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
583         if (Res)
584           break;
585       }
586 
587       Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
588       if (Res)
589         break;
590 
591       Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
592       if (Res)
593         break;
594 
595       Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
596       if (Res)
597         break;
598 
599       Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI,
600                           QW, Address, CS);
601       if (Res)
602         break;
603 
604       Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI,
605                           QW, Address, CS);
606       if (Res)
607         break;
608 
609       Res = tryDecodeInst(DecoderTableGFX11W6464, MI, QW, Address, CS);
610       if (Res)
611         break;
612 
613       Res = tryDecodeInst(DecoderTableGFX12W6464, MI, QW, Address, CS);
614       if (Res)
615         break;
616     }
617 
618     // Reinitialize Bytes as DPP64 could have eaten too much
619     Bytes = Bytes_.slice(0, MaxInstBytesNum);
620 
621     // Try decode 32-bit instruction
622     if (Bytes.size() < 4) break;
623     const uint32_t DW = eatBytes<uint32_t>(Bytes);
624     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
625     if (Res) break;
626 
627     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
628     if (Res) break;
629 
630     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
631     if (Res) break;
632 
633     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
634       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
635       if (Res)
636         break;
637     }
638 
639     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
640       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
641       if (Res) break;
642     }
643 
644     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
645     if (Res) break;
646 
647     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
648                         Address, CS);
649     if (Res) break;
650 
651     Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
652                         Address, CS);
653   } while (false);
654 
655   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
656     // Insert dummy unused src2_modifiers.
657     insertNamedMCOperand(MI, MCOperand::createImm(0),
658                          AMDGPU::OpName::src2_modifiers);
659   }
660 
661   if (Res && (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
662               MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp)) {
663     // Insert dummy unused src2_modifiers.
664     insertNamedMCOperand(MI, MCOperand::createImm(0),
665                          AMDGPU::OpName::src2_modifiers);
666   }
667 
668   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
669       !AMDGPU::hasGDS(STI)) {
670     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
671   }
672 
673   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
674           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
675     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
676                                              AMDGPU::OpName::cpol);
677     if (CPolPos != -1) {
678       unsigned CPol =
679           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
680               AMDGPU::CPol::GLC : 0;
681       if (MI.getNumOperands() <= (unsigned)CPolPos) {
682         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
683                              AMDGPU::OpName::cpol);
684       } else if (CPol) {
685         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
686       }
687     }
688   }
689 
690   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
691               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
692              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
693     // GFX90A lost TFE, its place is occupied by ACC.
694     int TFEOpIdx =
695         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
696     if (TFEOpIdx != -1) {
697       auto TFEIter = MI.begin();
698       std::advance(TFEIter, TFEOpIdx);
699       MI.insert(TFEIter, MCOperand::createImm(0));
700     }
701   }
702 
703   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
704               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
705     int SWZOpIdx =
706         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
707     if (SWZOpIdx != -1) {
708       auto SWZIter = MI.begin();
709       std::advance(SWZIter, SWZOpIdx);
710       MI.insert(SWZIter, MCOperand::createImm(0));
711     }
712   }
713 
714   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
715     int VAddr0Idx =
716         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
717     int RsrcIdx =
718         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
719     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
720     if (VAddr0Idx >= 0 && NSAArgs > 0) {
721       unsigned NSAWords = (NSAArgs + 3) / 4;
722       if (Bytes.size() < 4 * NSAWords) {
723         Res = MCDisassembler::Fail;
724       } else {
725         for (unsigned i = 0; i < NSAArgs; ++i) {
726           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
727           auto VAddrRCID =
728               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
729           MI.insert(MI.begin() + VAddrIdx,
730                     createRegOperand(VAddrRCID, Bytes[i]));
731         }
732         Bytes = Bytes.slice(4 * NSAWords);
733       }
734     }
735 
736     if (Res)
737       Res = convertMIMGInst(MI);
738   }
739 
740   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
741               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
742     Res = convertMIMGInst(MI);
743 
744   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
745     Res = convertEXPInst(MI);
746 
747   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
748     Res = convertVINTERPInst(MI);
749 
750   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SDWA))
751     Res = convertSDWAInst(MI);
752 
753   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
754                                               AMDGPU::OpName::vdst_in);
755   if (VDstIn_Idx != -1) {
756     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
757                            MCOI::OperandConstraint::TIED_TO);
758     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
759          !MI.getOperand(VDstIn_Idx).isReg() ||
760          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
761       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
762         MI.erase(&MI.getOperand(VDstIn_Idx));
763       insertNamedMCOperand(MI,
764         MCOperand::createReg(MI.getOperand(Tied).getReg()),
765         AMDGPU::OpName::vdst_in);
766     }
767   }
768 
769   int ImmLitIdx =
770       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
771   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
772   if (Res && ImmLitIdx != -1 && !IsSOPK)
773     Res = convertFMAanyK(MI, ImmLitIdx);
774 
775   // if the opcode was not recognized we'll assume a Size of 4 bytes
776   // (unless there are fewer bytes left)
777   Size = Res ? (MaxInstBytesNum - Bytes.size())
778              : std::min((size_t)4, Bytes_.size());
779   return Res;
780 }
781 
782 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
783   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
784     // The MCInst still has these fields even though they are no longer encoded
785     // in the GFX11 instruction.
786     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
787     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
788   }
789   return MCDisassembler::Success;
790 }
791 
792 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
793   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
794       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
795       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
796       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
797       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
798       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
799       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
800       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
801     // The MCInst has this field that is not directly encoded in the
802     // instruction.
803     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
804   }
805   return MCDisassembler::Success;
806 }
807 
808 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
809   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
810       STI.hasFeature(AMDGPU::FeatureGFX10)) {
811     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
812       // VOPC - insert clamp
813       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
814   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
815     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
816     if (SDst != -1) {
817       // VOPC - insert VCC register as sdst
818       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
819                            AMDGPU::OpName::sdst);
820     } else {
821       // VOP1/2 - insert omod if present in instruction
822       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
823     }
824   }
825   return MCDisassembler::Success;
826 }
827 
828 struct VOPModifiers {
829   unsigned OpSel = 0;
830   unsigned OpSelHi = 0;
831   unsigned NegLo = 0;
832   unsigned NegHi = 0;
833 };
834 
835 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
836 // Note that these values do not affect disassembler output,
837 // so this is only necessary for consistency with src_modifiers.
838 static VOPModifiers collectVOPModifiers(const MCInst &MI,
839                                         bool IsVOP3P = false) {
840   VOPModifiers Modifiers;
841   unsigned Opc = MI.getOpcode();
842   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
843                         AMDGPU::OpName::src1_modifiers,
844                         AMDGPU::OpName::src2_modifiers};
845   for (int J = 0; J < 3; ++J) {
846     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
847     if (OpIdx == -1)
848       continue;
849 
850     unsigned Val = MI.getOperand(OpIdx).getImm();
851 
852     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
853     if (IsVOP3P) {
854       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
855       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
856       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
857     } else if (J == 0) {
858       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
859     }
860   }
861 
862   return Modifiers;
863 }
864 
865 // Instructions decode the op_sel/suffix bits into the src_modifier
866 // operands. Copy those bits into the src operands for true16 VGPRs.
867 void AMDGPUDisassembler::convertTrue16OpSel(MCInst &MI) const {
868   const unsigned Opc = MI.getOpcode();
869   const MCRegisterClass &ConversionRC =
870       MRI.getRegClass(AMDGPU::VGPR_16RegClassID);
871   constexpr std::array<std::tuple<int, int, unsigned>, 4> OpAndOpMods = {
872       {{AMDGPU::OpName::src0, AMDGPU::OpName::src0_modifiers,
873         SISrcMods::OP_SEL_0},
874        {AMDGPU::OpName::src1, AMDGPU::OpName::src1_modifiers,
875         SISrcMods::OP_SEL_0},
876        {AMDGPU::OpName::src2, AMDGPU::OpName::src2_modifiers,
877         SISrcMods::OP_SEL_0},
878        {AMDGPU::OpName::vdst, AMDGPU::OpName::src0_modifiers,
879         SISrcMods::DST_OP_SEL}}};
880   for (const auto &[OpName, OpModsName, OpSelMask] : OpAndOpMods) {
881     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, OpName);
882     int OpModsIdx = AMDGPU::getNamedOperandIdx(Opc, OpModsName);
883     if (OpIdx == -1 || OpModsIdx == -1)
884       continue;
885     MCOperand &Op = MI.getOperand(OpIdx);
886     if (!Op.isReg())
887       continue;
888     if (!ConversionRC.contains(Op.getReg()))
889       continue;
890     unsigned OpEnc = MRI.getEncodingValue(Op.getReg());
891     const MCOperand &OpMods = MI.getOperand(OpModsIdx);
892     unsigned ModVal = OpMods.getImm();
893     if (ModVal & OpSelMask) { // isHi
894       unsigned RegIdx = OpEnc & AMDGPU::HWEncoding::REG_IDX_MASK;
895       Op.setReg(ConversionRC.getRegister(RegIdx * 2 + 1));
896     }
897   }
898 }
899 
900 // MAC opcodes have special old and src2 operands.
901 // src2 is tied to dst, while old is not tied (but assumed to be).
902 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
903   constexpr int DST_IDX = 0;
904   auto Opcode = MI.getOpcode();
905   const auto &Desc = MCII->get(Opcode);
906   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
907 
908   if (OldIdx != -1 && Desc.getOperandConstraint(
909                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
910     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
911     assert(Desc.getOperandConstraint(
912                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
913                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
914     (void)DST_IDX;
915     return true;
916   }
917 
918   return false;
919 }
920 
921 // Create dummy old operand and insert dummy unused src2_modifiers
922 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
923   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
924   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
925   insertNamedMCOperand(MI, MCOperand::createImm(0),
926                        AMDGPU::OpName::src2_modifiers);
927 }
928 
929 // We must check FI == literal to reject not genuine dpp8 insts, and we must
930 // first add optional MI operands to check FI
931 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
932   unsigned Opc = MI.getOpcode();
933 
934   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
935     convertVOP3PDPPInst(MI);
936   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
937              AMDGPU::isVOPC64DPP(Opc)) {
938     convertVOPCDPPInst(MI);
939   } else {
940     if (isMacDPP(MI))
941       convertMacDPPInst(MI);
942 
943     int VDstInIdx =
944         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
945     if (VDstInIdx != -1)
946       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
947 
948     if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp8_gfx12 ||
949         MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp8_gfx12)
950       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
951 
952     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
953     if (MI.getNumOperands() < DescNumOps &&
954         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
955       convertTrue16OpSel(MI);
956       auto Mods = collectVOPModifiers(MI);
957       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
958                            AMDGPU::OpName::op_sel);
959     } else {
960       // Insert dummy unused src modifiers.
961       if (MI.getNumOperands() < DescNumOps &&
962           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
963         insertNamedMCOperand(MI, MCOperand::createImm(0),
964                              AMDGPU::OpName::src0_modifiers);
965 
966       if (MI.getNumOperands() < DescNumOps &&
967           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
968         insertNamedMCOperand(MI, MCOperand::createImm(0),
969                              AMDGPU::OpName::src1_modifiers);
970     }
971   }
972   return MCDisassembler::Success;
973 }
974 
975 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
976   if (isMacDPP(MI))
977     convertMacDPPInst(MI);
978 
979   convertTrue16OpSel(MI);
980 
981   int VDstInIdx =
982       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
983   if (VDstInIdx != -1)
984     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
985 
986   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp_gfx12 ||
987       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp_gfx12)
988     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
989 
990   unsigned Opc = MI.getOpcode();
991   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
992   if (MI.getNumOperands() < DescNumOps &&
993       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
994     auto Mods = collectVOPModifiers(MI);
995     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
996                          AMDGPU::OpName::op_sel);
997   }
998   return MCDisassembler::Success;
999 }
1000 
1001 // Note that before gfx10, the MIMG encoding provided no information about
1002 // VADDR size. Consequently, decoded instructions always show address as if it
1003 // has 1 dword, which could be not really so.
1004 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
1005   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
1006 
1007   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1008                                            AMDGPU::OpName::vdst);
1009 
1010   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1011                                             AMDGPU::OpName::vdata);
1012   int VAddr0Idx =
1013       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
1014   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
1015                                                 : AMDGPU::OpName::rsrc;
1016   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
1017   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1018                                             AMDGPU::OpName::dmask);
1019 
1020   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1021                                             AMDGPU::OpName::tfe);
1022   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1023                                             AMDGPU::OpName::d16);
1024 
1025   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
1026   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1027       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
1028 
1029   assert(VDataIdx != -1);
1030   if (BaseOpcode->BVH) {
1031     // Add A16 operand for intersect_ray instructions
1032     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
1033     return MCDisassembler::Success;
1034   }
1035 
1036   bool IsAtomic = (VDstIdx != -1);
1037   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1038   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1039   bool IsNSA = false;
1040   bool IsPartialNSA = false;
1041   unsigned AddrSize = Info->VAddrDwords;
1042 
1043   if (isGFX10Plus()) {
1044     unsigned DimIdx =
1045         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1046     int A16Idx =
1047         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1048     const AMDGPU::MIMGDimInfo *Dim =
1049         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1050     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1051 
1052     AddrSize =
1053         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1054 
1055     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1056     // VIMAGE insts other than BVH never use vaddr4.
1057     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1058             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1059             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1060     if (!IsNSA) {
1061       if (!IsVSample && AddrSize > 12)
1062         AddrSize = 16;
1063     } else {
1064       if (AddrSize > Info->VAddrDwords) {
1065         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1066           // The NSA encoding does not contain enough operands for the
1067           // combination of base opcode / dimension. Should this be an error?
1068           return MCDisassembler::Success;
1069         }
1070         IsPartialNSA = true;
1071       }
1072     }
1073   }
1074 
1075   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1076   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1077 
1078   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1079   if (D16 && AMDGPU::hasPackedD16(STI)) {
1080     DstSize = (DstSize + 1) / 2;
1081   }
1082 
1083   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1084     DstSize += 1;
1085 
1086   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1087     return MCDisassembler::Success;
1088 
1089   int NewOpcode =
1090       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1091   if (NewOpcode == -1)
1092     return MCDisassembler::Success;
1093 
1094   // Widen the register to the correct number of enabled channels.
1095   unsigned NewVdata = AMDGPU::NoRegister;
1096   if (DstSize != Info->VDataDwords) {
1097     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1098 
1099     // Get first subregister of VData
1100     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1101     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1102     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1103 
1104     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1105                                        &MRI.getRegClass(DataRCID));
1106     if (NewVdata == AMDGPU::NoRegister) {
1107       // It's possible to encode this such that the low register + enabled
1108       // components exceeds the register count.
1109       return MCDisassembler::Success;
1110     }
1111   }
1112 
1113   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1114   // If using partial NSA on GFX11+ widen last address register.
1115   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1116   unsigned NewVAddrSA = AMDGPU::NoRegister;
1117   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1118       AddrSize != Info->VAddrDwords) {
1119     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1120     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1121     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1122 
1123     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1124     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1125                                         &MRI.getRegClass(AddrRCID));
1126     if (!NewVAddrSA)
1127       return MCDisassembler::Success;
1128   }
1129 
1130   MI.setOpcode(NewOpcode);
1131 
1132   if (NewVdata != AMDGPU::NoRegister) {
1133     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1134 
1135     if (IsAtomic) {
1136       // Atomic operations have an additional operand (a copy of data)
1137       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1138     }
1139   }
1140 
1141   if (NewVAddrSA) {
1142     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1143   } else if (IsNSA) {
1144     assert(AddrSize <= Info->VAddrDwords);
1145     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1146              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1147   }
1148 
1149   return MCDisassembler::Success;
1150 }
1151 
1152 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1153 // decoder only adds to src_modifiers, so manually add the bits to the other
1154 // operands.
1155 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1156   unsigned Opc = MI.getOpcode();
1157   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1158   auto Mods = collectVOPModifiers(MI, true);
1159 
1160   if (MI.getNumOperands() < DescNumOps &&
1161       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1162     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1163 
1164   if (MI.getNumOperands() < DescNumOps &&
1165       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1166     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1167                          AMDGPU::OpName::op_sel);
1168   if (MI.getNumOperands() < DescNumOps &&
1169       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1170     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1171                          AMDGPU::OpName::op_sel_hi);
1172   if (MI.getNumOperands() < DescNumOps &&
1173       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1174     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1175                          AMDGPU::OpName::neg_lo);
1176   if (MI.getNumOperands() < DescNumOps &&
1177       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1178     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1179                          AMDGPU::OpName::neg_hi);
1180 
1181   return MCDisassembler::Success;
1182 }
1183 
1184 // Create dummy old operand and insert optional operands
1185 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1186   unsigned Opc = MI.getOpcode();
1187   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1188 
1189   if (MI.getNumOperands() < DescNumOps &&
1190       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1191     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1192 
1193   if (MI.getNumOperands() < DescNumOps &&
1194       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1195     insertNamedMCOperand(MI, MCOperand::createImm(0),
1196                          AMDGPU::OpName::src0_modifiers);
1197 
1198   if (MI.getNumOperands() < DescNumOps &&
1199       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1200     insertNamedMCOperand(MI, MCOperand::createImm(0),
1201                          AMDGPU::OpName::src1_modifiers);
1202   return MCDisassembler::Success;
1203 }
1204 
1205 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1206                                                 int ImmLitIdx) const {
1207   assert(HasLiteral && "Should have decoded a literal");
1208   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1209   unsigned DescNumOps = Desc.getNumOperands();
1210   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1211                        AMDGPU::OpName::immDeferred);
1212   assert(DescNumOps == MI.getNumOperands());
1213   for (unsigned I = 0; I < DescNumOps; ++I) {
1214     auto &Op = MI.getOperand(I);
1215     auto OpType = Desc.operands()[I].OperandType;
1216     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1217                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1218     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1219         IsDeferredOp)
1220       Op.setImm(Literal);
1221   }
1222   return MCDisassembler::Success;
1223 }
1224 
1225 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1226   return getContext().getRegisterInfo()->
1227     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1228 }
1229 
1230 inline
1231 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1232                                          const Twine& ErrMsg) const {
1233   *CommentStream << "Error: " + ErrMsg;
1234 
1235   // ToDo: add support for error operands to MCInst.h
1236   // return MCOperand::createError(V);
1237   return MCOperand();
1238 }
1239 
1240 inline
1241 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1242   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1243 }
1244 
1245 inline
1246 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1247                                                unsigned Val) const {
1248   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1249   if (Val >= RegCl.getNumRegs())
1250     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1251                            ": unknown register " + Twine(Val));
1252   return createRegOperand(RegCl.getRegister(Val));
1253 }
1254 
1255 inline
1256 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1257                                                 unsigned Val) const {
1258   // ToDo: SI/CI have 104 SGPRs, VI - 102
1259   // Valery: here we accepting as much as we can, let assembler sort it out
1260   int shift = 0;
1261   switch (SRegClassID) {
1262   case AMDGPU::SGPR_32RegClassID:
1263   case AMDGPU::TTMP_32RegClassID:
1264     break;
1265   case AMDGPU::SGPR_64RegClassID:
1266   case AMDGPU::TTMP_64RegClassID:
1267     shift = 1;
1268     break;
1269   case AMDGPU::SGPR_96RegClassID:
1270   case AMDGPU::TTMP_96RegClassID:
1271   case AMDGPU::SGPR_128RegClassID:
1272   case AMDGPU::TTMP_128RegClassID:
1273   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1274   // this bundle?
1275   case AMDGPU::SGPR_256RegClassID:
1276   case AMDGPU::TTMP_256RegClassID:
1277     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1278   // this bundle?
1279   case AMDGPU::SGPR_288RegClassID:
1280   case AMDGPU::TTMP_288RegClassID:
1281   case AMDGPU::SGPR_320RegClassID:
1282   case AMDGPU::TTMP_320RegClassID:
1283   case AMDGPU::SGPR_352RegClassID:
1284   case AMDGPU::TTMP_352RegClassID:
1285   case AMDGPU::SGPR_384RegClassID:
1286   case AMDGPU::TTMP_384RegClassID:
1287   case AMDGPU::SGPR_512RegClassID:
1288   case AMDGPU::TTMP_512RegClassID:
1289     shift = 2;
1290     break;
1291   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1292   // this bundle?
1293   default:
1294     llvm_unreachable("unhandled register class");
1295   }
1296 
1297   if (Val % (1 << shift)) {
1298     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1299                    << ": scalar reg isn't aligned " << Val;
1300   }
1301 
1302   return createRegOperand(SRegClassID, Val >> shift);
1303 }
1304 
1305 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1306                                                   bool IsHi) const {
1307   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1308   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1309 }
1310 
1311 // Decode Literals for insts which always have a literal in the encoding
1312 MCOperand
1313 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1314   if (HasLiteral) {
1315     assert(
1316         AMDGPU::hasVOPD(STI) &&
1317         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1318     if (Literal != Val)
1319       return errOperand(Val, "More than one unique literal is illegal");
1320   }
1321   HasLiteral = true;
1322   Literal = Val;
1323   return MCOperand::createImm(Literal);
1324 }
1325 
1326 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1327   // For now all literal constants are supposed to be unsigned integer
1328   // ToDo: deal with signed/unsigned 64-bit integer constants
1329   // ToDo: deal with float/double constants
1330   if (!HasLiteral) {
1331     if (Bytes.size() < 4) {
1332       return errOperand(0, "cannot read literal, inst bytes left " +
1333                         Twine(Bytes.size()));
1334     }
1335     HasLiteral = true;
1336     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1337     if (ExtendFP64)
1338       Literal64 <<= 32;
1339   }
1340   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1341 }
1342 
1343 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1344   using namespace AMDGPU::EncValues;
1345 
1346   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1347   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1348     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1349     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1350       // Cast prevents negative overflow.
1351 }
1352 
1353 static int64_t getInlineImmVal32(unsigned Imm) {
1354   switch (Imm) {
1355   case 240:
1356     return llvm::bit_cast<uint32_t>(0.5f);
1357   case 241:
1358     return llvm::bit_cast<uint32_t>(-0.5f);
1359   case 242:
1360     return llvm::bit_cast<uint32_t>(1.0f);
1361   case 243:
1362     return llvm::bit_cast<uint32_t>(-1.0f);
1363   case 244:
1364     return llvm::bit_cast<uint32_t>(2.0f);
1365   case 245:
1366     return llvm::bit_cast<uint32_t>(-2.0f);
1367   case 246:
1368     return llvm::bit_cast<uint32_t>(4.0f);
1369   case 247:
1370     return llvm::bit_cast<uint32_t>(-4.0f);
1371   case 248: // 1 / (2 * PI)
1372     return 0x3e22f983;
1373   default:
1374     llvm_unreachable("invalid fp inline imm");
1375   }
1376 }
1377 
1378 static int64_t getInlineImmVal64(unsigned Imm) {
1379   switch (Imm) {
1380   case 240:
1381     return llvm::bit_cast<uint64_t>(0.5);
1382   case 241:
1383     return llvm::bit_cast<uint64_t>(-0.5);
1384   case 242:
1385     return llvm::bit_cast<uint64_t>(1.0);
1386   case 243:
1387     return llvm::bit_cast<uint64_t>(-1.0);
1388   case 244:
1389     return llvm::bit_cast<uint64_t>(2.0);
1390   case 245:
1391     return llvm::bit_cast<uint64_t>(-2.0);
1392   case 246:
1393     return llvm::bit_cast<uint64_t>(4.0);
1394   case 247:
1395     return llvm::bit_cast<uint64_t>(-4.0);
1396   case 248: // 1 / (2 * PI)
1397     return 0x3fc45f306dc9c882;
1398   default:
1399     llvm_unreachable("invalid fp inline imm");
1400   }
1401 }
1402 
1403 static int64_t getInlineImmValF16(unsigned Imm) {
1404   switch (Imm) {
1405   case 240:
1406     return 0x3800;
1407   case 241:
1408     return 0xB800;
1409   case 242:
1410     return 0x3C00;
1411   case 243:
1412     return 0xBC00;
1413   case 244:
1414     return 0x4000;
1415   case 245:
1416     return 0xC000;
1417   case 246:
1418     return 0x4400;
1419   case 247:
1420     return 0xC400;
1421   case 248: // 1 / (2 * PI)
1422     return 0x3118;
1423   default:
1424     llvm_unreachable("invalid fp inline imm");
1425   }
1426 }
1427 
1428 static int64_t getInlineImmValBF16(unsigned Imm) {
1429   switch (Imm) {
1430   case 240:
1431     return 0x3F00;
1432   case 241:
1433     return 0xBF00;
1434   case 242:
1435     return 0x3F80;
1436   case 243:
1437     return 0xBF80;
1438   case 244:
1439     return 0x4000;
1440   case 245:
1441     return 0xC000;
1442   case 246:
1443     return 0x4080;
1444   case 247:
1445     return 0xC080;
1446   case 248: // 1 / (2 * PI)
1447     return 0x3E22;
1448   default:
1449     llvm_unreachable("invalid fp inline imm");
1450   }
1451 }
1452 
1453 static int64_t getInlineImmVal16(unsigned Imm, AMDGPU::OperandSemantics Sema) {
1454   return (Sema == AMDGPU::OperandSemantics::BF16) ? getInlineImmValBF16(Imm)
1455                                                   : getInlineImmValF16(Imm);
1456 }
1457 
1458 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm,
1459                                             AMDGPU::OperandSemantics Sema) {
1460   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN &&
1461          Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1462 
1463   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1464   // ImmWidth 0 is a default case where operand should not allow immediates.
1465   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1466   // use it to print verbose error message.
1467   switch (ImmWidth) {
1468   case 0:
1469   case 32:
1470     return MCOperand::createImm(getInlineImmVal32(Imm));
1471   case 64:
1472     return MCOperand::createImm(getInlineImmVal64(Imm));
1473   case 16:
1474     return MCOperand::createImm(getInlineImmVal16(Imm, Sema));
1475   default:
1476     llvm_unreachable("implement me");
1477   }
1478 }
1479 
1480 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1481   using namespace AMDGPU;
1482 
1483   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1484   switch (Width) {
1485   default: // fall
1486   case OPW32:
1487   case OPW16:
1488   case OPWV216:
1489     return VGPR_32RegClassID;
1490   case OPW64:
1491   case OPWV232: return VReg_64RegClassID;
1492   case OPW96: return VReg_96RegClassID;
1493   case OPW128: return VReg_128RegClassID;
1494   case OPW160: return VReg_160RegClassID;
1495   case OPW256: return VReg_256RegClassID;
1496   case OPW288: return VReg_288RegClassID;
1497   case OPW320: return VReg_320RegClassID;
1498   case OPW352: return VReg_352RegClassID;
1499   case OPW384: return VReg_384RegClassID;
1500   case OPW512: return VReg_512RegClassID;
1501   case OPW1024: return VReg_1024RegClassID;
1502   }
1503 }
1504 
1505 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1506   using namespace AMDGPU;
1507 
1508   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1509   switch (Width) {
1510   default: // fall
1511   case OPW32:
1512   case OPW16:
1513   case OPWV216:
1514     return AGPR_32RegClassID;
1515   case OPW64:
1516   case OPWV232: return AReg_64RegClassID;
1517   case OPW96: return AReg_96RegClassID;
1518   case OPW128: return AReg_128RegClassID;
1519   case OPW160: return AReg_160RegClassID;
1520   case OPW256: return AReg_256RegClassID;
1521   case OPW288: return AReg_288RegClassID;
1522   case OPW320: return AReg_320RegClassID;
1523   case OPW352: return AReg_352RegClassID;
1524   case OPW384: return AReg_384RegClassID;
1525   case OPW512: return AReg_512RegClassID;
1526   case OPW1024: return AReg_1024RegClassID;
1527   }
1528 }
1529 
1530 
1531 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1532   using namespace AMDGPU;
1533 
1534   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1535   switch (Width) {
1536   default: // fall
1537   case OPW32:
1538   case OPW16:
1539   case OPWV216:
1540     return SGPR_32RegClassID;
1541   case OPW64:
1542   case OPWV232: return SGPR_64RegClassID;
1543   case OPW96: return SGPR_96RegClassID;
1544   case OPW128: return SGPR_128RegClassID;
1545   case OPW160: return SGPR_160RegClassID;
1546   case OPW256: return SGPR_256RegClassID;
1547   case OPW288: return SGPR_288RegClassID;
1548   case OPW320: return SGPR_320RegClassID;
1549   case OPW352: return SGPR_352RegClassID;
1550   case OPW384: return SGPR_384RegClassID;
1551   case OPW512: return SGPR_512RegClassID;
1552   }
1553 }
1554 
1555 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1556   using namespace AMDGPU;
1557 
1558   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1559   switch (Width) {
1560   default: // fall
1561   case OPW32:
1562   case OPW16:
1563   case OPWV216:
1564     return TTMP_32RegClassID;
1565   case OPW64:
1566   case OPWV232: return TTMP_64RegClassID;
1567   case OPW128: return TTMP_128RegClassID;
1568   case OPW256: return TTMP_256RegClassID;
1569   case OPW288: return TTMP_288RegClassID;
1570   case OPW320: return TTMP_320RegClassID;
1571   case OPW352: return TTMP_352RegClassID;
1572   case OPW384: return TTMP_384RegClassID;
1573   case OPW512: return TTMP_512RegClassID;
1574   }
1575 }
1576 
1577 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1578   using namespace AMDGPU::EncValues;
1579 
1580   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1581   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1582 
1583   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1584 }
1585 
1586 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1587                                           bool MandatoryLiteral,
1588                                           unsigned ImmWidth,
1589                                           AMDGPU::OperandSemantics Sema) const {
1590   using namespace AMDGPU::EncValues;
1591 
1592   assert(Val < 1024); // enum10
1593 
1594   bool IsAGPR = Val & 512;
1595   Val &= 511;
1596 
1597   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1598     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1599                                    : getVgprClassId(Width), Val - VGPR_MIN);
1600   }
1601   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1602                             Sema);
1603 }
1604 
1605 MCOperand
1606 AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, unsigned Val,
1607                                        bool MandatoryLiteral, unsigned ImmWidth,
1608                                        AMDGPU::OperandSemantics Sema) const {
1609   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1610   // decoded earlier.
1611   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1612   using namespace AMDGPU::EncValues;
1613 
1614   if (Val <= SGPR_MAX) {
1615     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1616     static_assert(SGPR_MIN == 0);
1617     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1618   }
1619 
1620   int TTmpIdx = getTTmpIdx(Val);
1621   if (TTmpIdx >= 0) {
1622     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1623   }
1624 
1625   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1626     return decodeIntImmed(Val);
1627 
1628   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1629     return decodeFPImmed(ImmWidth, Val, Sema);
1630 
1631   if (Val == LITERAL_CONST) {
1632     if (MandatoryLiteral)
1633       // Keep a sentinel value for deferred setting
1634       return MCOperand::createImm(LITERAL_CONST);
1635     else
1636       return decodeLiteralConstant(Sema == AMDGPU::OperandSemantics::FP64);
1637   }
1638 
1639   switch (Width) {
1640   case OPW32:
1641   case OPW16:
1642   case OPWV216:
1643     return decodeSpecialReg32(Val);
1644   case OPW64:
1645   case OPWV232:
1646     return decodeSpecialReg64(Val);
1647   default:
1648     llvm_unreachable("unexpected immediate type");
1649   }
1650 }
1651 
1652 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1653 // opposite of bit 0 of DstX.
1654 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1655                                                unsigned Val) const {
1656   int VDstXInd =
1657       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1658   assert(VDstXInd != -1);
1659   assert(Inst.getOperand(VDstXInd).isReg());
1660   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1661   Val |= ~XDstReg & 1;
1662   auto Width = llvm::AMDGPUDisassembler::OPW32;
1663   return createRegOperand(getVgprClassId(Width), Val);
1664 }
1665 
1666 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1667   using namespace AMDGPU;
1668 
1669   switch (Val) {
1670   // clang-format off
1671   case 102: return createRegOperand(FLAT_SCR_LO);
1672   case 103: return createRegOperand(FLAT_SCR_HI);
1673   case 104: return createRegOperand(XNACK_MASK_LO);
1674   case 105: return createRegOperand(XNACK_MASK_HI);
1675   case 106: return createRegOperand(VCC_LO);
1676   case 107: return createRegOperand(VCC_HI);
1677   case 108: return createRegOperand(TBA_LO);
1678   case 109: return createRegOperand(TBA_HI);
1679   case 110: return createRegOperand(TMA_LO);
1680   case 111: return createRegOperand(TMA_HI);
1681   case 124:
1682     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1683   case 125:
1684     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1685   case 126: return createRegOperand(EXEC_LO);
1686   case 127: return createRegOperand(EXEC_HI);
1687   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1688   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1689   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1690   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1691   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1692   case 251: return createRegOperand(SRC_VCCZ);
1693   case 252: return createRegOperand(SRC_EXECZ);
1694   case 253: return createRegOperand(SRC_SCC);
1695   case 254: return createRegOperand(LDS_DIRECT);
1696   default: break;
1697     // clang-format on
1698   }
1699   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1700 }
1701 
1702 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1703   using namespace AMDGPU;
1704 
1705   switch (Val) {
1706   case 102: return createRegOperand(FLAT_SCR);
1707   case 104: return createRegOperand(XNACK_MASK);
1708   case 106: return createRegOperand(VCC);
1709   case 108: return createRegOperand(TBA);
1710   case 110: return createRegOperand(TMA);
1711   case 124:
1712     if (isGFX11Plus())
1713       return createRegOperand(SGPR_NULL);
1714     break;
1715   case 125:
1716     if (!isGFX11Plus())
1717       return createRegOperand(SGPR_NULL);
1718     break;
1719   case 126: return createRegOperand(EXEC);
1720   case 235: return createRegOperand(SRC_SHARED_BASE);
1721   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1722   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1723   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1724   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1725   case 251: return createRegOperand(SRC_VCCZ);
1726   case 252: return createRegOperand(SRC_EXECZ);
1727   case 253: return createRegOperand(SRC_SCC);
1728   default: break;
1729   }
1730   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1731 }
1732 
1733 MCOperand
1734 AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, const unsigned Val,
1735                                   unsigned ImmWidth,
1736                                   AMDGPU::OperandSemantics Sema) const {
1737   using namespace AMDGPU::SDWA;
1738   using namespace AMDGPU::EncValues;
1739 
1740   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1741       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1742     // XXX: cast to int is needed to avoid stupid warning:
1743     // compare with unsigned is always true
1744     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1745         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1746       return createRegOperand(getVgprClassId(Width),
1747                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1748     }
1749     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1750         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1751                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1752       return createSRegOperand(getSgprClassId(Width),
1753                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1754     }
1755     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1756         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1757       return createSRegOperand(getTtmpClassId(Width),
1758                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1759     }
1760 
1761     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1762 
1763     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1764       return decodeIntImmed(SVal);
1765 
1766     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1767       return decodeFPImmed(ImmWidth, SVal, Sema);
1768 
1769     return decodeSpecialReg32(SVal);
1770   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1771     return createRegOperand(getVgprClassId(Width), Val);
1772   }
1773   llvm_unreachable("unsupported target");
1774 }
1775 
1776 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1777   return decodeSDWASrc(OPW16, Val, 16, AMDGPU::OperandSemantics::FP16);
1778 }
1779 
1780 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1781   return decodeSDWASrc(OPW32, Val, 32, AMDGPU::OperandSemantics::FP32);
1782 }
1783 
1784 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1785   using namespace AMDGPU::SDWA;
1786 
1787   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1788           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1789          "SDWAVopcDst should be present only on GFX9+");
1790 
1791   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1792 
1793   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1794     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1795 
1796     int TTmpIdx = getTTmpIdx(Val);
1797     if (TTmpIdx >= 0) {
1798       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1799       return createSRegOperand(TTmpClsId, TTmpIdx);
1800     } else if (Val > SGPR_MAX) {
1801       return IsWave64 ? decodeSpecialReg64(Val)
1802                       : decodeSpecialReg32(Val);
1803     } else {
1804       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1805     }
1806   } else {
1807     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1808   }
1809 }
1810 
1811 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1812   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1813              ? decodeSrcOp(OPW64, Val)
1814              : decodeSrcOp(OPW32, Val);
1815 }
1816 
1817 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1818   return decodeSrcOp(OPW32, Val);
1819 }
1820 
1821 MCOperand AMDGPUDisassembler::decodeDpp8FI(unsigned Val) const {
1822   if (Val != AMDGPU::DPP::DPP8_FI_0 && Val != AMDGPU::DPP::DPP8_FI_1)
1823     return MCOperand();
1824   return MCOperand::createImm(Val);
1825 }
1826 
1827 bool AMDGPUDisassembler::isVI() const {
1828   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1829 }
1830 
1831 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1832 
1833 bool AMDGPUDisassembler::isGFX90A() const {
1834   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1835 }
1836 
1837 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1838 
1839 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1840 
1841 bool AMDGPUDisassembler::isGFX10Plus() const {
1842   return AMDGPU::isGFX10Plus(STI);
1843 }
1844 
1845 bool AMDGPUDisassembler::isGFX11() const {
1846   return STI.hasFeature(AMDGPU::FeatureGFX11);
1847 }
1848 
1849 bool AMDGPUDisassembler::isGFX11Plus() const {
1850   return AMDGPU::isGFX11Plus(STI);
1851 }
1852 
1853 bool AMDGPUDisassembler::isGFX12Plus() const {
1854   return AMDGPU::isGFX12Plus(STI);
1855 }
1856 
1857 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1858   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1859 }
1860 
1861 bool AMDGPUDisassembler::hasKernargPreload() const {
1862   return AMDGPU::hasKernargPreload(STI);
1863 }
1864 
1865 //===----------------------------------------------------------------------===//
1866 // AMDGPU specific symbol handling
1867 //===----------------------------------------------------------------------===//
1868 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1869 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1870   do {                                                                         \
1871     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1872   } while (0)
1873 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1874   do {                                                                         \
1875     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1876              << GET_FIELD(MASK) << '\n';                                       \
1877   } while (0)
1878 
1879 // NOLINTNEXTLINE(readability-identifier-naming)
1880 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1881     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1882   using namespace amdhsa;
1883   StringRef Indent = "\t";
1884 
1885   // We cannot accurately backward compute #VGPRs used from
1886   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1887   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1888   // simply calculate the inverse of what the assembler does.
1889 
1890   uint32_t GranulatedWorkitemVGPRCount =
1891       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1892 
1893   uint32_t NextFreeVGPR =
1894       (GranulatedWorkitemVGPRCount + 1) *
1895       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1896 
1897   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1898 
1899   // We cannot backward compute values used to calculate
1900   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1901   // directives can't be computed:
1902   // .amdhsa_reserve_vcc
1903   // .amdhsa_reserve_flat_scratch
1904   // .amdhsa_reserve_xnack_mask
1905   // They take their respective default values if not specified in the assembly.
1906   //
1907   // GRANULATED_WAVEFRONT_SGPR_COUNT
1908   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1909   //
1910   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1911   // are set to 0. So while disassembling we consider that:
1912   //
1913   // GRANULATED_WAVEFRONT_SGPR_COUNT
1914   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1915   //
1916   // The disassembler cannot recover the original values of those 3 directives.
1917 
1918   uint32_t GranulatedWavefrontSGPRCount =
1919       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1920 
1921   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1922     return MCDisassembler::Fail;
1923 
1924   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1925                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1926 
1927   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1928   if (!hasArchitectedFlatScratch())
1929     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1930   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1931   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1932 
1933   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1934     return MCDisassembler::Fail;
1935 
1936   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1937                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1938   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1939                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1940   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1941                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1942   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1943                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1944 
1945   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1946     return MCDisassembler::Fail;
1947 
1948   if (!isGFX12Plus())
1949     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1950                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1951 
1952   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1953     return MCDisassembler::Fail;
1954 
1955   if (!isGFX12Plus())
1956     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1957                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1958 
1959   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1960     return MCDisassembler::Fail;
1961 
1962   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1963     return MCDisassembler::Fail;
1964 
1965   if (isGFX9Plus())
1966     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1967 
1968   if (!isGFX9Plus())
1969     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1970       return MCDisassembler::Fail;
1971   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1972     return MCDisassembler::Fail;
1973   if (!isGFX10Plus())
1974     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1975       return MCDisassembler::Fail;
1976 
1977   if (isGFX10Plus()) {
1978     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1979                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1980     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1981     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1982   }
1983 
1984   if (isGFX12Plus())
1985     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1986                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1987 
1988   return MCDisassembler::Success;
1989 }
1990 
1991 // NOLINTNEXTLINE(readability-identifier-naming)
1992 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1993     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1994   using namespace amdhsa;
1995   StringRef Indent = "\t";
1996   if (hasArchitectedFlatScratch())
1997     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1998                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1999   else
2000     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
2001                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
2002   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
2003                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
2004   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
2005                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
2006   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
2007                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
2008   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
2009                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
2010   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
2011                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
2012 
2013   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
2014     return MCDisassembler::Fail;
2015 
2016   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
2017     return MCDisassembler::Fail;
2018 
2019   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
2020     return MCDisassembler::Fail;
2021 
2022   PRINT_DIRECTIVE(
2023       ".amdhsa_exception_fp_ieee_invalid_op",
2024       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
2025   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
2026                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
2027   PRINT_DIRECTIVE(
2028       ".amdhsa_exception_fp_ieee_div_zero",
2029       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
2030   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
2031                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
2032   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
2033                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
2034   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
2035                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
2036   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
2037                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
2038 
2039   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
2040     return MCDisassembler::Fail;
2041 
2042   return MCDisassembler::Success;
2043 }
2044 
2045 // NOLINTNEXTLINE(readability-identifier-naming)
2046 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
2047     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2048   using namespace amdhsa;
2049   StringRef Indent = "\t";
2050   if (isGFX90A()) {
2051     KdStream << Indent << ".amdhsa_accum_offset "
2052              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
2053              << '\n';
2054     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
2055       return MCDisassembler::Fail;
2056     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
2057     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
2058       return MCDisassembler::Fail;
2059   } else if (isGFX10Plus()) {
2060     // Bits [0-3].
2061     if (!isGFX12Plus()) {
2062       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2063         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2064                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2065       } else {
2066         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2067             "SHARED_VGPR_COUNT",
2068             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2069       }
2070     } else {
2071       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0)
2072         return MCDisassembler::Fail;
2073     }
2074 
2075     // Bits [4-11].
2076     if (isGFX11()) {
2077       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2078                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2079       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2080                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2081       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2082                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2083     } else if (isGFX12Plus()) {
2084       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2085           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2086     } else {
2087       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1)
2088         return MCDisassembler::Fail;
2089     }
2090 
2091     // Bits [12].
2092     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2)
2093       return MCDisassembler::Fail;
2094 
2095     // Bits [13].
2096     if (isGFX12Plus()) {
2097       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2098                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2099     } else {
2100       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3)
2101         return MCDisassembler::Fail;
2102     }
2103 
2104     // Bits [14-30].
2105     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4)
2106       return MCDisassembler::Fail;
2107 
2108     // Bits [31].
2109     if (isGFX11Plus()) {
2110       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2111                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2112     } else {
2113       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5)
2114         return MCDisassembler::Fail;
2115     }
2116   } else if (FourByteBuffer) {
2117     return MCDisassembler::Fail;
2118   }
2119   return MCDisassembler::Success;
2120 }
2121 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2122 #undef PRINT_DIRECTIVE
2123 #undef GET_FIELD
2124 
2125 MCDisassembler::DecodeStatus
2126 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2127     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2128     raw_string_ostream &KdStream) const {
2129 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2130   do {                                                                         \
2131     KdStream << Indent << DIRECTIVE " "                                        \
2132              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2133   } while (0)
2134 
2135   uint16_t TwoByteBuffer = 0;
2136   uint32_t FourByteBuffer = 0;
2137 
2138   StringRef ReservedBytes;
2139   StringRef Indent = "\t";
2140 
2141   assert(Bytes.size() == 64);
2142   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2143 
2144   switch (Cursor.tell()) {
2145   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2146     FourByteBuffer = DE.getU32(Cursor);
2147     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2148              << '\n';
2149     return MCDisassembler::Success;
2150 
2151   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2152     FourByteBuffer = DE.getU32(Cursor);
2153     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2154              << FourByteBuffer << '\n';
2155     return MCDisassembler::Success;
2156 
2157   case amdhsa::KERNARG_SIZE_OFFSET:
2158     FourByteBuffer = DE.getU32(Cursor);
2159     KdStream << Indent << ".amdhsa_kernarg_size "
2160              << FourByteBuffer << '\n';
2161     return MCDisassembler::Success;
2162 
2163   case amdhsa::RESERVED0_OFFSET:
2164     // 4 reserved bytes, must be 0.
2165     ReservedBytes = DE.getBytes(Cursor, 4);
2166     for (int I = 0; I < 4; ++I) {
2167       if (ReservedBytes[I] != 0) {
2168         return MCDisassembler::Fail;
2169       }
2170     }
2171     return MCDisassembler::Success;
2172 
2173   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2174     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2175     // So far no directive controls this for Code Object V3, so simply skip for
2176     // disassembly.
2177     DE.skip(Cursor, 8);
2178     return MCDisassembler::Success;
2179 
2180   case amdhsa::RESERVED1_OFFSET:
2181     // 20 reserved bytes, must be 0.
2182     ReservedBytes = DE.getBytes(Cursor, 20);
2183     for (int I = 0; I < 20; ++I) {
2184       if (ReservedBytes[I] != 0) {
2185         return MCDisassembler::Fail;
2186       }
2187     }
2188     return MCDisassembler::Success;
2189 
2190   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2191     FourByteBuffer = DE.getU32(Cursor);
2192     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2193 
2194   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2195     FourByteBuffer = DE.getU32(Cursor);
2196     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2197 
2198   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2199     FourByteBuffer = DE.getU32(Cursor);
2200     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2201 
2202   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2203     using namespace amdhsa;
2204     TwoByteBuffer = DE.getU16(Cursor);
2205 
2206     if (!hasArchitectedFlatScratch())
2207       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2208                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2209     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2210                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2211     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2212                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2213     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2214                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2215     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2216                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2217     if (!hasArchitectedFlatScratch())
2218       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2219                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2220     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2221                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2222 
2223     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2224       return MCDisassembler::Fail;
2225 
2226     // Reserved for GFX9
2227     if (isGFX9() &&
2228         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2229       return MCDisassembler::Fail;
2230     } else if (isGFX10Plus()) {
2231       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2232                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2233     }
2234 
2235     if (CodeObjectVersion >= AMDGPU::AMDHSA_COV5)
2236       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2237                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2238 
2239     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2240       return MCDisassembler::Fail;
2241 
2242     return MCDisassembler::Success;
2243 
2244   case amdhsa::KERNARG_PRELOAD_OFFSET:
2245     using namespace amdhsa;
2246     TwoByteBuffer = DE.getU16(Cursor);
2247     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2248       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2249                       KERNARG_PRELOAD_SPEC_LENGTH);
2250     }
2251 
2252     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2253       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2254                       KERNARG_PRELOAD_SPEC_OFFSET);
2255     }
2256     return MCDisassembler::Success;
2257 
2258   case amdhsa::RESERVED3_OFFSET:
2259     // 4 bytes from here are reserved, must be 0.
2260     ReservedBytes = DE.getBytes(Cursor, 4);
2261     for (int I = 0; I < 4; ++I) {
2262       if (ReservedBytes[I] != 0)
2263         return MCDisassembler::Fail;
2264     }
2265     return MCDisassembler::Success;
2266 
2267   default:
2268     llvm_unreachable("Unhandled index. Case statements cover everything.");
2269     return MCDisassembler::Fail;
2270   }
2271 #undef PRINT_DIRECTIVE
2272 }
2273 
2274 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2275     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2276   // CP microcode requires the kernel descriptor to be 64 aligned.
2277   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2278     return MCDisassembler::Fail;
2279 
2280   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2281   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2282   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2283   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2284   // when required.
2285   if (isGFX10Plus()) {
2286     uint16_t KernelCodeProperties =
2287         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2288                                 llvm::endianness::little);
2289     EnableWavefrontSize32 =
2290         AMDHSA_BITS_GET(KernelCodeProperties,
2291                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2292   }
2293 
2294   std::string Kd;
2295   raw_string_ostream KdStream(Kd);
2296   KdStream << ".amdhsa_kernel " << KdName << '\n';
2297 
2298   DataExtractor::Cursor C(0);
2299   while (C && C.tell() < Bytes.size()) {
2300     MCDisassembler::DecodeStatus Status =
2301         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2302 
2303     cantFail(C.takeError());
2304 
2305     if (Status == MCDisassembler::Fail)
2306       return MCDisassembler::Fail;
2307   }
2308   KdStream << ".end_amdhsa_kernel\n";
2309   outs() << KdStream.str();
2310   return MCDisassembler::Success;
2311 }
2312 
2313 std::optional<MCDisassembler::DecodeStatus>
2314 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2315                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2316                                   raw_ostream &CStream) const {
2317   // Right now only kernel descriptor needs to be handled.
2318   // We ignore all other symbols for target specific handling.
2319   // TODO:
2320   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2321   // Object V2 and V3 when symbols are marked protected.
2322 
2323   // amd_kernel_code_t for Code Object V2.
2324   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2325     Size = 256;
2326     return MCDisassembler::Fail;
2327   }
2328 
2329   // Code Object V3 kernel descriptors.
2330   StringRef Name = Symbol.Name;
2331   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2332     Size = 64; // Size = 64 regardless of success or failure.
2333     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2334   }
2335   return std::nullopt;
2336 }
2337 
2338 //===----------------------------------------------------------------------===//
2339 // AMDGPUSymbolizer
2340 //===----------------------------------------------------------------------===//
2341 
2342 // Try to find symbol name for specified label
2343 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2344     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2345     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2346     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2347 
2348   if (!IsBranch) {
2349     return false;
2350   }
2351 
2352   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2353   if (!Symbols)
2354     return false;
2355 
2356   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2357     return Val.Addr == static_cast<uint64_t>(Value) &&
2358            Val.Type == ELF::STT_NOTYPE;
2359   });
2360   if (Result != Symbols->end()) {
2361     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2362     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2363     Inst.addOperand(MCOperand::createExpr(Add));
2364     return true;
2365   }
2366   // Add to list of referenced addresses, so caller can synthesize a label.
2367   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2368   return false;
2369 }
2370 
2371 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2372                                                        int64_t Value,
2373                                                        uint64_t Address) {
2374   llvm_unreachable("unimplemented");
2375 }
2376 
2377 //===----------------------------------------------------------------------===//
2378 // Initialization
2379 //===----------------------------------------------------------------------===//
2380 
2381 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2382                               LLVMOpInfoCallback /*GetOpInfo*/,
2383                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2384                               void *DisInfo,
2385                               MCContext *Ctx,
2386                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2387   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2388 }
2389 
2390 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2391                                                 const MCSubtargetInfo &STI,
2392                                                 MCContext &Ctx) {
2393   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2394 }
2395 
2396 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2397   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2398                                          createAMDGPUDisassembler);
2399   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2400                                        createAMDGPUSymbolizer);
2401 }
2402