xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision bc82cfb38d83f1afeb2c290aa472c2e2e88919cb)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
95     Offset = SignExtend64<24>(Imm);
96   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else { // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
111                                        uint64_t Addr,
112                                        const MCDisassembler *Decoder) {
113   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
114   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
115 }
116 
117 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
118   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
119                                         uint64_t /*Addr*/,                     \
120                                         const MCDisassembler *Decoder) {       \
121     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
122     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
123   }
124 
125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
126 // number of register. Used by VGPR only and AGPR only operands.
127 #define DECODE_OPERAND_REG_8(RegClass)                                         \
128   static DecodeStatus Decode##RegClass##RegisterClass(                         \
129       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
130       const MCDisassembler *Decoder) {                                         \
131     assert(Imm < (1 << 8) && "8-bit encoding");                                \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(                                                         \
134         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
135   }
136 
137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
138                      ImmWidth)                                                 \
139   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
140                            const MCDisassembler *Decoder) {                    \
141     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
142     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
143     return addOperand(Inst,                                                    \
144                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
145                                         MandatoryLiteral, ImmWidth));          \
146   }
147 
148 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
149 // get register class. Used by SGPR only operands.
150 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
151   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
152 
153 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
154 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
155 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
156 // Used by AV_ register classes (AGPR or VGPR only register operands).
157 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
158   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
159                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
160 
161 // Decoder for Src(9-bit encoding) registers only.
162 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
163   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
164 
165 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
166 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
167 // only.
168 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
169   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
170 
171 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
172 // Imm{9} is acc, registers only.
173 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
174   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
175 
176 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
177 // register from RegClass or immediate. Registers that don't belong to RegClass
178 // will be decoded and InstPrinter will report warning. Immediate will be
179 // decoded into constant of size ImmWidth, should match width of immediate used
180 // by OperandType (important for floating point types).
181 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
182   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
183                false, ImmWidth)
184 
185 #define DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(Name, OpWidth, ImmWidth)         \
186   DECODE_SrcOp(decodeOperand_##Name, 9, OpWidth, Imm, false, ImmWidth)
187 
188 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
189 // and decode using 'enum10' from decodeSrcOp.
190 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
191   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
192                Imm | 512, false, ImmWidth)
193 
194 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
195   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
196                OpWidth, Imm, true, ImmWidth)
197 
198 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
199 // when RegisterClass is used as an operand. Most often used for destination
200 // operands.
201 
202 DECODE_OPERAND_REG_8(VGPR_32)
203 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
204 DECODE_OPERAND_REG_8(VReg_64)
205 DECODE_OPERAND_REG_8(VReg_96)
206 DECODE_OPERAND_REG_8(VReg_128)
207 DECODE_OPERAND_REG_8(VReg_256)
208 DECODE_OPERAND_REG_8(VReg_288)
209 DECODE_OPERAND_REG_8(VReg_352)
210 DECODE_OPERAND_REG_8(VReg_384)
211 DECODE_OPERAND_REG_8(VReg_512)
212 DECODE_OPERAND_REG_8(VReg_1024)
213 
214 DECODE_OPERAND_REG_7(SReg_32, OPW32)
215 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
216 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
217 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
218 DECODE_OPERAND_REG_7(SReg_64, OPW64)
219 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
220 DECODE_OPERAND_REG_7(SReg_96, OPW96)
221 DECODE_OPERAND_REG_7(SReg_128, OPW128)
222 DECODE_OPERAND_REG_7(SReg_256, OPW256)
223 DECODE_OPERAND_REG_7(SReg_512, OPW512)
224 
225 DECODE_OPERAND_REG_8(AGPR_32)
226 DECODE_OPERAND_REG_8(AReg_64)
227 DECODE_OPERAND_REG_8(AReg_128)
228 DECODE_OPERAND_REG_8(AReg_256)
229 DECODE_OPERAND_REG_8(AReg_512)
230 DECODE_OPERAND_REG_8(AReg_1024)
231 
232 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
233 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
234 
235 // Decoders for register only source RegisterOperands that use use 9-bit Src
236 // encoding: 'decodeOperand_<RegClass>'.
237 
238 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
239 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
240 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
241 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
242 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
243 
244 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
245 
246 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
247 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
248 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
249 
250 // Decoders for register or immediate RegisterOperands that use 9-bit Src
251 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
252 
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
254 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
255 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
256 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
257 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
258 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
259 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
260 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
261 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
262 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
263 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
264 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
265 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
266 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
267 
268 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2I16, OPW32, 32)
269 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2F16, OPW32, 16)
270 
271 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
272 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
273 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
274 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
275 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
276 
277 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
278 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
279 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
280 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
281 
282 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
283                                                uint64_t /*Addr*/,
284                                                const MCDisassembler *Decoder) {
285   assert(isUInt<10>(Imm) && "10-bit encoding expected");
286   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
287 
288   bool IsHi = Imm & (1 << 9);
289   unsigned RegIdx = Imm & 0xff;
290   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
291   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
292 }
293 
294 static DecodeStatus
295 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
296                                  const MCDisassembler *Decoder) {
297   assert(isUInt<8>(Imm) && "8-bit encoding expected");
298 
299   bool IsHi = Imm & (1 << 7);
300   unsigned RegIdx = Imm & 0x7f;
301   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
302   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
303 }
304 
305 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
306                                                 uint64_t /*Addr*/,
307                                                 const MCDisassembler *Decoder) {
308   assert(isUInt<9>(Imm) && "9-bit encoding expected");
309 
310   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
311   bool IsVGPR = Imm & (1 << 8);
312   if (IsVGPR) {
313     bool IsHi = Imm & (1 << 7);
314     unsigned RegIdx = Imm & 0x7f;
315     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
316   }
317   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
318                                                    Imm & 0xFF, false, 16));
319 }
320 
321 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
322                                           uint64_t /*Addr*/,
323                                           const MCDisassembler *Decoder) {
324   assert(isUInt<10>(Imm) && "10-bit encoding expected");
325 
326   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
327   bool IsVGPR = Imm & (1 << 8);
328   if (IsVGPR) {
329     bool IsHi = Imm & (1 << 9);
330     unsigned RegIdx = Imm & 0xff;
331     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
332   }
333   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
334                                                    Imm & 0xFF, false, 16));
335 }
336 
337 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
338                                          uint64_t Addr,
339                                          const MCDisassembler *Decoder) {
340   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
341   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
342 }
343 
344 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
345                                           uint64_t Addr, const void *Decoder) {
346   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
347   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
348 }
349 
350 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
351                           const MCRegisterInfo *MRI) {
352   if (OpIdx < 0)
353     return false;
354 
355   const MCOperand &Op = Inst.getOperand(OpIdx);
356   if (!Op.isReg())
357     return false;
358 
359   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
360   auto Reg = Sub ? Sub : Op.getReg();
361   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
362 }
363 
364 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
365                                              AMDGPUDisassembler::OpWidthTy Opw,
366                                              const MCDisassembler *Decoder) {
367   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
368   if (!DAsm->isGFX90A()) {
369     Imm &= 511;
370   } else {
371     // If atomic has both vdata and vdst their register classes are tied.
372     // The bit is decoded along with the vdst, first operand. We need to
373     // change register class to AGPR if vdst was AGPR.
374     // If a DS instruction has both data0 and data1 their register classes
375     // are also tied.
376     unsigned Opc = Inst.getOpcode();
377     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
378     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
379                                                         : AMDGPU::OpName::vdata;
380     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
381     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
382     if ((int)Inst.getNumOperands() == DataIdx) {
383       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
384       if (IsAGPROperand(Inst, DstIdx, MRI))
385         Imm |= 512;
386     }
387 
388     if (TSFlags & SIInstrFlags::DS) {
389       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
390       if ((int)Inst.getNumOperands() == Data2Idx &&
391           IsAGPROperand(Inst, DataIdx, MRI))
392         Imm |= 512;
393     }
394   }
395   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
396 }
397 
398 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
399                                            uint64_t Addr,
400                                            const MCDisassembler *Decoder) {
401   assert(Imm < (1 << 9) && "9-bit encoding");
402   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
403   return addOperand(
404       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
405 }
406 
407 static DecodeStatus
408 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
409                              const MCDisassembler *Decoder) {
410   return decodeOperand_AVLdSt_Any(Inst, Imm,
411                                   AMDGPUDisassembler::OPW32, Decoder);
412 }
413 
414 static DecodeStatus
415 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
416                              const MCDisassembler *Decoder) {
417   return decodeOperand_AVLdSt_Any(Inst, Imm,
418                                   AMDGPUDisassembler::OPW64, Decoder);
419 }
420 
421 static DecodeStatus
422 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
423                              const MCDisassembler *Decoder) {
424   return decodeOperand_AVLdSt_Any(Inst, Imm,
425                                   AMDGPUDisassembler::OPW96, Decoder);
426 }
427 
428 static DecodeStatus
429 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
430                               const MCDisassembler *Decoder) {
431   return decodeOperand_AVLdSt_Any(Inst, Imm,
432                                   AMDGPUDisassembler::OPW128, Decoder);
433 }
434 
435 static DecodeStatus
436 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
437                               const MCDisassembler *Decoder) {
438   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
439                                   Decoder);
440 }
441 
442 #define DECODE_SDWA(DecName) \
443 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
444 
445 DECODE_SDWA(Src32)
446 DECODE_SDWA(Src16)
447 DECODE_SDWA(VopcDst)
448 
449 #include "AMDGPUGenDisassemblerTables.inc"
450 
451 //===----------------------------------------------------------------------===//
452 //
453 //===----------------------------------------------------------------------===//
454 
455 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
456   assert(Bytes.size() >= sizeof(T));
457   const auto Res =
458       support::endian::read<T, llvm::endianness::little>(Bytes.data());
459   Bytes = Bytes.slice(sizeof(T));
460   return Res;
461 }
462 
463 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
464   assert(Bytes.size() >= 12);
465   uint64_t Lo =
466       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
467   Bytes = Bytes.slice(8);
468   uint64_t Hi =
469       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
470   Bytes = Bytes.slice(4);
471   return DecoderUInt128(Lo, Hi);
472 }
473 
474 // The disassembler is greedy, so we need to check FI operand value to
475 // not parse a dpp if the correct literal is not set. For dpp16 the
476 // autogenerated decoder checks the dpp literal
477 static bool isValidDPP8(const MCInst &MI) {
478   using namespace llvm::AMDGPU::DPP;
479   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
480   assert(FiIdx != -1);
481   if ((unsigned)FiIdx >= MI.getNumOperands())
482     return false;
483   unsigned Fi = MI.getOperand(FiIdx).getImm();
484   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
485 }
486 
487 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
488                                                 ArrayRef<uint8_t> Bytes_,
489                                                 uint64_t Address,
490                                                 raw_ostream &CS) const {
491   bool IsSDWA = false;
492 
493   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
494   Bytes = Bytes_.slice(0, MaxInstBytesNum);
495 
496   DecodeStatus Res = MCDisassembler::Fail;
497   do {
498     // ToDo: better to switch encoding length using some bit predicate
499     // but it is unknown yet, so try all we can
500 
501     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
502     // encodings
503     if (isGFX11Plus() && Bytes.size() >= 12 ) {
504       DecoderUInt128 DecW = eat12Bytes(Bytes);
505       Res =
506           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
507                         MI, DecW, Address, CS);
508       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
509         break;
510       MI = MCInst(); // clear
511       Res =
512           tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
513                         MI, DecW, Address, CS);
514       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
515         break;
516       MI = MCInst(); // clear
517 
518       const auto convertVOPDPP = [&]() {
519         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) {
520           convertVOP3PDPPInst(MI);
521         } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) {
522           convertVOPCDPPInst(MI); // Special VOP3 case
523         } else {
524           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
525           convertVOP3DPPInst(MI); // Regular VOP3 case
526         }
527       };
528       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
529                           MI, DecW, Address, CS);
530       if (Res) {
531         convertVOPDPP();
532         break;
533       }
534       Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
535                           MI, DecW, Address, CS);
536       if (Res) {
537         convertVOPDPP();
538         break;
539       }
540       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
541       if (Res)
542         break;
543 
544       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
545       if (Res)
546         break;
547 
548       Res = tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS);
549       if (Res)
550         break;
551     }
552     // Reinitialize Bytes
553     Bytes = Bytes_.slice(0, MaxInstBytesNum);
554 
555     if (Bytes.size() >= 8) {
556       const uint64_t QW = eatBytes<uint64_t>(Bytes);
557 
558       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
559         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
560         if (Res) {
561           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
562               == -1)
563             break;
564           if (convertDPP8Inst(MI) == MCDisassembler::Success)
565             break;
566           MI = MCInst(); // clear
567         }
568       }
569 
570       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
571       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
572         break;
573       MI = MCInst(); // clear
574 
575       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
576                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
577       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
578         break;
579       MI = MCInst(); // clear
580 
581       Res = tryDecodeInst(DecoderTableDPP8GFX1264,
582                           DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
583       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
584         break;
585       MI = MCInst(); // clear
586 
587       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
588       if (Res) break;
589 
590       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
591                           MI, QW, Address, CS);
592       if (Res) {
593         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
594           convertVOPCDPPInst(MI);
595         break;
596       }
597 
598       Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
599                           MI, QW, Address, CS);
600       if (Res) {
601         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
602           convertVOPCDPPInst(MI);
603         break;
604       }
605 
606       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
607       if (Res) { IsSDWA = true;  break; }
608 
609       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
610       if (Res) { IsSDWA = true;  break; }
611 
612       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
613       if (Res) { IsSDWA = true;  break; }
614 
615       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
616         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
617         if (Res)
618           break;
619       }
620 
621       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
622       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
623       // table first so we print the correct name.
624       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
625         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
626         if (Res)
627           break;
628       }
629     }
630 
631     // Reinitialize Bytes as DPP64 could have eaten too much
632     Bytes = Bytes_.slice(0, MaxInstBytesNum);
633 
634     // Try decode 32-bit instruction
635     if (Bytes.size() < 4) break;
636     const uint32_t DW = eatBytes<uint32_t>(Bytes);
637     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
638     if (Res) break;
639 
640     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
641     if (Res) break;
642 
643     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
644     if (Res) break;
645 
646     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
647       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
648       if (Res)
649         break;
650     }
651 
652     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
653       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
654       if (Res) break;
655     }
656 
657     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
658     if (Res) break;
659 
660     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
661                         Address, CS);
662     if (Res) break;
663 
664     Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
665                         Address, CS);
666     if (Res)
667       break;
668 
669     if (Bytes.size() < 4) break;
670     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
671 
672     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
673       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
674       if (Res)
675         break;
676     }
677 
678     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
679       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
680       if (Res)
681         break;
682     }
683 
684     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
685     if (Res) break;
686 
687     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
688     if (Res) break;
689 
690     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
691     if (Res) break;
692 
693     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
694     if (Res) break;
695 
696     Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
697                         Address, CS);
698     if (Res)
699       break;
700 
701     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
702                         Address, CS);
703     if (Res)
704       break;
705 
706     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
707   } while (false);
708 
709   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
710     // Insert dummy unused src2_modifiers.
711     insertNamedMCOperand(MI, MCOperand::createImm(0),
712                          AMDGPU::OpName::src2_modifiers);
713   }
714 
715   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
716       !AMDGPU::hasGDS(STI)) {
717     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
718   }
719 
720   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
721           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
722     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
723                                              AMDGPU::OpName::cpol);
724     if (CPolPos != -1) {
725       unsigned CPol =
726           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
727               AMDGPU::CPol::GLC : 0;
728       if (MI.getNumOperands() <= (unsigned)CPolPos) {
729         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
730                              AMDGPU::OpName::cpol);
731       } else if (CPol) {
732         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
733       }
734     }
735   }
736 
737   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
738               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
739              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
740     // GFX90A lost TFE, its place is occupied by ACC.
741     int TFEOpIdx =
742         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
743     if (TFEOpIdx != -1) {
744       auto TFEIter = MI.begin();
745       std::advance(TFEIter, TFEOpIdx);
746       MI.insert(TFEIter, MCOperand::createImm(0));
747     }
748   }
749 
750   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
751               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
752     int SWZOpIdx =
753         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
754     if (SWZOpIdx != -1) {
755       auto SWZIter = MI.begin();
756       std::advance(SWZIter, SWZOpIdx);
757       MI.insert(SWZIter, MCOperand::createImm(0));
758     }
759   }
760 
761   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
762     int VAddr0Idx =
763         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
764     int RsrcIdx =
765         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
766     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
767     if (VAddr0Idx >= 0 && NSAArgs > 0) {
768       unsigned NSAWords = (NSAArgs + 3) / 4;
769       if (Bytes.size() < 4 * NSAWords) {
770         Res = MCDisassembler::Fail;
771       } else {
772         for (unsigned i = 0; i < NSAArgs; ++i) {
773           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
774           auto VAddrRCID =
775               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
776           MI.insert(MI.begin() + VAddrIdx,
777                     createRegOperand(VAddrRCID, Bytes[i]));
778         }
779         Bytes = Bytes.slice(4 * NSAWords);
780       }
781     }
782 
783     if (Res)
784       Res = convertMIMGInst(MI);
785   }
786 
787   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
788               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
789     Res = convertMIMGInst(MI);
790 
791   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
792     Res = convertEXPInst(MI);
793 
794   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
795     Res = convertVINTERPInst(MI);
796 
797   if (Res && IsSDWA)
798     Res = convertSDWAInst(MI);
799 
800   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
801                                               AMDGPU::OpName::vdst_in);
802   if (VDstIn_Idx != -1) {
803     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
804                            MCOI::OperandConstraint::TIED_TO);
805     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
806          !MI.getOperand(VDstIn_Idx).isReg() ||
807          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
808       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
809         MI.erase(&MI.getOperand(VDstIn_Idx));
810       insertNamedMCOperand(MI,
811         MCOperand::createReg(MI.getOperand(Tied).getReg()),
812         AMDGPU::OpName::vdst_in);
813     }
814   }
815 
816   int ImmLitIdx =
817       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
818   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
819   if (Res && ImmLitIdx != -1 && !IsSOPK)
820     Res = convertFMAanyK(MI, ImmLitIdx);
821 
822   // if the opcode was not recognized we'll assume a Size of 4 bytes
823   // (unless there are fewer bytes left)
824   Size = Res ? (MaxInstBytesNum - Bytes.size())
825              : std::min((size_t)4, Bytes_.size());
826   return Res;
827 }
828 
829 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
830   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
831     // The MCInst still has these fields even though they are no longer encoded
832     // in the GFX11 instruction.
833     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
834     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
835   }
836   return MCDisassembler::Success;
837 }
838 
839 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
840   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
841       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
842       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
843       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
844       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
845       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
846       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
847       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
848     // The MCInst has this field that is not directly encoded in the
849     // instruction.
850     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
851   }
852   return MCDisassembler::Success;
853 }
854 
855 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
856   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
857       STI.hasFeature(AMDGPU::FeatureGFX10)) {
858     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
859       // VOPC - insert clamp
860       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
861   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
862     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
863     if (SDst != -1) {
864       // VOPC - insert VCC register as sdst
865       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
866                            AMDGPU::OpName::sdst);
867     } else {
868       // VOP1/2 - insert omod if present in instruction
869       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
870     }
871   }
872   return MCDisassembler::Success;
873 }
874 
875 struct VOPModifiers {
876   unsigned OpSel = 0;
877   unsigned OpSelHi = 0;
878   unsigned NegLo = 0;
879   unsigned NegHi = 0;
880 };
881 
882 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
883 // Note that these values do not affect disassembler output,
884 // so this is only necessary for consistency with src_modifiers.
885 static VOPModifiers collectVOPModifiers(const MCInst &MI,
886                                         bool IsVOP3P = false) {
887   VOPModifiers Modifiers;
888   unsigned Opc = MI.getOpcode();
889   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
890                         AMDGPU::OpName::src1_modifiers,
891                         AMDGPU::OpName::src2_modifiers};
892   for (int J = 0; J < 3; ++J) {
893     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
894     if (OpIdx == -1)
895       continue;
896 
897     unsigned Val = MI.getOperand(OpIdx).getImm();
898 
899     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
900     if (IsVOP3P) {
901       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
902       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
903       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
904     } else if (J == 0) {
905       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
906     }
907   }
908 
909   return Modifiers;
910 }
911 
912 // MAC opcodes have special old and src2 operands.
913 // src2 is tied to dst, while old is not tied (but assumed to be).
914 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
915   constexpr int DST_IDX = 0;
916   auto Opcode = MI.getOpcode();
917   const auto &Desc = MCII->get(Opcode);
918   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
919 
920   if (OldIdx != -1 && Desc.getOperandConstraint(
921                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
922     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
923     assert(Desc.getOperandConstraint(
924                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
925                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
926     (void)DST_IDX;
927     return true;
928   }
929 
930   return false;
931 }
932 
933 // Create dummy old operand and insert dummy unused src2_modifiers
934 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
935   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
936   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
937   insertNamedMCOperand(MI, MCOperand::createImm(0),
938                        AMDGPU::OpName::src2_modifiers);
939 }
940 
941 // We must check FI == literal to reject not genuine dpp8 insts, and we must
942 // first add optional MI operands to check FI
943 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
944   unsigned Opc = MI.getOpcode();
945   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
946     convertVOP3PDPPInst(MI);
947   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
948              AMDGPU::isVOPC64DPP(Opc)) {
949     convertVOPCDPPInst(MI);
950   } else {
951     if (isMacDPP(MI))
952       convertMacDPPInst(MI);
953 
954     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
955     if (MI.getNumOperands() < DescNumOps &&
956         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
957       auto Mods = collectVOPModifiers(MI);
958       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
959                            AMDGPU::OpName::op_sel);
960     } else {
961       // Insert dummy unused src modifiers.
962       if (MI.getNumOperands() < DescNumOps &&
963           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
964         insertNamedMCOperand(MI, MCOperand::createImm(0),
965                              AMDGPU::OpName::src0_modifiers);
966 
967       if (MI.getNumOperands() < DescNumOps &&
968           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
969         insertNamedMCOperand(MI, MCOperand::createImm(0),
970                              AMDGPU::OpName::src1_modifiers);
971     }
972   }
973   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
974 }
975 
976 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
977   if (isMacDPP(MI))
978     convertMacDPPInst(MI);
979 
980   unsigned Opc = MI.getOpcode();
981   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
982   if (MI.getNumOperands() < DescNumOps &&
983       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
984     auto Mods = collectVOPModifiers(MI);
985     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
986                          AMDGPU::OpName::op_sel);
987   }
988   return MCDisassembler::Success;
989 }
990 
991 // Note that before gfx10, the MIMG encoding provided no information about
992 // VADDR size. Consequently, decoded instructions always show address as if it
993 // has 1 dword, which could be not really so.
994 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
995   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
996 
997   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
998                                            AMDGPU::OpName::vdst);
999 
1000   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1001                                             AMDGPU::OpName::vdata);
1002   int VAddr0Idx =
1003       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
1004   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
1005                                                 : AMDGPU::OpName::rsrc;
1006   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
1007   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1008                                             AMDGPU::OpName::dmask);
1009 
1010   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1011                                             AMDGPU::OpName::tfe);
1012   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1013                                             AMDGPU::OpName::d16);
1014 
1015   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
1016   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1017       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
1018 
1019   assert(VDataIdx != -1);
1020   if (BaseOpcode->BVH) {
1021     // Add A16 operand for intersect_ray instructions
1022     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
1023     return MCDisassembler::Success;
1024   }
1025 
1026   bool IsAtomic = (VDstIdx != -1);
1027   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1028   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1029   bool IsNSA = false;
1030   bool IsPartialNSA = false;
1031   unsigned AddrSize = Info->VAddrDwords;
1032 
1033   if (isGFX10Plus()) {
1034     unsigned DimIdx =
1035         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1036     int A16Idx =
1037         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1038     const AMDGPU::MIMGDimInfo *Dim =
1039         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1040     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1041 
1042     AddrSize =
1043         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1044 
1045     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1046     // VIMAGE insts other than BVH never use vaddr4.
1047     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1048             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1049             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1050     if (!IsNSA) {
1051       if (!IsVSample && AddrSize > 12)
1052         AddrSize = 16;
1053     } else {
1054       if (AddrSize > Info->VAddrDwords) {
1055         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1056           // The NSA encoding does not contain enough operands for the
1057           // combination of base opcode / dimension. Should this be an error?
1058           return MCDisassembler::Success;
1059         }
1060         IsPartialNSA = true;
1061       }
1062     }
1063   }
1064 
1065   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1066   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1067 
1068   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1069   if (D16 && AMDGPU::hasPackedD16(STI)) {
1070     DstSize = (DstSize + 1) / 2;
1071   }
1072 
1073   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1074     DstSize += 1;
1075 
1076   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1077     return MCDisassembler::Success;
1078 
1079   int NewOpcode =
1080       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1081   if (NewOpcode == -1)
1082     return MCDisassembler::Success;
1083 
1084   // Widen the register to the correct number of enabled channels.
1085   unsigned NewVdata = AMDGPU::NoRegister;
1086   if (DstSize != Info->VDataDwords) {
1087     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1088 
1089     // Get first subregister of VData
1090     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1091     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1092     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1093 
1094     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1095                                        &MRI.getRegClass(DataRCID));
1096     if (NewVdata == AMDGPU::NoRegister) {
1097       // It's possible to encode this such that the low register + enabled
1098       // components exceeds the register count.
1099       return MCDisassembler::Success;
1100     }
1101   }
1102 
1103   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1104   // If using partial NSA on GFX11+ widen last address register.
1105   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1106   unsigned NewVAddrSA = AMDGPU::NoRegister;
1107   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1108       AddrSize != Info->VAddrDwords) {
1109     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1110     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1111     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1112 
1113     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1114     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1115                                         &MRI.getRegClass(AddrRCID));
1116     if (!NewVAddrSA)
1117       return MCDisassembler::Success;
1118   }
1119 
1120   MI.setOpcode(NewOpcode);
1121 
1122   if (NewVdata != AMDGPU::NoRegister) {
1123     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1124 
1125     if (IsAtomic) {
1126       // Atomic operations have an additional operand (a copy of data)
1127       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1128     }
1129   }
1130 
1131   if (NewVAddrSA) {
1132     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1133   } else if (IsNSA) {
1134     assert(AddrSize <= Info->VAddrDwords);
1135     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1136              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1137   }
1138 
1139   return MCDisassembler::Success;
1140 }
1141 
1142 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1143 // decoder only adds to src_modifiers, so manually add the bits to the other
1144 // operands.
1145 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1146   unsigned Opc = MI.getOpcode();
1147   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1148   auto Mods = collectVOPModifiers(MI, true);
1149 
1150   if (MI.getNumOperands() < DescNumOps &&
1151       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1152     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1153 
1154   if (MI.getNumOperands() < DescNumOps &&
1155       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1156     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1157                          AMDGPU::OpName::op_sel);
1158   if (MI.getNumOperands() < DescNumOps &&
1159       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1160     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1161                          AMDGPU::OpName::op_sel_hi);
1162   if (MI.getNumOperands() < DescNumOps &&
1163       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1164     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1165                          AMDGPU::OpName::neg_lo);
1166   if (MI.getNumOperands() < DescNumOps &&
1167       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1168     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1169                          AMDGPU::OpName::neg_hi);
1170 
1171   return MCDisassembler::Success;
1172 }
1173 
1174 // Create dummy old operand and insert optional operands
1175 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1176   unsigned Opc = MI.getOpcode();
1177   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1178 
1179   if (MI.getNumOperands() < DescNumOps &&
1180       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1181     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1182 
1183   if (MI.getNumOperands() < DescNumOps &&
1184       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1185     insertNamedMCOperand(MI, MCOperand::createImm(0),
1186                          AMDGPU::OpName::src0_modifiers);
1187 
1188   if (MI.getNumOperands() < DescNumOps &&
1189       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1190     insertNamedMCOperand(MI, MCOperand::createImm(0),
1191                          AMDGPU::OpName::src1_modifiers);
1192   return MCDisassembler::Success;
1193 }
1194 
1195 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1196                                                 int ImmLitIdx) const {
1197   assert(HasLiteral && "Should have decoded a literal");
1198   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1199   unsigned DescNumOps = Desc.getNumOperands();
1200   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1201                        AMDGPU::OpName::immDeferred);
1202   assert(DescNumOps == MI.getNumOperands());
1203   for (unsigned I = 0; I < DescNumOps; ++I) {
1204     auto &Op = MI.getOperand(I);
1205     auto OpType = Desc.operands()[I].OperandType;
1206     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1207                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1208     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1209         IsDeferredOp)
1210       Op.setImm(Literal);
1211   }
1212   return MCDisassembler::Success;
1213 }
1214 
1215 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1216   return getContext().getRegisterInfo()->
1217     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1218 }
1219 
1220 inline
1221 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1222                                          const Twine& ErrMsg) const {
1223   *CommentStream << "Error: " + ErrMsg;
1224 
1225   // ToDo: add support for error operands to MCInst.h
1226   // return MCOperand::createError(V);
1227   return MCOperand();
1228 }
1229 
1230 inline
1231 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1232   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1233 }
1234 
1235 inline
1236 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1237                                                unsigned Val) const {
1238   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1239   if (Val >= RegCl.getNumRegs())
1240     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1241                            ": unknown register " + Twine(Val));
1242   return createRegOperand(RegCl.getRegister(Val));
1243 }
1244 
1245 inline
1246 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1247                                                 unsigned Val) const {
1248   // ToDo: SI/CI have 104 SGPRs, VI - 102
1249   // Valery: here we accepting as much as we can, let assembler sort it out
1250   int shift = 0;
1251   switch (SRegClassID) {
1252   case AMDGPU::SGPR_32RegClassID:
1253   case AMDGPU::TTMP_32RegClassID:
1254     break;
1255   case AMDGPU::SGPR_64RegClassID:
1256   case AMDGPU::TTMP_64RegClassID:
1257     shift = 1;
1258     break;
1259   case AMDGPU::SGPR_96RegClassID:
1260   case AMDGPU::TTMP_96RegClassID:
1261   case AMDGPU::SGPR_128RegClassID:
1262   case AMDGPU::TTMP_128RegClassID:
1263   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1264   // this bundle?
1265   case AMDGPU::SGPR_256RegClassID:
1266   case AMDGPU::TTMP_256RegClassID:
1267     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1268   // this bundle?
1269   case AMDGPU::SGPR_288RegClassID:
1270   case AMDGPU::TTMP_288RegClassID:
1271   case AMDGPU::SGPR_320RegClassID:
1272   case AMDGPU::TTMP_320RegClassID:
1273   case AMDGPU::SGPR_352RegClassID:
1274   case AMDGPU::TTMP_352RegClassID:
1275   case AMDGPU::SGPR_384RegClassID:
1276   case AMDGPU::TTMP_384RegClassID:
1277   case AMDGPU::SGPR_512RegClassID:
1278   case AMDGPU::TTMP_512RegClassID:
1279     shift = 2;
1280     break;
1281   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1282   // this bundle?
1283   default:
1284     llvm_unreachable("unhandled register class");
1285   }
1286 
1287   if (Val % (1 << shift)) {
1288     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1289                    << ": scalar reg isn't aligned " << Val;
1290   }
1291 
1292   return createRegOperand(SRegClassID, Val >> shift);
1293 }
1294 
1295 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1296                                                   bool IsHi) const {
1297   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1298   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1299 }
1300 
1301 // Decode Literals for insts which always have a literal in the encoding
1302 MCOperand
1303 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1304   if (HasLiteral) {
1305     assert(
1306         AMDGPU::hasVOPD(STI) &&
1307         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1308     if (Literal != Val)
1309       return errOperand(Val, "More than one unique literal is illegal");
1310   }
1311   HasLiteral = true;
1312   Literal = Val;
1313   return MCOperand::createImm(Literal);
1314 }
1315 
1316 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1317   // For now all literal constants are supposed to be unsigned integer
1318   // ToDo: deal with signed/unsigned 64-bit integer constants
1319   // ToDo: deal with float/double constants
1320   if (!HasLiteral) {
1321     if (Bytes.size() < 4) {
1322       return errOperand(0, "cannot read literal, inst bytes left " +
1323                         Twine(Bytes.size()));
1324     }
1325     HasLiteral = true;
1326     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1327     if (ExtendFP64)
1328       Literal64 <<= 32;
1329   }
1330   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1331 }
1332 
1333 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1334   using namespace AMDGPU::EncValues;
1335 
1336   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1337   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1338     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1339     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1340       // Cast prevents negative overflow.
1341 }
1342 
1343 static int64_t getInlineImmVal32(unsigned Imm) {
1344   switch (Imm) {
1345   case 240:
1346     return llvm::bit_cast<uint32_t>(0.5f);
1347   case 241:
1348     return llvm::bit_cast<uint32_t>(-0.5f);
1349   case 242:
1350     return llvm::bit_cast<uint32_t>(1.0f);
1351   case 243:
1352     return llvm::bit_cast<uint32_t>(-1.0f);
1353   case 244:
1354     return llvm::bit_cast<uint32_t>(2.0f);
1355   case 245:
1356     return llvm::bit_cast<uint32_t>(-2.0f);
1357   case 246:
1358     return llvm::bit_cast<uint32_t>(4.0f);
1359   case 247:
1360     return llvm::bit_cast<uint32_t>(-4.0f);
1361   case 248: // 1 / (2 * PI)
1362     return 0x3e22f983;
1363   default:
1364     llvm_unreachable("invalid fp inline imm");
1365   }
1366 }
1367 
1368 static int64_t getInlineImmVal64(unsigned Imm) {
1369   switch (Imm) {
1370   case 240:
1371     return llvm::bit_cast<uint64_t>(0.5);
1372   case 241:
1373     return llvm::bit_cast<uint64_t>(-0.5);
1374   case 242:
1375     return llvm::bit_cast<uint64_t>(1.0);
1376   case 243:
1377     return llvm::bit_cast<uint64_t>(-1.0);
1378   case 244:
1379     return llvm::bit_cast<uint64_t>(2.0);
1380   case 245:
1381     return llvm::bit_cast<uint64_t>(-2.0);
1382   case 246:
1383     return llvm::bit_cast<uint64_t>(4.0);
1384   case 247:
1385     return llvm::bit_cast<uint64_t>(-4.0);
1386   case 248: // 1 / (2 * PI)
1387     return 0x3fc45f306dc9c882;
1388   default:
1389     llvm_unreachable("invalid fp inline imm");
1390   }
1391 }
1392 
1393 static int64_t getInlineImmVal16(unsigned Imm) {
1394   switch (Imm) {
1395   case 240:
1396     return 0x3800;
1397   case 241:
1398     return 0xB800;
1399   case 242:
1400     return 0x3C00;
1401   case 243:
1402     return 0xBC00;
1403   case 244:
1404     return 0x4000;
1405   case 245:
1406     return 0xC000;
1407   case 246:
1408     return 0x4400;
1409   case 247:
1410     return 0xC400;
1411   case 248: // 1 / (2 * PI)
1412     return 0x3118;
1413   default:
1414     llvm_unreachable("invalid fp inline imm");
1415   }
1416 }
1417 
1418 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1419   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1420       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1421 
1422   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1423   // ImmWidth 0 is a default case where operand should not allow immediates.
1424   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1425   // use it to print verbose error message.
1426   switch (ImmWidth) {
1427   case 0:
1428   case 32:
1429     return MCOperand::createImm(getInlineImmVal32(Imm));
1430   case 64:
1431     return MCOperand::createImm(getInlineImmVal64(Imm));
1432   case 16:
1433     return MCOperand::createImm(getInlineImmVal16(Imm));
1434   default:
1435     llvm_unreachable("implement me");
1436   }
1437 }
1438 
1439 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1440   using namespace AMDGPU;
1441 
1442   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1443   switch (Width) {
1444   default: // fall
1445   case OPW32:
1446   case OPW16:
1447   case OPWV216:
1448     return VGPR_32RegClassID;
1449   case OPW64:
1450   case OPWV232: return VReg_64RegClassID;
1451   case OPW96: return VReg_96RegClassID;
1452   case OPW128: return VReg_128RegClassID;
1453   case OPW160: return VReg_160RegClassID;
1454   case OPW256: return VReg_256RegClassID;
1455   case OPW288: return VReg_288RegClassID;
1456   case OPW320: return VReg_320RegClassID;
1457   case OPW352: return VReg_352RegClassID;
1458   case OPW384: return VReg_384RegClassID;
1459   case OPW512: return VReg_512RegClassID;
1460   case OPW1024: return VReg_1024RegClassID;
1461   }
1462 }
1463 
1464 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1465   using namespace AMDGPU;
1466 
1467   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1468   switch (Width) {
1469   default: // fall
1470   case OPW32:
1471   case OPW16:
1472   case OPWV216:
1473     return AGPR_32RegClassID;
1474   case OPW64:
1475   case OPWV232: return AReg_64RegClassID;
1476   case OPW96: return AReg_96RegClassID;
1477   case OPW128: return AReg_128RegClassID;
1478   case OPW160: return AReg_160RegClassID;
1479   case OPW256: return AReg_256RegClassID;
1480   case OPW288: return AReg_288RegClassID;
1481   case OPW320: return AReg_320RegClassID;
1482   case OPW352: return AReg_352RegClassID;
1483   case OPW384: return AReg_384RegClassID;
1484   case OPW512: return AReg_512RegClassID;
1485   case OPW1024: return AReg_1024RegClassID;
1486   }
1487 }
1488 
1489 
1490 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1491   using namespace AMDGPU;
1492 
1493   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1494   switch (Width) {
1495   default: // fall
1496   case OPW32:
1497   case OPW16:
1498   case OPWV216:
1499     return SGPR_32RegClassID;
1500   case OPW64:
1501   case OPWV232: return SGPR_64RegClassID;
1502   case OPW96: return SGPR_96RegClassID;
1503   case OPW128: return SGPR_128RegClassID;
1504   case OPW160: return SGPR_160RegClassID;
1505   case OPW256: return SGPR_256RegClassID;
1506   case OPW288: return SGPR_288RegClassID;
1507   case OPW320: return SGPR_320RegClassID;
1508   case OPW352: return SGPR_352RegClassID;
1509   case OPW384: return SGPR_384RegClassID;
1510   case OPW512: return SGPR_512RegClassID;
1511   }
1512 }
1513 
1514 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1515   using namespace AMDGPU;
1516 
1517   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1518   switch (Width) {
1519   default: // fall
1520   case OPW32:
1521   case OPW16:
1522   case OPWV216:
1523     return TTMP_32RegClassID;
1524   case OPW64:
1525   case OPWV232: return TTMP_64RegClassID;
1526   case OPW128: return TTMP_128RegClassID;
1527   case OPW256: return TTMP_256RegClassID;
1528   case OPW288: return TTMP_288RegClassID;
1529   case OPW320: return TTMP_320RegClassID;
1530   case OPW352: return TTMP_352RegClassID;
1531   case OPW384: return TTMP_384RegClassID;
1532   case OPW512: return TTMP_512RegClassID;
1533   }
1534 }
1535 
1536 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1537   using namespace AMDGPU::EncValues;
1538 
1539   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1540   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1541 
1542   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1543 }
1544 
1545 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1546                                           bool MandatoryLiteral,
1547                                           unsigned ImmWidth, bool IsFP) const {
1548   using namespace AMDGPU::EncValues;
1549 
1550   assert(Val < 1024); // enum10
1551 
1552   bool IsAGPR = Val & 512;
1553   Val &= 511;
1554 
1555   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1556     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1557                                    : getVgprClassId(Width), Val - VGPR_MIN);
1558   }
1559   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1560                             IsFP);
1561 }
1562 
1563 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1564                                                  unsigned Val,
1565                                                  bool MandatoryLiteral,
1566                                                  unsigned ImmWidth,
1567                                                  bool IsFP) const {
1568   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1569   // decoded earlier.
1570   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1571   using namespace AMDGPU::EncValues;
1572 
1573   if (Val <= SGPR_MAX) {
1574     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1575     static_assert(SGPR_MIN == 0);
1576     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1577   }
1578 
1579   int TTmpIdx = getTTmpIdx(Val);
1580   if (TTmpIdx >= 0) {
1581     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1582   }
1583 
1584   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1585     return decodeIntImmed(Val);
1586 
1587   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1588     return decodeFPImmed(ImmWidth, Val);
1589 
1590   if (Val == LITERAL_CONST) {
1591     if (MandatoryLiteral)
1592       // Keep a sentinel value for deferred setting
1593       return MCOperand::createImm(LITERAL_CONST);
1594     else
1595       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1596   }
1597 
1598   switch (Width) {
1599   case OPW32:
1600   case OPW16:
1601   case OPWV216:
1602     return decodeSpecialReg32(Val);
1603   case OPW64:
1604   case OPWV232:
1605     return decodeSpecialReg64(Val);
1606   default:
1607     llvm_unreachable("unexpected immediate type");
1608   }
1609 }
1610 
1611 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1612 // opposite of bit 0 of DstX.
1613 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1614                                                unsigned Val) const {
1615   int VDstXInd =
1616       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1617   assert(VDstXInd != -1);
1618   assert(Inst.getOperand(VDstXInd).isReg());
1619   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1620   Val |= ~XDstReg & 1;
1621   auto Width = llvm::AMDGPUDisassembler::OPW32;
1622   return createRegOperand(getVgprClassId(Width), Val);
1623 }
1624 
1625 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1626   using namespace AMDGPU;
1627 
1628   switch (Val) {
1629   // clang-format off
1630   case 102: return createRegOperand(FLAT_SCR_LO);
1631   case 103: return createRegOperand(FLAT_SCR_HI);
1632   case 104: return createRegOperand(XNACK_MASK_LO);
1633   case 105: return createRegOperand(XNACK_MASK_HI);
1634   case 106: return createRegOperand(VCC_LO);
1635   case 107: return createRegOperand(VCC_HI);
1636   case 108: return createRegOperand(TBA_LO);
1637   case 109: return createRegOperand(TBA_HI);
1638   case 110: return createRegOperand(TMA_LO);
1639   case 111: return createRegOperand(TMA_HI);
1640   case 124:
1641     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1642   case 125:
1643     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1644   case 126: return createRegOperand(EXEC_LO);
1645   case 127: return createRegOperand(EXEC_HI);
1646   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1647   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1648   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1649   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1650   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1651   case 251: return createRegOperand(SRC_VCCZ);
1652   case 252: return createRegOperand(SRC_EXECZ);
1653   case 253: return createRegOperand(SRC_SCC);
1654   case 254: return createRegOperand(LDS_DIRECT);
1655   default: break;
1656     // clang-format on
1657   }
1658   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1659 }
1660 
1661 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1662   using namespace AMDGPU;
1663 
1664   switch (Val) {
1665   case 102: return createRegOperand(FLAT_SCR);
1666   case 104: return createRegOperand(XNACK_MASK);
1667   case 106: return createRegOperand(VCC);
1668   case 108: return createRegOperand(TBA);
1669   case 110: return createRegOperand(TMA);
1670   case 124:
1671     if (isGFX11Plus())
1672       return createRegOperand(SGPR_NULL);
1673     break;
1674   case 125:
1675     if (!isGFX11Plus())
1676       return createRegOperand(SGPR_NULL);
1677     break;
1678   case 126: return createRegOperand(EXEC);
1679   case 235: return createRegOperand(SRC_SHARED_BASE);
1680   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1681   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1682   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1683   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1684   case 251: return createRegOperand(SRC_VCCZ);
1685   case 252: return createRegOperand(SRC_EXECZ);
1686   case 253: return createRegOperand(SRC_SCC);
1687   default: break;
1688   }
1689   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1690 }
1691 
1692 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1693                                             const unsigned Val,
1694                                             unsigned ImmWidth) const {
1695   using namespace AMDGPU::SDWA;
1696   using namespace AMDGPU::EncValues;
1697 
1698   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1699       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1700     // XXX: cast to int is needed to avoid stupid warning:
1701     // compare with unsigned is always true
1702     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1703         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1704       return createRegOperand(getVgprClassId(Width),
1705                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1706     }
1707     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1708         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1709                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1710       return createSRegOperand(getSgprClassId(Width),
1711                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1712     }
1713     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1714         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1715       return createSRegOperand(getTtmpClassId(Width),
1716                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1717     }
1718 
1719     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1720 
1721     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1722       return decodeIntImmed(SVal);
1723 
1724     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1725       return decodeFPImmed(ImmWidth, SVal);
1726 
1727     return decodeSpecialReg32(SVal);
1728   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1729     return createRegOperand(getVgprClassId(Width), Val);
1730   }
1731   llvm_unreachable("unsupported target");
1732 }
1733 
1734 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1735   return decodeSDWASrc(OPW16, Val, 16);
1736 }
1737 
1738 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1739   return decodeSDWASrc(OPW32, Val, 32);
1740 }
1741 
1742 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1743   using namespace AMDGPU::SDWA;
1744 
1745   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1746           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1747          "SDWAVopcDst should be present only on GFX9+");
1748 
1749   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1750 
1751   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1752     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1753 
1754     int TTmpIdx = getTTmpIdx(Val);
1755     if (TTmpIdx >= 0) {
1756       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1757       return createSRegOperand(TTmpClsId, TTmpIdx);
1758     } else if (Val > SGPR_MAX) {
1759       return IsWave64 ? decodeSpecialReg64(Val)
1760                       : decodeSpecialReg32(Val);
1761     } else {
1762       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1763     }
1764   } else {
1765     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1766   }
1767 }
1768 
1769 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1770   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1771              ? decodeSrcOp(OPW64, Val)
1772              : decodeSrcOp(OPW32, Val);
1773 }
1774 
1775 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1776   return decodeSrcOp(OPW32, Val);
1777 }
1778 
1779 bool AMDGPUDisassembler::isVI() const {
1780   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1781 }
1782 
1783 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1784 
1785 bool AMDGPUDisassembler::isGFX90A() const {
1786   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1787 }
1788 
1789 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1790 
1791 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1792 
1793 bool AMDGPUDisassembler::isGFX10Plus() const {
1794   return AMDGPU::isGFX10Plus(STI);
1795 }
1796 
1797 bool AMDGPUDisassembler::isGFX11() const {
1798   return STI.hasFeature(AMDGPU::FeatureGFX11);
1799 }
1800 
1801 bool AMDGPUDisassembler::isGFX11Plus() const {
1802   return AMDGPU::isGFX11Plus(STI);
1803 }
1804 
1805 bool AMDGPUDisassembler::isGFX12Plus() const {
1806   return AMDGPU::isGFX12Plus(STI);
1807 }
1808 
1809 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1810   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1811 }
1812 
1813 bool AMDGPUDisassembler::hasKernargPreload() const {
1814   return AMDGPU::hasKernargPreload(STI);
1815 }
1816 
1817 //===----------------------------------------------------------------------===//
1818 // AMDGPU specific symbol handling
1819 //===----------------------------------------------------------------------===//
1820 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1821 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1822   do {                                                                         \
1823     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1824   } while (0)
1825 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1826   do {                                                                         \
1827     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1828              << GET_FIELD(MASK) << '\n';                                       \
1829   } while (0)
1830 
1831 // NOLINTNEXTLINE(readability-identifier-naming)
1832 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1833     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1834   using namespace amdhsa;
1835   StringRef Indent = "\t";
1836 
1837   // We cannot accurately backward compute #VGPRs used from
1838   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1839   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1840   // simply calculate the inverse of what the assembler does.
1841 
1842   uint32_t GranulatedWorkitemVGPRCount =
1843       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1844 
1845   uint32_t NextFreeVGPR =
1846       (GranulatedWorkitemVGPRCount + 1) *
1847       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1848 
1849   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1850 
1851   // We cannot backward compute values used to calculate
1852   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1853   // directives can't be computed:
1854   // .amdhsa_reserve_vcc
1855   // .amdhsa_reserve_flat_scratch
1856   // .amdhsa_reserve_xnack_mask
1857   // They take their respective default values if not specified in the assembly.
1858   //
1859   // GRANULATED_WAVEFRONT_SGPR_COUNT
1860   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1861   //
1862   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1863   // are set to 0. So while disassembling we consider that:
1864   //
1865   // GRANULATED_WAVEFRONT_SGPR_COUNT
1866   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1867   //
1868   // The disassembler cannot recover the original values of those 3 directives.
1869 
1870   uint32_t GranulatedWavefrontSGPRCount =
1871       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1872 
1873   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1874     return MCDisassembler::Fail;
1875 
1876   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1877                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1878 
1879   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1880   if (!hasArchitectedFlatScratch())
1881     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1882   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1883   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1884 
1885   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1886     return MCDisassembler::Fail;
1887 
1888   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1889                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1890   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1891                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1892   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1893                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1894   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1895                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1896 
1897   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1898     return MCDisassembler::Fail;
1899 
1900   if (!isGFX12Plus())
1901     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1902                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1903 
1904   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1905     return MCDisassembler::Fail;
1906 
1907   if (!isGFX12Plus())
1908     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1909                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1910 
1911   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1912     return MCDisassembler::Fail;
1913 
1914   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1915     return MCDisassembler::Fail;
1916 
1917   if (isGFX9Plus())
1918     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1919 
1920   if (!isGFX9Plus())
1921     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1922       return MCDisassembler::Fail;
1923   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1924     return MCDisassembler::Fail;
1925   if (!isGFX10Plus())
1926     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1927       return MCDisassembler::Fail;
1928 
1929   if (isGFX10Plus()) {
1930     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1931                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1932     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1933     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1934   }
1935 
1936   if (isGFX12Plus())
1937     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1938                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1939 
1940   return MCDisassembler::Success;
1941 }
1942 
1943 // NOLINTNEXTLINE(readability-identifier-naming)
1944 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1945     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1946   using namespace amdhsa;
1947   StringRef Indent = "\t";
1948   if (hasArchitectedFlatScratch())
1949     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1950                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1951   else
1952     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1953                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1954   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1955                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1956   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1957                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1958   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1959                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1960   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1961                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1962   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1963                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1964 
1965   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1966     return MCDisassembler::Fail;
1967 
1968   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1969     return MCDisassembler::Fail;
1970 
1971   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1972     return MCDisassembler::Fail;
1973 
1974   PRINT_DIRECTIVE(
1975       ".amdhsa_exception_fp_ieee_invalid_op",
1976       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1977   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1978                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1979   PRINT_DIRECTIVE(
1980       ".amdhsa_exception_fp_ieee_div_zero",
1981       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1982   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1983                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1984   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1985                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1986   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1987                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1988   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1989                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1990 
1991   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1992     return MCDisassembler::Fail;
1993 
1994   return MCDisassembler::Success;
1995 }
1996 
1997 // NOLINTNEXTLINE(readability-identifier-naming)
1998 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1999     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2000   using namespace amdhsa;
2001   StringRef Indent = "\t";
2002   if (isGFX90A()) {
2003     KdStream << Indent << ".amdhsa_accum_offset "
2004              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
2005              << '\n';
2006     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
2007       return MCDisassembler::Fail;
2008     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
2009     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
2010       return MCDisassembler::Fail;
2011   } else if (isGFX10Plus()) {
2012     // Bits [0-3].
2013     if (!isGFX12Plus()) {
2014       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2015         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2016                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2017       } else {
2018         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2019             "SHARED_VGPR_COUNT",
2020             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2021       }
2022     } else {
2023       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0)
2024         return MCDisassembler::Fail;
2025     }
2026 
2027     // Bits [4-11].
2028     if (isGFX11()) {
2029       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2030                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2031       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2032                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2033       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2034                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2035     } else if (isGFX12Plus()) {
2036       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2037           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2038     } else {
2039       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1)
2040         return MCDisassembler::Fail;
2041     }
2042 
2043     // Bits [12].
2044     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2)
2045       return MCDisassembler::Fail;
2046 
2047     // Bits [13].
2048     if (isGFX12Plus()) {
2049       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2050                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2051     } else {
2052       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3)
2053         return MCDisassembler::Fail;
2054     }
2055 
2056     // Bits [14-30].
2057     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4)
2058       return MCDisassembler::Fail;
2059 
2060     // Bits [31].
2061     if (isGFX11Plus()) {
2062       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2063                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2064     } else {
2065       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5)
2066         return MCDisassembler::Fail;
2067     }
2068   } else if (FourByteBuffer) {
2069     return MCDisassembler::Fail;
2070   }
2071   return MCDisassembler::Success;
2072 }
2073 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2074 #undef PRINT_DIRECTIVE
2075 #undef GET_FIELD
2076 
2077 MCDisassembler::DecodeStatus
2078 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2079     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2080     raw_string_ostream &KdStream) const {
2081 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2082   do {                                                                         \
2083     KdStream << Indent << DIRECTIVE " "                                        \
2084              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2085   } while (0)
2086 
2087   uint16_t TwoByteBuffer = 0;
2088   uint32_t FourByteBuffer = 0;
2089 
2090   StringRef ReservedBytes;
2091   StringRef Indent = "\t";
2092 
2093   assert(Bytes.size() == 64);
2094   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2095 
2096   switch (Cursor.tell()) {
2097   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2098     FourByteBuffer = DE.getU32(Cursor);
2099     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2100              << '\n';
2101     return MCDisassembler::Success;
2102 
2103   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2104     FourByteBuffer = DE.getU32(Cursor);
2105     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2106              << FourByteBuffer << '\n';
2107     return MCDisassembler::Success;
2108 
2109   case amdhsa::KERNARG_SIZE_OFFSET:
2110     FourByteBuffer = DE.getU32(Cursor);
2111     KdStream << Indent << ".amdhsa_kernarg_size "
2112              << FourByteBuffer << '\n';
2113     return MCDisassembler::Success;
2114 
2115   case amdhsa::RESERVED0_OFFSET:
2116     // 4 reserved bytes, must be 0.
2117     ReservedBytes = DE.getBytes(Cursor, 4);
2118     for (int I = 0; I < 4; ++I) {
2119       if (ReservedBytes[I] != 0) {
2120         return MCDisassembler::Fail;
2121       }
2122     }
2123     return MCDisassembler::Success;
2124 
2125   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2126     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2127     // So far no directive controls this for Code Object V3, so simply skip for
2128     // disassembly.
2129     DE.skip(Cursor, 8);
2130     return MCDisassembler::Success;
2131 
2132   case amdhsa::RESERVED1_OFFSET:
2133     // 20 reserved bytes, must be 0.
2134     ReservedBytes = DE.getBytes(Cursor, 20);
2135     for (int I = 0; I < 20; ++I) {
2136       if (ReservedBytes[I] != 0) {
2137         return MCDisassembler::Fail;
2138       }
2139     }
2140     return MCDisassembler::Success;
2141 
2142   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2143     FourByteBuffer = DE.getU32(Cursor);
2144     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2145 
2146   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2147     FourByteBuffer = DE.getU32(Cursor);
2148     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2149 
2150   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2151     FourByteBuffer = DE.getU32(Cursor);
2152     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2153 
2154   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2155     using namespace amdhsa;
2156     TwoByteBuffer = DE.getU16(Cursor);
2157 
2158     if (!hasArchitectedFlatScratch())
2159       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2160                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2161     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2162                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2163     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2164                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2165     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2166                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2167     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2168                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2169     if (!hasArchitectedFlatScratch())
2170       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2171                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2172     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2173                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2174 
2175     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2176       return MCDisassembler::Fail;
2177 
2178     // Reserved for GFX9
2179     if (isGFX9() &&
2180         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2181       return MCDisassembler::Fail;
2182     } else if (isGFX10Plus()) {
2183       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2184                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2185     }
2186 
2187     // FIXME: We should be looking at the ELF header ABI version for this.
2188     if (AMDGPU::getDefaultAMDHSACodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2189       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2190                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2191 
2192     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2193       return MCDisassembler::Fail;
2194 
2195     return MCDisassembler::Success;
2196 
2197   case amdhsa::KERNARG_PRELOAD_OFFSET:
2198     using namespace amdhsa;
2199     TwoByteBuffer = DE.getU16(Cursor);
2200     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2201       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2202                       KERNARG_PRELOAD_SPEC_LENGTH);
2203     }
2204 
2205     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2206       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2207                       KERNARG_PRELOAD_SPEC_OFFSET);
2208     }
2209     return MCDisassembler::Success;
2210 
2211   case amdhsa::RESERVED3_OFFSET:
2212     // 4 bytes from here are reserved, must be 0.
2213     ReservedBytes = DE.getBytes(Cursor, 4);
2214     for (int I = 0; I < 4; ++I) {
2215       if (ReservedBytes[I] != 0)
2216         return MCDisassembler::Fail;
2217     }
2218     return MCDisassembler::Success;
2219 
2220   default:
2221     llvm_unreachable("Unhandled index. Case statements cover everything.");
2222     return MCDisassembler::Fail;
2223   }
2224 #undef PRINT_DIRECTIVE
2225 }
2226 
2227 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2228     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2229   // CP microcode requires the kernel descriptor to be 64 aligned.
2230   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2231     return MCDisassembler::Fail;
2232 
2233   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2234   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2235   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2236   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2237   // when required.
2238   if (isGFX10Plus()) {
2239     uint16_t KernelCodeProperties =
2240         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2241                                 llvm::endianness::little);
2242     EnableWavefrontSize32 =
2243         AMDHSA_BITS_GET(KernelCodeProperties,
2244                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2245   }
2246 
2247   std::string Kd;
2248   raw_string_ostream KdStream(Kd);
2249   KdStream << ".amdhsa_kernel " << KdName << '\n';
2250 
2251   DataExtractor::Cursor C(0);
2252   while (C && C.tell() < Bytes.size()) {
2253     MCDisassembler::DecodeStatus Status =
2254         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2255 
2256     cantFail(C.takeError());
2257 
2258     if (Status == MCDisassembler::Fail)
2259       return MCDisassembler::Fail;
2260   }
2261   KdStream << ".end_amdhsa_kernel\n";
2262   outs() << KdStream.str();
2263   return MCDisassembler::Success;
2264 }
2265 
2266 std::optional<MCDisassembler::DecodeStatus>
2267 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2268                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2269                                   raw_ostream &CStream) const {
2270   // Right now only kernel descriptor needs to be handled.
2271   // We ignore all other symbols for target specific handling.
2272   // TODO:
2273   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2274   // Object V2 and V3 when symbols are marked protected.
2275 
2276   // amd_kernel_code_t for Code Object V2.
2277   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2278     Size = 256;
2279     return MCDisassembler::Fail;
2280   }
2281 
2282   // Code Object V3 kernel descriptors.
2283   StringRef Name = Symbol.Name;
2284   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2285     Size = 64; // Size = 64 regardless of success or failure.
2286     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2287   }
2288   return std::nullopt;
2289 }
2290 
2291 //===----------------------------------------------------------------------===//
2292 // AMDGPUSymbolizer
2293 //===----------------------------------------------------------------------===//
2294 
2295 // Try to find symbol name for specified label
2296 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2297     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2298     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2299     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2300 
2301   if (!IsBranch) {
2302     return false;
2303   }
2304 
2305   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2306   if (!Symbols)
2307     return false;
2308 
2309   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2310     return Val.Addr == static_cast<uint64_t>(Value) &&
2311            Val.Type == ELF::STT_NOTYPE;
2312   });
2313   if (Result != Symbols->end()) {
2314     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2315     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2316     Inst.addOperand(MCOperand::createExpr(Add));
2317     return true;
2318   }
2319   // Add to list of referenced addresses, so caller can synthesize a label.
2320   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2321   return false;
2322 }
2323 
2324 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2325                                                        int64_t Value,
2326                                                        uint64_t Address) {
2327   llvm_unreachable("unimplemented");
2328 }
2329 
2330 //===----------------------------------------------------------------------===//
2331 // Initialization
2332 //===----------------------------------------------------------------------===//
2333 
2334 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2335                               LLVMOpInfoCallback /*GetOpInfo*/,
2336                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2337                               void *DisInfo,
2338                               MCContext *Ctx,
2339                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2340   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2341 }
2342 
2343 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2344                                                 const MCSubtargetInfo &STI,
2345                                                 MCContext &Ctx) {
2346   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2347 }
2348 
2349 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2350   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2351                                          createAMDGPUDisassembler);
2352   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2353                                        createAMDGPUSymbolizer);
2354 }
2355