1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, MCInstrInfo const *MCII) 49 : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 50 MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) { 51 // ToDo: AMDGPUDisassembler supports only VI ISA. 52 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 53 report_fatal_error("Disassembly not yet supported for subtarget"); 54 } 55 56 inline static MCDisassembler::DecodeStatus 57 addOperand(MCInst &Inst, const MCOperand& Opnd) { 58 Inst.addOperand(Opnd); 59 return Opnd.isValid() ? 60 MCDisassembler::Success : 61 MCDisassembler::Fail; 62 } 63 64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 65 uint16_t NameIdx) { 66 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 67 if (OpIdx != -1) { 68 auto I = MI.begin(); 69 std::advance(I, OpIdx); 70 MI.insert(I, Op); 71 } 72 return OpIdx; 73 } 74 75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, 76 uint64_t Addr, 77 const MCDisassembler *Decoder) { 78 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 79 80 // Our branches take a simm16, but we need two extra bits to account for the 81 // factor of 4. 82 APInt SignedOffset(18, Imm * 4, true); 83 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 84 85 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 86 return MCDisassembler::Success; 87 return addOperand(Inst, MCOperand::createImm(Imm)); 88 } 89 90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 91 const MCDisassembler *Decoder) { 92 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 93 int64_t Offset; 94 if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets. 95 Offset = SignExtend64<24>(Imm); 96 } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val, 111 uint64_t Addr, 112 const MCDisassembler *Decoder) { 113 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 114 return addOperand(Inst, DAsm->decodeSplitBarrier(Val)); 115 } 116 117 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 118 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 119 uint64_t /*Addr*/, \ 120 const MCDisassembler *Decoder) { \ 121 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 122 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 123 } 124 125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 126 // number of register. Used by VGPR only and AGPR only operands. 127 #define DECODE_OPERAND_REG_8(RegClass) \ 128 static DecodeStatus Decode##RegClass##RegisterClass( \ 129 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 130 const MCDisassembler *Decoder) { \ 131 assert(Imm < (1 << 8) && "8-bit encoding"); \ 132 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 133 return addOperand( \ 134 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 135 } 136 137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 138 ImmWidth) \ 139 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 140 const MCDisassembler *Decoder) { \ 141 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 142 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 143 return addOperand(Inst, \ 144 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 145 MandatoryLiteral, ImmWidth)); \ 146 } 147 148 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 149 // get register class. Used by SGPR only operands. 150 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 151 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 152 153 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 154 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 155 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 156 // Used by AV_ register classes (AGPR or VGPR only register operands). 157 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 158 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 159 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 160 161 // Decoder for Src(9-bit encoding) registers only. 162 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 163 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 164 165 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 166 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 167 // only. 168 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 169 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 170 171 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 172 // Imm{9} is acc, registers only. 173 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 174 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 175 176 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 177 // register from RegClass or immediate. Registers that don't belong to RegClass 178 // will be decoded and InstPrinter will report warning. Immediate will be 179 // decoded into constant of size ImmWidth, should match width of immediate used 180 // by OperandType (important for floating point types). 181 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 182 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 183 false, ImmWidth) 184 185 #define DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(Name, OpWidth, ImmWidth) \ 186 DECODE_SrcOp(decodeOperand_##Name, 9, OpWidth, Imm, false, ImmWidth) 187 188 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 189 // and decode using 'enum10' from decodeSrcOp. 190 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 191 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 192 Imm | 512, false, ImmWidth) 193 194 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 195 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 196 OpWidth, Imm, true, ImmWidth) 197 198 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 199 // when RegisterClass is used as an operand. Most often used for destination 200 // operands. 201 202 DECODE_OPERAND_REG_8(VGPR_32) 203 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 204 DECODE_OPERAND_REG_8(VReg_64) 205 DECODE_OPERAND_REG_8(VReg_96) 206 DECODE_OPERAND_REG_8(VReg_128) 207 DECODE_OPERAND_REG_8(VReg_256) 208 DECODE_OPERAND_REG_8(VReg_288) 209 DECODE_OPERAND_REG_8(VReg_352) 210 DECODE_OPERAND_REG_8(VReg_384) 211 DECODE_OPERAND_REG_8(VReg_512) 212 DECODE_OPERAND_REG_8(VReg_1024) 213 214 DECODE_OPERAND_REG_7(SReg_32, OPW32) 215 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32) 216 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 217 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 218 DECODE_OPERAND_REG_7(SReg_64, OPW64) 219 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 220 DECODE_OPERAND_REG_7(SReg_96, OPW96) 221 DECODE_OPERAND_REG_7(SReg_128, OPW128) 222 DECODE_OPERAND_REG_7(SReg_256, OPW256) 223 DECODE_OPERAND_REG_7(SReg_512, OPW512) 224 225 DECODE_OPERAND_REG_8(AGPR_32) 226 DECODE_OPERAND_REG_8(AReg_64) 227 DECODE_OPERAND_REG_8(AReg_128) 228 DECODE_OPERAND_REG_8(AReg_256) 229 DECODE_OPERAND_REG_8(AReg_512) 230 DECODE_OPERAND_REG_8(AReg_1024) 231 232 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 233 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 234 235 // Decoders for register only source RegisterOperands that use use 9-bit Src 236 // encoding: 'decodeOperand_<RegClass>'. 237 238 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 239 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 240 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 241 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 242 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 243 244 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 245 246 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 247 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 248 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 249 250 // Decoders for register or immediate RegisterOperands that use 9-bit Src 251 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 252 253 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 254 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 255 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16) 256 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 257 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 258 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 259 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 260 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 261 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) 262 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 263 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 264 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 265 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 266 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 267 268 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2I16, OPW32, 32) 269 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2F16, OPW32, 16) 270 271 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 272 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 273 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 274 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 275 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 276 277 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 278 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 279 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 280 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32) 281 282 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm, 283 uint64_t /*Addr*/, 284 const MCDisassembler *Decoder) { 285 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 286 assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used"); 287 288 bool IsHi = Imm & (1 << 9); 289 unsigned RegIdx = Imm & 0xff; 290 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 291 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 292 } 293 294 static DecodeStatus 295 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, 296 const MCDisassembler *Decoder) { 297 assert(isUInt<8>(Imm) && "8-bit encoding expected"); 298 299 bool IsHi = Imm & (1 << 7); 300 unsigned RegIdx = Imm & 0x7f; 301 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 302 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 303 } 304 305 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm, 306 uint64_t /*Addr*/, 307 const MCDisassembler *Decoder) { 308 assert(isUInt<9>(Imm) && "9-bit encoding expected"); 309 310 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 311 bool IsVGPR = Imm & (1 << 8); 312 if (IsVGPR) { 313 bool IsHi = Imm & (1 << 7); 314 unsigned RegIdx = Imm & 0x7f; 315 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 316 } 317 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 318 Imm & 0xFF, false, 16)); 319 } 320 321 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm, 322 uint64_t /*Addr*/, 323 const MCDisassembler *Decoder) { 324 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 325 326 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 327 bool IsVGPR = Imm & (1 << 8); 328 if (IsVGPR) { 329 bool IsHi = Imm & (1 << 9); 330 unsigned RegIdx = Imm & 0xff; 331 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 332 } 333 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 334 Imm & 0xFF, false, 16)); 335 } 336 337 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, 338 uint64_t Addr, 339 const MCDisassembler *Decoder) { 340 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 341 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 342 } 343 344 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 345 uint64_t Addr, const void *Decoder) { 346 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 347 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 348 } 349 350 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 351 const MCRegisterInfo *MRI) { 352 if (OpIdx < 0) 353 return false; 354 355 const MCOperand &Op = Inst.getOperand(OpIdx); 356 if (!Op.isReg()) 357 return false; 358 359 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 360 auto Reg = Sub ? Sub : Op.getReg(); 361 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 362 } 363 364 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 365 AMDGPUDisassembler::OpWidthTy Opw, 366 const MCDisassembler *Decoder) { 367 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 368 if (!DAsm->isGFX90A()) { 369 Imm &= 511; 370 } else { 371 // If atomic has both vdata and vdst their register classes are tied. 372 // The bit is decoded along with the vdst, first operand. We need to 373 // change register class to AGPR if vdst was AGPR. 374 // If a DS instruction has both data0 and data1 their register classes 375 // are also tied. 376 unsigned Opc = Inst.getOpcode(); 377 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 378 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 379 : AMDGPU::OpName::vdata; 380 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 381 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 382 if ((int)Inst.getNumOperands() == DataIdx) { 383 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 384 if (IsAGPROperand(Inst, DstIdx, MRI)) 385 Imm |= 512; 386 } 387 388 if (TSFlags & SIInstrFlags::DS) { 389 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 390 if ((int)Inst.getNumOperands() == Data2Idx && 391 IsAGPROperand(Inst, DataIdx, MRI)) 392 Imm |= 512; 393 } 394 } 395 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 396 } 397 398 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm, 399 uint64_t Addr, 400 const MCDisassembler *Decoder) { 401 assert(Imm < (1 << 9) && "9-bit encoding"); 402 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 403 return addOperand( 404 Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true)); 405 } 406 407 static DecodeStatus 408 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 409 const MCDisassembler *Decoder) { 410 return decodeOperand_AVLdSt_Any(Inst, Imm, 411 AMDGPUDisassembler::OPW32, Decoder); 412 } 413 414 static DecodeStatus 415 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 416 const MCDisassembler *Decoder) { 417 return decodeOperand_AVLdSt_Any(Inst, Imm, 418 AMDGPUDisassembler::OPW64, Decoder); 419 } 420 421 static DecodeStatus 422 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 423 const MCDisassembler *Decoder) { 424 return decodeOperand_AVLdSt_Any(Inst, Imm, 425 AMDGPUDisassembler::OPW96, Decoder); 426 } 427 428 static DecodeStatus 429 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 430 const MCDisassembler *Decoder) { 431 return decodeOperand_AVLdSt_Any(Inst, Imm, 432 AMDGPUDisassembler::OPW128, Decoder); 433 } 434 435 static DecodeStatus 436 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 437 const MCDisassembler *Decoder) { 438 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 439 Decoder); 440 } 441 442 #define DECODE_SDWA(DecName) \ 443 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 444 445 DECODE_SDWA(Src32) 446 DECODE_SDWA(Src16) 447 DECODE_SDWA(VopcDst) 448 449 #include "AMDGPUGenDisassemblerTables.inc" 450 451 //===----------------------------------------------------------------------===// 452 // 453 //===----------------------------------------------------------------------===// 454 455 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 456 assert(Bytes.size() >= sizeof(T)); 457 const auto Res = 458 support::endian::read<T, llvm::endianness::little>(Bytes.data()); 459 Bytes = Bytes.slice(sizeof(T)); 460 return Res; 461 } 462 463 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 464 assert(Bytes.size() >= 12); 465 uint64_t Lo = 466 support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data()); 467 Bytes = Bytes.slice(8); 468 uint64_t Hi = 469 support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data()); 470 Bytes = Bytes.slice(4); 471 return DecoderUInt128(Lo, Hi); 472 } 473 474 // The disassembler is greedy, so we need to check FI operand value to 475 // not parse a dpp if the correct literal is not set. For dpp16 the 476 // autogenerated decoder checks the dpp literal 477 static bool isValidDPP8(const MCInst &MI) { 478 using namespace llvm::AMDGPU::DPP; 479 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 480 assert(FiIdx != -1); 481 if ((unsigned)FiIdx >= MI.getNumOperands()) 482 return false; 483 unsigned Fi = MI.getOperand(FiIdx).getImm(); 484 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 485 } 486 487 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 488 ArrayRef<uint8_t> Bytes_, 489 uint64_t Address, 490 raw_ostream &CS) const { 491 bool IsSDWA = false; 492 493 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 494 Bytes = Bytes_.slice(0, MaxInstBytesNum); 495 496 DecodeStatus Res = MCDisassembler::Fail; 497 do { 498 // ToDo: better to switch encoding length using some bit predicate 499 // but it is unknown yet, so try all we can 500 501 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 502 // encodings 503 if (isGFX11Plus() && Bytes.size() >= 12 ) { 504 DecoderUInt128 DecW = eat12Bytes(Bytes); 505 Res = 506 tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696, 507 MI, DecW, Address, CS); 508 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 509 break; 510 MI = MCInst(); // clear 511 Res = 512 tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696, 513 MI, DecW, Address, CS); 514 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 515 break; 516 MI = MCInst(); // clear 517 518 const auto convertVOPDPP = [&]() { 519 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) { 520 convertVOP3PDPPInst(MI); 521 } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) { 522 convertVOPCDPPInst(MI); // Special VOP3 case 523 } else { 524 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 525 convertVOP3DPPInst(MI); // Regular VOP3 case 526 } 527 }; 528 Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696, 529 MI, DecW, Address, CS); 530 if (Res) { 531 convertVOPDPP(); 532 break; 533 } 534 Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696, 535 MI, DecW, Address, CS); 536 if (Res) { 537 convertVOPDPP(); 538 break; 539 } 540 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS); 541 if (Res) 542 break; 543 544 Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS); 545 if (Res) 546 break; 547 548 Res = tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS); 549 if (Res) 550 break; 551 } 552 // Reinitialize Bytes 553 Bytes = Bytes_.slice(0, MaxInstBytesNum); 554 555 if (Bytes.size() >= 8) { 556 const uint64_t QW = eatBytes<uint64_t>(Bytes); 557 558 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 559 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS); 560 if (Res) { 561 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 562 == -1) 563 break; 564 if (convertDPP8Inst(MI) == MCDisassembler::Success) 565 break; 566 MI = MCInst(); // clear 567 } 568 } 569 570 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS); 571 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 572 break; 573 MI = MCInst(); // clear 574 575 Res = tryDecodeInst(DecoderTableDPP8GFX1164, 576 DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS); 577 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 578 break; 579 MI = MCInst(); // clear 580 581 Res = tryDecodeInst(DecoderTableDPP8GFX1264, 582 DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS); 583 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 584 break; 585 MI = MCInst(); // clear 586 587 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS); 588 if (Res) break; 589 590 Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664, 591 MI, QW, Address, CS); 592 if (Res) { 593 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 594 convertVOPCDPPInst(MI); 595 break; 596 } 597 598 Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664, 599 MI, QW, Address, CS); 600 if (Res) { 601 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 602 convertVOPCDPPInst(MI); 603 break; 604 } 605 606 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS); 607 if (Res) { IsSDWA = true; break; } 608 609 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS); 610 if (Res) { IsSDWA = true; break; } 611 612 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS); 613 if (Res) { IsSDWA = true; break; } 614 615 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) { 616 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS); 617 if (Res) 618 break; 619 } 620 621 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 622 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 623 // table first so we print the correct name. 624 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) { 625 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS); 626 if (Res) 627 break; 628 } 629 } 630 631 // Reinitialize Bytes as DPP64 could have eaten too much 632 Bytes = Bytes_.slice(0, MaxInstBytesNum); 633 634 // Try decode 32-bit instruction 635 if (Bytes.size() < 4) break; 636 const uint32_t DW = eatBytes<uint32_t>(Bytes); 637 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS); 638 if (Res) break; 639 640 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS); 641 if (Res) break; 642 643 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS); 644 if (Res) break; 645 646 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 647 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS); 648 if (Res) 649 break; 650 } 651 652 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 653 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS); 654 if (Res) break; 655 } 656 657 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS); 658 if (Res) break; 659 660 Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW, 661 Address, CS); 662 if (Res) break; 663 664 Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW, 665 Address, CS); 666 if (Res) 667 break; 668 669 if (Bytes.size() < 4) break; 670 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 671 672 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) { 673 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS); 674 if (Res) 675 break; 676 } 677 678 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 679 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS); 680 if (Res) 681 break; 682 } 683 684 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS); 685 if (Res) break; 686 687 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS); 688 if (Res) break; 689 690 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS); 691 if (Res) break; 692 693 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS); 694 if (Res) break; 695 696 Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW, 697 Address, CS); 698 if (Res) 699 break; 700 701 Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW, 702 Address, CS); 703 if (Res) 704 break; 705 706 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS); 707 } while (false); 708 709 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 710 // Insert dummy unused src2_modifiers. 711 insertNamedMCOperand(MI, MCOperand::createImm(0), 712 AMDGPU::OpName::src2_modifiers); 713 } 714 715 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) && 716 !AMDGPU::hasGDS(STI)) { 717 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds); 718 } 719 720 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 721 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 722 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 723 AMDGPU::OpName::cpol); 724 if (CPolPos != -1) { 725 unsigned CPol = 726 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 727 AMDGPU::CPol::GLC : 0; 728 if (MI.getNumOperands() <= (unsigned)CPolPos) { 729 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 730 AMDGPU::OpName::cpol); 731 } else if (CPol) { 732 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 733 } 734 } 735 } 736 737 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 738 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 739 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 740 // GFX90A lost TFE, its place is occupied by ACC. 741 int TFEOpIdx = 742 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 743 if (TFEOpIdx != -1) { 744 auto TFEIter = MI.begin(); 745 std::advance(TFEIter, TFEOpIdx); 746 MI.insert(TFEIter, MCOperand::createImm(0)); 747 } 748 } 749 750 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 751 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 752 int SWZOpIdx = 753 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 754 if (SWZOpIdx != -1) { 755 auto SWZIter = MI.begin(); 756 std::advance(SWZIter, SWZOpIdx); 757 MI.insert(SWZIter, MCOperand::createImm(0)); 758 } 759 } 760 761 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 762 int VAddr0Idx = 763 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 764 int RsrcIdx = 765 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 766 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 767 if (VAddr0Idx >= 0 && NSAArgs > 0) { 768 unsigned NSAWords = (NSAArgs + 3) / 4; 769 if (Bytes.size() < 4 * NSAWords) { 770 Res = MCDisassembler::Fail; 771 } else { 772 for (unsigned i = 0; i < NSAArgs; ++i) { 773 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 774 auto VAddrRCID = 775 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 776 MI.insert(MI.begin() + VAddrIdx, 777 createRegOperand(VAddrRCID, Bytes[i])); 778 } 779 Bytes = Bytes.slice(4 * NSAWords); 780 } 781 } 782 783 if (Res) 784 Res = convertMIMGInst(MI); 785 } 786 787 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 788 (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE))) 789 Res = convertMIMGInst(MI); 790 791 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 792 Res = convertEXPInst(MI); 793 794 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 795 Res = convertVINTERPInst(MI); 796 797 if (Res && IsSDWA) 798 Res = convertSDWAInst(MI); 799 800 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 801 AMDGPU::OpName::vdst_in); 802 if (VDstIn_Idx != -1) { 803 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 804 MCOI::OperandConstraint::TIED_TO); 805 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 806 !MI.getOperand(VDstIn_Idx).isReg() || 807 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 808 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 809 MI.erase(&MI.getOperand(VDstIn_Idx)); 810 insertNamedMCOperand(MI, 811 MCOperand::createReg(MI.getOperand(Tied).getReg()), 812 AMDGPU::OpName::vdst_in); 813 } 814 } 815 816 int ImmLitIdx = 817 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 818 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 819 if (Res && ImmLitIdx != -1 && !IsSOPK) 820 Res = convertFMAanyK(MI, ImmLitIdx); 821 822 // if the opcode was not recognized we'll assume a Size of 4 bytes 823 // (unless there are fewer bytes left) 824 Size = Res ? (MaxInstBytesNum - Bytes.size()) 825 : std::min((size_t)4, Bytes_.size()); 826 return Res; 827 } 828 829 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 830 if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) { 831 // The MCInst still has these fields even though they are no longer encoded 832 // in the GFX11 instruction. 833 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 834 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 835 } 836 return MCDisassembler::Success; 837 } 838 839 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 840 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 841 MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 || 842 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 843 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 || 844 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 845 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 || 846 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 || 847 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) { 848 // The MCInst has this field that is not directly encoded in the 849 // instruction. 850 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 851 } 852 return MCDisassembler::Success; 853 } 854 855 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 856 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 857 STI.hasFeature(AMDGPU::FeatureGFX10)) { 858 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 859 // VOPC - insert clamp 860 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 861 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 862 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 863 if (SDst != -1) { 864 // VOPC - insert VCC register as sdst 865 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 866 AMDGPU::OpName::sdst); 867 } else { 868 // VOP1/2 - insert omod if present in instruction 869 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 870 } 871 } 872 return MCDisassembler::Success; 873 } 874 875 struct VOPModifiers { 876 unsigned OpSel = 0; 877 unsigned OpSelHi = 0; 878 unsigned NegLo = 0; 879 unsigned NegHi = 0; 880 }; 881 882 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 883 // Note that these values do not affect disassembler output, 884 // so this is only necessary for consistency with src_modifiers. 885 static VOPModifiers collectVOPModifiers(const MCInst &MI, 886 bool IsVOP3P = false) { 887 VOPModifiers Modifiers; 888 unsigned Opc = MI.getOpcode(); 889 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 890 AMDGPU::OpName::src1_modifiers, 891 AMDGPU::OpName::src2_modifiers}; 892 for (int J = 0; J < 3; ++J) { 893 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 894 if (OpIdx == -1) 895 continue; 896 897 unsigned Val = MI.getOperand(OpIdx).getImm(); 898 899 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 900 if (IsVOP3P) { 901 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 902 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 903 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 904 } else if (J == 0) { 905 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 906 } 907 } 908 909 return Modifiers; 910 } 911 912 // MAC opcodes have special old and src2 operands. 913 // src2 is tied to dst, while old is not tied (but assumed to be). 914 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 915 constexpr int DST_IDX = 0; 916 auto Opcode = MI.getOpcode(); 917 const auto &Desc = MCII->get(Opcode); 918 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 919 920 if (OldIdx != -1 && Desc.getOperandConstraint( 921 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 922 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 923 assert(Desc.getOperandConstraint( 924 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 925 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 926 (void)DST_IDX; 927 return true; 928 } 929 930 return false; 931 } 932 933 // Create dummy old operand and insert dummy unused src2_modifiers 934 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 935 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 936 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 937 insertNamedMCOperand(MI, MCOperand::createImm(0), 938 AMDGPU::OpName::src2_modifiers); 939 } 940 941 // We must check FI == literal to reject not genuine dpp8 insts, and we must 942 // first add optional MI operands to check FI 943 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 944 unsigned Opc = MI.getOpcode(); 945 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 946 convertVOP3PDPPInst(MI); 947 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 948 AMDGPU::isVOPC64DPP(Opc)) { 949 convertVOPCDPPInst(MI); 950 } else { 951 if (isMacDPP(MI)) 952 convertMacDPPInst(MI); 953 954 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 955 if (MI.getNumOperands() < DescNumOps && 956 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 957 auto Mods = collectVOPModifiers(MI); 958 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 959 AMDGPU::OpName::op_sel); 960 } else { 961 // Insert dummy unused src modifiers. 962 if (MI.getNumOperands() < DescNumOps && 963 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 964 insertNamedMCOperand(MI, MCOperand::createImm(0), 965 AMDGPU::OpName::src0_modifiers); 966 967 if (MI.getNumOperands() < DescNumOps && 968 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 969 insertNamedMCOperand(MI, MCOperand::createImm(0), 970 AMDGPU::OpName::src1_modifiers); 971 } 972 } 973 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 974 } 975 976 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 977 if (isMacDPP(MI)) 978 convertMacDPPInst(MI); 979 980 unsigned Opc = MI.getOpcode(); 981 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 982 if (MI.getNumOperands() < DescNumOps && 983 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 984 auto Mods = collectVOPModifiers(MI); 985 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 986 AMDGPU::OpName::op_sel); 987 } 988 return MCDisassembler::Success; 989 } 990 991 // Note that before gfx10, the MIMG encoding provided no information about 992 // VADDR size. Consequently, decoded instructions always show address as if it 993 // has 1 dword, which could be not really so. 994 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 995 auto TSFlags = MCII->get(MI.getOpcode()).TSFlags; 996 997 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 998 AMDGPU::OpName::vdst); 999 1000 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 1001 AMDGPU::OpName::vdata); 1002 int VAddr0Idx = 1003 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 1004 int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc 1005 : AMDGPU::OpName::rsrc; 1006 int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName); 1007 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 1008 AMDGPU::OpName::dmask); 1009 1010 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 1011 AMDGPU::OpName::tfe); 1012 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 1013 AMDGPU::OpName::d16); 1014 1015 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 1016 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1017 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 1018 1019 assert(VDataIdx != -1); 1020 if (BaseOpcode->BVH) { 1021 // Add A16 operand for intersect_ray instructions 1022 addOperand(MI, MCOperand::createImm(BaseOpcode->A16)); 1023 return MCDisassembler::Success; 1024 } 1025 1026 bool IsAtomic = (VDstIdx != -1); 1027 bool IsGather4 = TSFlags & SIInstrFlags::Gather4; 1028 bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE; 1029 bool IsNSA = false; 1030 bool IsPartialNSA = false; 1031 unsigned AddrSize = Info->VAddrDwords; 1032 1033 if (isGFX10Plus()) { 1034 unsigned DimIdx = 1035 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 1036 int A16Idx = 1037 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 1038 const AMDGPU::MIMGDimInfo *Dim = 1039 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 1040 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 1041 1042 AddrSize = 1043 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 1044 1045 // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms. 1046 // VIMAGE insts other than BVH never use vaddr4. 1047 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 1048 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA || 1049 Info->MIMGEncoding == AMDGPU::MIMGEncGfx12; 1050 if (!IsNSA) { 1051 if (!IsVSample && AddrSize > 12) 1052 AddrSize = 16; 1053 } else { 1054 if (AddrSize > Info->VAddrDwords) { 1055 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 1056 // The NSA encoding does not contain enough operands for the 1057 // combination of base opcode / dimension. Should this be an error? 1058 return MCDisassembler::Success; 1059 } 1060 IsPartialNSA = true; 1061 } 1062 } 1063 } 1064 1065 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 1066 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 1067 1068 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 1069 if (D16 && AMDGPU::hasPackedD16(STI)) { 1070 DstSize = (DstSize + 1) / 2; 1071 } 1072 1073 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 1074 DstSize += 1; 1075 1076 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 1077 return MCDisassembler::Success; 1078 1079 int NewOpcode = 1080 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 1081 if (NewOpcode == -1) 1082 return MCDisassembler::Success; 1083 1084 // Widen the register to the correct number of enabled channels. 1085 unsigned NewVdata = AMDGPU::NoRegister; 1086 if (DstSize != Info->VDataDwords) { 1087 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 1088 1089 // Get first subregister of VData 1090 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 1091 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 1092 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 1093 1094 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 1095 &MRI.getRegClass(DataRCID)); 1096 if (NewVdata == AMDGPU::NoRegister) { 1097 // It's possible to encode this such that the low register + enabled 1098 // components exceeds the register count. 1099 return MCDisassembler::Success; 1100 } 1101 } 1102 1103 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 1104 // If using partial NSA on GFX11+ widen last address register. 1105 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 1106 unsigned NewVAddrSA = AMDGPU::NoRegister; 1107 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 1108 AddrSize != Info->VAddrDwords) { 1109 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 1110 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 1111 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 1112 1113 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 1114 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 1115 &MRI.getRegClass(AddrRCID)); 1116 if (!NewVAddrSA) 1117 return MCDisassembler::Success; 1118 } 1119 1120 MI.setOpcode(NewOpcode); 1121 1122 if (NewVdata != AMDGPU::NoRegister) { 1123 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 1124 1125 if (IsAtomic) { 1126 // Atomic operations have an additional operand (a copy of data) 1127 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 1128 } 1129 } 1130 1131 if (NewVAddrSA) { 1132 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 1133 } else if (IsNSA) { 1134 assert(AddrSize <= Info->VAddrDwords); 1135 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 1136 MI.begin() + VAddr0Idx + Info->VAddrDwords); 1137 } 1138 1139 return MCDisassembler::Success; 1140 } 1141 1142 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 1143 // decoder only adds to src_modifiers, so manually add the bits to the other 1144 // operands. 1145 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 1146 unsigned Opc = MI.getOpcode(); 1147 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1148 auto Mods = collectVOPModifiers(MI, true); 1149 1150 if (MI.getNumOperands() < DescNumOps && 1151 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 1152 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 1153 1154 if (MI.getNumOperands() < DescNumOps && 1155 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1156 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1157 AMDGPU::OpName::op_sel); 1158 if (MI.getNumOperands() < DescNumOps && 1159 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1160 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1161 AMDGPU::OpName::op_sel_hi); 1162 if (MI.getNumOperands() < DescNumOps && 1163 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1164 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1165 AMDGPU::OpName::neg_lo); 1166 if (MI.getNumOperands() < DescNumOps && 1167 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1168 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1169 AMDGPU::OpName::neg_hi); 1170 1171 return MCDisassembler::Success; 1172 } 1173 1174 // Create dummy old operand and insert optional operands 1175 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1176 unsigned Opc = MI.getOpcode(); 1177 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1178 1179 if (MI.getNumOperands() < DescNumOps && 1180 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1181 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1182 1183 if (MI.getNumOperands() < DescNumOps && 1184 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1185 insertNamedMCOperand(MI, MCOperand::createImm(0), 1186 AMDGPU::OpName::src0_modifiers); 1187 1188 if (MI.getNumOperands() < DescNumOps && 1189 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1190 insertNamedMCOperand(MI, MCOperand::createImm(0), 1191 AMDGPU::OpName::src1_modifiers); 1192 return MCDisassembler::Success; 1193 } 1194 1195 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1196 int ImmLitIdx) const { 1197 assert(HasLiteral && "Should have decoded a literal"); 1198 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1199 unsigned DescNumOps = Desc.getNumOperands(); 1200 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1201 AMDGPU::OpName::immDeferred); 1202 assert(DescNumOps == MI.getNumOperands()); 1203 for (unsigned I = 0; I < DescNumOps; ++I) { 1204 auto &Op = MI.getOperand(I); 1205 auto OpType = Desc.operands()[I].OperandType; 1206 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1207 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1208 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1209 IsDeferredOp) 1210 Op.setImm(Literal); 1211 } 1212 return MCDisassembler::Success; 1213 } 1214 1215 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1216 return getContext().getRegisterInfo()-> 1217 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1218 } 1219 1220 inline 1221 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1222 const Twine& ErrMsg) const { 1223 *CommentStream << "Error: " + ErrMsg; 1224 1225 // ToDo: add support for error operands to MCInst.h 1226 // return MCOperand::createError(V); 1227 return MCOperand(); 1228 } 1229 1230 inline 1231 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1232 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1233 } 1234 1235 inline 1236 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1237 unsigned Val) const { 1238 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1239 if (Val >= RegCl.getNumRegs()) 1240 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1241 ": unknown register " + Twine(Val)); 1242 return createRegOperand(RegCl.getRegister(Val)); 1243 } 1244 1245 inline 1246 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1247 unsigned Val) const { 1248 // ToDo: SI/CI have 104 SGPRs, VI - 102 1249 // Valery: here we accepting as much as we can, let assembler sort it out 1250 int shift = 0; 1251 switch (SRegClassID) { 1252 case AMDGPU::SGPR_32RegClassID: 1253 case AMDGPU::TTMP_32RegClassID: 1254 break; 1255 case AMDGPU::SGPR_64RegClassID: 1256 case AMDGPU::TTMP_64RegClassID: 1257 shift = 1; 1258 break; 1259 case AMDGPU::SGPR_96RegClassID: 1260 case AMDGPU::TTMP_96RegClassID: 1261 case AMDGPU::SGPR_128RegClassID: 1262 case AMDGPU::TTMP_128RegClassID: 1263 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1264 // this bundle? 1265 case AMDGPU::SGPR_256RegClassID: 1266 case AMDGPU::TTMP_256RegClassID: 1267 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1268 // this bundle? 1269 case AMDGPU::SGPR_288RegClassID: 1270 case AMDGPU::TTMP_288RegClassID: 1271 case AMDGPU::SGPR_320RegClassID: 1272 case AMDGPU::TTMP_320RegClassID: 1273 case AMDGPU::SGPR_352RegClassID: 1274 case AMDGPU::TTMP_352RegClassID: 1275 case AMDGPU::SGPR_384RegClassID: 1276 case AMDGPU::TTMP_384RegClassID: 1277 case AMDGPU::SGPR_512RegClassID: 1278 case AMDGPU::TTMP_512RegClassID: 1279 shift = 2; 1280 break; 1281 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1282 // this bundle? 1283 default: 1284 llvm_unreachable("unhandled register class"); 1285 } 1286 1287 if (Val % (1 << shift)) { 1288 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1289 << ": scalar reg isn't aligned " << Val; 1290 } 1291 1292 return createRegOperand(SRegClassID, Val >> shift); 1293 } 1294 1295 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx, 1296 bool IsHi) const { 1297 unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0); 1298 return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16); 1299 } 1300 1301 // Decode Literals for insts which always have a literal in the encoding 1302 MCOperand 1303 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1304 if (HasLiteral) { 1305 assert( 1306 AMDGPU::hasVOPD(STI) && 1307 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1308 if (Literal != Val) 1309 return errOperand(Val, "More than one unique literal is illegal"); 1310 } 1311 HasLiteral = true; 1312 Literal = Val; 1313 return MCOperand::createImm(Literal); 1314 } 1315 1316 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const { 1317 // For now all literal constants are supposed to be unsigned integer 1318 // ToDo: deal with signed/unsigned 64-bit integer constants 1319 // ToDo: deal with float/double constants 1320 if (!HasLiteral) { 1321 if (Bytes.size() < 4) { 1322 return errOperand(0, "cannot read literal, inst bytes left " + 1323 Twine(Bytes.size())); 1324 } 1325 HasLiteral = true; 1326 Literal = Literal64 = eatBytes<uint32_t>(Bytes); 1327 if (ExtendFP64) 1328 Literal64 <<= 32; 1329 } 1330 return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal); 1331 } 1332 1333 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1334 using namespace AMDGPU::EncValues; 1335 1336 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1337 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1338 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1339 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1340 // Cast prevents negative overflow. 1341 } 1342 1343 static int64_t getInlineImmVal32(unsigned Imm) { 1344 switch (Imm) { 1345 case 240: 1346 return llvm::bit_cast<uint32_t>(0.5f); 1347 case 241: 1348 return llvm::bit_cast<uint32_t>(-0.5f); 1349 case 242: 1350 return llvm::bit_cast<uint32_t>(1.0f); 1351 case 243: 1352 return llvm::bit_cast<uint32_t>(-1.0f); 1353 case 244: 1354 return llvm::bit_cast<uint32_t>(2.0f); 1355 case 245: 1356 return llvm::bit_cast<uint32_t>(-2.0f); 1357 case 246: 1358 return llvm::bit_cast<uint32_t>(4.0f); 1359 case 247: 1360 return llvm::bit_cast<uint32_t>(-4.0f); 1361 case 248: // 1 / (2 * PI) 1362 return 0x3e22f983; 1363 default: 1364 llvm_unreachable("invalid fp inline imm"); 1365 } 1366 } 1367 1368 static int64_t getInlineImmVal64(unsigned Imm) { 1369 switch (Imm) { 1370 case 240: 1371 return llvm::bit_cast<uint64_t>(0.5); 1372 case 241: 1373 return llvm::bit_cast<uint64_t>(-0.5); 1374 case 242: 1375 return llvm::bit_cast<uint64_t>(1.0); 1376 case 243: 1377 return llvm::bit_cast<uint64_t>(-1.0); 1378 case 244: 1379 return llvm::bit_cast<uint64_t>(2.0); 1380 case 245: 1381 return llvm::bit_cast<uint64_t>(-2.0); 1382 case 246: 1383 return llvm::bit_cast<uint64_t>(4.0); 1384 case 247: 1385 return llvm::bit_cast<uint64_t>(-4.0); 1386 case 248: // 1 / (2 * PI) 1387 return 0x3fc45f306dc9c882; 1388 default: 1389 llvm_unreachable("invalid fp inline imm"); 1390 } 1391 } 1392 1393 static int64_t getInlineImmVal16(unsigned Imm) { 1394 switch (Imm) { 1395 case 240: 1396 return 0x3800; 1397 case 241: 1398 return 0xB800; 1399 case 242: 1400 return 0x3C00; 1401 case 243: 1402 return 0xBC00; 1403 case 244: 1404 return 0x4000; 1405 case 245: 1406 return 0xC000; 1407 case 246: 1408 return 0x4400; 1409 case 247: 1410 return 0xC400; 1411 case 248: // 1 / (2 * PI) 1412 return 0x3118; 1413 default: 1414 llvm_unreachable("invalid fp inline imm"); 1415 } 1416 } 1417 1418 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1419 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1420 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1421 1422 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1423 // ImmWidth 0 is a default case where operand should not allow immediates. 1424 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1425 // use it to print verbose error message. 1426 switch (ImmWidth) { 1427 case 0: 1428 case 32: 1429 return MCOperand::createImm(getInlineImmVal32(Imm)); 1430 case 64: 1431 return MCOperand::createImm(getInlineImmVal64(Imm)); 1432 case 16: 1433 return MCOperand::createImm(getInlineImmVal16(Imm)); 1434 default: 1435 llvm_unreachable("implement me"); 1436 } 1437 } 1438 1439 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1440 using namespace AMDGPU; 1441 1442 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1443 switch (Width) { 1444 default: // fall 1445 case OPW32: 1446 case OPW16: 1447 case OPWV216: 1448 return VGPR_32RegClassID; 1449 case OPW64: 1450 case OPWV232: return VReg_64RegClassID; 1451 case OPW96: return VReg_96RegClassID; 1452 case OPW128: return VReg_128RegClassID; 1453 case OPW160: return VReg_160RegClassID; 1454 case OPW256: return VReg_256RegClassID; 1455 case OPW288: return VReg_288RegClassID; 1456 case OPW320: return VReg_320RegClassID; 1457 case OPW352: return VReg_352RegClassID; 1458 case OPW384: return VReg_384RegClassID; 1459 case OPW512: return VReg_512RegClassID; 1460 case OPW1024: return VReg_1024RegClassID; 1461 } 1462 } 1463 1464 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1465 using namespace AMDGPU; 1466 1467 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1468 switch (Width) { 1469 default: // fall 1470 case OPW32: 1471 case OPW16: 1472 case OPWV216: 1473 return AGPR_32RegClassID; 1474 case OPW64: 1475 case OPWV232: return AReg_64RegClassID; 1476 case OPW96: return AReg_96RegClassID; 1477 case OPW128: return AReg_128RegClassID; 1478 case OPW160: return AReg_160RegClassID; 1479 case OPW256: return AReg_256RegClassID; 1480 case OPW288: return AReg_288RegClassID; 1481 case OPW320: return AReg_320RegClassID; 1482 case OPW352: return AReg_352RegClassID; 1483 case OPW384: return AReg_384RegClassID; 1484 case OPW512: return AReg_512RegClassID; 1485 case OPW1024: return AReg_1024RegClassID; 1486 } 1487 } 1488 1489 1490 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1491 using namespace AMDGPU; 1492 1493 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1494 switch (Width) { 1495 default: // fall 1496 case OPW32: 1497 case OPW16: 1498 case OPWV216: 1499 return SGPR_32RegClassID; 1500 case OPW64: 1501 case OPWV232: return SGPR_64RegClassID; 1502 case OPW96: return SGPR_96RegClassID; 1503 case OPW128: return SGPR_128RegClassID; 1504 case OPW160: return SGPR_160RegClassID; 1505 case OPW256: return SGPR_256RegClassID; 1506 case OPW288: return SGPR_288RegClassID; 1507 case OPW320: return SGPR_320RegClassID; 1508 case OPW352: return SGPR_352RegClassID; 1509 case OPW384: return SGPR_384RegClassID; 1510 case OPW512: return SGPR_512RegClassID; 1511 } 1512 } 1513 1514 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1515 using namespace AMDGPU; 1516 1517 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1518 switch (Width) { 1519 default: // fall 1520 case OPW32: 1521 case OPW16: 1522 case OPWV216: 1523 return TTMP_32RegClassID; 1524 case OPW64: 1525 case OPWV232: return TTMP_64RegClassID; 1526 case OPW128: return TTMP_128RegClassID; 1527 case OPW256: return TTMP_256RegClassID; 1528 case OPW288: return TTMP_288RegClassID; 1529 case OPW320: return TTMP_320RegClassID; 1530 case OPW352: return TTMP_352RegClassID; 1531 case OPW384: return TTMP_384RegClassID; 1532 case OPW512: return TTMP_512RegClassID; 1533 } 1534 } 1535 1536 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1537 using namespace AMDGPU::EncValues; 1538 1539 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1540 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1541 1542 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1543 } 1544 1545 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1546 bool MandatoryLiteral, 1547 unsigned ImmWidth, bool IsFP) const { 1548 using namespace AMDGPU::EncValues; 1549 1550 assert(Val < 1024); // enum10 1551 1552 bool IsAGPR = Val & 512; 1553 Val &= 511; 1554 1555 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1556 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1557 : getVgprClassId(Width), Val - VGPR_MIN); 1558 } 1559 return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth, 1560 IsFP); 1561 } 1562 1563 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, 1564 unsigned Val, 1565 bool MandatoryLiteral, 1566 unsigned ImmWidth, 1567 bool IsFP) const { 1568 // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been 1569 // decoded earlier. 1570 assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0"); 1571 using namespace AMDGPU::EncValues; 1572 1573 if (Val <= SGPR_MAX) { 1574 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1575 static_assert(SGPR_MIN == 0); 1576 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1577 } 1578 1579 int TTmpIdx = getTTmpIdx(Val); 1580 if (TTmpIdx >= 0) { 1581 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1582 } 1583 1584 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1585 return decodeIntImmed(Val); 1586 1587 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1588 return decodeFPImmed(ImmWidth, Val); 1589 1590 if (Val == LITERAL_CONST) { 1591 if (MandatoryLiteral) 1592 // Keep a sentinel value for deferred setting 1593 return MCOperand::createImm(LITERAL_CONST); 1594 else 1595 return decodeLiteralConstant(IsFP && ImmWidth == 64); 1596 } 1597 1598 switch (Width) { 1599 case OPW32: 1600 case OPW16: 1601 case OPWV216: 1602 return decodeSpecialReg32(Val); 1603 case OPW64: 1604 case OPWV232: 1605 return decodeSpecialReg64(Val); 1606 default: 1607 llvm_unreachable("unexpected immediate type"); 1608 } 1609 } 1610 1611 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1612 // opposite of bit 0 of DstX. 1613 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1614 unsigned Val) const { 1615 int VDstXInd = 1616 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1617 assert(VDstXInd != -1); 1618 assert(Inst.getOperand(VDstXInd).isReg()); 1619 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1620 Val |= ~XDstReg & 1; 1621 auto Width = llvm::AMDGPUDisassembler::OPW32; 1622 return createRegOperand(getVgprClassId(Width), Val); 1623 } 1624 1625 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1626 using namespace AMDGPU; 1627 1628 switch (Val) { 1629 // clang-format off 1630 case 102: return createRegOperand(FLAT_SCR_LO); 1631 case 103: return createRegOperand(FLAT_SCR_HI); 1632 case 104: return createRegOperand(XNACK_MASK_LO); 1633 case 105: return createRegOperand(XNACK_MASK_HI); 1634 case 106: return createRegOperand(VCC_LO); 1635 case 107: return createRegOperand(VCC_HI); 1636 case 108: return createRegOperand(TBA_LO); 1637 case 109: return createRegOperand(TBA_HI); 1638 case 110: return createRegOperand(TMA_LO); 1639 case 111: return createRegOperand(TMA_HI); 1640 case 124: 1641 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1642 case 125: 1643 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1644 case 126: return createRegOperand(EXEC_LO); 1645 case 127: return createRegOperand(EXEC_HI); 1646 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1647 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1648 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1649 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1650 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1651 case 251: return createRegOperand(SRC_VCCZ); 1652 case 252: return createRegOperand(SRC_EXECZ); 1653 case 253: return createRegOperand(SRC_SCC); 1654 case 254: return createRegOperand(LDS_DIRECT); 1655 default: break; 1656 // clang-format on 1657 } 1658 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1659 } 1660 1661 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1662 using namespace AMDGPU; 1663 1664 switch (Val) { 1665 case 102: return createRegOperand(FLAT_SCR); 1666 case 104: return createRegOperand(XNACK_MASK); 1667 case 106: return createRegOperand(VCC); 1668 case 108: return createRegOperand(TBA); 1669 case 110: return createRegOperand(TMA); 1670 case 124: 1671 if (isGFX11Plus()) 1672 return createRegOperand(SGPR_NULL); 1673 break; 1674 case 125: 1675 if (!isGFX11Plus()) 1676 return createRegOperand(SGPR_NULL); 1677 break; 1678 case 126: return createRegOperand(EXEC); 1679 case 235: return createRegOperand(SRC_SHARED_BASE); 1680 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1681 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1682 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1683 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1684 case 251: return createRegOperand(SRC_VCCZ); 1685 case 252: return createRegOperand(SRC_EXECZ); 1686 case 253: return createRegOperand(SRC_SCC); 1687 default: break; 1688 } 1689 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1690 } 1691 1692 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1693 const unsigned Val, 1694 unsigned ImmWidth) const { 1695 using namespace AMDGPU::SDWA; 1696 using namespace AMDGPU::EncValues; 1697 1698 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1699 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1700 // XXX: cast to int is needed to avoid stupid warning: 1701 // compare with unsigned is always true 1702 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1703 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1704 return createRegOperand(getVgprClassId(Width), 1705 Val - SDWA9EncValues::SRC_VGPR_MIN); 1706 } 1707 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1708 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1709 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1710 return createSRegOperand(getSgprClassId(Width), 1711 Val - SDWA9EncValues::SRC_SGPR_MIN); 1712 } 1713 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1714 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1715 return createSRegOperand(getTtmpClassId(Width), 1716 Val - SDWA9EncValues::SRC_TTMP_MIN); 1717 } 1718 1719 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1720 1721 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1722 return decodeIntImmed(SVal); 1723 1724 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1725 return decodeFPImmed(ImmWidth, SVal); 1726 1727 return decodeSpecialReg32(SVal); 1728 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 1729 return createRegOperand(getVgprClassId(Width), Val); 1730 } 1731 llvm_unreachable("unsupported target"); 1732 } 1733 1734 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1735 return decodeSDWASrc(OPW16, Val, 16); 1736 } 1737 1738 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1739 return decodeSDWASrc(OPW32, Val, 32); 1740 } 1741 1742 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1743 using namespace AMDGPU::SDWA; 1744 1745 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1746 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1747 "SDWAVopcDst should be present only on GFX9+"); 1748 1749 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1750 1751 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1752 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1753 1754 int TTmpIdx = getTTmpIdx(Val); 1755 if (TTmpIdx >= 0) { 1756 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1757 return createSRegOperand(TTmpClsId, TTmpIdx); 1758 } else if (Val > SGPR_MAX) { 1759 return IsWave64 ? decodeSpecialReg64(Val) 1760 : decodeSpecialReg32(Val); 1761 } else { 1762 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1763 } 1764 } else { 1765 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1766 } 1767 } 1768 1769 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1770 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1771 ? decodeSrcOp(OPW64, Val) 1772 : decodeSrcOp(OPW32, Val); 1773 } 1774 1775 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const { 1776 return decodeSrcOp(OPW32, Val); 1777 } 1778 1779 bool AMDGPUDisassembler::isVI() const { 1780 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1781 } 1782 1783 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1784 1785 bool AMDGPUDisassembler::isGFX90A() const { 1786 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1787 } 1788 1789 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1790 1791 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1792 1793 bool AMDGPUDisassembler::isGFX10Plus() const { 1794 return AMDGPU::isGFX10Plus(STI); 1795 } 1796 1797 bool AMDGPUDisassembler::isGFX11() const { 1798 return STI.hasFeature(AMDGPU::FeatureGFX11); 1799 } 1800 1801 bool AMDGPUDisassembler::isGFX11Plus() const { 1802 return AMDGPU::isGFX11Plus(STI); 1803 } 1804 1805 bool AMDGPUDisassembler::isGFX12Plus() const { 1806 return AMDGPU::isGFX12Plus(STI); 1807 } 1808 1809 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1810 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1811 } 1812 1813 bool AMDGPUDisassembler::hasKernargPreload() const { 1814 return AMDGPU::hasKernargPreload(STI); 1815 } 1816 1817 //===----------------------------------------------------------------------===// 1818 // AMDGPU specific symbol handling 1819 //===----------------------------------------------------------------------===// 1820 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1821 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1822 do { \ 1823 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1824 } while (0) 1825 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ 1826 do { \ 1827 KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ 1828 << GET_FIELD(MASK) << '\n'; \ 1829 } while (0) 1830 1831 // NOLINTNEXTLINE(readability-identifier-naming) 1832 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1833 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1834 using namespace amdhsa; 1835 StringRef Indent = "\t"; 1836 1837 // We cannot accurately backward compute #VGPRs used from 1838 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1839 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1840 // simply calculate the inverse of what the assembler does. 1841 1842 uint32_t GranulatedWorkitemVGPRCount = 1843 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1844 1845 uint32_t NextFreeVGPR = 1846 (GranulatedWorkitemVGPRCount + 1) * 1847 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); 1848 1849 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1850 1851 // We cannot backward compute values used to calculate 1852 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1853 // directives can't be computed: 1854 // .amdhsa_reserve_vcc 1855 // .amdhsa_reserve_flat_scratch 1856 // .amdhsa_reserve_xnack_mask 1857 // They take their respective default values if not specified in the assembly. 1858 // 1859 // GRANULATED_WAVEFRONT_SGPR_COUNT 1860 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1861 // 1862 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1863 // are set to 0. So while disassembling we consider that: 1864 // 1865 // GRANULATED_WAVEFRONT_SGPR_COUNT 1866 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1867 // 1868 // The disassembler cannot recover the original values of those 3 directives. 1869 1870 uint32_t GranulatedWavefrontSGPRCount = 1871 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1872 1873 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1874 return MCDisassembler::Fail; 1875 1876 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1877 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1878 1879 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1880 if (!hasArchitectedFlatScratch()) 1881 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1882 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1883 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1884 1885 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1886 return MCDisassembler::Fail; 1887 1888 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1889 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1890 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1891 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1892 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1893 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1894 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1895 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1896 1897 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1898 return MCDisassembler::Fail; 1899 1900 if (!isGFX12Plus()) 1901 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", 1902 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP); 1903 1904 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1905 return MCDisassembler::Fail; 1906 1907 if (!isGFX12Plus()) 1908 PRINT_DIRECTIVE(".amdhsa_ieee_mode", 1909 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE); 1910 1911 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1912 return MCDisassembler::Fail; 1913 1914 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1915 return MCDisassembler::Fail; 1916 1917 if (isGFX9Plus()) 1918 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL); 1919 1920 if (!isGFX9Plus()) 1921 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0) 1922 return MCDisassembler::Fail; 1923 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1) 1924 return MCDisassembler::Fail; 1925 if (!isGFX10Plus()) 1926 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2) 1927 return MCDisassembler::Fail; 1928 1929 if (isGFX10Plus()) { 1930 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1931 COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE); 1932 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED); 1933 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS); 1934 } 1935 1936 if (isGFX12Plus()) 1937 PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling", 1938 COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN); 1939 1940 return MCDisassembler::Success; 1941 } 1942 1943 // NOLINTNEXTLINE(readability-identifier-naming) 1944 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1945 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1946 using namespace amdhsa; 1947 StringRef Indent = "\t"; 1948 if (hasArchitectedFlatScratch()) 1949 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1950 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1951 else 1952 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1953 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1954 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1955 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1956 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1957 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1958 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1959 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1960 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1961 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1962 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1963 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1964 1965 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1966 return MCDisassembler::Fail; 1967 1968 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1969 return MCDisassembler::Fail; 1970 1971 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1972 return MCDisassembler::Fail; 1973 1974 PRINT_DIRECTIVE( 1975 ".amdhsa_exception_fp_ieee_invalid_op", 1976 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1977 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1978 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1979 PRINT_DIRECTIVE( 1980 ".amdhsa_exception_fp_ieee_div_zero", 1981 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1982 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1983 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1984 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1985 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1986 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1987 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1988 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1989 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1990 1991 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1992 return MCDisassembler::Fail; 1993 1994 return MCDisassembler::Success; 1995 } 1996 1997 // NOLINTNEXTLINE(readability-identifier-naming) 1998 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 1999 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 2000 using namespace amdhsa; 2001 StringRef Indent = "\t"; 2002 if (isGFX90A()) { 2003 KdStream << Indent << ".amdhsa_accum_offset " 2004 << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 2005 << '\n'; 2006 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0) 2007 return MCDisassembler::Fail; 2008 PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); 2009 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1) 2010 return MCDisassembler::Fail; 2011 } else if (isGFX10Plus()) { 2012 // Bits [0-3]. 2013 if (!isGFX12Plus()) { 2014 if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { 2015 PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", 2016 COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); 2017 } else { 2018 PRINT_PSEUDO_DIRECTIVE_COMMENT( 2019 "SHARED_VGPR_COUNT", 2020 COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); 2021 } 2022 } else { 2023 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0) 2024 return MCDisassembler::Fail; 2025 } 2026 2027 // Bits [4-11]. 2028 if (isGFX11()) { 2029 PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", 2030 COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE); 2031 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", 2032 COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START); 2033 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", 2034 COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END); 2035 } else if (isGFX12Plus()) { 2036 PRINT_PSEUDO_DIRECTIVE_COMMENT( 2037 "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE); 2038 } else { 2039 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1) 2040 return MCDisassembler::Fail; 2041 } 2042 2043 // Bits [12]. 2044 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2) 2045 return MCDisassembler::Fail; 2046 2047 // Bits [13]. 2048 if (isGFX12Plus()) { 2049 PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN", 2050 COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN); 2051 } else { 2052 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3) 2053 return MCDisassembler::Fail; 2054 } 2055 2056 // Bits [14-30]. 2057 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4) 2058 return MCDisassembler::Fail; 2059 2060 // Bits [31]. 2061 if (isGFX11Plus()) { 2062 PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", 2063 COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP); 2064 } else { 2065 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5) 2066 return MCDisassembler::Fail; 2067 } 2068 } else if (FourByteBuffer) { 2069 return MCDisassembler::Fail; 2070 } 2071 return MCDisassembler::Success; 2072 } 2073 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT 2074 #undef PRINT_DIRECTIVE 2075 #undef GET_FIELD 2076 2077 MCDisassembler::DecodeStatus 2078 AMDGPUDisassembler::decodeKernelDescriptorDirective( 2079 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 2080 raw_string_ostream &KdStream) const { 2081 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 2082 do { \ 2083 KdStream << Indent << DIRECTIVE " " \ 2084 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 2085 } while (0) 2086 2087 uint16_t TwoByteBuffer = 0; 2088 uint32_t FourByteBuffer = 0; 2089 2090 StringRef ReservedBytes; 2091 StringRef Indent = "\t"; 2092 2093 assert(Bytes.size() == 64); 2094 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 2095 2096 switch (Cursor.tell()) { 2097 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 2098 FourByteBuffer = DE.getU32(Cursor); 2099 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 2100 << '\n'; 2101 return MCDisassembler::Success; 2102 2103 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 2104 FourByteBuffer = DE.getU32(Cursor); 2105 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 2106 << FourByteBuffer << '\n'; 2107 return MCDisassembler::Success; 2108 2109 case amdhsa::KERNARG_SIZE_OFFSET: 2110 FourByteBuffer = DE.getU32(Cursor); 2111 KdStream << Indent << ".amdhsa_kernarg_size " 2112 << FourByteBuffer << '\n'; 2113 return MCDisassembler::Success; 2114 2115 case amdhsa::RESERVED0_OFFSET: 2116 // 4 reserved bytes, must be 0. 2117 ReservedBytes = DE.getBytes(Cursor, 4); 2118 for (int I = 0; I < 4; ++I) { 2119 if (ReservedBytes[I] != 0) { 2120 return MCDisassembler::Fail; 2121 } 2122 } 2123 return MCDisassembler::Success; 2124 2125 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 2126 // KERNEL_CODE_ENTRY_BYTE_OFFSET 2127 // So far no directive controls this for Code Object V3, so simply skip for 2128 // disassembly. 2129 DE.skip(Cursor, 8); 2130 return MCDisassembler::Success; 2131 2132 case amdhsa::RESERVED1_OFFSET: 2133 // 20 reserved bytes, must be 0. 2134 ReservedBytes = DE.getBytes(Cursor, 20); 2135 for (int I = 0; I < 20; ++I) { 2136 if (ReservedBytes[I] != 0) { 2137 return MCDisassembler::Fail; 2138 } 2139 } 2140 return MCDisassembler::Success; 2141 2142 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 2143 FourByteBuffer = DE.getU32(Cursor); 2144 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 2145 2146 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 2147 FourByteBuffer = DE.getU32(Cursor); 2148 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 2149 2150 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 2151 FourByteBuffer = DE.getU32(Cursor); 2152 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 2153 2154 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 2155 using namespace amdhsa; 2156 TwoByteBuffer = DE.getU16(Cursor); 2157 2158 if (!hasArchitectedFlatScratch()) 2159 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 2160 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 2161 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 2162 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 2163 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 2164 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 2165 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 2166 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 2167 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 2168 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 2169 if (!hasArchitectedFlatScratch()) 2170 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 2171 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 2172 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 2173 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 2174 2175 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 2176 return MCDisassembler::Fail; 2177 2178 // Reserved for GFX9 2179 if (isGFX9() && 2180 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 2181 return MCDisassembler::Fail; 2182 } else if (isGFX10Plus()) { 2183 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 2184 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2185 } 2186 2187 // FIXME: We should be looking at the ELF header ABI version for this. 2188 if (AMDGPU::getDefaultAMDHSACodeObjectVersion() >= AMDGPU::AMDHSA_COV5) 2189 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 2190 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 2191 2192 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 2193 return MCDisassembler::Fail; 2194 2195 return MCDisassembler::Success; 2196 2197 case amdhsa::KERNARG_PRELOAD_OFFSET: 2198 using namespace amdhsa; 2199 TwoByteBuffer = DE.getU16(Cursor); 2200 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) { 2201 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length", 2202 KERNARG_PRELOAD_SPEC_LENGTH); 2203 } 2204 2205 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) { 2206 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset", 2207 KERNARG_PRELOAD_SPEC_OFFSET); 2208 } 2209 return MCDisassembler::Success; 2210 2211 case amdhsa::RESERVED3_OFFSET: 2212 // 4 bytes from here are reserved, must be 0. 2213 ReservedBytes = DE.getBytes(Cursor, 4); 2214 for (int I = 0; I < 4; ++I) { 2215 if (ReservedBytes[I] != 0) 2216 return MCDisassembler::Fail; 2217 } 2218 return MCDisassembler::Success; 2219 2220 default: 2221 llvm_unreachable("Unhandled index. Case statements cover everything."); 2222 return MCDisassembler::Fail; 2223 } 2224 #undef PRINT_DIRECTIVE 2225 } 2226 2227 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 2228 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 2229 // CP microcode requires the kernel descriptor to be 64 aligned. 2230 if (Bytes.size() != 64 || KdAddress % 64 != 0) 2231 return MCDisassembler::Fail; 2232 2233 // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 2234 // requires us to know the setting of .amdhsa_wavefront_size32 in order to 2235 // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong 2236 // order. Workaround this by first looking up .amdhsa_wavefront_size32 here 2237 // when required. 2238 if (isGFX10Plus()) { 2239 uint16_t KernelCodeProperties = 2240 support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], 2241 llvm::endianness::little); 2242 EnableWavefrontSize32 = 2243 AMDHSA_BITS_GET(KernelCodeProperties, 2244 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2245 } 2246 2247 std::string Kd; 2248 raw_string_ostream KdStream(Kd); 2249 KdStream << ".amdhsa_kernel " << KdName << '\n'; 2250 2251 DataExtractor::Cursor C(0); 2252 while (C && C.tell() < Bytes.size()) { 2253 MCDisassembler::DecodeStatus Status = 2254 decodeKernelDescriptorDirective(C, Bytes, KdStream); 2255 2256 cantFail(C.takeError()); 2257 2258 if (Status == MCDisassembler::Fail) 2259 return MCDisassembler::Fail; 2260 } 2261 KdStream << ".end_amdhsa_kernel\n"; 2262 outs() << KdStream.str(); 2263 return MCDisassembler::Success; 2264 } 2265 2266 std::optional<MCDisassembler::DecodeStatus> 2267 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2268 ArrayRef<uint8_t> Bytes, uint64_t Address, 2269 raw_ostream &CStream) const { 2270 // Right now only kernel descriptor needs to be handled. 2271 // We ignore all other symbols for target specific handling. 2272 // TODO: 2273 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2274 // Object V2 and V3 when symbols are marked protected. 2275 2276 // amd_kernel_code_t for Code Object V2. 2277 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2278 Size = 256; 2279 return MCDisassembler::Fail; 2280 } 2281 2282 // Code Object V3 kernel descriptors. 2283 StringRef Name = Symbol.Name; 2284 if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) { 2285 Size = 64; // Size = 64 regardless of success or failure. 2286 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2287 } 2288 return std::nullopt; 2289 } 2290 2291 //===----------------------------------------------------------------------===// 2292 // AMDGPUSymbolizer 2293 //===----------------------------------------------------------------------===// 2294 2295 // Try to find symbol name for specified label 2296 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2297 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2298 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2299 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2300 2301 if (!IsBranch) { 2302 return false; 2303 } 2304 2305 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2306 if (!Symbols) 2307 return false; 2308 2309 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2310 return Val.Addr == static_cast<uint64_t>(Value) && 2311 Val.Type == ELF::STT_NOTYPE; 2312 }); 2313 if (Result != Symbols->end()) { 2314 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2315 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2316 Inst.addOperand(MCOperand::createExpr(Add)); 2317 return true; 2318 } 2319 // Add to list of referenced addresses, so caller can synthesize a label. 2320 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2321 return false; 2322 } 2323 2324 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2325 int64_t Value, 2326 uint64_t Address) { 2327 llvm_unreachable("unimplemented"); 2328 } 2329 2330 //===----------------------------------------------------------------------===// 2331 // Initialization 2332 //===----------------------------------------------------------------------===// 2333 2334 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2335 LLVMOpInfoCallback /*GetOpInfo*/, 2336 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2337 void *DisInfo, 2338 MCContext *Ctx, 2339 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2340 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2341 } 2342 2343 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2344 const MCSubtargetInfo &STI, 2345 MCContext &Ctx) { 2346 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2347 } 2348 2349 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2350 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2351 createAMDGPUDisassembler); 2352 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2353 createAMDGPUSymbolizer); 2354 } 2355