xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision b9ce237980b5a636e87e3578609c812833f7537f)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)),
51       CodeObjectVersion(AMDGPU::getDefaultAMDHSACodeObjectVersion()) {
52   // ToDo: AMDGPUDisassembler supports only VI ISA.
53   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
54     report_fatal_error("Disassembly not yet supported for subtarget");
55 }
56 
57 void AMDGPUDisassembler::setABIVersion(unsigned Version) {
58   CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(Version);
59 }
60 
61 inline static MCDisassembler::DecodeStatus
62 addOperand(MCInst &Inst, const MCOperand& Opnd) {
63   Inst.addOperand(Opnd);
64   return Opnd.isValid() ?
65     MCDisassembler::Success :
66     MCDisassembler::Fail;
67 }
68 
69 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
70                                 uint16_t NameIdx) {
71   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
72   if (OpIdx != -1) {
73     auto I = MI.begin();
74     std::advance(I, OpIdx);
75     MI.insert(I, Op);
76   }
77   return OpIdx;
78 }
79 
80 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
81                                        uint64_t Addr,
82                                        const MCDisassembler *Decoder) {
83   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
84 
85   // Our branches take a simm16, but we need two extra bits to account for the
86   // factor of 4.
87   APInt SignedOffset(18, Imm * 4, true);
88   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
89 
90   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
91     return MCDisassembler::Success;
92   return addOperand(Inst, MCOperand::createImm(Imm));
93 }
94 
95 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
96                                      const MCDisassembler *Decoder) {
97   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
98   int64_t Offset;
99   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
100     Offset = SignExtend64<24>(Imm);
101   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
102     Offset = Imm & 0xFFFFF;
103   } else { // GFX9+ supports 21-bit signed offsets.
104     Offset = SignExtend64<21>(Imm);
105   }
106   return addOperand(Inst, MCOperand::createImm(Offset));
107 }
108 
109 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
110                                   const MCDisassembler *Decoder) {
111   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
112   return addOperand(Inst, DAsm->decodeBoolReg(Val));
113 }
114 
115 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
116                                        uint64_t Addr,
117                                        const MCDisassembler *Decoder) {
118   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
119   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
120 }
121 
122 static DecodeStatus decodeDpp8FI(MCInst &Inst, unsigned Val, uint64_t Addr,
123                                  const MCDisassembler *Decoder) {
124   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
125   return addOperand(Inst, DAsm->decodeDpp8FI(Val));
126 }
127 
128 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
129   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
130                                         uint64_t /*Addr*/,                     \
131                                         const MCDisassembler *Decoder) {       \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
134   }
135 
136 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
137 // number of register. Used by VGPR only and AGPR only operands.
138 #define DECODE_OPERAND_REG_8(RegClass)                                         \
139   static DecodeStatus Decode##RegClass##RegisterClass(                         \
140       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
141       const MCDisassembler *Decoder) {                                         \
142     assert(Imm < (1 << 8) && "8-bit encoding");                                \
143     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
144     return addOperand(                                                         \
145         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
146   }
147 
148 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
149                      ImmWidth)                                                 \
150   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
151                            const MCDisassembler *Decoder) {                    \
152     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
153     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
154     return addOperand(Inst,                                                    \
155                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
156                                         MandatoryLiteral, ImmWidth));          \
157   }
158 
159 static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize,
160                                 AMDGPUDisassembler::OpWidthTy OpWidth,
161                                 unsigned Imm, unsigned EncImm,
162                                 bool MandatoryLiteral, unsigned ImmWidth,
163                                 AMDGPU::OperandSemantics Sema,
164                                 const MCDisassembler *Decoder) {
165   assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!");
166   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
167   return addOperand(Inst, DAsm->decodeSrcOp(OpWidth, EncImm, MandatoryLiteral,
168                                             ImmWidth, Sema));
169 }
170 
171 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
172 // get register class. Used by SGPR only operands.
173 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
174   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
175 
176 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
177 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
178 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
179 // Used by AV_ register classes (AGPR or VGPR only register operands).
180 template <AMDGPUDisassembler::OpWidthTy OpWidth>
181 static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
182                                const MCDisassembler *Decoder) {
183   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm | AMDGPU::EncValues::IS_VGPR,
184                      false, 0, AMDGPU::OperandSemantics::INT, Decoder);
185 }
186 
187 // Decoder for Src(9-bit encoding) registers only.
188 template <AMDGPUDisassembler::OpWidthTy OpWidth>
189 static DecodeStatus decodeSrcReg9(MCInst &Inst, unsigned Imm,
190                                   uint64_t /* Addr */,
191                                   const MCDisassembler *Decoder) {
192   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, 0,
193                      AMDGPU::OperandSemantics::INT, Decoder);
194 }
195 
196 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
197 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
198 // only.
199 template <AMDGPUDisassembler::OpWidthTy OpWidth>
200 static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
201                                 const MCDisassembler *Decoder) {
202   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, 0,
203                      AMDGPU::OperandSemantics::INT, Decoder);
204 }
205 
206 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
207 // Imm{9} is acc, registers only.
208 template <AMDGPUDisassembler::OpWidthTy OpWidth>
209 static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm,
210                                   uint64_t /* Addr */,
211                                   const MCDisassembler *Decoder) {
212   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm, false, 0,
213                      AMDGPU::OperandSemantics::INT, Decoder);
214 }
215 
216 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
217 // register from RegClass or immediate. Registers that don't belong to RegClass
218 // will be decoded and InstPrinter will report warning. Immediate will be
219 // decoded into constant of size ImmWidth, should match width of immediate used
220 // by OperandType (important for floating point types).
221 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
222           unsigned OperandSemantics>
223 static DecodeStatus decodeSrcRegOrImm9(MCInst &Inst, unsigned Imm,
224                                        uint64_t /* Addr */,
225                                        const MCDisassembler *Decoder) {
226   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, ImmWidth,
227                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
228 }
229 
230 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
231 // and decode using 'enum10' from decodeSrcOp.
232 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
233           unsigned OperandSemantics>
234 static DecodeStatus decodeSrcRegOrImmA9(MCInst &Inst, unsigned Imm,
235                                         uint64_t /* Addr */,
236                                         const MCDisassembler *Decoder) {
237   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, ImmWidth,
238                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
239 }
240 
241 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
242           unsigned OperandSemantics>
243 static DecodeStatus decodeSrcRegOrImmDeferred9(MCInst &Inst, unsigned Imm,
244                                                uint64_t /* Addr */,
245                                                const MCDisassembler *Decoder) {
246   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, true, ImmWidth,
247                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
248 }
249 
250 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
251 // when RegisterClass is used as an operand. Most often used for destination
252 // operands.
253 
254 DECODE_OPERAND_REG_8(VGPR_32)
255 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
256 DECODE_OPERAND_REG_8(VReg_64)
257 DECODE_OPERAND_REG_8(VReg_96)
258 DECODE_OPERAND_REG_8(VReg_128)
259 DECODE_OPERAND_REG_8(VReg_256)
260 DECODE_OPERAND_REG_8(VReg_288)
261 DECODE_OPERAND_REG_8(VReg_352)
262 DECODE_OPERAND_REG_8(VReg_384)
263 DECODE_OPERAND_REG_8(VReg_512)
264 DECODE_OPERAND_REG_8(VReg_1024)
265 
266 DECODE_OPERAND_REG_7(SReg_32, OPW32)
267 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
268 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
269 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
270 DECODE_OPERAND_REG_7(SReg_64, OPW64)
271 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
272 DECODE_OPERAND_REG_7(SReg_96, OPW96)
273 DECODE_OPERAND_REG_7(SReg_128, OPW128)
274 DECODE_OPERAND_REG_7(SReg_256, OPW256)
275 DECODE_OPERAND_REG_7(SReg_512, OPW512)
276 
277 DECODE_OPERAND_REG_8(AGPR_32)
278 DECODE_OPERAND_REG_8(AReg_64)
279 DECODE_OPERAND_REG_8(AReg_128)
280 DECODE_OPERAND_REG_8(AReg_256)
281 DECODE_OPERAND_REG_8(AReg_512)
282 DECODE_OPERAND_REG_8(AReg_1024)
283 
284 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
285                                                uint64_t /*Addr*/,
286                                                const MCDisassembler *Decoder) {
287   assert(isUInt<10>(Imm) && "10-bit encoding expected");
288   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
289 
290   bool IsHi = Imm & (1 << 9);
291   unsigned RegIdx = Imm & 0xff;
292   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
293   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
294 }
295 
296 static DecodeStatus
297 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
298                                  const MCDisassembler *Decoder) {
299   assert(isUInt<8>(Imm) && "8-bit encoding expected");
300 
301   bool IsHi = Imm & (1 << 7);
302   unsigned RegIdx = Imm & 0x7f;
303   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
304   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
305 }
306 
307 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
308                                                 uint64_t /*Addr*/,
309                                                 const MCDisassembler *Decoder) {
310   assert(isUInt<9>(Imm) && "9-bit encoding expected");
311 
312   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
313   bool IsVGPR = Imm & (1 << 8);
314   if (IsVGPR) {
315     bool IsHi = Imm & (1 << 7);
316     unsigned RegIdx = Imm & 0x7f;
317     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
318   }
319   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
320                                                    Imm & 0xFF, false, 16));
321 }
322 
323 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
324                                           uint64_t /*Addr*/,
325                                           const MCDisassembler *Decoder) {
326   assert(isUInt<10>(Imm) && "10-bit encoding expected");
327 
328   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
329   bool IsVGPR = Imm & (1 << 8);
330   if (IsVGPR) {
331     bool IsHi = Imm & (1 << 9);
332     unsigned RegIdx = Imm & 0xff;
333     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
334   }
335   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
336                                                    Imm & 0xFF, false, 16));
337 }
338 
339 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
340                                          uint64_t Addr,
341                                          const MCDisassembler *Decoder) {
342   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
343   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
344 }
345 
346 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
347                                           uint64_t Addr, const void *Decoder) {
348   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
349   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
350 }
351 
352 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
353                           const MCRegisterInfo *MRI) {
354   if (OpIdx < 0)
355     return false;
356 
357   const MCOperand &Op = Inst.getOperand(OpIdx);
358   if (!Op.isReg())
359     return false;
360 
361   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
362   auto Reg = Sub ? Sub : Op.getReg();
363   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
364 }
365 
366 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
367                                  AMDGPUDisassembler::OpWidthTy Opw,
368                                  const MCDisassembler *Decoder) {
369   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
370   if (!DAsm->isGFX90A()) {
371     Imm &= 511;
372   } else {
373     // If atomic has both vdata and vdst their register classes are tied.
374     // The bit is decoded along with the vdst, first operand. We need to
375     // change register class to AGPR if vdst was AGPR.
376     // If a DS instruction has both data0 and data1 their register classes
377     // are also tied.
378     unsigned Opc = Inst.getOpcode();
379     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
380     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
381                                                         : AMDGPU::OpName::vdata;
382     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
383     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
384     if ((int)Inst.getNumOperands() == DataIdx) {
385       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
386       if (IsAGPROperand(Inst, DstIdx, MRI))
387         Imm |= 512;
388     }
389 
390     if (TSFlags & SIInstrFlags::DS) {
391       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
392       if ((int)Inst.getNumOperands() == Data2Idx &&
393           IsAGPROperand(Inst, DataIdx, MRI))
394         Imm |= 512;
395     }
396   }
397   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
398 }
399 
400 template <AMDGPUDisassembler::OpWidthTy Opw>
401 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
402                                  uint64_t /* Addr */,
403                                  const MCDisassembler *Decoder) {
404   return decodeAVLdSt(Inst, Imm, Opw, Decoder);
405 }
406 
407 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
408                                            uint64_t Addr,
409                                            const MCDisassembler *Decoder) {
410   assert(Imm < (1 << 9) && "9-bit encoding");
411   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
412   return addOperand(Inst,
413                     DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64,
414                                       AMDGPU::OperandSemantics::FP64));
415 }
416 
417 #define DECODE_SDWA(DecName) \
418 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
419 
420 DECODE_SDWA(Src32)
421 DECODE_SDWA(Src16)
422 DECODE_SDWA(VopcDst)
423 
424 #include "AMDGPUGenDisassemblerTables.inc"
425 
426 //===----------------------------------------------------------------------===//
427 //
428 //===----------------------------------------------------------------------===//
429 
430 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
431   assert(Bytes.size() >= sizeof(T));
432   const auto Res =
433       support::endian::read<T, llvm::endianness::little>(Bytes.data());
434   Bytes = Bytes.slice(sizeof(T));
435   return Res;
436 }
437 
438 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
439   assert(Bytes.size() >= 12);
440   uint64_t Lo =
441       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
442   Bytes = Bytes.slice(8);
443   uint64_t Hi =
444       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
445   Bytes = Bytes.slice(4);
446   return DecoderUInt128(Lo, Hi);
447 }
448 
449 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
450                                                 ArrayRef<uint8_t> Bytes_,
451                                                 uint64_t Address,
452                                                 raw_ostream &CS) const {
453   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
454   Bytes = Bytes_.slice(0, MaxInstBytesNum);
455 
456   DecodeStatus Res = MCDisassembler::Fail;
457   do {
458     // ToDo: better to switch encoding length using some bit predicate
459     // but it is unknown yet, so try all we can
460 
461     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
462     // encodings
463     if (isGFX11Plus() && Bytes.size() >= 12 ) {
464       DecoderUInt128 DecW = eat12Bytes(Bytes);
465       Res =
466           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
467                         MI, DecW, Address, CS);
468       if (Res)
469         break;
470 
471       Res =
472           tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
473                         MI, DecW, Address, CS);
474       if (Res)
475         break;
476 
477       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
478                           MI, DecW, Address, CS);
479       if (Res)
480         break;
481 
482       Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
483                           MI, DecW, Address, CS);
484       if (Res)
485         break;
486 
487       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
488       if (Res)
489         break;
490 
491       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
492       if (Res)
493         break;
494 
495       Res = tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS);
496       if (Res)
497         break;
498     }
499     // Reinitialize Bytes
500     Bytes = Bytes_.slice(0, MaxInstBytesNum);
501 
502     if (Bytes.size() >= 8) {
503       const uint64_t QW = eatBytes<uint64_t>(Bytes);
504 
505       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
506         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
507         if (Res)
508           break;
509       }
510 
511       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
512       if (Res)
513         break;
514 
515       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
516                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
517       if (Res)
518         break;
519 
520       Res = tryDecodeInst(DecoderTableDPP8GFX1264,
521                           DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
522       if (Res)
523         break;
524 
525       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
526       if (Res) break;
527 
528       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
529                           MI, QW, Address, CS);
530       if (Res)
531         break;
532 
533       Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
534                           MI, QW, Address, CS);
535       if (Res)
536         break;
537 
538       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
539         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
540         if (Res)
541           break;
542       }
543 
544       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
545       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
546       // table first so we print the correct name.
547       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
548         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
549         if (Res)
550           break;
551       }
552 
553       if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
554         Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
555         if (Res)
556           break;
557       }
558 
559       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
560         Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
561         if (Res)
562           break;
563       }
564 
565       Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
566       if (Res)
567         break;
568 
569       Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
570       if (Res)
571         break;
572 
573       Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
574       if (Res)
575         break;
576 
577       Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI,
578                           QW, Address, CS);
579       if (Res)
580         break;
581 
582       Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI,
583                           QW, Address, CS);
584       if (Res)
585         break;
586 
587       Res = tryDecodeInst(DecoderTableGFX11W6464, MI, QW, Address, CS);
588       if (Res)
589         break;
590 
591       Res = tryDecodeInst(DecoderTableGFX12W6464, MI, QW, Address, CS);
592       if (Res)
593         break;
594     }
595 
596     // Reinitialize Bytes as DPP64 could have eaten too much
597     Bytes = Bytes_.slice(0, MaxInstBytesNum);
598 
599     // Try decode 32-bit instruction
600     if (Bytes.size() < 4) break;
601     const uint32_t DW = eatBytes<uint32_t>(Bytes);
602     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
603     if (Res) break;
604 
605     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
606     if (Res) break;
607 
608     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
609     if (Res) break;
610 
611     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
612       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
613       if (Res)
614         break;
615     }
616 
617     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
618       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
619       if (Res) break;
620     }
621 
622     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
623     if (Res) break;
624 
625     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
626                         Address, CS);
627     if (Res) break;
628 
629     Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
630                         Address, CS);
631   } while (false);
632 
633   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DPP)) {
634     if (isMacDPP(MI))
635       convertMacDPPInst(MI);
636 
637     if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
638       convertVOP3PDPPInst(MI);
639     else if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) ||
640              AMDGPU::isVOPC64DPP(MI.getOpcode()))
641       convertVOPCDPPInst(MI); // Special VOP3 case
642     else if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) !=
643              -1)
644       convertDPP8Inst(MI);
645     else if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3)
646       convertVOP3DPPInst(MI); // Regular VOP3 case
647   }
648 
649   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
650     // Insert dummy unused src2_modifiers.
651     insertNamedMCOperand(MI, MCOperand::createImm(0),
652                          AMDGPU::OpName::src2_modifiers);
653   }
654 
655   if (Res && (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
656               MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp)) {
657     // Insert dummy unused src2_modifiers.
658     insertNamedMCOperand(MI, MCOperand::createImm(0),
659                          AMDGPU::OpName::src2_modifiers);
660   }
661 
662   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
663       !AMDGPU::hasGDS(STI)) {
664     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
665   }
666 
667   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
668           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
669     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
670                                              AMDGPU::OpName::cpol);
671     if (CPolPos != -1) {
672       unsigned CPol =
673           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
674               AMDGPU::CPol::GLC : 0;
675       if (MI.getNumOperands() <= (unsigned)CPolPos) {
676         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
677                              AMDGPU::OpName::cpol);
678       } else if (CPol) {
679         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
680       }
681     }
682   }
683 
684   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
685               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
686              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
687     // GFX90A lost TFE, its place is occupied by ACC.
688     int TFEOpIdx =
689         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
690     if (TFEOpIdx != -1) {
691       auto TFEIter = MI.begin();
692       std::advance(TFEIter, TFEOpIdx);
693       MI.insert(TFEIter, MCOperand::createImm(0));
694     }
695   }
696 
697   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
698               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
699     int SWZOpIdx =
700         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
701     if (SWZOpIdx != -1) {
702       auto SWZIter = MI.begin();
703       std::advance(SWZIter, SWZOpIdx);
704       MI.insert(SWZIter, MCOperand::createImm(0));
705     }
706   }
707 
708   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
709     int VAddr0Idx =
710         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
711     int RsrcIdx =
712         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
713     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
714     if (VAddr0Idx >= 0 && NSAArgs > 0) {
715       unsigned NSAWords = (NSAArgs + 3) / 4;
716       if (Bytes.size() < 4 * NSAWords) {
717         Res = MCDisassembler::Fail;
718       } else {
719         for (unsigned i = 0; i < NSAArgs; ++i) {
720           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
721           auto VAddrRCID =
722               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
723           MI.insert(MI.begin() + VAddrIdx,
724                     createRegOperand(VAddrRCID, Bytes[i]));
725         }
726         Bytes = Bytes.slice(4 * NSAWords);
727       }
728     }
729 
730     if (Res)
731       Res = convertMIMGInst(MI);
732   }
733 
734   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
735               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
736     Res = convertMIMGInst(MI);
737 
738   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
739     Res = convertEXPInst(MI);
740 
741   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
742     Res = convertVINTERPInst(MI);
743 
744   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SDWA))
745     Res = convertSDWAInst(MI);
746 
747   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
748                                               AMDGPU::OpName::vdst_in);
749   if (VDstIn_Idx != -1) {
750     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
751                            MCOI::OperandConstraint::TIED_TO);
752     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
753          !MI.getOperand(VDstIn_Idx).isReg() ||
754          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
755       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
756         MI.erase(&MI.getOperand(VDstIn_Idx));
757       insertNamedMCOperand(MI,
758         MCOperand::createReg(MI.getOperand(Tied).getReg()),
759         AMDGPU::OpName::vdst_in);
760     }
761   }
762 
763   int ImmLitIdx =
764       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
765   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
766   if (Res && ImmLitIdx != -1 && !IsSOPK)
767     Res = convertFMAanyK(MI, ImmLitIdx);
768 
769   // if the opcode was not recognized we'll assume a Size of 4 bytes
770   // (unless there are fewer bytes left)
771   Size = Res ? (MaxInstBytesNum - Bytes.size())
772              : std::min((size_t)4, Bytes_.size());
773   return Res;
774 }
775 
776 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
777   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
778     // The MCInst still has these fields even though they are no longer encoded
779     // in the GFX11 instruction.
780     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
781     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
782   }
783   return MCDisassembler::Success;
784 }
785 
786 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
787   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
788       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
789       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
790       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
791       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
792       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
793       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
794       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
795     // The MCInst has this field that is not directly encoded in the
796     // instruction.
797     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
798   }
799   return MCDisassembler::Success;
800 }
801 
802 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
803   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
804       STI.hasFeature(AMDGPU::FeatureGFX10)) {
805     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
806       // VOPC - insert clamp
807       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
808   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
809     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
810     if (SDst != -1) {
811       // VOPC - insert VCC register as sdst
812       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
813                            AMDGPU::OpName::sdst);
814     } else {
815       // VOP1/2 - insert omod if present in instruction
816       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
817     }
818   }
819   return MCDisassembler::Success;
820 }
821 
822 struct VOPModifiers {
823   unsigned OpSel = 0;
824   unsigned OpSelHi = 0;
825   unsigned NegLo = 0;
826   unsigned NegHi = 0;
827 };
828 
829 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
830 // Note that these values do not affect disassembler output,
831 // so this is only necessary for consistency with src_modifiers.
832 static VOPModifiers collectVOPModifiers(const MCInst &MI,
833                                         bool IsVOP3P = false) {
834   VOPModifiers Modifiers;
835   unsigned Opc = MI.getOpcode();
836   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
837                         AMDGPU::OpName::src1_modifiers,
838                         AMDGPU::OpName::src2_modifiers};
839   for (int J = 0; J < 3; ++J) {
840     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
841     if (OpIdx == -1)
842       continue;
843 
844     unsigned Val = MI.getOperand(OpIdx).getImm();
845 
846     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
847     if (IsVOP3P) {
848       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
849       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
850       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
851     } else if (J == 0) {
852       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
853     }
854   }
855 
856   return Modifiers;
857 }
858 
859 // Instructions decode the op_sel/suffix bits into the src_modifier
860 // operands. Copy those bits into the src operands for true16 VGPRs.
861 void AMDGPUDisassembler::convertTrue16OpSel(MCInst &MI) const {
862   const unsigned Opc = MI.getOpcode();
863   const MCRegisterClass &ConversionRC =
864       MRI.getRegClass(AMDGPU::VGPR_16RegClassID);
865   constexpr std::array<std::tuple<int, int, unsigned>, 4> OpAndOpMods = {
866       {{AMDGPU::OpName::src0, AMDGPU::OpName::src0_modifiers,
867         SISrcMods::OP_SEL_0},
868        {AMDGPU::OpName::src1, AMDGPU::OpName::src1_modifiers,
869         SISrcMods::OP_SEL_0},
870        {AMDGPU::OpName::src2, AMDGPU::OpName::src2_modifiers,
871         SISrcMods::OP_SEL_0},
872        {AMDGPU::OpName::vdst, AMDGPU::OpName::src0_modifiers,
873         SISrcMods::DST_OP_SEL}}};
874   for (const auto &[OpName, OpModsName, OpSelMask] : OpAndOpMods) {
875     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, OpName);
876     int OpModsIdx = AMDGPU::getNamedOperandIdx(Opc, OpModsName);
877     if (OpIdx == -1 || OpModsIdx == -1)
878       continue;
879     MCOperand &Op = MI.getOperand(OpIdx);
880     if (!Op.isReg())
881       continue;
882     if (!ConversionRC.contains(Op.getReg()))
883       continue;
884     unsigned OpEnc = MRI.getEncodingValue(Op.getReg());
885     const MCOperand &OpMods = MI.getOperand(OpModsIdx);
886     unsigned ModVal = OpMods.getImm();
887     if (ModVal & OpSelMask) { // isHi
888       unsigned RegIdx = OpEnc & AMDGPU::HWEncoding::REG_IDX_MASK;
889       Op.setReg(ConversionRC.getRegister(RegIdx * 2 + 1));
890     }
891   }
892 }
893 
894 // MAC opcodes have special old and src2 operands.
895 // src2 is tied to dst, while old is not tied (but assumed to be).
896 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
897   constexpr int DST_IDX = 0;
898   auto Opcode = MI.getOpcode();
899   const auto &Desc = MCII->get(Opcode);
900   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
901 
902   if (OldIdx != -1 && Desc.getOperandConstraint(
903                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
904     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
905     assert(Desc.getOperandConstraint(
906                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
907                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
908     (void)DST_IDX;
909     return true;
910   }
911 
912   return false;
913 }
914 
915 // Create dummy old operand and insert dummy unused src2_modifiers
916 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
917   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
918   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
919   insertNamedMCOperand(MI, MCOperand::createImm(0),
920                        AMDGPU::OpName::src2_modifiers);
921 }
922 
923 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
924   unsigned Opc = MI.getOpcode();
925 
926   int VDstInIdx =
927       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
928   if (VDstInIdx != -1)
929     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
930 
931   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp8_gfx12 ||
932       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp8_gfx12)
933     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
934 
935   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
936   if (MI.getNumOperands() < DescNumOps &&
937       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
938     convertTrue16OpSel(MI);
939     auto Mods = collectVOPModifiers(MI);
940     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
941                          AMDGPU::OpName::op_sel);
942   } else {
943     // Insert dummy unused src modifiers.
944     if (MI.getNumOperands() < DescNumOps &&
945         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
946       insertNamedMCOperand(MI, MCOperand::createImm(0),
947                            AMDGPU::OpName::src0_modifiers);
948 
949     if (MI.getNumOperands() < DescNumOps &&
950         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
951       insertNamedMCOperand(MI, MCOperand::createImm(0),
952                            AMDGPU::OpName::src1_modifiers);
953   }
954   return MCDisassembler::Success;
955 }
956 
957 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
958   convertTrue16OpSel(MI);
959 
960   int VDstInIdx =
961       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
962   if (VDstInIdx != -1)
963     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
964 
965   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp_gfx12 ||
966       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp_gfx12)
967     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
968 
969   unsigned Opc = MI.getOpcode();
970   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
971   if (MI.getNumOperands() < DescNumOps &&
972       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
973     auto Mods = collectVOPModifiers(MI);
974     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
975                          AMDGPU::OpName::op_sel);
976   }
977   return MCDisassembler::Success;
978 }
979 
980 // Note that before gfx10, the MIMG encoding provided no information about
981 // VADDR size. Consequently, decoded instructions always show address as if it
982 // has 1 dword, which could be not really so.
983 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
984   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
985 
986   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
987                                            AMDGPU::OpName::vdst);
988 
989   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
990                                             AMDGPU::OpName::vdata);
991   int VAddr0Idx =
992       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
993   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
994                                                 : AMDGPU::OpName::rsrc;
995   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
996   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
997                                             AMDGPU::OpName::dmask);
998 
999   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1000                                             AMDGPU::OpName::tfe);
1001   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1002                                             AMDGPU::OpName::d16);
1003 
1004   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
1005   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1006       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
1007 
1008   assert(VDataIdx != -1);
1009   if (BaseOpcode->BVH) {
1010     // Add A16 operand for intersect_ray instructions
1011     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
1012     return MCDisassembler::Success;
1013   }
1014 
1015   bool IsAtomic = (VDstIdx != -1);
1016   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1017   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1018   bool IsNSA = false;
1019   bool IsPartialNSA = false;
1020   unsigned AddrSize = Info->VAddrDwords;
1021 
1022   if (isGFX10Plus()) {
1023     unsigned DimIdx =
1024         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1025     int A16Idx =
1026         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1027     const AMDGPU::MIMGDimInfo *Dim =
1028         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1029     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1030 
1031     AddrSize =
1032         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1033 
1034     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1035     // VIMAGE insts other than BVH never use vaddr4.
1036     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1037             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1038             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1039     if (!IsNSA) {
1040       if (!IsVSample && AddrSize > 12)
1041         AddrSize = 16;
1042     } else {
1043       if (AddrSize > Info->VAddrDwords) {
1044         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1045           // The NSA encoding does not contain enough operands for the
1046           // combination of base opcode / dimension. Should this be an error?
1047           return MCDisassembler::Success;
1048         }
1049         IsPartialNSA = true;
1050       }
1051     }
1052   }
1053 
1054   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1055   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1056 
1057   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1058   if (D16 && AMDGPU::hasPackedD16(STI)) {
1059     DstSize = (DstSize + 1) / 2;
1060   }
1061 
1062   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1063     DstSize += 1;
1064 
1065   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1066     return MCDisassembler::Success;
1067 
1068   int NewOpcode =
1069       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1070   if (NewOpcode == -1)
1071     return MCDisassembler::Success;
1072 
1073   // Widen the register to the correct number of enabled channels.
1074   unsigned NewVdata = AMDGPU::NoRegister;
1075   if (DstSize != Info->VDataDwords) {
1076     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1077 
1078     // Get first subregister of VData
1079     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1080     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1081     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1082 
1083     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1084                                        &MRI.getRegClass(DataRCID));
1085     if (NewVdata == AMDGPU::NoRegister) {
1086       // It's possible to encode this such that the low register + enabled
1087       // components exceeds the register count.
1088       return MCDisassembler::Success;
1089     }
1090   }
1091 
1092   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1093   // If using partial NSA on GFX11+ widen last address register.
1094   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1095   unsigned NewVAddrSA = AMDGPU::NoRegister;
1096   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1097       AddrSize != Info->VAddrDwords) {
1098     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1099     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1100     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1101 
1102     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1103     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1104                                         &MRI.getRegClass(AddrRCID));
1105     if (!NewVAddrSA)
1106       return MCDisassembler::Success;
1107   }
1108 
1109   MI.setOpcode(NewOpcode);
1110 
1111   if (NewVdata != AMDGPU::NoRegister) {
1112     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1113 
1114     if (IsAtomic) {
1115       // Atomic operations have an additional operand (a copy of data)
1116       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1117     }
1118   }
1119 
1120   if (NewVAddrSA) {
1121     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1122   } else if (IsNSA) {
1123     assert(AddrSize <= Info->VAddrDwords);
1124     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1125              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1126   }
1127 
1128   return MCDisassembler::Success;
1129 }
1130 
1131 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1132 // decoder only adds to src_modifiers, so manually add the bits to the other
1133 // operands.
1134 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1135   unsigned Opc = MI.getOpcode();
1136   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1137   auto Mods = collectVOPModifiers(MI, true);
1138 
1139   if (MI.getNumOperands() < DescNumOps &&
1140       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1141     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1142 
1143   if (MI.getNumOperands() < DescNumOps &&
1144       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1145     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1146                          AMDGPU::OpName::op_sel);
1147   if (MI.getNumOperands() < DescNumOps &&
1148       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1149     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1150                          AMDGPU::OpName::op_sel_hi);
1151   if (MI.getNumOperands() < DescNumOps &&
1152       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1153     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1154                          AMDGPU::OpName::neg_lo);
1155   if (MI.getNumOperands() < DescNumOps &&
1156       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1157     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1158                          AMDGPU::OpName::neg_hi);
1159 
1160   return MCDisassembler::Success;
1161 }
1162 
1163 // Create dummy old operand and insert optional operands
1164 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1165   unsigned Opc = MI.getOpcode();
1166   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1167 
1168   if (MI.getNumOperands() < DescNumOps &&
1169       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1170     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1171 
1172   if (MI.getNumOperands() < DescNumOps &&
1173       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1174     insertNamedMCOperand(MI, MCOperand::createImm(0),
1175                          AMDGPU::OpName::src0_modifiers);
1176 
1177   if (MI.getNumOperands() < DescNumOps &&
1178       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1179     insertNamedMCOperand(MI, MCOperand::createImm(0),
1180                          AMDGPU::OpName::src1_modifiers);
1181   return MCDisassembler::Success;
1182 }
1183 
1184 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1185                                                 int ImmLitIdx) const {
1186   assert(HasLiteral && "Should have decoded a literal");
1187   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1188   unsigned DescNumOps = Desc.getNumOperands();
1189   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1190                        AMDGPU::OpName::immDeferred);
1191   assert(DescNumOps == MI.getNumOperands());
1192   for (unsigned I = 0; I < DescNumOps; ++I) {
1193     auto &Op = MI.getOperand(I);
1194     auto OpType = Desc.operands()[I].OperandType;
1195     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1196                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1197     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1198         IsDeferredOp)
1199       Op.setImm(Literal);
1200   }
1201   return MCDisassembler::Success;
1202 }
1203 
1204 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1205   return getContext().getRegisterInfo()->
1206     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1207 }
1208 
1209 inline
1210 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1211                                          const Twine& ErrMsg) const {
1212   *CommentStream << "Error: " + ErrMsg;
1213 
1214   // ToDo: add support for error operands to MCInst.h
1215   // return MCOperand::createError(V);
1216   return MCOperand();
1217 }
1218 
1219 inline
1220 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1221   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1222 }
1223 
1224 inline
1225 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1226                                                unsigned Val) const {
1227   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1228   if (Val >= RegCl.getNumRegs())
1229     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1230                            ": unknown register " + Twine(Val));
1231   return createRegOperand(RegCl.getRegister(Val));
1232 }
1233 
1234 inline
1235 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1236                                                 unsigned Val) const {
1237   // ToDo: SI/CI have 104 SGPRs, VI - 102
1238   // Valery: here we accepting as much as we can, let assembler sort it out
1239   int shift = 0;
1240   switch (SRegClassID) {
1241   case AMDGPU::SGPR_32RegClassID:
1242   case AMDGPU::TTMP_32RegClassID:
1243     break;
1244   case AMDGPU::SGPR_64RegClassID:
1245   case AMDGPU::TTMP_64RegClassID:
1246     shift = 1;
1247     break;
1248   case AMDGPU::SGPR_96RegClassID:
1249   case AMDGPU::TTMP_96RegClassID:
1250   case AMDGPU::SGPR_128RegClassID:
1251   case AMDGPU::TTMP_128RegClassID:
1252   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1253   // this bundle?
1254   case AMDGPU::SGPR_256RegClassID:
1255   case AMDGPU::TTMP_256RegClassID:
1256     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1257   // this bundle?
1258   case AMDGPU::SGPR_288RegClassID:
1259   case AMDGPU::TTMP_288RegClassID:
1260   case AMDGPU::SGPR_320RegClassID:
1261   case AMDGPU::TTMP_320RegClassID:
1262   case AMDGPU::SGPR_352RegClassID:
1263   case AMDGPU::TTMP_352RegClassID:
1264   case AMDGPU::SGPR_384RegClassID:
1265   case AMDGPU::TTMP_384RegClassID:
1266   case AMDGPU::SGPR_512RegClassID:
1267   case AMDGPU::TTMP_512RegClassID:
1268     shift = 2;
1269     break;
1270   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1271   // this bundle?
1272   default:
1273     llvm_unreachable("unhandled register class");
1274   }
1275 
1276   if (Val % (1 << shift)) {
1277     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1278                    << ": scalar reg isn't aligned " << Val;
1279   }
1280 
1281   return createRegOperand(SRegClassID, Val >> shift);
1282 }
1283 
1284 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1285                                                   bool IsHi) const {
1286   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1287   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1288 }
1289 
1290 // Decode Literals for insts which always have a literal in the encoding
1291 MCOperand
1292 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1293   if (HasLiteral) {
1294     assert(
1295         AMDGPU::hasVOPD(STI) &&
1296         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1297     if (Literal != Val)
1298       return errOperand(Val, "More than one unique literal is illegal");
1299   }
1300   HasLiteral = true;
1301   Literal = Val;
1302   return MCOperand::createImm(Literal);
1303 }
1304 
1305 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1306   // For now all literal constants are supposed to be unsigned integer
1307   // ToDo: deal with signed/unsigned 64-bit integer constants
1308   // ToDo: deal with float/double constants
1309   if (!HasLiteral) {
1310     if (Bytes.size() < 4) {
1311       return errOperand(0, "cannot read literal, inst bytes left " +
1312                         Twine(Bytes.size()));
1313     }
1314     HasLiteral = true;
1315     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1316     if (ExtendFP64)
1317       Literal64 <<= 32;
1318   }
1319   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1320 }
1321 
1322 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1323   using namespace AMDGPU::EncValues;
1324 
1325   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1326   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1327     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1328     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1329       // Cast prevents negative overflow.
1330 }
1331 
1332 static int64_t getInlineImmVal32(unsigned Imm) {
1333   switch (Imm) {
1334   case 240:
1335     return llvm::bit_cast<uint32_t>(0.5f);
1336   case 241:
1337     return llvm::bit_cast<uint32_t>(-0.5f);
1338   case 242:
1339     return llvm::bit_cast<uint32_t>(1.0f);
1340   case 243:
1341     return llvm::bit_cast<uint32_t>(-1.0f);
1342   case 244:
1343     return llvm::bit_cast<uint32_t>(2.0f);
1344   case 245:
1345     return llvm::bit_cast<uint32_t>(-2.0f);
1346   case 246:
1347     return llvm::bit_cast<uint32_t>(4.0f);
1348   case 247:
1349     return llvm::bit_cast<uint32_t>(-4.0f);
1350   case 248: // 1 / (2 * PI)
1351     return 0x3e22f983;
1352   default:
1353     llvm_unreachable("invalid fp inline imm");
1354   }
1355 }
1356 
1357 static int64_t getInlineImmVal64(unsigned Imm) {
1358   switch (Imm) {
1359   case 240:
1360     return llvm::bit_cast<uint64_t>(0.5);
1361   case 241:
1362     return llvm::bit_cast<uint64_t>(-0.5);
1363   case 242:
1364     return llvm::bit_cast<uint64_t>(1.0);
1365   case 243:
1366     return llvm::bit_cast<uint64_t>(-1.0);
1367   case 244:
1368     return llvm::bit_cast<uint64_t>(2.0);
1369   case 245:
1370     return llvm::bit_cast<uint64_t>(-2.0);
1371   case 246:
1372     return llvm::bit_cast<uint64_t>(4.0);
1373   case 247:
1374     return llvm::bit_cast<uint64_t>(-4.0);
1375   case 248: // 1 / (2 * PI)
1376     return 0x3fc45f306dc9c882;
1377   default:
1378     llvm_unreachable("invalid fp inline imm");
1379   }
1380 }
1381 
1382 static int64_t getInlineImmValF16(unsigned Imm) {
1383   switch (Imm) {
1384   case 240:
1385     return 0x3800;
1386   case 241:
1387     return 0xB800;
1388   case 242:
1389     return 0x3C00;
1390   case 243:
1391     return 0xBC00;
1392   case 244:
1393     return 0x4000;
1394   case 245:
1395     return 0xC000;
1396   case 246:
1397     return 0x4400;
1398   case 247:
1399     return 0xC400;
1400   case 248: // 1 / (2 * PI)
1401     return 0x3118;
1402   default:
1403     llvm_unreachable("invalid fp inline imm");
1404   }
1405 }
1406 
1407 static int64_t getInlineImmValBF16(unsigned Imm) {
1408   switch (Imm) {
1409   case 240:
1410     return 0x3F00;
1411   case 241:
1412     return 0xBF00;
1413   case 242:
1414     return 0x3F80;
1415   case 243:
1416     return 0xBF80;
1417   case 244:
1418     return 0x4000;
1419   case 245:
1420     return 0xC000;
1421   case 246:
1422     return 0x4080;
1423   case 247:
1424     return 0xC080;
1425   case 248: // 1 / (2 * PI)
1426     return 0x3E22;
1427   default:
1428     llvm_unreachable("invalid fp inline imm");
1429   }
1430 }
1431 
1432 static int64_t getInlineImmVal16(unsigned Imm, AMDGPU::OperandSemantics Sema) {
1433   return (Sema == AMDGPU::OperandSemantics::BF16) ? getInlineImmValBF16(Imm)
1434                                                   : getInlineImmValF16(Imm);
1435 }
1436 
1437 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm,
1438                                             AMDGPU::OperandSemantics Sema) {
1439   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN &&
1440          Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1441 
1442   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1443   // ImmWidth 0 is a default case where operand should not allow immediates.
1444   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1445   // use it to print verbose error message.
1446   switch (ImmWidth) {
1447   case 0:
1448   case 32:
1449     return MCOperand::createImm(getInlineImmVal32(Imm));
1450   case 64:
1451     return MCOperand::createImm(getInlineImmVal64(Imm));
1452   case 16:
1453     return MCOperand::createImm(getInlineImmVal16(Imm, Sema));
1454   default:
1455     llvm_unreachable("implement me");
1456   }
1457 }
1458 
1459 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1460   using namespace AMDGPU;
1461 
1462   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1463   switch (Width) {
1464   default: // fall
1465   case OPW32:
1466   case OPW16:
1467   case OPWV216:
1468     return VGPR_32RegClassID;
1469   case OPW64:
1470   case OPWV232: return VReg_64RegClassID;
1471   case OPW96: return VReg_96RegClassID;
1472   case OPW128: return VReg_128RegClassID;
1473   case OPW160: return VReg_160RegClassID;
1474   case OPW256: return VReg_256RegClassID;
1475   case OPW288: return VReg_288RegClassID;
1476   case OPW320: return VReg_320RegClassID;
1477   case OPW352: return VReg_352RegClassID;
1478   case OPW384: return VReg_384RegClassID;
1479   case OPW512: return VReg_512RegClassID;
1480   case OPW1024: return VReg_1024RegClassID;
1481   }
1482 }
1483 
1484 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1485   using namespace AMDGPU;
1486 
1487   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1488   switch (Width) {
1489   default: // fall
1490   case OPW32:
1491   case OPW16:
1492   case OPWV216:
1493     return AGPR_32RegClassID;
1494   case OPW64:
1495   case OPWV232: return AReg_64RegClassID;
1496   case OPW96: return AReg_96RegClassID;
1497   case OPW128: return AReg_128RegClassID;
1498   case OPW160: return AReg_160RegClassID;
1499   case OPW256: return AReg_256RegClassID;
1500   case OPW288: return AReg_288RegClassID;
1501   case OPW320: return AReg_320RegClassID;
1502   case OPW352: return AReg_352RegClassID;
1503   case OPW384: return AReg_384RegClassID;
1504   case OPW512: return AReg_512RegClassID;
1505   case OPW1024: return AReg_1024RegClassID;
1506   }
1507 }
1508 
1509 
1510 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1511   using namespace AMDGPU;
1512 
1513   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1514   switch (Width) {
1515   default: // fall
1516   case OPW32:
1517   case OPW16:
1518   case OPWV216:
1519     return SGPR_32RegClassID;
1520   case OPW64:
1521   case OPWV232: return SGPR_64RegClassID;
1522   case OPW96: return SGPR_96RegClassID;
1523   case OPW128: return SGPR_128RegClassID;
1524   case OPW160: return SGPR_160RegClassID;
1525   case OPW256: return SGPR_256RegClassID;
1526   case OPW288: return SGPR_288RegClassID;
1527   case OPW320: return SGPR_320RegClassID;
1528   case OPW352: return SGPR_352RegClassID;
1529   case OPW384: return SGPR_384RegClassID;
1530   case OPW512: return SGPR_512RegClassID;
1531   }
1532 }
1533 
1534 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1535   using namespace AMDGPU;
1536 
1537   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1538   switch (Width) {
1539   default: // fall
1540   case OPW32:
1541   case OPW16:
1542   case OPWV216:
1543     return TTMP_32RegClassID;
1544   case OPW64:
1545   case OPWV232: return TTMP_64RegClassID;
1546   case OPW128: return TTMP_128RegClassID;
1547   case OPW256: return TTMP_256RegClassID;
1548   case OPW288: return TTMP_288RegClassID;
1549   case OPW320: return TTMP_320RegClassID;
1550   case OPW352: return TTMP_352RegClassID;
1551   case OPW384: return TTMP_384RegClassID;
1552   case OPW512: return TTMP_512RegClassID;
1553   }
1554 }
1555 
1556 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1557   using namespace AMDGPU::EncValues;
1558 
1559   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1560   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1561 
1562   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1563 }
1564 
1565 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1566                                           bool MandatoryLiteral,
1567                                           unsigned ImmWidth,
1568                                           AMDGPU::OperandSemantics Sema) const {
1569   using namespace AMDGPU::EncValues;
1570 
1571   assert(Val < 1024); // enum10
1572 
1573   bool IsAGPR = Val & 512;
1574   Val &= 511;
1575 
1576   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1577     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1578                                    : getVgprClassId(Width), Val - VGPR_MIN);
1579   }
1580   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1581                             Sema);
1582 }
1583 
1584 MCOperand
1585 AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, unsigned Val,
1586                                        bool MandatoryLiteral, unsigned ImmWidth,
1587                                        AMDGPU::OperandSemantics Sema) const {
1588   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1589   // decoded earlier.
1590   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1591   using namespace AMDGPU::EncValues;
1592 
1593   if (Val <= SGPR_MAX) {
1594     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1595     static_assert(SGPR_MIN == 0);
1596     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1597   }
1598 
1599   int TTmpIdx = getTTmpIdx(Val);
1600   if (TTmpIdx >= 0) {
1601     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1602   }
1603 
1604   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1605     return decodeIntImmed(Val);
1606 
1607   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1608     return decodeFPImmed(ImmWidth, Val, Sema);
1609 
1610   if (Val == LITERAL_CONST) {
1611     if (MandatoryLiteral)
1612       // Keep a sentinel value for deferred setting
1613       return MCOperand::createImm(LITERAL_CONST);
1614     else
1615       return decodeLiteralConstant(Sema == AMDGPU::OperandSemantics::FP64);
1616   }
1617 
1618   switch (Width) {
1619   case OPW32:
1620   case OPW16:
1621   case OPWV216:
1622     return decodeSpecialReg32(Val);
1623   case OPW64:
1624   case OPWV232:
1625     return decodeSpecialReg64(Val);
1626   default:
1627     llvm_unreachable("unexpected immediate type");
1628   }
1629 }
1630 
1631 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1632 // opposite of bit 0 of DstX.
1633 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1634                                                unsigned Val) const {
1635   int VDstXInd =
1636       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1637   assert(VDstXInd != -1);
1638   assert(Inst.getOperand(VDstXInd).isReg());
1639   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1640   Val |= ~XDstReg & 1;
1641   auto Width = llvm::AMDGPUDisassembler::OPW32;
1642   return createRegOperand(getVgprClassId(Width), Val);
1643 }
1644 
1645 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1646   using namespace AMDGPU;
1647 
1648   switch (Val) {
1649   // clang-format off
1650   case 102: return createRegOperand(FLAT_SCR_LO);
1651   case 103: return createRegOperand(FLAT_SCR_HI);
1652   case 104: return createRegOperand(XNACK_MASK_LO);
1653   case 105: return createRegOperand(XNACK_MASK_HI);
1654   case 106: return createRegOperand(VCC_LO);
1655   case 107: return createRegOperand(VCC_HI);
1656   case 108: return createRegOperand(TBA_LO);
1657   case 109: return createRegOperand(TBA_HI);
1658   case 110: return createRegOperand(TMA_LO);
1659   case 111: return createRegOperand(TMA_HI);
1660   case 124:
1661     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1662   case 125:
1663     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1664   case 126: return createRegOperand(EXEC_LO);
1665   case 127: return createRegOperand(EXEC_HI);
1666   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1667   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1668   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1669   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1670   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1671   case 251: return createRegOperand(SRC_VCCZ);
1672   case 252: return createRegOperand(SRC_EXECZ);
1673   case 253: return createRegOperand(SRC_SCC);
1674   case 254: return createRegOperand(LDS_DIRECT);
1675   default: break;
1676     // clang-format on
1677   }
1678   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1679 }
1680 
1681 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1682   using namespace AMDGPU;
1683 
1684   switch (Val) {
1685   case 102: return createRegOperand(FLAT_SCR);
1686   case 104: return createRegOperand(XNACK_MASK);
1687   case 106: return createRegOperand(VCC);
1688   case 108: return createRegOperand(TBA);
1689   case 110: return createRegOperand(TMA);
1690   case 124:
1691     if (isGFX11Plus())
1692       return createRegOperand(SGPR_NULL);
1693     break;
1694   case 125:
1695     if (!isGFX11Plus())
1696       return createRegOperand(SGPR_NULL);
1697     break;
1698   case 126: return createRegOperand(EXEC);
1699   case 235: return createRegOperand(SRC_SHARED_BASE);
1700   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1701   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1702   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1703   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1704   case 251: return createRegOperand(SRC_VCCZ);
1705   case 252: return createRegOperand(SRC_EXECZ);
1706   case 253: return createRegOperand(SRC_SCC);
1707   default: break;
1708   }
1709   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1710 }
1711 
1712 MCOperand
1713 AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, const unsigned Val,
1714                                   unsigned ImmWidth,
1715                                   AMDGPU::OperandSemantics Sema) const {
1716   using namespace AMDGPU::SDWA;
1717   using namespace AMDGPU::EncValues;
1718 
1719   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1720       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1721     // XXX: cast to int is needed to avoid stupid warning:
1722     // compare with unsigned is always true
1723     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1724         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1725       return createRegOperand(getVgprClassId(Width),
1726                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1727     }
1728     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1729         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1730                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1731       return createSRegOperand(getSgprClassId(Width),
1732                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1733     }
1734     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1735         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1736       return createSRegOperand(getTtmpClassId(Width),
1737                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1738     }
1739 
1740     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1741 
1742     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1743       return decodeIntImmed(SVal);
1744 
1745     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1746       return decodeFPImmed(ImmWidth, SVal, Sema);
1747 
1748     return decodeSpecialReg32(SVal);
1749   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1750     return createRegOperand(getVgprClassId(Width), Val);
1751   }
1752   llvm_unreachable("unsupported target");
1753 }
1754 
1755 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1756   return decodeSDWASrc(OPW16, Val, 16, AMDGPU::OperandSemantics::FP16);
1757 }
1758 
1759 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1760   return decodeSDWASrc(OPW32, Val, 32, AMDGPU::OperandSemantics::FP32);
1761 }
1762 
1763 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1764   using namespace AMDGPU::SDWA;
1765 
1766   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1767           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1768          "SDWAVopcDst should be present only on GFX9+");
1769 
1770   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1771 
1772   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1773     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1774 
1775     int TTmpIdx = getTTmpIdx(Val);
1776     if (TTmpIdx >= 0) {
1777       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1778       return createSRegOperand(TTmpClsId, TTmpIdx);
1779     } else if (Val > SGPR_MAX) {
1780       return IsWave64 ? decodeSpecialReg64(Val)
1781                       : decodeSpecialReg32(Val);
1782     } else {
1783       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1784     }
1785   } else {
1786     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1787   }
1788 }
1789 
1790 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1791   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1792              ? decodeSrcOp(OPW64, Val)
1793              : decodeSrcOp(OPW32, Val);
1794 }
1795 
1796 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1797   return decodeSrcOp(OPW32, Val);
1798 }
1799 
1800 MCOperand AMDGPUDisassembler::decodeDpp8FI(unsigned Val) const {
1801   if (Val != AMDGPU::DPP::DPP8_FI_0 && Val != AMDGPU::DPP::DPP8_FI_1)
1802     return MCOperand();
1803   return MCOperand::createImm(Val);
1804 }
1805 
1806 bool AMDGPUDisassembler::isVI() const {
1807   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1808 }
1809 
1810 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1811 
1812 bool AMDGPUDisassembler::isGFX90A() const {
1813   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1814 }
1815 
1816 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1817 
1818 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1819 
1820 bool AMDGPUDisassembler::isGFX10Plus() const {
1821   return AMDGPU::isGFX10Plus(STI);
1822 }
1823 
1824 bool AMDGPUDisassembler::isGFX11() const {
1825   return STI.hasFeature(AMDGPU::FeatureGFX11);
1826 }
1827 
1828 bool AMDGPUDisassembler::isGFX11Plus() const {
1829   return AMDGPU::isGFX11Plus(STI);
1830 }
1831 
1832 bool AMDGPUDisassembler::isGFX12Plus() const {
1833   return AMDGPU::isGFX12Plus(STI);
1834 }
1835 
1836 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1837   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1838 }
1839 
1840 bool AMDGPUDisassembler::hasKernargPreload() const {
1841   return AMDGPU::hasKernargPreload(STI);
1842 }
1843 
1844 //===----------------------------------------------------------------------===//
1845 // AMDGPU specific symbol handling
1846 //===----------------------------------------------------------------------===//
1847 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1848 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1849   do {                                                                         \
1850     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1851   } while (0)
1852 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1853   do {                                                                         \
1854     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1855              << GET_FIELD(MASK) << '\n';                                       \
1856   } while (0)
1857 
1858 // NOLINTNEXTLINE(readability-identifier-naming)
1859 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1860     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1861   using namespace amdhsa;
1862   StringRef Indent = "\t";
1863 
1864   // We cannot accurately backward compute #VGPRs used from
1865   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1866   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1867   // simply calculate the inverse of what the assembler does.
1868 
1869   uint32_t GranulatedWorkitemVGPRCount =
1870       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1871 
1872   uint32_t NextFreeVGPR =
1873       (GranulatedWorkitemVGPRCount + 1) *
1874       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1875 
1876   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1877 
1878   // We cannot backward compute values used to calculate
1879   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1880   // directives can't be computed:
1881   // .amdhsa_reserve_vcc
1882   // .amdhsa_reserve_flat_scratch
1883   // .amdhsa_reserve_xnack_mask
1884   // They take their respective default values if not specified in the assembly.
1885   //
1886   // GRANULATED_WAVEFRONT_SGPR_COUNT
1887   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1888   //
1889   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1890   // are set to 0. So while disassembling we consider that:
1891   //
1892   // GRANULATED_WAVEFRONT_SGPR_COUNT
1893   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1894   //
1895   // The disassembler cannot recover the original values of those 3 directives.
1896 
1897   uint32_t GranulatedWavefrontSGPRCount =
1898       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1899 
1900   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1901     return MCDisassembler::Fail;
1902 
1903   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1904                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1905 
1906   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1907   if (!hasArchitectedFlatScratch())
1908     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1909   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1910   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1911 
1912   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1913     return MCDisassembler::Fail;
1914 
1915   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1916                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1917   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1918                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1919   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1920                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1921   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1922                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1923 
1924   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1925     return MCDisassembler::Fail;
1926 
1927   if (!isGFX12Plus())
1928     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1929                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1930 
1931   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1932     return MCDisassembler::Fail;
1933 
1934   if (!isGFX12Plus())
1935     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1936                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1937 
1938   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1939     return MCDisassembler::Fail;
1940 
1941   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1942     return MCDisassembler::Fail;
1943 
1944   if (isGFX9Plus())
1945     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1946 
1947   if (!isGFX9Plus())
1948     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1949       return MCDisassembler::Fail;
1950   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1951     return MCDisassembler::Fail;
1952   if (!isGFX10Plus())
1953     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1954       return MCDisassembler::Fail;
1955 
1956   if (isGFX10Plus()) {
1957     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1958                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1959     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1960     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1961   }
1962 
1963   if (isGFX12Plus())
1964     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1965                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1966 
1967   return MCDisassembler::Success;
1968 }
1969 
1970 // NOLINTNEXTLINE(readability-identifier-naming)
1971 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1972     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1973   using namespace amdhsa;
1974   StringRef Indent = "\t";
1975   if (hasArchitectedFlatScratch())
1976     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1977                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1978   else
1979     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1980                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1981   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1982                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1983   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1984                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1985   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1986                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1987   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1988                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1989   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1990                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1991 
1992   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1993     return MCDisassembler::Fail;
1994 
1995   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1996     return MCDisassembler::Fail;
1997 
1998   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1999     return MCDisassembler::Fail;
2000 
2001   PRINT_DIRECTIVE(
2002       ".amdhsa_exception_fp_ieee_invalid_op",
2003       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
2004   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
2005                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
2006   PRINT_DIRECTIVE(
2007       ".amdhsa_exception_fp_ieee_div_zero",
2008       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
2009   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
2010                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
2011   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
2012                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
2013   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
2014                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
2015   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
2016                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
2017 
2018   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
2019     return MCDisassembler::Fail;
2020 
2021   return MCDisassembler::Success;
2022 }
2023 
2024 // NOLINTNEXTLINE(readability-identifier-naming)
2025 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
2026     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2027   using namespace amdhsa;
2028   StringRef Indent = "\t";
2029   if (isGFX90A()) {
2030     KdStream << Indent << ".amdhsa_accum_offset "
2031              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
2032              << '\n';
2033     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
2034       return MCDisassembler::Fail;
2035     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
2036     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
2037       return MCDisassembler::Fail;
2038   } else if (isGFX10Plus()) {
2039     // Bits [0-3].
2040     if (!isGFX12Plus()) {
2041       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2042         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2043                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2044       } else {
2045         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2046             "SHARED_VGPR_COUNT",
2047             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2048       }
2049     } else {
2050       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0)
2051         return MCDisassembler::Fail;
2052     }
2053 
2054     // Bits [4-11].
2055     if (isGFX11()) {
2056       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2057                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2058       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2059                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2060       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2061                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2062     } else if (isGFX12Plus()) {
2063       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2064           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2065     } else {
2066       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1)
2067         return MCDisassembler::Fail;
2068     }
2069 
2070     // Bits [12].
2071     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2)
2072       return MCDisassembler::Fail;
2073 
2074     // Bits [13].
2075     if (isGFX12Plus()) {
2076       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2077                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2078     } else {
2079       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3)
2080         return MCDisassembler::Fail;
2081     }
2082 
2083     // Bits [14-30].
2084     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4)
2085       return MCDisassembler::Fail;
2086 
2087     // Bits [31].
2088     if (isGFX11Plus()) {
2089       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2090                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2091     } else {
2092       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5)
2093         return MCDisassembler::Fail;
2094     }
2095   } else if (FourByteBuffer) {
2096     return MCDisassembler::Fail;
2097   }
2098   return MCDisassembler::Success;
2099 }
2100 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2101 #undef PRINT_DIRECTIVE
2102 #undef GET_FIELD
2103 
2104 MCDisassembler::DecodeStatus
2105 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2106     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2107     raw_string_ostream &KdStream) const {
2108 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2109   do {                                                                         \
2110     KdStream << Indent << DIRECTIVE " "                                        \
2111              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2112   } while (0)
2113 
2114   uint16_t TwoByteBuffer = 0;
2115   uint32_t FourByteBuffer = 0;
2116 
2117   StringRef ReservedBytes;
2118   StringRef Indent = "\t";
2119 
2120   assert(Bytes.size() == 64);
2121   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2122 
2123   switch (Cursor.tell()) {
2124   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2125     FourByteBuffer = DE.getU32(Cursor);
2126     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2127              << '\n';
2128     return MCDisassembler::Success;
2129 
2130   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2131     FourByteBuffer = DE.getU32(Cursor);
2132     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2133              << FourByteBuffer << '\n';
2134     return MCDisassembler::Success;
2135 
2136   case amdhsa::KERNARG_SIZE_OFFSET:
2137     FourByteBuffer = DE.getU32(Cursor);
2138     KdStream << Indent << ".amdhsa_kernarg_size "
2139              << FourByteBuffer << '\n';
2140     return MCDisassembler::Success;
2141 
2142   case amdhsa::RESERVED0_OFFSET:
2143     // 4 reserved bytes, must be 0.
2144     ReservedBytes = DE.getBytes(Cursor, 4);
2145     for (int I = 0; I < 4; ++I) {
2146       if (ReservedBytes[I] != 0) {
2147         return MCDisassembler::Fail;
2148       }
2149     }
2150     return MCDisassembler::Success;
2151 
2152   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2153     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2154     // So far no directive controls this for Code Object V3, so simply skip for
2155     // disassembly.
2156     DE.skip(Cursor, 8);
2157     return MCDisassembler::Success;
2158 
2159   case amdhsa::RESERVED1_OFFSET:
2160     // 20 reserved bytes, must be 0.
2161     ReservedBytes = DE.getBytes(Cursor, 20);
2162     for (int I = 0; I < 20; ++I) {
2163       if (ReservedBytes[I] != 0) {
2164         return MCDisassembler::Fail;
2165       }
2166     }
2167     return MCDisassembler::Success;
2168 
2169   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2170     FourByteBuffer = DE.getU32(Cursor);
2171     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2172 
2173   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2174     FourByteBuffer = DE.getU32(Cursor);
2175     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2176 
2177   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2178     FourByteBuffer = DE.getU32(Cursor);
2179     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2180 
2181   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2182     using namespace amdhsa;
2183     TwoByteBuffer = DE.getU16(Cursor);
2184 
2185     if (!hasArchitectedFlatScratch())
2186       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2187                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2188     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2189                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2190     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2191                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2192     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2193                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2194     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2195                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2196     if (!hasArchitectedFlatScratch())
2197       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2198                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2199     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2200                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2201 
2202     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2203       return MCDisassembler::Fail;
2204 
2205     // Reserved for GFX9
2206     if (isGFX9() &&
2207         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2208       return MCDisassembler::Fail;
2209     } else if (isGFX10Plus()) {
2210       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2211                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2212     }
2213 
2214     if (CodeObjectVersion >= AMDGPU::AMDHSA_COV5)
2215       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2216                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2217 
2218     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2219       return MCDisassembler::Fail;
2220 
2221     return MCDisassembler::Success;
2222 
2223   case amdhsa::KERNARG_PRELOAD_OFFSET:
2224     using namespace amdhsa;
2225     TwoByteBuffer = DE.getU16(Cursor);
2226     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2227       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2228                       KERNARG_PRELOAD_SPEC_LENGTH);
2229     }
2230 
2231     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2232       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2233                       KERNARG_PRELOAD_SPEC_OFFSET);
2234     }
2235     return MCDisassembler::Success;
2236 
2237   case amdhsa::RESERVED3_OFFSET:
2238     // 4 bytes from here are reserved, must be 0.
2239     ReservedBytes = DE.getBytes(Cursor, 4);
2240     for (int I = 0; I < 4; ++I) {
2241       if (ReservedBytes[I] != 0)
2242         return MCDisassembler::Fail;
2243     }
2244     return MCDisassembler::Success;
2245 
2246   default:
2247     llvm_unreachable("Unhandled index. Case statements cover everything.");
2248     return MCDisassembler::Fail;
2249   }
2250 #undef PRINT_DIRECTIVE
2251 }
2252 
2253 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2254     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2255   // CP microcode requires the kernel descriptor to be 64 aligned.
2256   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2257     return MCDisassembler::Fail;
2258 
2259   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2260   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2261   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2262   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2263   // when required.
2264   if (isGFX10Plus()) {
2265     uint16_t KernelCodeProperties =
2266         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2267                                 llvm::endianness::little);
2268     EnableWavefrontSize32 =
2269         AMDHSA_BITS_GET(KernelCodeProperties,
2270                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2271   }
2272 
2273   std::string Kd;
2274   raw_string_ostream KdStream(Kd);
2275   KdStream << ".amdhsa_kernel " << KdName << '\n';
2276 
2277   DataExtractor::Cursor C(0);
2278   while (C && C.tell() < Bytes.size()) {
2279     MCDisassembler::DecodeStatus Status =
2280         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2281 
2282     cantFail(C.takeError());
2283 
2284     if (Status == MCDisassembler::Fail)
2285       return MCDisassembler::Fail;
2286   }
2287   KdStream << ".end_amdhsa_kernel\n";
2288   outs() << KdStream.str();
2289   return MCDisassembler::Success;
2290 }
2291 
2292 std::optional<MCDisassembler::DecodeStatus>
2293 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2294                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2295                                   raw_ostream &CStream) const {
2296   // Right now only kernel descriptor needs to be handled.
2297   // We ignore all other symbols for target specific handling.
2298   // TODO:
2299   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2300   // Object V2 and V3 when symbols are marked protected.
2301 
2302   // amd_kernel_code_t for Code Object V2.
2303   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2304     Size = 256;
2305     return MCDisassembler::Fail;
2306   }
2307 
2308   // Code Object V3 kernel descriptors.
2309   StringRef Name = Symbol.Name;
2310   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2311     Size = 64; // Size = 64 regardless of success or failure.
2312     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2313   }
2314   return std::nullopt;
2315 }
2316 
2317 //===----------------------------------------------------------------------===//
2318 // AMDGPUSymbolizer
2319 //===----------------------------------------------------------------------===//
2320 
2321 // Try to find symbol name for specified label
2322 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2323     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2324     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2325     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2326 
2327   if (!IsBranch) {
2328     return false;
2329   }
2330 
2331   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2332   if (!Symbols)
2333     return false;
2334 
2335   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2336     return Val.Addr == static_cast<uint64_t>(Value) &&
2337            Val.Type == ELF::STT_NOTYPE;
2338   });
2339   if (Result != Symbols->end()) {
2340     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2341     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2342     Inst.addOperand(MCOperand::createExpr(Add));
2343     return true;
2344   }
2345   // Add to list of referenced addresses, so caller can synthesize a label.
2346   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2347   return false;
2348 }
2349 
2350 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2351                                                        int64_t Value,
2352                                                        uint64_t Address) {
2353   llvm_unreachable("unimplemented");
2354 }
2355 
2356 //===----------------------------------------------------------------------===//
2357 // Initialization
2358 //===----------------------------------------------------------------------===//
2359 
2360 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2361                               LLVMOpInfoCallback /*GetOpInfo*/,
2362                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2363                               void *DisInfo,
2364                               MCContext *Ctx,
2365                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2366   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2367 }
2368 
2369 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2370                                                 const MCSubtargetInfo &STI,
2371                                                 MCContext &Ctx) {
2372   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2373 }
2374 
2375 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2376   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2377                                          createAMDGPUDisassembler);
2378   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2379                                        createAMDGPUSymbolizer);
2380 }
2381