xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision b0c1a45ba5e5f9f04f5e208a6efb120dbb903758)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
122 // number of register. Used by VGPR only and AGPR only operands.
123 #define DECODE_OPERAND_REG_8(RegClass)                                         \
124   static DecodeStatus Decode##RegClass##RegisterClass(                         \
125       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
126       const MCDisassembler *Decoder) {                                         \
127     assert(Imm < (1 << 8) && "8-bit encoding");                                \
128     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
129     return addOperand(                                                         \
130         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
131   }
132 
133 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
134                      ImmWidth)                                                 \
135   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
136                            const MCDisassembler *Decoder) {                    \
137     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
138     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
139     return addOperand(Inst,                                                    \
140                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
141                                         MandatoryLiteral, ImmWidth));          \
142   }
143 
144 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
145 // get register class. Used by SGPR only operands.
146 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
147   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
148 
149 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
150 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
151 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
152 // Used by AV_ register classes (AGPR or VGPR only register operands).
153 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
154   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
155                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
156 
157 // Decoder for Src(9-bit encoding) registers only.
158 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
159   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
160 
161 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
162 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
163 // only.
164 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
165   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
166 
167 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
168 // Imm{9} is acc, registers only.
169 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
170   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
171 
172 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
173 // register from RegClass or immediate. Registers that don't belong to RegClass
174 // will be decoded and InstPrinter will report warning. Immediate will be
175 // decoded into constant of size ImmWidth, should match width of immediate used
176 // by OperandType (important for floating point types).
177 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
178   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
179                false, ImmWidth)
180 
181 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
182 // and decode using 'enum10' from decodeSrcOp.
183 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
184   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
185                Imm | 512, false, ImmWidth)
186 
187 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
188   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
189                OpWidth, Imm, true, ImmWidth)
190 
191 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
192 // when RegisterClass is used as an operand. Most often used for destination
193 // operands.
194 
195 DECODE_OPERAND_REG_8(VGPR_32)
196 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
197 DECODE_OPERAND_REG_8(VReg_64)
198 DECODE_OPERAND_REG_8(VReg_96)
199 DECODE_OPERAND_REG_8(VReg_128)
200 DECODE_OPERAND_REG_8(VReg_256)
201 DECODE_OPERAND_REG_8(VReg_288)
202 DECODE_OPERAND_REG_8(VReg_352)
203 DECODE_OPERAND_REG_8(VReg_384)
204 DECODE_OPERAND_REG_8(VReg_512)
205 DECODE_OPERAND_REG_8(VReg_1024)
206 
207 DECODE_OPERAND_REG_7(SReg_32, OPW32)
208 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
209 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
210 DECODE_OPERAND_REG_7(SReg_64, OPW64)
211 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
212 DECODE_OPERAND_REG_7(SReg_128, OPW128)
213 DECODE_OPERAND_REG_7(SReg_256, OPW256)
214 DECODE_OPERAND_REG_7(SReg_512, OPW512)
215 
216 DECODE_OPERAND_REG_8(AGPR_32)
217 DECODE_OPERAND_REG_8(AReg_64)
218 DECODE_OPERAND_REG_8(AReg_128)
219 DECODE_OPERAND_REG_8(AReg_256)
220 DECODE_OPERAND_REG_8(AReg_512)
221 DECODE_OPERAND_REG_8(AReg_1024)
222 
223 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
224 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
225 
226 // Decoders for register only source RegisterOperands that use use 9-bit Src
227 // encoding: 'decodeOperand_<RegClass>'.
228 
229 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
230 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
231 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
232 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
233 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
234 
235 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
236 
237 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
238 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
239 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
240 
241 // Decoders for register or immediate RegisterOperands that use 9-bit Src
242 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
243 
244 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
245 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
246 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
254 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
255 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
256 
257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
259 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
260 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
261 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
262 
263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
264 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
265 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
266 
267 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
268                                           uint64_t Addr,
269                                           const MCDisassembler *Decoder) {
270   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
271   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
272 }
273 
274 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
275                                           uint64_t Addr,
276                                           const MCDisassembler *Decoder) {
277   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
278   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
279 }
280 
281 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
282                                           uint64_t Addr, const void *Decoder) {
283   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
284   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
285 }
286 
287 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
288                           const MCRegisterInfo *MRI) {
289   if (OpIdx < 0)
290     return false;
291 
292   const MCOperand &Op = Inst.getOperand(OpIdx);
293   if (!Op.isReg())
294     return false;
295 
296   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
297   auto Reg = Sub ? Sub : Op.getReg();
298   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
299 }
300 
301 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
302                                              AMDGPUDisassembler::OpWidthTy Opw,
303                                              const MCDisassembler *Decoder) {
304   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
305   if (!DAsm->isGFX90A()) {
306     Imm &= 511;
307   } else {
308     // If atomic has both vdata and vdst their register classes are tied.
309     // The bit is decoded along with the vdst, first operand. We need to
310     // change register class to AGPR if vdst was AGPR.
311     // If a DS instruction has both data0 and data1 their register classes
312     // are also tied.
313     unsigned Opc = Inst.getOpcode();
314     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
315     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
316                                                         : AMDGPU::OpName::vdata;
317     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
318     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
319     if ((int)Inst.getNumOperands() == DataIdx) {
320       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
321       if (IsAGPROperand(Inst, DstIdx, MRI))
322         Imm |= 512;
323     }
324 
325     if (TSFlags & SIInstrFlags::DS) {
326       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
327       if ((int)Inst.getNumOperands() == Data2Idx &&
328           IsAGPROperand(Inst, DataIdx, MRI))
329         Imm |= 512;
330     }
331   }
332   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
333 }
334 
335 static DecodeStatus
336 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
337                              const MCDisassembler *Decoder) {
338   return decodeOperand_AVLdSt_Any(Inst, Imm,
339                                   AMDGPUDisassembler::OPW32, Decoder);
340 }
341 
342 static DecodeStatus
343 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
344                              const MCDisassembler *Decoder) {
345   return decodeOperand_AVLdSt_Any(Inst, Imm,
346                                   AMDGPUDisassembler::OPW64, Decoder);
347 }
348 
349 static DecodeStatus
350 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
351                              const MCDisassembler *Decoder) {
352   return decodeOperand_AVLdSt_Any(Inst, Imm,
353                                   AMDGPUDisassembler::OPW96, Decoder);
354 }
355 
356 static DecodeStatus
357 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
358                               const MCDisassembler *Decoder) {
359   return decodeOperand_AVLdSt_Any(Inst, Imm,
360                                   AMDGPUDisassembler::OPW128, Decoder);
361 }
362 
363 static DecodeStatus
364 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
365                               const MCDisassembler *Decoder) {
366   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
367                                   Decoder);
368 }
369 
370 #define DECODE_SDWA(DecName) \
371 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
372 
373 DECODE_SDWA(Src32)
374 DECODE_SDWA(Src16)
375 DECODE_SDWA(VopcDst)
376 
377 #include "AMDGPUGenDisassemblerTables.inc"
378 
379 //===----------------------------------------------------------------------===//
380 //
381 //===----------------------------------------------------------------------===//
382 
383 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
384   assert(Bytes.size() >= sizeof(T));
385   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
386   Bytes = Bytes.slice(sizeof(T));
387   return Res;
388 }
389 
390 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
391   assert(Bytes.size() >= 12);
392   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
393       Bytes.data());
394   Bytes = Bytes.slice(8);
395   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
396       Bytes.data());
397   Bytes = Bytes.slice(4);
398   return DecoderUInt128(Lo, Hi);
399 }
400 
401 // The disassembler is greedy, so we need to check FI operand value to
402 // not parse a dpp if the correct literal is not set. For dpp16 the
403 // autogenerated decoder checks the dpp literal
404 static bool isValidDPP8(const MCInst &MI) {
405   using namespace llvm::AMDGPU::DPP;
406   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
407   assert(FiIdx != -1);
408   if ((unsigned)FiIdx >= MI.getNumOperands())
409     return false;
410   unsigned Fi = MI.getOperand(FiIdx).getImm();
411   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
412 }
413 
414 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
415                                                 ArrayRef<uint8_t> Bytes_,
416                                                 uint64_t Address,
417                                                 raw_ostream &CS) const {
418   CommentStream = &CS;
419   bool IsSDWA = false;
420 
421   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
422   Bytes = Bytes_.slice(0, MaxInstBytesNum);
423 
424   DecodeStatus Res = MCDisassembler::Fail;
425   do {
426     // ToDo: better to switch encoding length using some bit predicate
427     // but it is unknown yet, so try all we can
428 
429     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
430     // encodings
431     if (isGFX11Plus() && Bytes.size() >= 12 ) {
432       DecoderUInt128 DecW = eat12Bytes(Bytes);
433       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
434                                           Address);
435       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
436         break;
437       MI = MCInst(); // clear
438       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
439                                           Address);
440       if (Res) {
441         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
442           convertVOP3PDPPInst(MI);
443         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
444           convertVOPCDPPInst(MI); // Special VOP3 case
445         else {
446           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
447           convertVOP3DPPInst(MI); // Regular VOP3 case
448         }
449         break;
450       }
451       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
452       if (Res)
453         break;
454     }
455     // Reinitialize Bytes
456     Bytes = Bytes_.slice(0, MaxInstBytesNum);
457 
458     if (Bytes.size() >= 8) {
459       const uint64_t QW = eatBytes<uint64_t>(Bytes);
460 
461       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
462         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
463         if (Res) {
464           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
465               == -1)
466             break;
467           if (convertDPP8Inst(MI) == MCDisassembler::Success)
468             break;
469           MI = MCInst(); // clear
470         }
471       }
472 
473       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
474       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
475         break;
476       MI = MCInst(); // clear
477 
478       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
479       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
480         break;
481       MI = MCInst(); // clear
482 
483       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
484       if (Res) break;
485 
486       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
487       if (Res) {
488         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
489           convertVOPCDPPInst(MI);
490         break;
491       }
492 
493       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
494       if (Res) { IsSDWA = true;  break; }
495 
496       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
497       if (Res) { IsSDWA = true;  break; }
498 
499       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
500       if (Res) { IsSDWA = true;  break; }
501 
502       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
503         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
504         if (Res)
505           break;
506       }
507 
508       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
509       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
510       // table first so we print the correct name.
511       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
512         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
513         if (Res)
514           break;
515       }
516     }
517 
518     // Reinitialize Bytes as DPP64 could have eaten too much
519     Bytes = Bytes_.slice(0, MaxInstBytesNum);
520 
521     // Try decode 32-bit instruction
522     if (Bytes.size() < 4) break;
523     const uint32_t DW = eatBytes<uint32_t>(Bytes);
524     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
525     if (Res) break;
526 
527     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
528     if (Res) break;
529 
530     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
531     if (Res) break;
532 
533     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
534       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
535       if (Res)
536         break;
537     }
538 
539     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
540       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
541       if (Res) break;
542     }
543 
544     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
545     if (Res) break;
546 
547     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
548     if (Res) break;
549 
550     if (Bytes.size() < 4) break;
551     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
552 
553     if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) {
554       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address);
555       if (Res)
556         break;
557     }
558 
559     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
560       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
561       if (Res)
562         break;
563     }
564 
565     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
566     if (Res) break;
567 
568     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
569     if (Res) break;
570 
571     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
572     if (Res) break;
573 
574     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
575     if (Res) break;
576 
577     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
578     if (Res)
579       break;
580 
581     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
582   } while (false);
583 
584   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
585     // Insert dummy unused src2_modifiers.
586     insertNamedMCOperand(MI, MCOperand::createImm(0),
587                          AMDGPU::OpName::src2_modifiers);
588   }
589 
590   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
591           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
592     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
593                                              AMDGPU::OpName::cpol);
594     if (CPolPos != -1) {
595       unsigned CPol =
596           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
597               AMDGPU::CPol::GLC : 0;
598       if (MI.getNumOperands() <= (unsigned)CPolPos) {
599         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
600                              AMDGPU::OpName::cpol);
601       } else if (CPol) {
602         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
603       }
604     }
605   }
606 
607   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
608               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
609              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
610     // GFX90A lost TFE, its place is occupied by ACC.
611     int TFEOpIdx =
612         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
613     if (TFEOpIdx != -1) {
614       auto TFEIter = MI.begin();
615       std::advance(TFEIter, TFEOpIdx);
616       MI.insert(TFEIter, MCOperand::createImm(0));
617     }
618   }
619 
620   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
621               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
622     int SWZOpIdx =
623         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
624     if (SWZOpIdx != -1) {
625       auto SWZIter = MI.begin();
626       std::advance(SWZIter, SWZOpIdx);
627       MI.insert(SWZIter, MCOperand::createImm(0));
628     }
629   }
630 
631   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
632     int VAddr0Idx =
633         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
634     int RsrcIdx =
635         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
636     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
637     if (VAddr0Idx >= 0 && NSAArgs > 0) {
638       unsigned NSAWords = (NSAArgs + 3) / 4;
639       if (Bytes.size() < 4 * NSAWords) {
640         Res = MCDisassembler::Fail;
641       } else {
642         for (unsigned i = 0; i < NSAArgs; ++i) {
643           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
644           auto VAddrRCID =
645               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
646           MI.insert(MI.begin() + VAddrIdx,
647                     createRegOperand(VAddrRCID, Bytes[i]));
648         }
649         Bytes = Bytes.slice(4 * NSAWords);
650       }
651     }
652 
653     if (Res)
654       Res = convertMIMGInst(MI);
655   }
656 
657   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
658     Res = convertEXPInst(MI);
659 
660   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
661     Res = convertVINTERPInst(MI);
662 
663   if (Res && IsSDWA)
664     Res = convertSDWAInst(MI);
665 
666   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
667                                               AMDGPU::OpName::vdst_in);
668   if (VDstIn_Idx != -1) {
669     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
670                            MCOI::OperandConstraint::TIED_TO);
671     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
672          !MI.getOperand(VDstIn_Idx).isReg() ||
673          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
674       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
675         MI.erase(&MI.getOperand(VDstIn_Idx));
676       insertNamedMCOperand(MI,
677         MCOperand::createReg(MI.getOperand(Tied).getReg()),
678         AMDGPU::OpName::vdst_in);
679     }
680   }
681 
682   int ImmLitIdx =
683       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
684   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
685   if (Res && ImmLitIdx != -1 && !IsSOPK)
686     Res = convertFMAanyK(MI, ImmLitIdx);
687 
688   // if the opcode was not recognized we'll assume a Size of 4 bytes
689   // (unless there are fewer bytes left)
690   Size = Res ? (MaxInstBytesNum - Bytes.size())
691              : std::min((size_t)4, Bytes_.size());
692   return Res;
693 }
694 
695 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
696   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
697     // The MCInst still has these fields even though they are no longer encoded
698     // in the GFX11 instruction.
699     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
700     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
701   }
702   return MCDisassembler::Success;
703 }
704 
705 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
706   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
707       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
708       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
709       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
710     // The MCInst has this field that is not directly encoded in the
711     // instruction.
712     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
713   }
714   return MCDisassembler::Success;
715 }
716 
717 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
718   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
719       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
720     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
721       // VOPC - insert clamp
722       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
723   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
724     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
725     if (SDst != -1) {
726       // VOPC - insert VCC register as sdst
727       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
728                            AMDGPU::OpName::sdst);
729     } else {
730       // VOP1/2 - insert omod if present in instruction
731       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
732     }
733   }
734   return MCDisassembler::Success;
735 }
736 
737 struct VOPModifiers {
738   unsigned OpSel = 0;
739   unsigned OpSelHi = 0;
740   unsigned NegLo = 0;
741   unsigned NegHi = 0;
742 };
743 
744 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
745 // Note that these values do not affect disassembler output,
746 // so this is only necessary for consistency with src_modifiers.
747 static VOPModifiers collectVOPModifiers(const MCInst &MI,
748                                         bool IsVOP3P = false) {
749   VOPModifiers Modifiers;
750   unsigned Opc = MI.getOpcode();
751   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
752                         AMDGPU::OpName::src1_modifiers,
753                         AMDGPU::OpName::src2_modifiers};
754   for (int J = 0; J < 3; ++J) {
755     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
756     if (OpIdx == -1)
757       continue;
758 
759     unsigned Val = MI.getOperand(OpIdx).getImm();
760 
761     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
762     if (IsVOP3P) {
763       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
764       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
765       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
766     } else if (J == 0) {
767       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
768     }
769   }
770 
771   return Modifiers;
772 }
773 
774 // MAC opcodes have special old and src2 operands.
775 // src2 is tied to dst, while old is not tied (but assumed to be).
776 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
777   constexpr int DST_IDX = 0;
778   auto Opcode = MI.getOpcode();
779   const auto &Desc = MCII->get(Opcode);
780   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
781 
782   if (OldIdx != -1 && Desc.getOperandConstraint(
783                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
784     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
785     assert(Desc.getOperandConstraint(
786                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
787                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
788     (void)DST_IDX;
789     return true;
790   }
791 
792   return false;
793 }
794 
795 // Create dummy old operand and insert dummy unused src2_modifiers
796 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
797   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
798   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
799   insertNamedMCOperand(MI, MCOperand::createImm(0),
800                        AMDGPU::OpName::src2_modifiers);
801 }
802 
803 // We must check FI == literal to reject not genuine dpp8 insts, and we must
804 // first add optional MI operands to check FI
805 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
806   unsigned Opc = MI.getOpcode();
807   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
808     convertVOP3PDPPInst(MI);
809   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
810              AMDGPU::isVOPC64DPP(Opc)) {
811     convertVOPCDPPInst(MI);
812   } else {
813     if (isMacDPP(MI))
814       convertMacDPPInst(MI);
815 
816     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
817     if (MI.getNumOperands() < DescNumOps &&
818         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
819       auto Mods = collectVOPModifiers(MI);
820       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
821                            AMDGPU::OpName::op_sel);
822     } else {
823       // Insert dummy unused src modifiers.
824       if (MI.getNumOperands() < DescNumOps &&
825           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
826         insertNamedMCOperand(MI, MCOperand::createImm(0),
827                              AMDGPU::OpName::src0_modifiers);
828 
829       if (MI.getNumOperands() < DescNumOps &&
830           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
831         insertNamedMCOperand(MI, MCOperand::createImm(0),
832                              AMDGPU::OpName::src1_modifiers);
833     }
834   }
835   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
836 }
837 
838 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
839   if (isMacDPP(MI))
840     convertMacDPPInst(MI);
841 
842   unsigned Opc = MI.getOpcode();
843   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
844   if (MI.getNumOperands() < DescNumOps &&
845       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
846     auto Mods = collectVOPModifiers(MI);
847     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
848                          AMDGPU::OpName::op_sel);
849   }
850   return MCDisassembler::Success;
851 }
852 
853 // Note that before gfx10, the MIMG encoding provided no information about
854 // VADDR size. Consequently, decoded instructions always show address as if it
855 // has 1 dword, which could be not really so.
856 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
857 
858   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
859                                            AMDGPU::OpName::vdst);
860 
861   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
862                                             AMDGPU::OpName::vdata);
863   int VAddr0Idx =
864       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
865   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
866                                             AMDGPU::OpName::dmask);
867 
868   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
869                                             AMDGPU::OpName::tfe);
870   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
871                                             AMDGPU::OpName::d16);
872 
873   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
874   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
875       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
876 
877   assert(VDataIdx != -1);
878   if (BaseOpcode->BVH) {
879     // Add A16 operand for intersect_ray instructions
880     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16))
881       addOperand(MI, MCOperand::createImm(1));
882     return MCDisassembler::Success;
883   }
884 
885   bool IsAtomic = (VDstIdx != -1);
886   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
887   bool IsNSA = false;
888   unsigned AddrSize = Info->VAddrDwords;
889 
890   if (isGFX10Plus()) {
891     unsigned DimIdx =
892         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
893     int A16Idx =
894         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
895     const AMDGPU::MIMGDimInfo *Dim =
896         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
897     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
898 
899     AddrSize =
900         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
901 
902     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
903             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
904     if (!IsNSA) {
905       if (AddrSize > 12)
906         AddrSize = 16;
907     } else {
908       if (AddrSize > Info->VAddrDwords) {
909         // The NSA encoding does not contain enough operands for the combination
910         // of base opcode / dimension. Should this be an error?
911         return MCDisassembler::Success;
912       }
913     }
914   }
915 
916   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
917   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
918 
919   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
920   if (D16 && AMDGPU::hasPackedD16(STI)) {
921     DstSize = (DstSize + 1) / 2;
922   }
923 
924   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
925     DstSize += 1;
926 
927   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
928     return MCDisassembler::Success;
929 
930   int NewOpcode =
931       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
932   if (NewOpcode == -1)
933     return MCDisassembler::Success;
934 
935   // Widen the register to the correct number of enabled channels.
936   unsigned NewVdata = AMDGPU::NoRegister;
937   if (DstSize != Info->VDataDwords) {
938     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
939 
940     // Get first subregister of VData
941     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
942     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
943     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
944 
945     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
946                                        &MRI.getRegClass(DataRCID));
947     if (NewVdata == AMDGPU::NoRegister) {
948       // It's possible to encode this such that the low register + enabled
949       // components exceeds the register count.
950       return MCDisassembler::Success;
951     }
952   }
953 
954   // If not using NSA on GFX10+, widen address register to correct size.
955   unsigned NewVAddr0 = AMDGPU::NoRegister;
956   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
957     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
958     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
959     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
960 
961     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddr0Idx].RegClass;
962     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
963                                         &MRI.getRegClass(AddrRCID));
964     if (NewVAddr0 == AMDGPU::NoRegister)
965       return MCDisassembler::Success;
966   }
967 
968   MI.setOpcode(NewOpcode);
969 
970   if (NewVdata != AMDGPU::NoRegister) {
971     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
972 
973     if (IsAtomic) {
974       // Atomic operations have an additional operand (a copy of data)
975       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
976     }
977   }
978 
979   if (NewVAddr0 != AMDGPU::NoRegister) {
980     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
981   } else if (IsNSA) {
982     assert(AddrSize <= Info->VAddrDwords);
983     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
984              MI.begin() + VAddr0Idx + Info->VAddrDwords);
985   }
986 
987   return MCDisassembler::Success;
988 }
989 
990 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
991 // decoder only adds to src_modifiers, so manually add the bits to the other
992 // operands.
993 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
994   unsigned Opc = MI.getOpcode();
995   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
996   auto Mods = collectVOPModifiers(MI, true);
997 
998   if (MI.getNumOperands() < DescNumOps &&
999       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1000     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1001 
1002   if (MI.getNumOperands() < DescNumOps &&
1003       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1004     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1005                          AMDGPU::OpName::op_sel);
1006   if (MI.getNumOperands() < DescNumOps &&
1007       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1008     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1009                          AMDGPU::OpName::op_sel_hi);
1010   if (MI.getNumOperands() < DescNumOps &&
1011       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1012     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1013                          AMDGPU::OpName::neg_lo);
1014   if (MI.getNumOperands() < DescNumOps &&
1015       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1016     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1017                          AMDGPU::OpName::neg_hi);
1018 
1019   return MCDisassembler::Success;
1020 }
1021 
1022 // Create dummy old operand and insert optional operands
1023 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1024   unsigned Opc = MI.getOpcode();
1025   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1026 
1027   if (MI.getNumOperands() < DescNumOps &&
1028       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1029     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1030 
1031   if (MI.getNumOperands() < DescNumOps &&
1032       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1033     insertNamedMCOperand(MI, MCOperand::createImm(0),
1034                          AMDGPU::OpName::src0_modifiers);
1035 
1036   if (MI.getNumOperands() < DescNumOps &&
1037       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1038     insertNamedMCOperand(MI, MCOperand::createImm(0),
1039                          AMDGPU::OpName::src1_modifiers);
1040   return MCDisassembler::Success;
1041 }
1042 
1043 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1044                                                 int ImmLitIdx) const {
1045   assert(HasLiteral && "Should have decoded a literal");
1046   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1047   unsigned DescNumOps = Desc.getNumOperands();
1048   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1049                        AMDGPU::OpName::immDeferred);
1050   assert(DescNumOps == MI.getNumOperands());
1051   for (unsigned I = 0; I < DescNumOps; ++I) {
1052     auto &Op = MI.getOperand(I);
1053     auto OpType = Desc.operands()[I].OperandType;
1054     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1055                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1056     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1057         IsDeferredOp)
1058       Op.setImm(Literal);
1059   }
1060   return MCDisassembler::Success;
1061 }
1062 
1063 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1064   return getContext().getRegisterInfo()->
1065     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1066 }
1067 
1068 inline
1069 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1070                                          const Twine& ErrMsg) const {
1071   *CommentStream << "Error: " + ErrMsg;
1072 
1073   // ToDo: add support for error operands to MCInst.h
1074   // return MCOperand::createError(V);
1075   return MCOperand();
1076 }
1077 
1078 inline
1079 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1080   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1081 }
1082 
1083 inline
1084 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1085                                                unsigned Val) const {
1086   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1087   if (Val >= RegCl.getNumRegs())
1088     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1089                            ": unknown register " + Twine(Val));
1090   return createRegOperand(RegCl.getRegister(Val));
1091 }
1092 
1093 inline
1094 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1095                                                 unsigned Val) const {
1096   // ToDo: SI/CI have 104 SGPRs, VI - 102
1097   // Valery: here we accepting as much as we can, let assembler sort it out
1098   int shift = 0;
1099   switch (SRegClassID) {
1100   case AMDGPU::SGPR_32RegClassID:
1101   case AMDGPU::TTMP_32RegClassID:
1102     break;
1103   case AMDGPU::SGPR_64RegClassID:
1104   case AMDGPU::TTMP_64RegClassID:
1105     shift = 1;
1106     break;
1107   case AMDGPU::SGPR_128RegClassID:
1108   case AMDGPU::TTMP_128RegClassID:
1109   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1110   // this bundle?
1111   case AMDGPU::SGPR_256RegClassID:
1112   case AMDGPU::TTMP_256RegClassID:
1113     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1114   // this bundle?
1115   case AMDGPU::SGPR_288RegClassID:
1116   case AMDGPU::TTMP_288RegClassID:
1117   case AMDGPU::SGPR_320RegClassID:
1118   case AMDGPU::TTMP_320RegClassID:
1119   case AMDGPU::SGPR_352RegClassID:
1120   case AMDGPU::TTMP_352RegClassID:
1121   case AMDGPU::SGPR_384RegClassID:
1122   case AMDGPU::TTMP_384RegClassID:
1123   case AMDGPU::SGPR_512RegClassID:
1124   case AMDGPU::TTMP_512RegClassID:
1125     shift = 2;
1126     break;
1127   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1128   // this bundle?
1129   default:
1130     llvm_unreachable("unhandled register class");
1131   }
1132 
1133   if (Val % (1 << shift)) {
1134     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1135                    << ": scalar reg isn't aligned " << Val;
1136   }
1137 
1138   return createRegOperand(SRegClassID, Val >> shift);
1139 }
1140 
1141 // Decode Literals for insts which always have a literal in the encoding
1142 MCOperand
1143 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1144   if (HasLiteral) {
1145     assert(
1146         AMDGPU::hasVOPD(STI) &&
1147         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1148     if (Literal != Val)
1149       return errOperand(Val, "More than one unique literal is illegal");
1150   }
1151   HasLiteral = true;
1152   Literal = Val;
1153   return MCOperand::createImm(Literal);
1154 }
1155 
1156 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1157   // For now all literal constants are supposed to be unsigned integer
1158   // ToDo: deal with signed/unsigned 64-bit integer constants
1159   // ToDo: deal with float/double constants
1160   if (!HasLiteral) {
1161     if (Bytes.size() < 4) {
1162       return errOperand(0, "cannot read literal, inst bytes left " +
1163                         Twine(Bytes.size()));
1164     }
1165     HasLiteral = true;
1166     Literal = eatBytes<uint32_t>(Bytes);
1167   }
1168   return MCOperand::createImm(Literal);
1169 }
1170 
1171 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1172   using namespace AMDGPU::EncValues;
1173 
1174   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1175   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1176     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1177     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1178       // Cast prevents negative overflow.
1179 }
1180 
1181 static int64_t getInlineImmVal32(unsigned Imm) {
1182   switch (Imm) {
1183   case 240:
1184     return FloatToBits(0.5f);
1185   case 241:
1186     return FloatToBits(-0.5f);
1187   case 242:
1188     return FloatToBits(1.0f);
1189   case 243:
1190     return FloatToBits(-1.0f);
1191   case 244:
1192     return FloatToBits(2.0f);
1193   case 245:
1194     return FloatToBits(-2.0f);
1195   case 246:
1196     return FloatToBits(4.0f);
1197   case 247:
1198     return FloatToBits(-4.0f);
1199   case 248: // 1 / (2 * PI)
1200     return 0x3e22f983;
1201   default:
1202     llvm_unreachable("invalid fp inline imm");
1203   }
1204 }
1205 
1206 static int64_t getInlineImmVal64(unsigned Imm) {
1207   switch (Imm) {
1208   case 240:
1209     return DoubleToBits(0.5);
1210   case 241:
1211     return DoubleToBits(-0.5);
1212   case 242:
1213     return DoubleToBits(1.0);
1214   case 243:
1215     return DoubleToBits(-1.0);
1216   case 244:
1217     return DoubleToBits(2.0);
1218   case 245:
1219     return DoubleToBits(-2.0);
1220   case 246:
1221     return DoubleToBits(4.0);
1222   case 247:
1223     return DoubleToBits(-4.0);
1224   case 248: // 1 / (2 * PI)
1225     return 0x3fc45f306dc9c882;
1226   default:
1227     llvm_unreachable("invalid fp inline imm");
1228   }
1229 }
1230 
1231 static int64_t getInlineImmVal16(unsigned Imm) {
1232   switch (Imm) {
1233   case 240:
1234     return 0x3800;
1235   case 241:
1236     return 0xB800;
1237   case 242:
1238     return 0x3C00;
1239   case 243:
1240     return 0xBC00;
1241   case 244:
1242     return 0x4000;
1243   case 245:
1244     return 0xC000;
1245   case 246:
1246     return 0x4400;
1247   case 247:
1248     return 0xC400;
1249   case 248: // 1 / (2 * PI)
1250     return 0x3118;
1251   default:
1252     llvm_unreachable("invalid fp inline imm");
1253   }
1254 }
1255 
1256 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1257   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1258       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1259 
1260   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1261   // ImmWidth 0 is a default case where operand should not allow immediates.
1262   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1263   // use it to print verbose error message.
1264   switch (ImmWidth) {
1265   case 0:
1266   case 32:
1267     return MCOperand::createImm(getInlineImmVal32(Imm));
1268   case 64:
1269     return MCOperand::createImm(getInlineImmVal64(Imm));
1270   case 16:
1271     return MCOperand::createImm(getInlineImmVal16(Imm));
1272   default:
1273     llvm_unreachable("implement me");
1274   }
1275 }
1276 
1277 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1278   using namespace AMDGPU;
1279 
1280   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1281   switch (Width) {
1282   default: // fall
1283   case OPW32:
1284   case OPW16:
1285   case OPWV216:
1286     return VGPR_32RegClassID;
1287   case OPW64:
1288   case OPWV232: return VReg_64RegClassID;
1289   case OPW96: return VReg_96RegClassID;
1290   case OPW128: return VReg_128RegClassID;
1291   case OPW160: return VReg_160RegClassID;
1292   case OPW256: return VReg_256RegClassID;
1293   case OPW288: return VReg_288RegClassID;
1294   case OPW320: return VReg_320RegClassID;
1295   case OPW352: return VReg_352RegClassID;
1296   case OPW384: return VReg_384RegClassID;
1297   case OPW512: return VReg_512RegClassID;
1298   case OPW1024: return VReg_1024RegClassID;
1299   }
1300 }
1301 
1302 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1303   using namespace AMDGPU;
1304 
1305   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1306   switch (Width) {
1307   default: // fall
1308   case OPW32:
1309   case OPW16:
1310   case OPWV216:
1311     return AGPR_32RegClassID;
1312   case OPW64:
1313   case OPWV232: return AReg_64RegClassID;
1314   case OPW96: return AReg_96RegClassID;
1315   case OPW128: return AReg_128RegClassID;
1316   case OPW160: return AReg_160RegClassID;
1317   case OPW256: return AReg_256RegClassID;
1318   case OPW288: return AReg_288RegClassID;
1319   case OPW320: return AReg_320RegClassID;
1320   case OPW352: return AReg_352RegClassID;
1321   case OPW384: return AReg_384RegClassID;
1322   case OPW512: return AReg_512RegClassID;
1323   case OPW1024: return AReg_1024RegClassID;
1324   }
1325 }
1326 
1327 
1328 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1329   using namespace AMDGPU;
1330 
1331   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1332   switch (Width) {
1333   default: // fall
1334   case OPW32:
1335   case OPW16:
1336   case OPWV216:
1337     return SGPR_32RegClassID;
1338   case OPW64:
1339   case OPWV232: return SGPR_64RegClassID;
1340   case OPW96: return SGPR_96RegClassID;
1341   case OPW128: return SGPR_128RegClassID;
1342   case OPW160: return SGPR_160RegClassID;
1343   case OPW256: return SGPR_256RegClassID;
1344   case OPW288: return SGPR_288RegClassID;
1345   case OPW320: return SGPR_320RegClassID;
1346   case OPW352: return SGPR_352RegClassID;
1347   case OPW384: return SGPR_384RegClassID;
1348   case OPW512: return SGPR_512RegClassID;
1349   }
1350 }
1351 
1352 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1353   using namespace AMDGPU;
1354 
1355   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1356   switch (Width) {
1357   default: // fall
1358   case OPW32:
1359   case OPW16:
1360   case OPWV216:
1361     return TTMP_32RegClassID;
1362   case OPW64:
1363   case OPWV232: return TTMP_64RegClassID;
1364   case OPW128: return TTMP_128RegClassID;
1365   case OPW256: return TTMP_256RegClassID;
1366   case OPW288: return TTMP_288RegClassID;
1367   case OPW320: return TTMP_320RegClassID;
1368   case OPW352: return TTMP_352RegClassID;
1369   case OPW384: return TTMP_384RegClassID;
1370   case OPW512: return TTMP_512RegClassID;
1371   }
1372 }
1373 
1374 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1375   using namespace AMDGPU::EncValues;
1376 
1377   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1378   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1379 
1380   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1381 }
1382 
1383 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1384                                           bool MandatoryLiteral,
1385                                           unsigned ImmWidth) const {
1386   using namespace AMDGPU::EncValues;
1387 
1388   assert(Val < 1024); // enum10
1389 
1390   bool IsAGPR = Val & 512;
1391   Val &= 511;
1392 
1393   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1394     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1395                                    : getVgprClassId(Width), Val - VGPR_MIN);
1396   }
1397   if (Val <= SGPR_MAX) {
1398     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1399     static_assert(SGPR_MIN == 0);
1400     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1401   }
1402 
1403   int TTmpIdx = getTTmpIdx(Val);
1404   if (TTmpIdx >= 0) {
1405     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1406   }
1407 
1408   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1409     return decodeIntImmed(Val);
1410 
1411   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1412     return decodeFPImmed(ImmWidth, Val);
1413 
1414   if (Val == LITERAL_CONST) {
1415     if (MandatoryLiteral)
1416       // Keep a sentinel value for deferred setting
1417       return MCOperand::createImm(LITERAL_CONST);
1418     else
1419       return decodeLiteralConstant();
1420   }
1421 
1422   switch (Width) {
1423   case OPW32:
1424   case OPW16:
1425   case OPWV216:
1426     return decodeSpecialReg32(Val);
1427   case OPW64:
1428   case OPWV232:
1429     return decodeSpecialReg64(Val);
1430   default:
1431     llvm_unreachable("unexpected immediate type");
1432   }
1433 }
1434 
1435 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1436 // opposite of bit 0 of DstX.
1437 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1438                                                unsigned Val) const {
1439   int VDstXInd =
1440       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1441   assert(VDstXInd != -1);
1442   assert(Inst.getOperand(VDstXInd).isReg());
1443   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1444   Val |= ~XDstReg & 1;
1445   auto Width = llvm::AMDGPUDisassembler::OPW32;
1446   return createRegOperand(getVgprClassId(Width), Val);
1447 }
1448 
1449 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1450   using namespace AMDGPU;
1451 
1452   switch (Val) {
1453   // clang-format off
1454   case 102: return createRegOperand(FLAT_SCR_LO);
1455   case 103: return createRegOperand(FLAT_SCR_HI);
1456   case 104: return createRegOperand(XNACK_MASK_LO);
1457   case 105: return createRegOperand(XNACK_MASK_HI);
1458   case 106: return createRegOperand(VCC_LO);
1459   case 107: return createRegOperand(VCC_HI);
1460   case 108: return createRegOperand(TBA_LO);
1461   case 109: return createRegOperand(TBA_HI);
1462   case 110: return createRegOperand(TMA_LO);
1463   case 111: return createRegOperand(TMA_HI);
1464   case 124:
1465     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1466   case 125:
1467     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1468   case 126: return createRegOperand(EXEC_LO);
1469   case 127: return createRegOperand(EXEC_HI);
1470   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1471   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1472   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1473   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1474   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1475   case 251: return createRegOperand(SRC_VCCZ);
1476   case 252: return createRegOperand(SRC_EXECZ);
1477   case 253: return createRegOperand(SRC_SCC);
1478   case 254: return createRegOperand(LDS_DIRECT);
1479   default: break;
1480     // clang-format on
1481   }
1482   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1483 }
1484 
1485 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1486   using namespace AMDGPU;
1487 
1488   switch (Val) {
1489   case 102: return createRegOperand(FLAT_SCR);
1490   case 104: return createRegOperand(XNACK_MASK);
1491   case 106: return createRegOperand(VCC);
1492   case 108: return createRegOperand(TBA);
1493   case 110: return createRegOperand(TMA);
1494   case 124:
1495     if (isGFX11Plus())
1496       return createRegOperand(SGPR_NULL);
1497     break;
1498   case 125:
1499     if (!isGFX11Plus())
1500       return createRegOperand(SGPR_NULL);
1501     break;
1502   case 126: return createRegOperand(EXEC);
1503   case 235: return createRegOperand(SRC_SHARED_BASE);
1504   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1505   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1506   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1507   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1508   case 251: return createRegOperand(SRC_VCCZ);
1509   case 252: return createRegOperand(SRC_EXECZ);
1510   case 253: return createRegOperand(SRC_SCC);
1511   default: break;
1512   }
1513   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1514 }
1515 
1516 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1517                                             const unsigned Val,
1518                                             unsigned ImmWidth) const {
1519   using namespace AMDGPU::SDWA;
1520   using namespace AMDGPU::EncValues;
1521 
1522   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1523       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1524     // XXX: cast to int is needed to avoid stupid warning:
1525     // compare with unsigned is always true
1526     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1527         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1528       return createRegOperand(getVgprClassId(Width),
1529                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1530     }
1531     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1532         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1533                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1534       return createSRegOperand(getSgprClassId(Width),
1535                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1536     }
1537     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1538         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1539       return createSRegOperand(getTtmpClassId(Width),
1540                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1541     }
1542 
1543     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1544 
1545     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1546       return decodeIntImmed(SVal);
1547 
1548     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1549       return decodeFPImmed(ImmWidth, SVal);
1550 
1551     return decodeSpecialReg32(SVal);
1552   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1553     return createRegOperand(getVgprClassId(Width), Val);
1554   }
1555   llvm_unreachable("unsupported target");
1556 }
1557 
1558 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1559   return decodeSDWASrc(OPW16, Val, 16);
1560 }
1561 
1562 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1563   return decodeSDWASrc(OPW32, Val, 32);
1564 }
1565 
1566 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1567   using namespace AMDGPU::SDWA;
1568 
1569   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1570           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1571          "SDWAVopcDst should be present only on GFX9+");
1572 
1573   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1574 
1575   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1576     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1577 
1578     int TTmpIdx = getTTmpIdx(Val);
1579     if (TTmpIdx >= 0) {
1580       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1581       return createSRegOperand(TTmpClsId, TTmpIdx);
1582     } else if (Val > SGPR_MAX) {
1583       return IsWave64 ? decodeSpecialReg64(Val)
1584                       : decodeSpecialReg32(Val);
1585     } else {
1586       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1587     }
1588   } else {
1589     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1590   }
1591 }
1592 
1593 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1594   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64]
1595              ? decodeSrcOp(OPW64, Val)
1596              : decodeSrcOp(OPW32, Val);
1597 }
1598 
1599 bool AMDGPUDisassembler::isVI() const {
1600   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1601 }
1602 
1603 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1604 
1605 bool AMDGPUDisassembler::isGFX90A() const {
1606   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1607 }
1608 
1609 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1610 
1611 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1612 
1613 bool AMDGPUDisassembler::isGFX10Plus() const {
1614   return AMDGPU::isGFX10Plus(STI);
1615 }
1616 
1617 bool AMDGPUDisassembler::isGFX11() const {
1618   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1619 }
1620 
1621 bool AMDGPUDisassembler::isGFX11Plus() const {
1622   return AMDGPU::isGFX11Plus(STI);
1623 }
1624 
1625 
1626 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1627   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1628 }
1629 
1630 //===----------------------------------------------------------------------===//
1631 // AMDGPU specific symbol handling
1632 //===----------------------------------------------------------------------===//
1633 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1634   do {                                                                         \
1635     KdStream << Indent << DIRECTIVE " "                                        \
1636              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1637   } while (0)
1638 
1639 // NOLINTNEXTLINE(readability-identifier-naming)
1640 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1641     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1642   using namespace amdhsa;
1643   StringRef Indent = "\t";
1644 
1645   // We cannot accurately backward compute #VGPRs used from
1646   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1647   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1648   // simply calculate the inverse of what the assembler does.
1649 
1650   uint32_t GranulatedWorkitemVGPRCount =
1651       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1652       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1653 
1654   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1655                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1656 
1657   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1658 
1659   // We cannot backward compute values used to calculate
1660   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1661   // directives can't be computed:
1662   // .amdhsa_reserve_vcc
1663   // .amdhsa_reserve_flat_scratch
1664   // .amdhsa_reserve_xnack_mask
1665   // They take their respective default values if not specified in the assembly.
1666   //
1667   // GRANULATED_WAVEFRONT_SGPR_COUNT
1668   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1669   //
1670   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1671   // are set to 0. So while disassembling we consider that:
1672   //
1673   // GRANULATED_WAVEFRONT_SGPR_COUNT
1674   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1675   //
1676   // The disassembler cannot recover the original values of those 3 directives.
1677 
1678   uint32_t GranulatedWavefrontSGPRCount =
1679       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1680       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1681 
1682   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1683     return MCDisassembler::Fail;
1684 
1685   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1686                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1687 
1688   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1689   if (!hasArchitectedFlatScratch())
1690     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1691   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1692   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1693 
1694   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1695     return MCDisassembler::Fail;
1696 
1697   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1698                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1699   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1700                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1701   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1702                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1703   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1704                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1705 
1706   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1707     return MCDisassembler::Fail;
1708 
1709   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1710 
1711   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1712     return MCDisassembler::Fail;
1713 
1714   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1715 
1716   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1717     return MCDisassembler::Fail;
1718 
1719   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1720     return MCDisassembler::Fail;
1721 
1722   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1723 
1724   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1725     return MCDisassembler::Fail;
1726 
1727   if (isGFX10Plus()) {
1728     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1729                     COMPUTE_PGM_RSRC1_WGP_MODE);
1730     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1731     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1732   }
1733   return MCDisassembler::Success;
1734 }
1735 
1736 // NOLINTNEXTLINE(readability-identifier-naming)
1737 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1738     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1739   using namespace amdhsa;
1740   StringRef Indent = "\t";
1741   if (hasArchitectedFlatScratch())
1742     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1743                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1744   else
1745     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1746                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1747   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1748                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1749   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1750                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1751   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1752                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1753   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1754                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1755   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1756                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1757 
1758   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1759     return MCDisassembler::Fail;
1760 
1761   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1762     return MCDisassembler::Fail;
1763 
1764   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1765     return MCDisassembler::Fail;
1766 
1767   PRINT_DIRECTIVE(
1768       ".amdhsa_exception_fp_ieee_invalid_op",
1769       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1770   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1771                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1772   PRINT_DIRECTIVE(
1773       ".amdhsa_exception_fp_ieee_div_zero",
1774       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1775   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1776                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1777   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1778                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1779   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1780                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1781   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1782                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1783 
1784   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1785     return MCDisassembler::Fail;
1786 
1787   return MCDisassembler::Success;
1788 }
1789 
1790 #undef PRINT_DIRECTIVE
1791 
1792 MCDisassembler::DecodeStatus
1793 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1794     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1795     raw_string_ostream &KdStream) const {
1796 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1797   do {                                                                         \
1798     KdStream << Indent << DIRECTIVE " "                                        \
1799              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1800   } while (0)
1801 
1802   uint16_t TwoByteBuffer = 0;
1803   uint32_t FourByteBuffer = 0;
1804 
1805   StringRef ReservedBytes;
1806   StringRef Indent = "\t";
1807 
1808   assert(Bytes.size() == 64);
1809   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1810 
1811   switch (Cursor.tell()) {
1812   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1813     FourByteBuffer = DE.getU32(Cursor);
1814     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1815              << '\n';
1816     return MCDisassembler::Success;
1817 
1818   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1819     FourByteBuffer = DE.getU32(Cursor);
1820     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1821              << FourByteBuffer << '\n';
1822     return MCDisassembler::Success;
1823 
1824   case amdhsa::KERNARG_SIZE_OFFSET:
1825     FourByteBuffer = DE.getU32(Cursor);
1826     KdStream << Indent << ".amdhsa_kernarg_size "
1827              << FourByteBuffer << '\n';
1828     return MCDisassembler::Success;
1829 
1830   case amdhsa::RESERVED0_OFFSET:
1831     // 4 reserved bytes, must be 0.
1832     ReservedBytes = DE.getBytes(Cursor, 4);
1833     for (int I = 0; I < 4; ++I) {
1834       if (ReservedBytes[I] != 0) {
1835         return MCDisassembler::Fail;
1836       }
1837     }
1838     return MCDisassembler::Success;
1839 
1840   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1841     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1842     // So far no directive controls this for Code Object V3, so simply skip for
1843     // disassembly.
1844     DE.skip(Cursor, 8);
1845     return MCDisassembler::Success;
1846 
1847   case amdhsa::RESERVED1_OFFSET:
1848     // 20 reserved bytes, must be 0.
1849     ReservedBytes = DE.getBytes(Cursor, 20);
1850     for (int I = 0; I < 20; ++I) {
1851       if (ReservedBytes[I] != 0) {
1852         return MCDisassembler::Fail;
1853       }
1854     }
1855     return MCDisassembler::Success;
1856 
1857   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1858     // COMPUTE_PGM_RSRC3
1859     //  - Only set for GFX10, GFX6-9 have this to be 0.
1860     //  - Currently no directives directly control this.
1861     FourByteBuffer = DE.getU32(Cursor);
1862     if (!isGFX10Plus() && FourByteBuffer) {
1863       return MCDisassembler::Fail;
1864     }
1865     return MCDisassembler::Success;
1866 
1867   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1868     FourByteBuffer = DE.getU32(Cursor);
1869     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1870         MCDisassembler::Fail) {
1871       return MCDisassembler::Fail;
1872     }
1873     return MCDisassembler::Success;
1874 
1875   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1876     FourByteBuffer = DE.getU32(Cursor);
1877     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1878         MCDisassembler::Fail) {
1879       return MCDisassembler::Fail;
1880     }
1881     return MCDisassembler::Success;
1882 
1883   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1884     using namespace amdhsa;
1885     TwoByteBuffer = DE.getU16(Cursor);
1886 
1887     if (!hasArchitectedFlatScratch())
1888       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1889                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1890     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1891                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1892     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1893                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1894     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1895                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1896     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1897                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1898     if (!hasArchitectedFlatScratch())
1899       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1900                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1901     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1902                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1903 
1904     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1905       return MCDisassembler::Fail;
1906 
1907     // Reserved for GFX9
1908     if (isGFX9() &&
1909         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1910       return MCDisassembler::Fail;
1911     } else if (isGFX10Plus()) {
1912       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1913                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1914     }
1915 
1916     if (AMDGPU::getAmdhsaCodeObjectVersion() >= 5)
1917       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
1918                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
1919 
1920     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1921       return MCDisassembler::Fail;
1922 
1923     return MCDisassembler::Success;
1924 
1925   case amdhsa::RESERVED2_OFFSET:
1926     // 6 bytes from here are reserved, must be 0.
1927     ReservedBytes = DE.getBytes(Cursor, 6);
1928     for (int I = 0; I < 6; ++I) {
1929       if (ReservedBytes[I] != 0)
1930         return MCDisassembler::Fail;
1931     }
1932     return MCDisassembler::Success;
1933 
1934   default:
1935     llvm_unreachable("Unhandled index. Case statements cover everything.");
1936     return MCDisassembler::Fail;
1937   }
1938 #undef PRINT_DIRECTIVE
1939 }
1940 
1941 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1942     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1943   // CP microcode requires the kernel descriptor to be 64 aligned.
1944   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1945     return MCDisassembler::Fail;
1946 
1947   std::string Kd;
1948   raw_string_ostream KdStream(Kd);
1949   KdStream << ".amdhsa_kernel " << KdName << '\n';
1950 
1951   DataExtractor::Cursor C(0);
1952   while (C && C.tell() < Bytes.size()) {
1953     MCDisassembler::DecodeStatus Status =
1954         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1955 
1956     cantFail(C.takeError());
1957 
1958     if (Status == MCDisassembler::Fail)
1959       return MCDisassembler::Fail;
1960   }
1961   KdStream << ".end_amdhsa_kernel\n";
1962   outs() << KdStream.str();
1963   return MCDisassembler::Success;
1964 }
1965 
1966 std::optional<MCDisassembler::DecodeStatus>
1967 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1968                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1969                                   raw_ostream &CStream) const {
1970   // Right now only kernel descriptor needs to be handled.
1971   // We ignore all other symbols for target specific handling.
1972   // TODO:
1973   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1974   // Object V2 and V3 when symbols are marked protected.
1975 
1976   // amd_kernel_code_t for Code Object V2.
1977   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1978     Size = 256;
1979     return MCDisassembler::Fail;
1980   }
1981 
1982   // Code Object V3 kernel descriptors.
1983   StringRef Name = Symbol.Name;
1984   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1985     Size = 64; // Size = 64 regardless of success or failure.
1986     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1987   }
1988   return std::nullopt;
1989 }
1990 
1991 //===----------------------------------------------------------------------===//
1992 // AMDGPUSymbolizer
1993 //===----------------------------------------------------------------------===//
1994 
1995 // Try to find symbol name for specified label
1996 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
1997     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
1998     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
1999     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2000 
2001   if (!IsBranch) {
2002     return false;
2003   }
2004 
2005   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2006   if (!Symbols)
2007     return false;
2008 
2009   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2010     return Val.Addr == static_cast<uint64_t>(Value) &&
2011            Val.Type == ELF::STT_NOTYPE;
2012   });
2013   if (Result != Symbols->end()) {
2014     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2015     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2016     Inst.addOperand(MCOperand::createExpr(Add));
2017     return true;
2018   }
2019   // Add to list of referenced addresses, so caller can synthesize a label.
2020   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2021   return false;
2022 }
2023 
2024 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2025                                                        int64_t Value,
2026                                                        uint64_t Address) {
2027   llvm_unreachable("unimplemented");
2028 }
2029 
2030 //===----------------------------------------------------------------------===//
2031 // Initialization
2032 //===----------------------------------------------------------------------===//
2033 
2034 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2035                               LLVMOpInfoCallback /*GetOpInfo*/,
2036                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2037                               void *DisInfo,
2038                               MCContext *Ctx,
2039                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2040   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2041 }
2042 
2043 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2044                                                 const MCSubtargetInfo &STI,
2045                                                 MCContext &Ctx) {
2046   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2047 }
2048 
2049 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2050   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2051                                          createAMDGPUDisassembler);
2052   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2053                                        createAMDGPUSymbolizer);
2054 }
2055