1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, 49 MCInstrInfo const *MCII) : 50 MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 51 TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) { 52 53 // ToDo: AMDGPUDisassembler supports only VI ISA. 54 if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus()) 55 report_fatal_error("Disassembly not yet supported for subtarget"); 56 } 57 58 inline static MCDisassembler::DecodeStatus 59 addOperand(MCInst &Inst, const MCOperand& Opnd) { 60 Inst.addOperand(Opnd); 61 return Opnd.isValid() ? 62 MCDisassembler::Success : 63 MCDisassembler::Fail; 64 } 65 66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 67 uint16_t NameIdx) { 68 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 69 if (OpIdx != -1) { 70 auto I = MI.begin(); 71 std::advance(I, OpIdx); 72 MI.insert(I, Op); 73 } 74 return OpIdx; 75 } 76 77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm, 78 uint64_t Addr, 79 const MCDisassembler *Decoder) { 80 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 81 82 // Our branches take a simm16, but we need two extra bits to account for the 83 // factor of 4. 84 APInt SignedOffset(18, Imm * 4, true); 85 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 86 87 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 88 return MCDisassembler::Success; 89 return addOperand(Inst, MCOperand::createImm(Imm)); 90 } 91 92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 93 const MCDisassembler *Decoder) { 94 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 95 int64_t Offset; 96 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 111 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 112 uint64_t /*Addr*/, \ 113 const MCDisassembler *Decoder) { \ 114 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 115 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 116 } 117 118 #define DECODE_OPERAND_REG(RegClass) \ 119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass) 120 121 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 122 // number of register. Used by VGPR only and AGPR only operands. 123 #define DECODE_OPERAND_REG_8(RegClass) \ 124 static DecodeStatus Decode##RegClass##RegisterClass( \ 125 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 126 const MCDisassembler *Decoder) { \ 127 assert(Imm < (1 << 8) && "8-bit encoding"); \ 128 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 129 return addOperand( \ 130 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 131 } 132 133 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 134 ImmWidth) \ 135 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 136 const MCDisassembler *Decoder) { \ 137 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 138 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 139 return addOperand(Inst, \ 140 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 141 MandatoryLiteral, ImmWidth)); \ 142 } 143 144 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 145 // get register class. Used by SGPR only operands. 146 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 147 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 148 149 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 150 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 151 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 152 // Used by AV_ register classes (AGPR or VGPR only register operands). 153 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 154 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 155 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 156 157 // Decoder for Src(9-bit encoding) registers only. 158 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 159 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 160 161 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 162 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 163 // only. 164 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 165 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 166 167 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 168 // Imm{9} is acc, registers only. 169 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 170 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 171 172 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 173 // register from RegClass or immediate. Registers that don't belong to RegClass 174 // will be decoded and InstPrinter will report warning. Immediate will be 175 // decoded into constant of size ImmWidth, should match width of immediate used 176 // by OperandType (important for floating point types). 177 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 178 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 179 false, ImmWidth) 180 181 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 182 // and decode using 'enum10' from decodeSrcOp. 183 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 184 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 185 Imm | 512, false, ImmWidth) 186 187 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 188 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 189 OpWidth, Imm, true, ImmWidth) 190 191 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 192 // when RegisterClass is used as an operand. Most often used for destination 193 // operands. 194 195 DECODE_OPERAND_REG_8(VGPR_32) 196 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 197 DECODE_OPERAND_REG_8(VReg_64) 198 DECODE_OPERAND_REG_8(VReg_96) 199 DECODE_OPERAND_REG_8(VReg_128) 200 DECODE_OPERAND_REG_8(VReg_256) 201 DECODE_OPERAND_REG_8(VReg_288) 202 DECODE_OPERAND_REG_8(VReg_352) 203 DECODE_OPERAND_REG_8(VReg_384) 204 DECODE_OPERAND_REG_8(VReg_512) 205 DECODE_OPERAND_REG_8(VReg_1024) 206 207 DECODE_OPERAND_REG_7(SReg_32, OPW32) 208 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 209 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 210 DECODE_OPERAND_REG_7(SReg_64, OPW64) 211 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 212 DECODE_OPERAND_REG_7(SReg_128, OPW128) 213 DECODE_OPERAND_REG_7(SReg_256, OPW256) 214 DECODE_OPERAND_REG_7(SReg_512, OPW512) 215 216 DECODE_OPERAND_REG_8(AGPR_32) 217 DECODE_OPERAND_REG_8(AReg_64) 218 DECODE_OPERAND_REG_8(AReg_128) 219 DECODE_OPERAND_REG_8(AReg_256) 220 DECODE_OPERAND_REG_8(AReg_512) 221 DECODE_OPERAND_REG_8(AReg_1024) 222 223 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 224 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 225 226 // Decoders for register only source RegisterOperands that use use 9-bit Src 227 // encoding: 'decodeOperand_<RegClass>'. 228 229 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 230 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 231 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 232 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 233 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 234 235 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 236 237 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 238 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 239 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 240 241 // Decoders for register or immediate RegisterOperands that use 9-bit Src 242 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 243 244 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 245 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 246 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 253 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 254 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 255 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 256 257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 259 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 260 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 261 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 262 263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 264 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 265 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 266 267 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm, 268 uint64_t Addr, 269 const MCDisassembler *Decoder) { 270 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 271 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 272 } 273 274 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm, 275 uint64_t Addr, 276 const MCDisassembler *Decoder) { 277 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 278 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 279 } 280 281 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 282 uint64_t Addr, const void *Decoder) { 283 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 284 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 285 } 286 287 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 288 const MCRegisterInfo *MRI) { 289 if (OpIdx < 0) 290 return false; 291 292 const MCOperand &Op = Inst.getOperand(OpIdx); 293 if (!Op.isReg()) 294 return false; 295 296 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 297 auto Reg = Sub ? Sub : Op.getReg(); 298 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 299 } 300 301 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 302 AMDGPUDisassembler::OpWidthTy Opw, 303 const MCDisassembler *Decoder) { 304 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 305 if (!DAsm->isGFX90A()) { 306 Imm &= 511; 307 } else { 308 // If atomic has both vdata and vdst their register classes are tied. 309 // The bit is decoded along with the vdst, first operand. We need to 310 // change register class to AGPR if vdst was AGPR. 311 // If a DS instruction has both data0 and data1 their register classes 312 // are also tied. 313 unsigned Opc = Inst.getOpcode(); 314 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 315 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 316 : AMDGPU::OpName::vdata; 317 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 318 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 319 if ((int)Inst.getNumOperands() == DataIdx) { 320 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 321 if (IsAGPROperand(Inst, DstIdx, MRI)) 322 Imm |= 512; 323 } 324 325 if (TSFlags & SIInstrFlags::DS) { 326 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 327 if ((int)Inst.getNumOperands() == Data2Idx && 328 IsAGPROperand(Inst, DataIdx, MRI)) 329 Imm |= 512; 330 } 331 } 332 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 333 } 334 335 static DecodeStatus 336 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 337 const MCDisassembler *Decoder) { 338 return decodeOperand_AVLdSt_Any(Inst, Imm, 339 AMDGPUDisassembler::OPW32, Decoder); 340 } 341 342 static DecodeStatus 343 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 344 const MCDisassembler *Decoder) { 345 return decodeOperand_AVLdSt_Any(Inst, Imm, 346 AMDGPUDisassembler::OPW64, Decoder); 347 } 348 349 static DecodeStatus 350 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 351 const MCDisassembler *Decoder) { 352 return decodeOperand_AVLdSt_Any(Inst, Imm, 353 AMDGPUDisassembler::OPW96, Decoder); 354 } 355 356 static DecodeStatus 357 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 358 const MCDisassembler *Decoder) { 359 return decodeOperand_AVLdSt_Any(Inst, Imm, 360 AMDGPUDisassembler::OPW128, Decoder); 361 } 362 363 static DecodeStatus 364 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 365 const MCDisassembler *Decoder) { 366 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 367 Decoder); 368 } 369 370 #define DECODE_SDWA(DecName) \ 371 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 372 373 DECODE_SDWA(Src32) 374 DECODE_SDWA(Src16) 375 DECODE_SDWA(VopcDst) 376 377 #include "AMDGPUGenDisassemblerTables.inc" 378 379 //===----------------------------------------------------------------------===// 380 // 381 //===----------------------------------------------------------------------===// 382 383 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 384 assert(Bytes.size() >= sizeof(T)); 385 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); 386 Bytes = Bytes.slice(sizeof(T)); 387 return Res; 388 } 389 390 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 391 assert(Bytes.size() >= 12); 392 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>( 393 Bytes.data()); 394 Bytes = Bytes.slice(8); 395 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>( 396 Bytes.data()); 397 Bytes = Bytes.slice(4); 398 return DecoderUInt128(Lo, Hi); 399 } 400 401 // The disassembler is greedy, so we need to check FI operand value to 402 // not parse a dpp if the correct literal is not set. For dpp16 the 403 // autogenerated decoder checks the dpp literal 404 static bool isValidDPP8(const MCInst &MI) { 405 using namespace llvm::AMDGPU::DPP; 406 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 407 assert(FiIdx != -1); 408 if ((unsigned)FiIdx >= MI.getNumOperands()) 409 return false; 410 unsigned Fi = MI.getOperand(FiIdx).getImm(); 411 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 412 } 413 414 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 415 ArrayRef<uint8_t> Bytes_, 416 uint64_t Address, 417 raw_ostream &CS) const { 418 CommentStream = &CS; 419 bool IsSDWA = false; 420 421 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 422 Bytes = Bytes_.slice(0, MaxInstBytesNum); 423 424 DecodeStatus Res = MCDisassembler::Fail; 425 do { 426 // ToDo: better to switch encoding length using some bit predicate 427 // but it is unknown yet, so try all we can 428 429 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 430 // encodings 431 if (isGFX11Plus() && Bytes.size() >= 12 ) { 432 DecoderUInt128 DecW = eat12Bytes(Bytes); 433 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, 434 Address); 435 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 436 break; 437 MI = MCInst(); // clear 438 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, 439 Address); 440 if (Res) { 441 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 442 convertVOP3PDPPInst(MI); 443 else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) 444 convertVOPCDPPInst(MI); // Special VOP3 case 445 else { 446 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 447 convertVOP3DPPInst(MI); // Regular VOP3 case 448 } 449 break; 450 } 451 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address); 452 if (Res) 453 break; 454 } 455 // Reinitialize Bytes 456 Bytes = Bytes_.slice(0, MaxInstBytesNum); 457 458 if (Bytes.size() >= 8) { 459 const uint64_t QW = eatBytes<uint64_t>(Bytes); 460 461 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 462 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address); 463 if (Res) { 464 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 465 == -1) 466 break; 467 if (convertDPP8Inst(MI) == MCDisassembler::Success) 468 break; 469 MI = MCInst(); // clear 470 } 471 } 472 473 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address); 474 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 475 break; 476 MI = MCInst(); // clear 477 478 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address); 479 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 480 break; 481 MI = MCInst(); // clear 482 483 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address); 484 if (Res) break; 485 486 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address); 487 if (Res) { 488 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 489 convertVOPCDPPInst(MI); 490 break; 491 } 492 493 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address); 494 if (Res) { IsSDWA = true; break; } 495 496 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address); 497 if (Res) { IsSDWA = true; break; } 498 499 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address); 500 if (Res) { IsSDWA = true; break; } 501 502 if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) { 503 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address); 504 if (Res) 505 break; 506 } 507 508 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 509 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 510 // table first so we print the correct name. 511 if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) { 512 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address); 513 if (Res) 514 break; 515 } 516 } 517 518 // Reinitialize Bytes as DPP64 could have eaten too much 519 Bytes = Bytes_.slice(0, MaxInstBytesNum); 520 521 // Try decode 32-bit instruction 522 if (Bytes.size() < 4) break; 523 const uint32_t DW = eatBytes<uint32_t>(Bytes); 524 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address); 525 if (Res) break; 526 527 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address); 528 if (Res) break; 529 530 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address); 531 if (Res) break; 532 533 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 534 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address); 535 if (Res) 536 break; 537 } 538 539 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 540 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address); 541 if (Res) break; 542 } 543 544 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address); 545 if (Res) break; 546 547 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address); 548 if (Res) break; 549 550 if (Bytes.size() < 4) break; 551 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 552 553 if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) { 554 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address); 555 if (Res) 556 break; 557 } 558 559 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 560 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address); 561 if (Res) 562 break; 563 } 564 565 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address); 566 if (Res) break; 567 568 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address); 569 if (Res) break; 570 571 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address); 572 if (Res) break; 573 574 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address); 575 if (Res) break; 576 577 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address); 578 if (Res) 579 break; 580 581 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address); 582 } while (false); 583 584 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 585 // Insert dummy unused src2_modifiers. 586 insertNamedMCOperand(MI, MCOperand::createImm(0), 587 AMDGPU::OpName::src2_modifiers); 588 } 589 590 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 591 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 592 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 593 AMDGPU::OpName::cpol); 594 if (CPolPos != -1) { 595 unsigned CPol = 596 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 597 AMDGPU::CPol::GLC : 0; 598 if (MI.getNumOperands() <= (unsigned)CPolPos) { 599 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 600 AMDGPU::OpName::cpol); 601 } else if (CPol) { 602 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 603 } 604 } 605 } 606 607 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 608 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 609 (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) { 610 // GFX90A lost TFE, its place is occupied by ACC. 611 int TFEOpIdx = 612 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 613 if (TFEOpIdx != -1) { 614 auto TFEIter = MI.begin(); 615 std::advance(TFEIter, TFEOpIdx); 616 MI.insert(TFEIter, MCOperand::createImm(0)); 617 } 618 } 619 620 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 621 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 622 int SWZOpIdx = 623 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 624 if (SWZOpIdx != -1) { 625 auto SWZIter = MI.begin(); 626 std::advance(SWZIter, SWZOpIdx); 627 MI.insert(SWZIter, MCOperand::createImm(0)); 628 } 629 } 630 631 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 632 int VAddr0Idx = 633 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 634 int RsrcIdx = 635 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 636 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 637 if (VAddr0Idx >= 0 && NSAArgs > 0) { 638 unsigned NSAWords = (NSAArgs + 3) / 4; 639 if (Bytes.size() < 4 * NSAWords) { 640 Res = MCDisassembler::Fail; 641 } else { 642 for (unsigned i = 0; i < NSAArgs; ++i) { 643 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 644 auto VAddrRCID = 645 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 646 MI.insert(MI.begin() + VAddrIdx, 647 createRegOperand(VAddrRCID, Bytes[i])); 648 } 649 Bytes = Bytes.slice(4 * NSAWords); 650 } 651 } 652 653 if (Res) 654 Res = convertMIMGInst(MI); 655 } 656 657 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 658 Res = convertEXPInst(MI); 659 660 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 661 Res = convertVINTERPInst(MI); 662 663 if (Res && IsSDWA) 664 Res = convertSDWAInst(MI); 665 666 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 667 AMDGPU::OpName::vdst_in); 668 if (VDstIn_Idx != -1) { 669 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 670 MCOI::OperandConstraint::TIED_TO); 671 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 672 !MI.getOperand(VDstIn_Idx).isReg() || 673 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 674 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 675 MI.erase(&MI.getOperand(VDstIn_Idx)); 676 insertNamedMCOperand(MI, 677 MCOperand::createReg(MI.getOperand(Tied).getReg()), 678 AMDGPU::OpName::vdst_in); 679 } 680 } 681 682 int ImmLitIdx = 683 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 684 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 685 if (Res && ImmLitIdx != -1 && !IsSOPK) 686 Res = convertFMAanyK(MI, ImmLitIdx); 687 688 // if the opcode was not recognized we'll assume a Size of 4 bytes 689 // (unless there are fewer bytes left) 690 Size = Res ? (MaxInstBytesNum - Bytes.size()) 691 : std::min((size_t)4, Bytes_.size()); 692 return Res; 693 } 694 695 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 696 if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) { 697 // The MCInst still has these fields even though they are no longer encoded 698 // in the GFX11 instruction. 699 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 700 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 701 } 702 return MCDisassembler::Success; 703 } 704 705 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 706 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 707 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 708 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 709 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) { 710 // The MCInst has this field that is not directly encoded in the 711 // instruction. 712 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 713 } 714 return MCDisassembler::Success; 715 } 716 717 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 718 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 719 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 720 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 721 // VOPC - insert clamp 722 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 723 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 724 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 725 if (SDst != -1) { 726 // VOPC - insert VCC register as sdst 727 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 728 AMDGPU::OpName::sdst); 729 } else { 730 // VOP1/2 - insert omod if present in instruction 731 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 732 } 733 } 734 return MCDisassembler::Success; 735 } 736 737 struct VOPModifiers { 738 unsigned OpSel = 0; 739 unsigned OpSelHi = 0; 740 unsigned NegLo = 0; 741 unsigned NegHi = 0; 742 }; 743 744 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 745 // Note that these values do not affect disassembler output, 746 // so this is only necessary for consistency with src_modifiers. 747 static VOPModifiers collectVOPModifiers(const MCInst &MI, 748 bool IsVOP3P = false) { 749 VOPModifiers Modifiers; 750 unsigned Opc = MI.getOpcode(); 751 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 752 AMDGPU::OpName::src1_modifiers, 753 AMDGPU::OpName::src2_modifiers}; 754 for (int J = 0; J < 3; ++J) { 755 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 756 if (OpIdx == -1) 757 continue; 758 759 unsigned Val = MI.getOperand(OpIdx).getImm(); 760 761 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 762 if (IsVOP3P) { 763 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 764 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 765 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 766 } else if (J == 0) { 767 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 768 } 769 } 770 771 return Modifiers; 772 } 773 774 // MAC opcodes have special old and src2 operands. 775 // src2 is tied to dst, while old is not tied (but assumed to be). 776 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 777 constexpr int DST_IDX = 0; 778 auto Opcode = MI.getOpcode(); 779 const auto &Desc = MCII->get(Opcode); 780 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 781 782 if (OldIdx != -1 && Desc.getOperandConstraint( 783 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 784 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 785 assert(Desc.getOperandConstraint( 786 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 787 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 788 (void)DST_IDX; 789 return true; 790 } 791 792 return false; 793 } 794 795 // Create dummy old operand and insert dummy unused src2_modifiers 796 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 797 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 798 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 799 insertNamedMCOperand(MI, MCOperand::createImm(0), 800 AMDGPU::OpName::src2_modifiers); 801 } 802 803 // We must check FI == literal to reject not genuine dpp8 insts, and we must 804 // first add optional MI operands to check FI 805 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 806 unsigned Opc = MI.getOpcode(); 807 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 808 convertVOP3PDPPInst(MI); 809 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 810 AMDGPU::isVOPC64DPP(Opc)) { 811 convertVOPCDPPInst(MI); 812 } else { 813 if (isMacDPP(MI)) 814 convertMacDPPInst(MI); 815 816 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 817 if (MI.getNumOperands() < DescNumOps && 818 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 819 auto Mods = collectVOPModifiers(MI); 820 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 821 AMDGPU::OpName::op_sel); 822 } else { 823 // Insert dummy unused src modifiers. 824 if (MI.getNumOperands() < DescNumOps && 825 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 826 insertNamedMCOperand(MI, MCOperand::createImm(0), 827 AMDGPU::OpName::src0_modifiers); 828 829 if (MI.getNumOperands() < DescNumOps && 830 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 831 insertNamedMCOperand(MI, MCOperand::createImm(0), 832 AMDGPU::OpName::src1_modifiers); 833 } 834 } 835 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 836 } 837 838 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 839 if (isMacDPP(MI)) 840 convertMacDPPInst(MI); 841 842 unsigned Opc = MI.getOpcode(); 843 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 844 if (MI.getNumOperands() < DescNumOps && 845 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 846 auto Mods = collectVOPModifiers(MI); 847 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 848 AMDGPU::OpName::op_sel); 849 } 850 return MCDisassembler::Success; 851 } 852 853 // Note that before gfx10, the MIMG encoding provided no information about 854 // VADDR size. Consequently, decoded instructions always show address as if it 855 // has 1 dword, which could be not really so. 856 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 857 858 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 859 AMDGPU::OpName::vdst); 860 861 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 862 AMDGPU::OpName::vdata); 863 int VAddr0Idx = 864 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 865 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 866 AMDGPU::OpName::dmask); 867 868 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 869 AMDGPU::OpName::tfe); 870 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 871 AMDGPU::OpName::d16); 872 873 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 874 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 875 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 876 877 assert(VDataIdx != -1); 878 if (BaseOpcode->BVH) { 879 // Add A16 operand for intersect_ray instructions 880 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16)) 881 addOperand(MI, MCOperand::createImm(1)); 882 return MCDisassembler::Success; 883 } 884 885 bool IsAtomic = (VDstIdx != -1); 886 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; 887 bool IsNSA = false; 888 unsigned AddrSize = Info->VAddrDwords; 889 890 if (isGFX10Plus()) { 891 unsigned DimIdx = 892 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 893 int A16Idx = 894 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 895 const AMDGPU::MIMGDimInfo *Dim = 896 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 897 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 898 899 AddrSize = 900 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 901 902 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 903 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA; 904 if (!IsNSA) { 905 if (AddrSize > 12) 906 AddrSize = 16; 907 } else { 908 if (AddrSize > Info->VAddrDwords) { 909 // The NSA encoding does not contain enough operands for the combination 910 // of base opcode / dimension. Should this be an error? 911 return MCDisassembler::Success; 912 } 913 } 914 } 915 916 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 917 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 918 919 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 920 if (D16 && AMDGPU::hasPackedD16(STI)) { 921 DstSize = (DstSize + 1) / 2; 922 } 923 924 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 925 DstSize += 1; 926 927 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 928 return MCDisassembler::Success; 929 930 int NewOpcode = 931 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 932 if (NewOpcode == -1) 933 return MCDisassembler::Success; 934 935 // Widen the register to the correct number of enabled channels. 936 unsigned NewVdata = AMDGPU::NoRegister; 937 if (DstSize != Info->VDataDwords) { 938 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 939 940 // Get first subregister of VData 941 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 942 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 943 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 944 945 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 946 &MRI.getRegClass(DataRCID)); 947 if (NewVdata == AMDGPU::NoRegister) { 948 // It's possible to encode this such that the low register + enabled 949 // components exceeds the register count. 950 return MCDisassembler::Success; 951 } 952 } 953 954 // If not using NSA on GFX10+, widen address register to correct size. 955 unsigned NewVAddr0 = AMDGPU::NoRegister; 956 if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) { 957 unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg(); 958 unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0); 959 VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0; 960 961 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddr0Idx].RegClass; 962 NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0, 963 &MRI.getRegClass(AddrRCID)); 964 if (NewVAddr0 == AMDGPU::NoRegister) 965 return MCDisassembler::Success; 966 } 967 968 MI.setOpcode(NewOpcode); 969 970 if (NewVdata != AMDGPU::NoRegister) { 971 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 972 973 if (IsAtomic) { 974 // Atomic operations have an additional operand (a copy of data) 975 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 976 } 977 } 978 979 if (NewVAddr0 != AMDGPU::NoRegister) { 980 MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0); 981 } else if (IsNSA) { 982 assert(AddrSize <= Info->VAddrDwords); 983 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 984 MI.begin() + VAddr0Idx + Info->VAddrDwords); 985 } 986 987 return MCDisassembler::Success; 988 } 989 990 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 991 // decoder only adds to src_modifiers, so manually add the bits to the other 992 // operands. 993 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 994 unsigned Opc = MI.getOpcode(); 995 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 996 auto Mods = collectVOPModifiers(MI, true); 997 998 if (MI.getNumOperands() < DescNumOps && 999 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 1000 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 1001 1002 if (MI.getNumOperands() < DescNumOps && 1003 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1004 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1005 AMDGPU::OpName::op_sel); 1006 if (MI.getNumOperands() < DescNumOps && 1007 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1008 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1009 AMDGPU::OpName::op_sel_hi); 1010 if (MI.getNumOperands() < DescNumOps && 1011 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1012 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1013 AMDGPU::OpName::neg_lo); 1014 if (MI.getNumOperands() < DescNumOps && 1015 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1016 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1017 AMDGPU::OpName::neg_hi); 1018 1019 return MCDisassembler::Success; 1020 } 1021 1022 // Create dummy old operand and insert optional operands 1023 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1024 unsigned Opc = MI.getOpcode(); 1025 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1026 1027 if (MI.getNumOperands() < DescNumOps && 1028 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1029 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1030 1031 if (MI.getNumOperands() < DescNumOps && 1032 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1033 insertNamedMCOperand(MI, MCOperand::createImm(0), 1034 AMDGPU::OpName::src0_modifiers); 1035 1036 if (MI.getNumOperands() < DescNumOps && 1037 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1038 insertNamedMCOperand(MI, MCOperand::createImm(0), 1039 AMDGPU::OpName::src1_modifiers); 1040 return MCDisassembler::Success; 1041 } 1042 1043 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1044 int ImmLitIdx) const { 1045 assert(HasLiteral && "Should have decoded a literal"); 1046 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1047 unsigned DescNumOps = Desc.getNumOperands(); 1048 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1049 AMDGPU::OpName::immDeferred); 1050 assert(DescNumOps == MI.getNumOperands()); 1051 for (unsigned I = 0; I < DescNumOps; ++I) { 1052 auto &Op = MI.getOperand(I); 1053 auto OpType = Desc.operands()[I].OperandType; 1054 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1055 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1056 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1057 IsDeferredOp) 1058 Op.setImm(Literal); 1059 } 1060 return MCDisassembler::Success; 1061 } 1062 1063 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1064 return getContext().getRegisterInfo()-> 1065 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1066 } 1067 1068 inline 1069 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1070 const Twine& ErrMsg) const { 1071 *CommentStream << "Error: " + ErrMsg; 1072 1073 // ToDo: add support for error operands to MCInst.h 1074 // return MCOperand::createError(V); 1075 return MCOperand(); 1076 } 1077 1078 inline 1079 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1080 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1081 } 1082 1083 inline 1084 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1085 unsigned Val) const { 1086 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1087 if (Val >= RegCl.getNumRegs()) 1088 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1089 ": unknown register " + Twine(Val)); 1090 return createRegOperand(RegCl.getRegister(Val)); 1091 } 1092 1093 inline 1094 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1095 unsigned Val) const { 1096 // ToDo: SI/CI have 104 SGPRs, VI - 102 1097 // Valery: here we accepting as much as we can, let assembler sort it out 1098 int shift = 0; 1099 switch (SRegClassID) { 1100 case AMDGPU::SGPR_32RegClassID: 1101 case AMDGPU::TTMP_32RegClassID: 1102 break; 1103 case AMDGPU::SGPR_64RegClassID: 1104 case AMDGPU::TTMP_64RegClassID: 1105 shift = 1; 1106 break; 1107 case AMDGPU::SGPR_128RegClassID: 1108 case AMDGPU::TTMP_128RegClassID: 1109 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1110 // this bundle? 1111 case AMDGPU::SGPR_256RegClassID: 1112 case AMDGPU::TTMP_256RegClassID: 1113 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1114 // this bundle? 1115 case AMDGPU::SGPR_288RegClassID: 1116 case AMDGPU::TTMP_288RegClassID: 1117 case AMDGPU::SGPR_320RegClassID: 1118 case AMDGPU::TTMP_320RegClassID: 1119 case AMDGPU::SGPR_352RegClassID: 1120 case AMDGPU::TTMP_352RegClassID: 1121 case AMDGPU::SGPR_384RegClassID: 1122 case AMDGPU::TTMP_384RegClassID: 1123 case AMDGPU::SGPR_512RegClassID: 1124 case AMDGPU::TTMP_512RegClassID: 1125 shift = 2; 1126 break; 1127 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1128 // this bundle? 1129 default: 1130 llvm_unreachable("unhandled register class"); 1131 } 1132 1133 if (Val % (1 << shift)) { 1134 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1135 << ": scalar reg isn't aligned " << Val; 1136 } 1137 1138 return createRegOperand(SRegClassID, Val >> shift); 1139 } 1140 1141 // Decode Literals for insts which always have a literal in the encoding 1142 MCOperand 1143 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1144 if (HasLiteral) { 1145 assert( 1146 AMDGPU::hasVOPD(STI) && 1147 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1148 if (Literal != Val) 1149 return errOperand(Val, "More than one unique literal is illegal"); 1150 } 1151 HasLiteral = true; 1152 Literal = Val; 1153 return MCOperand::createImm(Literal); 1154 } 1155 1156 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { 1157 // For now all literal constants are supposed to be unsigned integer 1158 // ToDo: deal with signed/unsigned 64-bit integer constants 1159 // ToDo: deal with float/double constants 1160 if (!HasLiteral) { 1161 if (Bytes.size() < 4) { 1162 return errOperand(0, "cannot read literal, inst bytes left " + 1163 Twine(Bytes.size())); 1164 } 1165 HasLiteral = true; 1166 Literal = eatBytes<uint32_t>(Bytes); 1167 } 1168 return MCOperand::createImm(Literal); 1169 } 1170 1171 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1172 using namespace AMDGPU::EncValues; 1173 1174 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1175 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1176 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1177 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1178 // Cast prevents negative overflow. 1179 } 1180 1181 static int64_t getInlineImmVal32(unsigned Imm) { 1182 switch (Imm) { 1183 case 240: 1184 return FloatToBits(0.5f); 1185 case 241: 1186 return FloatToBits(-0.5f); 1187 case 242: 1188 return FloatToBits(1.0f); 1189 case 243: 1190 return FloatToBits(-1.0f); 1191 case 244: 1192 return FloatToBits(2.0f); 1193 case 245: 1194 return FloatToBits(-2.0f); 1195 case 246: 1196 return FloatToBits(4.0f); 1197 case 247: 1198 return FloatToBits(-4.0f); 1199 case 248: // 1 / (2 * PI) 1200 return 0x3e22f983; 1201 default: 1202 llvm_unreachable("invalid fp inline imm"); 1203 } 1204 } 1205 1206 static int64_t getInlineImmVal64(unsigned Imm) { 1207 switch (Imm) { 1208 case 240: 1209 return DoubleToBits(0.5); 1210 case 241: 1211 return DoubleToBits(-0.5); 1212 case 242: 1213 return DoubleToBits(1.0); 1214 case 243: 1215 return DoubleToBits(-1.0); 1216 case 244: 1217 return DoubleToBits(2.0); 1218 case 245: 1219 return DoubleToBits(-2.0); 1220 case 246: 1221 return DoubleToBits(4.0); 1222 case 247: 1223 return DoubleToBits(-4.0); 1224 case 248: // 1 / (2 * PI) 1225 return 0x3fc45f306dc9c882; 1226 default: 1227 llvm_unreachable("invalid fp inline imm"); 1228 } 1229 } 1230 1231 static int64_t getInlineImmVal16(unsigned Imm) { 1232 switch (Imm) { 1233 case 240: 1234 return 0x3800; 1235 case 241: 1236 return 0xB800; 1237 case 242: 1238 return 0x3C00; 1239 case 243: 1240 return 0xBC00; 1241 case 244: 1242 return 0x4000; 1243 case 245: 1244 return 0xC000; 1245 case 246: 1246 return 0x4400; 1247 case 247: 1248 return 0xC400; 1249 case 248: // 1 / (2 * PI) 1250 return 0x3118; 1251 default: 1252 llvm_unreachable("invalid fp inline imm"); 1253 } 1254 } 1255 1256 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1257 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1258 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1259 1260 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1261 // ImmWidth 0 is a default case where operand should not allow immediates. 1262 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1263 // use it to print verbose error message. 1264 switch (ImmWidth) { 1265 case 0: 1266 case 32: 1267 return MCOperand::createImm(getInlineImmVal32(Imm)); 1268 case 64: 1269 return MCOperand::createImm(getInlineImmVal64(Imm)); 1270 case 16: 1271 return MCOperand::createImm(getInlineImmVal16(Imm)); 1272 default: 1273 llvm_unreachable("implement me"); 1274 } 1275 } 1276 1277 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1278 using namespace AMDGPU; 1279 1280 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1281 switch (Width) { 1282 default: // fall 1283 case OPW32: 1284 case OPW16: 1285 case OPWV216: 1286 return VGPR_32RegClassID; 1287 case OPW64: 1288 case OPWV232: return VReg_64RegClassID; 1289 case OPW96: return VReg_96RegClassID; 1290 case OPW128: return VReg_128RegClassID; 1291 case OPW160: return VReg_160RegClassID; 1292 case OPW256: return VReg_256RegClassID; 1293 case OPW288: return VReg_288RegClassID; 1294 case OPW320: return VReg_320RegClassID; 1295 case OPW352: return VReg_352RegClassID; 1296 case OPW384: return VReg_384RegClassID; 1297 case OPW512: return VReg_512RegClassID; 1298 case OPW1024: return VReg_1024RegClassID; 1299 } 1300 } 1301 1302 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1303 using namespace AMDGPU; 1304 1305 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1306 switch (Width) { 1307 default: // fall 1308 case OPW32: 1309 case OPW16: 1310 case OPWV216: 1311 return AGPR_32RegClassID; 1312 case OPW64: 1313 case OPWV232: return AReg_64RegClassID; 1314 case OPW96: return AReg_96RegClassID; 1315 case OPW128: return AReg_128RegClassID; 1316 case OPW160: return AReg_160RegClassID; 1317 case OPW256: return AReg_256RegClassID; 1318 case OPW288: return AReg_288RegClassID; 1319 case OPW320: return AReg_320RegClassID; 1320 case OPW352: return AReg_352RegClassID; 1321 case OPW384: return AReg_384RegClassID; 1322 case OPW512: return AReg_512RegClassID; 1323 case OPW1024: return AReg_1024RegClassID; 1324 } 1325 } 1326 1327 1328 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1329 using namespace AMDGPU; 1330 1331 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1332 switch (Width) { 1333 default: // fall 1334 case OPW32: 1335 case OPW16: 1336 case OPWV216: 1337 return SGPR_32RegClassID; 1338 case OPW64: 1339 case OPWV232: return SGPR_64RegClassID; 1340 case OPW96: return SGPR_96RegClassID; 1341 case OPW128: return SGPR_128RegClassID; 1342 case OPW160: return SGPR_160RegClassID; 1343 case OPW256: return SGPR_256RegClassID; 1344 case OPW288: return SGPR_288RegClassID; 1345 case OPW320: return SGPR_320RegClassID; 1346 case OPW352: return SGPR_352RegClassID; 1347 case OPW384: return SGPR_384RegClassID; 1348 case OPW512: return SGPR_512RegClassID; 1349 } 1350 } 1351 1352 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1353 using namespace AMDGPU; 1354 1355 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1356 switch (Width) { 1357 default: // fall 1358 case OPW32: 1359 case OPW16: 1360 case OPWV216: 1361 return TTMP_32RegClassID; 1362 case OPW64: 1363 case OPWV232: return TTMP_64RegClassID; 1364 case OPW128: return TTMP_128RegClassID; 1365 case OPW256: return TTMP_256RegClassID; 1366 case OPW288: return TTMP_288RegClassID; 1367 case OPW320: return TTMP_320RegClassID; 1368 case OPW352: return TTMP_352RegClassID; 1369 case OPW384: return TTMP_384RegClassID; 1370 case OPW512: return TTMP_512RegClassID; 1371 } 1372 } 1373 1374 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1375 using namespace AMDGPU::EncValues; 1376 1377 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1378 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1379 1380 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1381 } 1382 1383 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1384 bool MandatoryLiteral, 1385 unsigned ImmWidth) const { 1386 using namespace AMDGPU::EncValues; 1387 1388 assert(Val < 1024); // enum10 1389 1390 bool IsAGPR = Val & 512; 1391 Val &= 511; 1392 1393 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1394 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1395 : getVgprClassId(Width), Val - VGPR_MIN); 1396 } 1397 if (Val <= SGPR_MAX) { 1398 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1399 static_assert(SGPR_MIN == 0); 1400 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1401 } 1402 1403 int TTmpIdx = getTTmpIdx(Val); 1404 if (TTmpIdx >= 0) { 1405 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1406 } 1407 1408 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1409 return decodeIntImmed(Val); 1410 1411 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1412 return decodeFPImmed(ImmWidth, Val); 1413 1414 if (Val == LITERAL_CONST) { 1415 if (MandatoryLiteral) 1416 // Keep a sentinel value for deferred setting 1417 return MCOperand::createImm(LITERAL_CONST); 1418 else 1419 return decodeLiteralConstant(); 1420 } 1421 1422 switch (Width) { 1423 case OPW32: 1424 case OPW16: 1425 case OPWV216: 1426 return decodeSpecialReg32(Val); 1427 case OPW64: 1428 case OPWV232: 1429 return decodeSpecialReg64(Val); 1430 default: 1431 llvm_unreachable("unexpected immediate type"); 1432 } 1433 } 1434 1435 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1436 // opposite of bit 0 of DstX. 1437 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1438 unsigned Val) const { 1439 int VDstXInd = 1440 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1441 assert(VDstXInd != -1); 1442 assert(Inst.getOperand(VDstXInd).isReg()); 1443 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1444 Val |= ~XDstReg & 1; 1445 auto Width = llvm::AMDGPUDisassembler::OPW32; 1446 return createRegOperand(getVgprClassId(Width), Val); 1447 } 1448 1449 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1450 using namespace AMDGPU; 1451 1452 switch (Val) { 1453 // clang-format off 1454 case 102: return createRegOperand(FLAT_SCR_LO); 1455 case 103: return createRegOperand(FLAT_SCR_HI); 1456 case 104: return createRegOperand(XNACK_MASK_LO); 1457 case 105: return createRegOperand(XNACK_MASK_HI); 1458 case 106: return createRegOperand(VCC_LO); 1459 case 107: return createRegOperand(VCC_HI); 1460 case 108: return createRegOperand(TBA_LO); 1461 case 109: return createRegOperand(TBA_HI); 1462 case 110: return createRegOperand(TMA_LO); 1463 case 111: return createRegOperand(TMA_HI); 1464 case 124: 1465 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1466 case 125: 1467 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1468 case 126: return createRegOperand(EXEC_LO); 1469 case 127: return createRegOperand(EXEC_HI); 1470 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1471 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1472 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1473 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1474 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1475 case 251: return createRegOperand(SRC_VCCZ); 1476 case 252: return createRegOperand(SRC_EXECZ); 1477 case 253: return createRegOperand(SRC_SCC); 1478 case 254: return createRegOperand(LDS_DIRECT); 1479 default: break; 1480 // clang-format on 1481 } 1482 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1483 } 1484 1485 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1486 using namespace AMDGPU; 1487 1488 switch (Val) { 1489 case 102: return createRegOperand(FLAT_SCR); 1490 case 104: return createRegOperand(XNACK_MASK); 1491 case 106: return createRegOperand(VCC); 1492 case 108: return createRegOperand(TBA); 1493 case 110: return createRegOperand(TMA); 1494 case 124: 1495 if (isGFX11Plus()) 1496 return createRegOperand(SGPR_NULL); 1497 break; 1498 case 125: 1499 if (!isGFX11Plus()) 1500 return createRegOperand(SGPR_NULL); 1501 break; 1502 case 126: return createRegOperand(EXEC); 1503 case 235: return createRegOperand(SRC_SHARED_BASE); 1504 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1505 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1506 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1507 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1508 case 251: return createRegOperand(SRC_VCCZ); 1509 case 252: return createRegOperand(SRC_EXECZ); 1510 case 253: return createRegOperand(SRC_SCC); 1511 default: break; 1512 } 1513 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1514 } 1515 1516 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1517 const unsigned Val, 1518 unsigned ImmWidth) const { 1519 using namespace AMDGPU::SDWA; 1520 using namespace AMDGPU::EncValues; 1521 1522 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1523 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 1524 // XXX: cast to int is needed to avoid stupid warning: 1525 // compare with unsigned is always true 1526 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1527 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1528 return createRegOperand(getVgprClassId(Width), 1529 Val - SDWA9EncValues::SRC_VGPR_MIN); 1530 } 1531 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1532 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1533 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1534 return createSRegOperand(getSgprClassId(Width), 1535 Val - SDWA9EncValues::SRC_SGPR_MIN); 1536 } 1537 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1538 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1539 return createSRegOperand(getTtmpClassId(Width), 1540 Val - SDWA9EncValues::SRC_TTMP_MIN); 1541 } 1542 1543 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1544 1545 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1546 return decodeIntImmed(SVal); 1547 1548 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1549 return decodeFPImmed(ImmWidth, SVal); 1550 1551 return decodeSpecialReg32(SVal); 1552 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 1553 return createRegOperand(getVgprClassId(Width), Val); 1554 } 1555 llvm_unreachable("unsupported target"); 1556 } 1557 1558 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1559 return decodeSDWASrc(OPW16, Val, 16); 1560 } 1561 1562 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1563 return decodeSDWASrc(OPW32, Val, 32); 1564 } 1565 1566 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1567 using namespace AMDGPU::SDWA; 1568 1569 assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1570 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) && 1571 "SDWAVopcDst should be present only on GFX9+"); 1572 1573 bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64]; 1574 1575 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1576 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1577 1578 int TTmpIdx = getTTmpIdx(Val); 1579 if (TTmpIdx >= 0) { 1580 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1581 return createSRegOperand(TTmpClsId, TTmpIdx); 1582 } else if (Val > SGPR_MAX) { 1583 return IsWave64 ? decodeSpecialReg64(Val) 1584 : decodeSpecialReg32(Val); 1585 } else { 1586 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1587 } 1588 } else { 1589 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1590 } 1591 } 1592 1593 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1594 return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] 1595 ? decodeSrcOp(OPW64, Val) 1596 : decodeSrcOp(OPW32, Val); 1597 } 1598 1599 bool AMDGPUDisassembler::isVI() const { 1600 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1601 } 1602 1603 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1604 1605 bool AMDGPUDisassembler::isGFX90A() const { 1606 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; 1607 } 1608 1609 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1610 1611 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1612 1613 bool AMDGPUDisassembler::isGFX10Plus() const { 1614 return AMDGPU::isGFX10Plus(STI); 1615 } 1616 1617 bool AMDGPUDisassembler::isGFX11() const { 1618 return STI.getFeatureBits()[AMDGPU::FeatureGFX11]; 1619 } 1620 1621 bool AMDGPUDisassembler::isGFX11Plus() const { 1622 return AMDGPU::isGFX11Plus(STI); 1623 } 1624 1625 1626 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1627 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; 1628 } 1629 1630 //===----------------------------------------------------------------------===// 1631 // AMDGPU specific symbol handling 1632 //===----------------------------------------------------------------------===// 1633 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1634 do { \ 1635 KdStream << Indent << DIRECTIVE " " \ 1636 << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1637 } while (0) 1638 1639 // NOLINTNEXTLINE(readability-identifier-naming) 1640 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1641 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1642 using namespace amdhsa; 1643 StringRef Indent = "\t"; 1644 1645 // We cannot accurately backward compute #VGPRs used from 1646 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1647 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1648 // simply calculate the inverse of what the assembler does. 1649 1650 uint32_t GranulatedWorkitemVGPRCount = 1651 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >> 1652 COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT; 1653 1654 uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) * 1655 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI); 1656 1657 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1658 1659 // We cannot backward compute values used to calculate 1660 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1661 // directives can't be computed: 1662 // .amdhsa_reserve_vcc 1663 // .amdhsa_reserve_flat_scratch 1664 // .amdhsa_reserve_xnack_mask 1665 // They take their respective default values if not specified in the assembly. 1666 // 1667 // GRANULATED_WAVEFRONT_SGPR_COUNT 1668 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1669 // 1670 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1671 // are set to 0. So while disassembling we consider that: 1672 // 1673 // GRANULATED_WAVEFRONT_SGPR_COUNT 1674 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1675 // 1676 // The disassembler cannot recover the original values of those 3 directives. 1677 1678 uint32_t GranulatedWavefrontSGPRCount = 1679 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >> 1680 COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT; 1681 1682 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1683 return MCDisassembler::Fail; 1684 1685 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1686 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1687 1688 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1689 if (!hasArchitectedFlatScratch()) 1690 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1691 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1692 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1693 1694 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1695 return MCDisassembler::Fail; 1696 1697 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1698 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1699 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1700 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1701 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1702 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1703 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1704 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1705 1706 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1707 return MCDisassembler::Fail; 1708 1709 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); 1710 1711 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1712 return MCDisassembler::Fail; 1713 1714 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); 1715 1716 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1717 return MCDisassembler::Fail; 1718 1719 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1720 return MCDisassembler::Fail; 1721 1722 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); 1723 1724 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) 1725 return MCDisassembler::Fail; 1726 1727 if (isGFX10Plus()) { 1728 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1729 COMPUTE_PGM_RSRC1_WGP_MODE); 1730 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); 1731 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); 1732 } 1733 return MCDisassembler::Success; 1734 } 1735 1736 // NOLINTNEXTLINE(readability-identifier-naming) 1737 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1738 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1739 using namespace amdhsa; 1740 StringRef Indent = "\t"; 1741 if (hasArchitectedFlatScratch()) 1742 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1743 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1744 else 1745 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1746 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1747 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1748 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1749 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1750 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1751 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1752 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1753 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1754 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1755 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1756 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1757 1758 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1759 return MCDisassembler::Fail; 1760 1761 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1762 return MCDisassembler::Fail; 1763 1764 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1765 return MCDisassembler::Fail; 1766 1767 PRINT_DIRECTIVE( 1768 ".amdhsa_exception_fp_ieee_invalid_op", 1769 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1770 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1771 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1772 PRINT_DIRECTIVE( 1773 ".amdhsa_exception_fp_ieee_div_zero", 1774 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1775 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1776 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1777 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1778 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1779 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1780 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1781 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1782 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1783 1784 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1785 return MCDisassembler::Fail; 1786 1787 return MCDisassembler::Success; 1788 } 1789 1790 #undef PRINT_DIRECTIVE 1791 1792 MCDisassembler::DecodeStatus 1793 AMDGPUDisassembler::decodeKernelDescriptorDirective( 1794 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 1795 raw_string_ostream &KdStream) const { 1796 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1797 do { \ 1798 KdStream << Indent << DIRECTIVE " " \ 1799 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1800 } while (0) 1801 1802 uint16_t TwoByteBuffer = 0; 1803 uint32_t FourByteBuffer = 0; 1804 1805 StringRef ReservedBytes; 1806 StringRef Indent = "\t"; 1807 1808 assert(Bytes.size() == 64); 1809 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 1810 1811 switch (Cursor.tell()) { 1812 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 1813 FourByteBuffer = DE.getU32(Cursor); 1814 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 1815 << '\n'; 1816 return MCDisassembler::Success; 1817 1818 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 1819 FourByteBuffer = DE.getU32(Cursor); 1820 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 1821 << FourByteBuffer << '\n'; 1822 return MCDisassembler::Success; 1823 1824 case amdhsa::KERNARG_SIZE_OFFSET: 1825 FourByteBuffer = DE.getU32(Cursor); 1826 KdStream << Indent << ".amdhsa_kernarg_size " 1827 << FourByteBuffer << '\n'; 1828 return MCDisassembler::Success; 1829 1830 case amdhsa::RESERVED0_OFFSET: 1831 // 4 reserved bytes, must be 0. 1832 ReservedBytes = DE.getBytes(Cursor, 4); 1833 for (int I = 0; I < 4; ++I) { 1834 if (ReservedBytes[I] != 0) { 1835 return MCDisassembler::Fail; 1836 } 1837 } 1838 return MCDisassembler::Success; 1839 1840 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 1841 // KERNEL_CODE_ENTRY_BYTE_OFFSET 1842 // So far no directive controls this for Code Object V3, so simply skip for 1843 // disassembly. 1844 DE.skip(Cursor, 8); 1845 return MCDisassembler::Success; 1846 1847 case amdhsa::RESERVED1_OFFSET: 1848 // 20 reserved bytes, must be 0. 1849 ReservedBytes = DE.getBytes(Cursor, 20); 1850 for (int I = 0; I < 20; ++I) { 1851 if (ReservedBytes[I] != 0) { 1852 return MCDisassembler::Fail; 1853 } 1854 } 1855 return MCDisassembler::Success; 1856 1857 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 1858 // COMPUTE_PGM_RSRC3 1859 // - Only set for GFX10, GFX6-9 have this to be 0. 1860 // - Currently no directives directly control this. 1861 FourByteBuffer = DE.getU32(Cursor); 1862 if (!isGFX10Plus() && FourByteBuffer) { 1863 return MCDisassembler::Fail; 1864 } 1865 return MCDisassembler::Success; 1866 1867 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 1868 FourByteBuffer = DE.getU32(Cursor); 1869 if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) == 1870 MCDisassembler::Fail) { 1871 return MCDisassembler::Fail; 1872 } 1873 return MCDisassembler::Success; 1874 1875 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 1876 FourByteBuffer = DE.getU32(Cursor); 1877 if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) == 1878 MCDisassembler::Fail) { 1879 return MCDisassembler::Fail; 1880 } 1881 return MCDisassembler::Success; 1882 1883 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 1884 using namespace amdhsa; 1885 TwoByteBuffer = DE.getU16(Cursor); 1886 1887 if (!hasArchitectedFlatScratch()) 1888 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 1889 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 1890 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 1891 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 1892 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 1893 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 1894 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 1895 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 1896 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 1897 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 1898 if (!hasArchitectedFlatScratch()) 1899 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 1900 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 1901 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 1902 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 1903 1904 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 1905 return MCDisassembler::Fail; 1906 1907 // Reserved for GFX9 1908 if (isGFX9() && 1909 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 1910 return MCDisassembler::Fail; 1911 } else if (isGFX10Plus()) { 1912 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 1913 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1914 } 1915 1916 if (AMDGPU::getAmdhsaCodeObjectVersion() >= 5) 1917 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 1918 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 1919 1920 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 1921 return MCDisassembler::Fail; 1922 1923 return MCDisassembler::Success; 1924 1925 case amdhsa::RESERVED2_OFFSET: 1926 // 6 bytes from here are reserved, must be 0. 1927 ReservedBytes = DE.getBytes(Cursor, 6); 1928 for (int I = 0; I < 6; ++I) { 1929 if (ReservedBytes[I] != 0) 1930 return MCDisassembler::Fail; 1931 } 1932 return MCDisassembler::Success; 1933 1934 default: 1935 llvm_unreachable("Unhandled index. Case statements cover everything."); 1936 return MCDisassembler::Fail; 1937 } 1938 #undef PRINT_DIRECTIVE 1939 } 1940 1941 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 1942 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 1943 // CP microcode requires the kernel descriptor to be 64 aligned. 1944 if (Bytes.size() != 64 || KdAddress % 64 != 0) 1945 return MCDisassembler::Fail; 1946 1947 std::string Kd; 1948 raw_string_ostream KdStream(Kd); 1949 KdStream << ".amdhsa_kernel " << KdName << '\n'; 1950 1951 DataExtractor::Cursor C(0); 1952 while (C && C.tell() < Bytes.size()) { 1953 MCDisassembler::DecodeStatus Status = 1954 decodeKernelDescriptorDirective(C, Bytes, KdStream); 1955 1956 cantFail(C.takeError()); 1957 1958 if (Status == MCDisassembler::Fail) 1959 return MCDisassembler::Fail; 1960 } 1961 KdStream << ".end_amdhsa_kernel\n"; 1962 outs() << KdStream.str(); 1963 return MCDisassembler::Success; 1964 } 1965 1966 std::optional<MCDisassembler::DecodeStatus> 1967 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 1968 ArrayRef<uint8_t> Bytes, uint64_t Address, 1969 raw_ostream &CStream) const { 1970 // Right now only kernel descriptor needs to be handled. 1971 // We ignore all other symbols for target specific handling. 1972 // TODO: 1973 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 1974 // Object V2 and V3 when symbols are marked protected. 1975 1976 // amd_kernel_code_t for Code Object V2. 1977 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 1978 Size = 256; 1979 return MCDisassembler::Fail; 1980 } 1981 1982 // Code Object V3 kernel descriptors. 1983 StringRef Name = Symbol.Name; 1984 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { 1985 Size = 64; // Size = 64 regardless of success or failure. 1986 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 1987 } 1988 return std::nullopt; 1989 } 1990 1991 //===----------------------------------------------------------------------===// 1992 // AMDGPUSymbolizer 1993 //===----------------------------------------------------------------------===// 1994 1995 // Try to find symbol name for specified label 1996 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 1997 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 1998 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 1999 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2000 2001 if (!IsBranch) { 2002 return false; 2003 } 2004 2005 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2006 if (!Symbols) 2007 return false; 2008 2009 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2010 return Val.Addr == static_cast<uint64_t>(Value) && 2011 Val.Type == ELF::STT_NOTYPE; 2012 }); 2013 if (Result != Symbols->end()) { 2014 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2015 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2016 Inst.addOperand(MCOperand::createExpr(Add)); 2017 return true; 2018 } 2019 // Add to list of referenced addresses, so caller can synthesize a label. 2020 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2021 return false; 2022 } 2023 2024 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2025 int64_t Value, 2026 uint64_t Address) { 2027 llvm_unreachable("unimplemented"); 2028 } 2029 2030 //===----------------------------------------------------------------------===// 2031 // Initialization 2032 //===----------------------------------------------------------------------===// 2033 2034 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2035 LLVMOpInfoCallback /*GetOpInfo*/, 2036 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2037 void *DisInfo, 2038 MCContext *Ctx, 2039 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2040 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2041 } 2042 2043 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2044 const MCSubtargetInfo &STI, 2045 MCContext &Ctx) { 2046 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2047 } 2048 2049 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2050 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2051 createAMDGPUDisassembler); 2052 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2053 createAMDGPUSymbolizer); 2054 } 2055