xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision abff8fe2a940212b1c43af2d86a68fc92849f019)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUAsmUtils.h"
25 #include "Utils/AMDGPUBaseInfo.h"
26 #include "llvm-c/DisassemblerTypes.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDecoderOps.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/MC/MCSubtargetInfo.h"
35 #include "llvm/MC/TargetRegistry.h"
36 #include "llvm/Support/AMDHSAKernelDescriptor.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "amdgpu-disassembler"
41 
42 #define SGPR_MAX                                                               \
43   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
44                  : AMDGPU::EncValues::SGPR_MAX_SI)
45 
46 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
47 
48 static const MCSubtargetInfo &addDefaultWaveSize(const MCSubtargetInfo &STI,
49                                                  MCContext &Ctx) {
50   if (!STI.hasFeature(AMDGPU::FeatureWavefrontSize64) &&
51       !STI.hasFeature(AMDGPU::FeatureWavefrontSize32)) {
52     MCSubtargetInfo &STICopy = Ctx.getSubtargetCopy(STI);
53     // If there is no default wave size it must be a generation before gfx10,
54     // these have FeatureWavefrontSize64 in their definition already. For gfx10+
55     // set wave32 as a default.
56     STICopy.ToggleFeature(AMDGPU::FeatureWavefrontSize32);
57     return STICopy;
58   }
59 
60   return STI;
61 }
62 
63 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
64                                        MCContext &Ctx, MCInstrInfo const *MCII)
65     : MCDisassembler(addDefaultWaveSize(STI, Ctx), Ctx), MCII(MCII),
66       MRI(*Ctx.getRegisterInfo()), MAI(*Ctx.getAsmInfo()),
67       TargetMaxInstBytes(MAI.getMaxInstLength(&STI)),
68       CodeObjectVersion(AMDGPU::getDefaultAMDHSACodeObjectVersion()) {
69   // ToDo: AMDGPUDisassembler supports only VI ISA.
70   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
71     report_fatal_error("Disassembly not yet supported for subtarget");
72 
73   for (auto [Symbol, Code] : AMDGPU::UCVersion::getGFXVersions())
74     createConstantSymbolExpr(Symbol, Code);
75 
76   UCVersionW64Expr = createConstantSymbolExpr("UC_VERSION_W64_BIT", 0x2000);
77   UCVersionW32Expr = createConstantSymbolExpr("UC_VERSION_W32_BIT", 0x4000);
78   UCVersionMDPExpr = createConstantSymbolExpr("UC_VERSION_MDP_BIT", 0x8000);
79 }
80 
81 void AMDGPUDisassembler::setABIVersion(unsigned Version) {
82   CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(Version);
83 }
84 
85 inline static MCDisassembler::DecodeStatus
86 addOperand(MCInst &Inst, const MCOperand& Opnd) {
87   Inst.addOperand(Opnd);
88   return Opnd.isValid() ?
89     MCDisassembler::Success :
90     MCDisassembler::Fail;
91 }
92 
93 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
94                                 uint16_t NameIdx) {
95   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
96   if (OpIdx != -1) {
97     auto *I = MI.begin();
98     std::advance(I, OpIdx);
99     MI.insert(I, Op);
100   }
101   return OpIdx;
102 }
103 
104 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
105                                        uint64_t Addr,
106                                        const MCDisassembler *Decoder) {
107   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
108 
109   // Our branches take a simm16.
110   int64_t Offset = SignExtend64<16>(Imm) * 4 + 4 + Addr;
111 
112   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
113     return MCDisassembler::Success;
114   return addOperand(Inst, MCOperand::createImm(Imm));
115 }
116 
117 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
118                                      const MCDisassembler *Decoder) {
119   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
120   int64_t Offset;
121   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
122     Offset = SignExtend64<24>(Imm);
123   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
124     Offset = Imm & 0xFFFFF;
125   } else { // GFX9+ supports 21-bit signed offsets.
126     Offset = SignExtend64<21>(Imm);
127   }
128   return addOperand(Inst, MCOperand::createImm(Offset));
129 }
130 
131 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
132                                   const MCDisassembler *Decoder) {
133   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
134   return addOperand(Inst, DAsm->decodeBoolReg(Val));
135 }
136 
137 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
138                                        uint64_t Addr,
139                                        const MCDisassembler *Decoder) {
140   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
141   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
142 }
143 
144 static DecodeStatus decodeDpp8FI(MCInst &Inst, unsigned Val, uint64_t Addr,
145                                  const MCDisassembler *Decoder) {
146   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
147   return addOperand(Inst, DAsm->decodeDpp8FI(Val));
148 }
149 
150 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
151   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
152                                         uint64_t /*Addr*/,                     \
153                                         const MCDisassembler *Decoder) {       \
154     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
155     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
156   }
157 
158 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
159 // number of register. Used by VGPR only and AGPR only operands.
160 #define DECODE_OPERAND_REG_8(RegClass)                                         \
161   static DecodeStatus Decode##RegClass##RegisterClass(                         \
162       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
163       const MCDisassembler *Decoder) {                                         \
164     assert(Imm < (1 << 8) && "8-bit encoding");                                \
165     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
166     return addOperand(                                                         \
167         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
168   }
169 
170 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
171                      ImmWidth)                                                 \
172   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
173                            const MCDisassembler *Decoder) {                    \
174     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
175     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
176     return addOperand(Inst,                                                    \
177                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
178                                         MandatoryLiteral, ImmWidth));          \
179   }
180 
181 static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize,
182                                 AMDGPUDisassembler::OpWidthTy OpWidth,
183                                 unsigned Imm, unsigned EncImm,
184                                 bool MandatoryLiteral, unsigned ImmWidth,
185                                 AMDGPU::OperandSemantics Sema,
186                                 const MCDisassembler *Decoder) {
187   assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!");
188   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
189   return addOperand(Inst, DAsm->decodeSrcOp(OpWidth, EncImm, MandatoryLiteral,
190                                             ImmWidth, Sema));
191 }
192 
193 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
194 // get register class. Used by SGPR only operands.
195 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
196   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
197 
198 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
199 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
200 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
201 // Used by AV_ register classes (AGPR or VGPR only register operands).
202 template <AMDGPUDisassembler::OpWidthTy OpWidth>
203 static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
204                                const MCDisassembler *Decoder) {
205   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm | AMDGPU::EncValues::IS_VGPR,
206                      false, 0, AMDGPU::OperandSemantics::INT, Decoder);
207 }
208 
209 // Decoder for Src(9-bit encoding) registers only.
210 template <AMDGPUDisassembler::OpWidthTy OpWidth>
211 static DecodeStatus decodeSrcReg9(MCInst &Inst, unsigned Imm,
212                                   uint64_t /* Addr */,
213                                   const MCDisassembler *Decoder) {
214   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, 0,
215                      AMDGPU::OperandSemantics::INT, Decoder);
216 }
217 
218 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
219 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
220 // only.
221 template <AMDGPUDisassembler::OpWidthTy OpWidth>
222 static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
223                                 const MCDisassembler *Decoder) {
224   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, 0,
225                      AMDGPU::OperandSemantics::INT, Decoder);
226 }
227 
228 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
229 // Imm{9} is acc, registers only.
230 template <AMDGPUDisassembler::OpWidthTy OpWidth>
231 static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm,
232                                   uint64_t /* Addr */,
233                                   const MCDisassembler *Decoder) {
234   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm, false, 0,
235                      AMDGPU::OperandSemantics::INT, Decoder);
236 }
237 
238 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
239 // register from RegClass or immediate. Registers that don't belong to RegClass
240 // will be decoded and InstPrinter will report warning. Immediate will be
241 // decoded into constant of size ImmWidth, should match width of immediate used
242 // by OperandType (important for floating point types).
243 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
244           unsigned OperandSemantics>
245 static DecodeStatus decodeSrcRegOrImm9(MCInst &Inst, unsigned Imm,
246                                        uint64_t /* Addr */,
247                                        const MCDisassembler *Decoder) {
248   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, ImmWidth,
249                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
250 }
251 
252 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
253 // and decode using 'enum10' from decodeSrcOp.
254 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
255           unsigned OperandSemantics>
256 static DecodeStatus decodeSrcRegOrImmA9(MCInst &Inst, unsigned Imm,
257                                         uint64_t /* Addr */,
258                                         const MCDisassembler *Decoder) {
259   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, ImmWidth,
260                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
261 }
262 
263 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
264           unsigned OperandSemantics>
265 static DecodeStatus decodeSrcRegOrImmDeferred9(MCInst &Inst, unsigned Imm,
266                                                uint64_t /* Addr */,
267                                                const MCDisassembler *Decoder) {
268   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, true, ImmWidth,
269                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
270 }
271 
272 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
273 // when RegisterClass is used as an operand. Most often used for destination
274 // operands.
275 
276 DECODE_OPERAND_REG_8(VGPR_32)
277 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
278 DECODE_OPERAND_REG_8(VReg_64)
279 DECODE_OPERAND_REG_8(VReg_96)
280 DECODE_OPERAND_REG_8(VReg_128)
281 DECODE_OPERAND_REG_8(VReg_256)
282 DECODE_OPERAND_REG_8(VReg_288)
283 DECODE_OPERAND_REG_8(VReg_352)
284 DECODE_OPERAND_REG_8(VReg_384)
285 DECODE_OPERAND_REG_8(VReg_512)
286 DECODE_OPERAND_REG_8(VReg_1024)
287 
288 DECODE_OPERAND_REG_7(SReg_32, OPW32)
289 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
290 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
291 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
292 DECODE_OPERAND_REG_7(SReg_64, OPW64)
293 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
294 DECODE_OPERAND_REG_7(SReg_64_XEXEC_XNULL, OPW64)
295 DECODE_OPERAND_REG_7(SReg_96, OPW96)
296 DECODE_OPERAND_REG_7(SReg_128, OPW128)
297 DECODE_OPERAND_REG_7(SReg_256, OPW256)
298 DECODE_OPERAND_REG_7(SReg_512, OPW512)
299 
300 DECODE_OPERAND_REG_8(AGPR_32)
301 DECODE_OPERAND_REG_8(AReg_64)
302 DECODE_OPERAND_REG_8(AReg_128)
303 DECODE_OPERAND_REG_8(AReg_256)
304 DECODE_OPERAND_REG_8(AReg_512)
305 DECODE_OPERAND_REG_8(AReg_1024)
306 
307 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
308                                                uint64_t /*Addr*/,
309                                                const MCDisassembler *Decoder) {
310   assert(isUInt<10>(Imm) && "10-bit encoding expected");
311   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
312 
313   bool IsHi = Imm & (1 << 9);
314   unsigned RegIdx = Imm & 0xff;
315   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
316   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
317 }
318 
319 static DecodeStatus
320 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
321                                  const MCDisassembler *Decoder) {
322   assert(isUInt<8>(Imm) && "8-bit encoding expected");
323 
324   bool IsHi = Imm & (1 << 7);
325   unsigned RegIdx = Imm & 0x7f;
326   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
327   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
328 }
329 
330 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
331           unsigned OperandSemantics>
332 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
333                                                 uint64_t /*Addr*/,
334                                                 const MCDisassembler *Decoder) {
335   assert(isUInt<9>(Imm) && "9-bit encoding expected");
336 
337   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
338   if (Imm & AMDGPU::EncValues::IS_VGPR) {
339     bool IsHi = Imm & (1 << 7);
340     unsigned RegIdx = Imm & 0x7f;
341     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
342   }
343   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(
344                               OpWidth, Imm & 0xFF, false, ImmWidth,
345                               (AMDGPU::OperandSemantics)OperandSemantics));
346 }
347 
348 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
349           unsigned OperandSemantics>
350 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
351                                           uint64_t /*Addr*/,
352                                           const MCDisassembler *Decoder) {
353   assert(isUInt<10>(Imm) && "10-bit encoding expected");
354 
355   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
356   if (Imm & AMDGPU::EncValues::IS_VGPR) {
357     bool IsHi = Imm & (1 << 9);
358     unsigned RegIdx = Imm & 0xff;
359     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
360   }
361   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(
362                               OpWidth, Imm & 0xFF, false, ImmWidth,
363                               (AMDGPU::OperandSemantics)OperandSemantics));
364 }
365 
366 static DecodeStatus decodeOperand_VGPR_16(MCInst &Inst, unsigned Imm,
367                                           uint64_t /*Addr*/,
368                                           const MCDisassembler *Decoder) {
369   assert(isUInt<10>(Imm) && "10-bit encoding expected");
370   assert(Imm & AMDGPU::EncValues::IS_VGPR && "VGPR expected");
371 
372   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
373 
374   bool IsHi = Imm & (1 << 9);
375   unsigned RegIdx = Imm & 0xff;
376   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
377 }
378 
379 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
380                                          uint64_t Addr,
381                                          const MCDisassembler *Decoder) {
382   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
383   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
384 }
385 
386 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
387                                           uint64_t Addr, const void *Decoder) {
388   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
389   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
390 }
391 
392 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
393                           const MCRegisterInfo *MRI) {
394   if (OpIdx < 0)
395     return false;
396 
397   const MCOperand &Op = Inst.getOperand(OpIdx);
398   if (!Op.isReg())
399     return false;
400 
401   MCRegister Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
402   auto Reg = Sub ? Sub : Op.getReg();
403   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
404 }
405 
406 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
407                                  AMDGPUDisassembler::OpWidthTy Opw,
408                                  const MCDisassembler *Decoder) {
409   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
410   if (!DAsm->isGFX90A()) {
411     Imm &= 511;
412   } else {
413     // If atomic has both vdata and vdst their register classes are tied.
414     // The bit is decoded along with the vdst, first operand. We need to
415     // change register class to AGPR if vdst was AGPR.
416     // If a DS instruction has both data0 and data1 their register classes
417     // are also tied.
418     unsigned Opc = Inst.getOpcode();
419     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
420     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
421                                                         : AMDGPU::OpName::vdata;
422     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
423     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
424     if ((int)Inst.getNumOperands() == DataIdx) {
425       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
426       if (IsAGPROperand(Inst, DstIdx, MRI))
427         Imm |= 512;
428     }
429 
430     if (TSFlags & SIInstrFlags::DS) {
431       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
432       if ((int)Inst.getNumOperands() == Data2Idx &&
433           IsAGPROperand(Inst, DataIdx, MRI))
434         Imm |= 512;
435     }
436   }
437   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
438 }
439 
440 template <AMDGPUDisassembler::OpWidthTy Opw>
441 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
442                                  uint64_t /* Addr */,
443                                  const MCDisassembler *Decoder) {
444   return decodeAVLdSt(Inst, Imm, Opw, Decoder);
445 }
446 
447 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
448                                            uint64_t Addr,
449                                            const MCDisassembler *Decoder) {
450   assert(Imm < (1 << 9) && "9-bit encoding");
451   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
452   return addOperand(Inst,
453                     DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64,
454                                       AMDGPU::OperandSemantics::FP64));
455 }
456 
457 #define DECODE_SDWA(DecName) \
458 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
459 
460 DECODE_SDWA(Src32)
461 DECODE_SDWA(Src16)
462 DECODE_SDWA(VopcDst)
463 
464 static DecodeStatus decodeVersionImm(MCInst &Inst, unsigned Imm,
465                                      uint64_t /* Addr */,
466                                      const MCDisassembler *Decoder) {
467   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
468   return addOperand(Inst, DAsm->decodeVersionImm(Imm));
469 }
470 
471 #include "AMDGPUGenDisassemblerTables.inc"
472 
473 //===----------------------------------------------------------------------===//
474 //
475 //===----------------------------------------------------------------------===//
476 
477 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
478   assert(Bytes.size() >= sizeof(T));
479   const auto Res =
480       support::endian::read<T, llvm::endianness::little>(Bytes.data());
481   Bytes = Bytes.slice(sizeof(T));
482   return Res;
483 }
484 
485 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
486   assert(Bytes.size() >= 12);
487   uint64_t Lo =
488       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
489   Bytes = Bytes.slice(8);
490   uint64_t Hi =
491       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
492   Bytes = Bytes.slice(4);
493   return DecoderUInt128(Lo, Hi);
494 }
495 
496 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
497                                                 ArrayRef<uint8_t> Bytes_,
498                                                 uint64_t Address,
499                                                 raw_ostream &CS) const {
500   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
501   Bytes = Bytes_.slice(0, MaxInstBytesNum);
502 
503   // In case the opcode is not recognized we'll assume a Size of 4 bytes (unless
504   // there are fewer bytes left). This will be overridden on success.
505   Size = std::min((size_t)4, Bytes_.size());
506 
507   do {
508     // ToDo: better to switch encoding length using some bit predicate
509     // but it is unknown yet, so try all we can
510 
511     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
512     // encodings
513     if (isGFX11Plus() && Bytes.size() >= 12 ) {
514       DecoderUInt128 DecW = eat12Bytes(Bytes);
515 
516       if (isGFX11() &&
517           tryDecodeInst(DecoderTableGFX1196, DecoderTableGFX11_FAKE1696, MI,
518                         DecW, Address, CS))
519         break;
520 
521       if (isGFX12() &&
522           tryDecodeInst(DecoderTableGFX1296, DecoderTableGFX12_FAKE1696, MI,
523                         DecW, Address, CS))
524         break;
525 
526       if (isGFX12() &&
527           tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS))
528         break;
529 
530       // Reinitialize Bytes
531       Bytes = Bytes_.slice(0, MaxInstBytesNum);
532     }
533 
534     if (Bytes.size() >= 8) {
535       const uint64_t QW = eatBytes<uint64_t>(Bytes);
536 
537       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) &&
538           tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS))
539         break;
540 
541       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) &&
542           tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS))
543         break;
544 
545       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
546       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
547       // table first so we print the correct name.
548       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts) &&
549           tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS))
550         break;
551 
552       if (STI.hasFeature(AMDGPU::FeatureGFX940Insts) &&
553           tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS))
554         break;
555 
556       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) &&
557           tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS))
558         break;
559 
560       if ((isVI() || isGFX9()) &&
561           tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS))
562         break;
563 
564       if (isGFX9() && tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS))
565         break;
566 
567       if (isGFX10() && tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS))
568         break;
569 
570       if (isGFX12() &&
571           tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
572                         Address, CS))
573         break;
574 
575       if (isGFX11() &&
576           tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
577                         Address, CS))
578         break;
579 
580       if (isGFX11() &&
581           tryDecodeInst(DecoderTableGFX11W6464, MI, QW, Address, CS))
582         break;
583 
584       if (isGFX12() &&
585           tryDecodeInst(DecoderTableGFX12W6464, MI, QW, Address, CS))
586         break;
587 
588       // Reinitialize Bytes
589       Bytes = Bytes_.slice(0, MaxInstBytesNum);
590     }
591 
592     // Try decode 32-bit instruction
593     if (Bytes.size() >= 4) {
594       const uint32_t DW = eatBytes<uint32_t>(Bytes);
595 
596       if ((isVI() || isGFX9()) &&
597           tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS))
598         break;
599 
600       if (tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS))
601         break;
602 
603       if (isGFX9() && tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS))
604         break;
605 
606       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) &&
607           tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS))
608         break;
609 
610       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) &&
611           tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS))
612         break;
613 
614       if (isGFX10() && tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS))
615         break;
616 
617       if (isGFX11() &&
618           tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
619                         Address, CS))
620         break;
621 
622       if (isGFX12() &&
623           tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
624                         Address, CS))
625         break;
626     }
627 
628     return MCDisassembler::Fail;
629   } while (false);
630 
631   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DPP) {
632     if (isMacDPP(MI))
633       convertMacDPPInst(MI);
634 
635     if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
636       convertVOP3PDPPInst(MI);
637     else if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) ||
638              AMDGPU::isVOPC64DPP(MI.getOpcode()))
639       convertVOPCDPPInst(MI); // Special VOP3 case
640     else if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) !=
641              -1)
642       convertDPP8Inst(MI);
643     else if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3)
644       convertVOP3DPPInst(MI); // Regular VOP3 case
645   }
646 
647   convertTrue16OpSel(MI);
648 
649   if (AMDGPU::isMAC(MI.getOpcode())) {
650     // Insert dummy unused src2_modifiers.
651     insertNamedMCOperand(MI, MCOperand::createImm(0),
652                          AMDGPU::OpName::src2_modifiers);
653   }
654 
655   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
656       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp) {
657     // Insert dummy unused src2_modifiers.
658     insertNamedMCOperand(MI, MCOperand::createImm(0),
659                          AMDGPU::OpName::src2_modifiers);
660   }
661 
662   if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
663       !AMDGPU::hasGDS(STI)) {
664     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
665   }
666 
667   if (MCII->get(MI.getOpcode()).TSFlags &
668       (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD)) {
669     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
670                                              AMDGPU::OpName::cpol);
671     if (CPolPos != -1) {
672       unsigned CPol =
673           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
674               AMDGPU::CPol::GLC : 0;
675       if (MI.getNumOperands() <= (unsigned)CPolPos) {
676         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
677                              AMDGPU::OpName::cpol);
678       } else if (CPol) {
679         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
680       }
681     }
682   }
683 
684   if ((MCII->get(MI.getOpcode()).TSFlags &
685        (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
686       (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
687     // GFX90A lost TFE, its place is occupied by ACC.
688     int TFEOpIdx =
689         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
690     if (TFEOpIdx != -1) {
691       auto *TFEIter = MI.begin();
692       std::advance(TFEIter, TFEOpIdx);
693       MI.insert(TFEIter, MCOperand::createImm(0));
694     }
695   }
696 
697   if (MCII->get(MI.getOpcode()).TSFlags &
698       (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) {
699     int SWZOpIdx =
700         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
701     if (SWZOpIdx != -1) {
702       auto *SWZIter = MI.begin();
703       std::advance(SWZIter, SWZOpIdx);
704       MI.insert(SWZIter, MCOperand::createImm(0));
705     }
706   }
707 
708   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG) {
709     int VAddr0Idx =
710         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
711     int RsrcIdx =
712         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
713     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
714     if (VAddr0Idx >= 0 && NSAArgs > 0) {
715       unsigned NSAWords = (NSAArgs + 3) / 4;
716       if (Bytes.size() < 4 * NSAWords)
717         return MCDisassembler::Fail;
718       for (unsigned i = 0; i < NSAArgs; ++i) {
719         const unsigned VAddrIdx = VAddr0Idx + 1 + i;
720         auto VAddrRCID =
721             MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
722         MI.insert(MI.begin() + VAddrIdx, createRegOperand(VAddrRCID, Bytes[i]));
723       }
724       Bytes = Bytes.slice(4 * NSAWords);
725     }
726 
727     convertMIMGInst(MI);
728   }
729 
730   if (MCII->get(MI.getOpcode()).TSFlags &
731       (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE))
732     convertMIMGInst(MI);
733 
734   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)
735     convertEXPInst(MI);
736 
737   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)
738     convertVINTERPInst(MI);
739 
740   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SDWA)
741     convertSDWAInst(MI);
742 
743   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
744                                               AMDGPU::OpName::vdst_in);
745   if (VDstIn_Idx != -1) {
746     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
747                            MCOI::OperandConstraint::TIED_TO);
748     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
749          !MI.getOperand(VDstIn_Idx).isReg() ||
750          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
751       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
752         MI.erase(&MI.getOperand(VDstIn_Idx));
753       insertNamedMCOperand(MI,
754         MCOperand::createReg(MI.getOperand(Tied).getReg()),
755         AMDGPU::OpName::vdst_in);
756     }
757   }
758 
759   int ImmLitIdx =
760       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
761   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
762   if (ImmLitIdx != -1 && !IsSOPK)
763     convertFMAanyK(MI, ImmLitIdx);
764 
765   Size = MaxInstBytesNum - Bytes.size();
766   return MCDisassembler::Success;
767 }
768 
769 void AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
770   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
771     // The MCInst still has these fields even though they are no longer encoded
772     // in the GFX11 instruction.
773     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
774     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
775   }
776 }
777 
778 void AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
779   convertTrue16OpSel(MI);
780   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_t16_gfx11 ||
781       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_fake16_gfx11 ||
782       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_t16_gfx12 ||
783       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_fake16_gfx12 ||
784       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_t16_gfx11 ||
785       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_fake16_gfx11 ||
786       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_t16_gfx12 ||
787       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_fake16_gfx12 ||
788       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_t16_gfx11 ||
789       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_fake16_gfx11 ||
790       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_t16_gfx12 ||
791       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_fake16_gfx12 ||
792       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_t16_gfx11 ||
793       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_fake16_gfx11 ||
794       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_t16_gfx12 ||
795       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_fake16_gfx12) {
796     // The MCInst has this field that is not directly encoded in the
797     // instruction.
798     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
799   }
800 }
801 
802 void AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
803   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
804       STI.hasFeature(AMDGPU::FeatureGFX10)) {
805     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
806       // VOPC - insert clamp
807       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
808   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
809     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
810     if (SDst != -1) {
811       // VOPC - insert VCC register as sdst
812       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
813                            AMDGPU::OpName::sdst);
814     } else {
815       // VOP1/2 - insert omod if present in instruction
816       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
817     }
818   }
819 }
820 
821 struct VOPModifiers {
822   unsigned OpSel = 0;
823   unsigned OpSelHi = 0;
824   unsigned NegLo = 0;
825   unsigned NegHi = 0;
826 };
827 
828 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
829 // Note that these values do not affect disassembler output,
830 // so this is only necessary for consistency with src_modifiers.
831 static VOPModifiers collectVOPModifiers(const MCInst &MI,
832                                         bool IsVOP3P = false) {
833   VOPModifiers Modifiers;
834   unsigned Opc = MI.getOpcode();
835   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
836                         AMDGPU::OpName::src1_modifiers,
837                         AMDGPU::OpName::src2_modifiers};
838   for (int J = 0; J < 3; ++J) {
839     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
840     if (OpIdx == -1)
841       continue;
842 
843     unsigned Val = MI.getOperand(OpIdx).getImm();
844 
845     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
846     if (IsVOP3P) {
847       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
848       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
849       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
850     } else if (J == 0) {
851       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
852     }
853   }
854 
855   return Modifiers;
856 }
857 
858 // Instructions decode the op_sel/suffix bits into the src_modifier
859 // operands. Copy those bits into the src operands for true16 VGPRs.
860 void AMDGPUDisassembler::convertTrue16OpSel(MCInst &MI) const {
861   const unsigned Opc = MI.getOpcode();
862   const MCRegisterClass &ConversionRC =
863       MRI.getRegClass(AMDGPU::VGPR_16RegClassID);
864   constexpr std::array<std::tuple<int, int, unsigned>, 4> OpAndOpMods = {
865       {{AMDGPU::OpName::src0, AMDGPU::OpName::src0_modifiers,
866         SISrcMods::OP_SEL_0},
867        {AMDGPU::OpName::src1, AMDGPU::OpName::src1_modifiers,
868         SISrcMods::OP_SEL_0},
869        {AMDGPU::OpName::src2, AMDGPU::OpName::src2_modifiers,
870         SISrcMods::OP_SEL_0},
871        {AMDGPU::OpName::vdst, AMDGPU::OpName::src0_modifiers,
872         SISrcMods::DST_OP_SEL}}};
873   for (const auto &[OpName, OpModsName, OpSelMask] : OpAndOpMods) {
874     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, OpName);
875     int OpModsIdx = AMDGPU::getNamedOperandIdx(Opc, OpModsName);
876     if (OpIdx == -1 || OpModsIdx == -1)
877       continue;
878     MCOperand &Op = MI.getOperand(OpIdx);
879     if (!Op.isReg())
880       continue;
881     if (!ConversionRC.contains(Op.getReg()))
882       continue;
883     unsigned OpEnc = MRI.getEncodingValue(Op.getReg());
884     const MCOperand &OpMods = MI.getOperand(OpModsIdx);
885     unsigned ModVal = OpMods.getImm();
886     if (ModVal & OpSelMask) { // isHi
887       unsigned RegIdx = OpEnc & AMDGPU::HWEncoding::REG_IDX_MASK;
888       Op.setReg(ConversionRC.getRegister(RegIdx * 2 + 1));
889     }
890   }
891 }
892 
893 // MAC opcodes have special old and src2 operands.
894 // src2 is tied to dst, while old is not tied (but assumed to be).
895 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
896   constexpr int DST_IDX = 0;
897   auto Opcode = MI.getOpcode();
898   const auto &Desc = MCII->get(Opcode);
899   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
900 
901   if (OldIdx != -1 && Desc.getOperandConstraint(
902                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
903     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
904     assert(Desc.getOperandConstraint(
905                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
906                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
907     (void)DST_IDX;
908     return true;
909   }
910 
911   return false;
912 }
913 
914 // Create dummy old operand and insert dummy unused src2_modifiers
915 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
916   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
917   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
918   insertNamedMCOperand(MI, MCOperand::createImm(0),
919                        AMDGPU::OpName::src2_modifiers);
920 }
921 
922 void AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
923   unsigned Opc = MI.getOpcode();
924 
925   int VDstInIdx =
926       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
927   if (VDstInIdx != -1)
928     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
929 
930   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
931   if (MI.getNumOperands() < DescNumOps &&
932       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
933     convertTrue16OpSel(MI);
934     auto Mods = collectVOPModifiers(MI);
935     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
936                          AMDGPU::OpName::op_sel);
937   } else {
938     // Insert dummy unused src modifiers.
939     if (MI.getNumOperands() < DescNumOps &&
940         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
941       insertNamedMCOperand(MI, MCOperand::createImm(0),
942                            AMDGPU::OpName::src0_modifiers);
943 
944     if (MI.getNumOperands() < DescNumOps &&
945         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
946       insertNamedMCOperand(MI, MCOperand::createImm(0),
947                            AMDGPU::OpName::src1_modifiers);
948   }
949 }
950 
951 void AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
952   convertTrue16OpSel(MI);
953 
954   int VDstInIdx =
955       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
956   if (VDstInIdx != -1)
957     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
958 
959   unsigned Opc = MI.getOpcode();
960   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
961   if (MI.getNumOperands() < DescNumOps &&
962       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
963     auto Mods = collectVOPModifiers(MI);
964     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
965                          AMDGPU::OpName::op_sel);
966   }
967 }
968 
969 // Note that before gfx10, the MIMG encoding provided no information about
970 // VADDR size. Consequently, decoded instructions always show address as if it
971 // has 1 dword, which could be not really so.
972 void AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
973   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
974 
975   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
976                                            AMDGPU::OpName::vdst);
977 
978   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
979                                             AMDGPU::OpName::vdata);
980   int VAddr0Idx =
981       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
982   int RsrcOpName = (TSFlags & SIInstrFlags::MIMG) ? AMDGPU::OpName::srsrc
983                                                   : AMDGPU::OpName::rsrc;
984   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
985   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
986                                             AMDGPU::OpName::dmask);
987 
988   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
989                                             AMDGPU::OpName::tfe);
990   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
991                                             AMDGPU::OpName::d16);
992 
993   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
994   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
995       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
996 
997   assert(VDataIdx != -1);
998   if (BaseOpcode->BVH) {
999     // Add A16 operand for intersect_ray instructions
1000     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
1001     return;
1002   }
1003 
1004   bool IsAtomic = (VDstIdx != -1);
1005   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1006   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1007   bool IsNSA = false;
1008   bool IsPartialNSA = false;
1009   unsigned AddrSize = Info->VAddrDwords;
1010 
1011   if (isGFX10Plus()) {
1012     unsigned DimIdx =
1013         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1014     int A16Idx =
1015         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1016     const AMDGPU::MIMGDimInfo *Dim =
1017         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1018     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1019 
1020     AddrSize =
1021         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1022 
1023     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1024     // VIMAGE insts other than BVH never use vaddr4.
1025     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1026             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1027             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1028     if (!IsNSA) {
1029       if (!IsVSample && AddrSize > 12)
1030         AddrSize = 16;
1031     } else {
1032       if (AddrSize > Info->VAddrDwords) {
1033         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1034           // The NSA encoding does not contain enough operands for the
1035           // combination of base opcode / dimension. Should this be an error?
1036           return;
1037         }
1038         IsPartialNSA = true;
1039       }
1040     }
1041   }
1042 
1043   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1044   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1045 
1046   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1047   if (D16 && AMDGPU::hasPackedD16(STI)) {
1048     DstSize = (DstSize + 1) / 2;
1049   }
1050 
1051   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1052     DstSize += 1;
1053 
1054   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1055     return;
1056 
1057   int NewOpcode =
1058       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1059   if (NewOpcode == -1)
1060     return;
1061 
1062   // Widen the register to the correct number of enabled channels.
1063   MCRegister NewVdata;
1064   if (DstSize != Info->VDataDwords) {
1065     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1066 
1067     // Get first subregister of VData
1068     MCRegister Vdata0 = MI.getOperand(VDataIdx).getReg();
1069     MCRegister VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1070     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1071 
1072     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1073                                        &MRI.getRegClass(DataRCID));
1074     if (!NewVdata) {
1075       // It's possible to encode this such that the low register + enabled
1076       // components exceeds the register count.
1077       return;
1078     }
1079   }
1080 
1081   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1082   // If using partial NSA on GFX11+ widen last address register.
1083   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1084   MCRegister NewVAddrSA;
1085   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1086       AddrSize != Info->VAddrDwords) {
1087     MCRegister VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1088     MCRegister VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1089     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1090 
1091     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1092     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1093                                         &MRI.getRegClass(AddrRCID));
1094     if (!NewVAddrSA)
1095       return;
1096   }
1097 
1098   MI.setOpcode(NewOpcode);
1099 
1100   if (NewVdata != AMDGPU::NoRegister) {
1101     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1102 
1103     if (IsAtomic) {
1104       // Atomic operations have an additional operand (a copy of data)
1105       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1106     }
1107   }
1108 
1109   if (NewVAddrSA) {
1110     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1111   } else if (IsNSA) {
1112     assert(AddrSize <= Info->VAddrDwords);
1113     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1114              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1115   }
1116 }
1117 
1118 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1119 // decoder only adds to src_modifiers, so manually add the bits to the other
1120 // operands.
1121 void AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1122   unsigned Opc = MI.getOpcode();
1123   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1124   auto Mods = collectVOPModifiers(MI, true);
1125 
1126   if (MI.getNumOperands() < DescNumOps &&
1127       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1128     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1129 
1130   if (MI.getNumOperands() < DescNumOps &&
1131       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1132     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1133                          AMDGPU::OpName::op_sel);
1134   if (MI.getNumOperands() < DescNumOps &&
1135       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1136     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1137                          AMDGPU::OpName::op_sel_hi);
1138   if (MI.getNumOperands() < DescNumOps &&
1139       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1140     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1141                          AMDGPU::OpName::neg_lo);
1142   if (MI.getNumOperands() < DescNumOps &&
1143       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1144     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1145                          AMDGPU::OpName::neg_hi);
1146 }
1147 
1148 // Create dummy old operand and insert optional operands
1149 void AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1150   unsigned Opc = MI.getOpcode();
1151   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1152 
1153   if (MI.getNumOperands() < DescNumOps &&
1154       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1155     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1156 
1157   if (MI.getNumOperands() < DescNumOps &&
1158       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1159     insertNamedMCOperand(MI, MCOperand::createImm(0),
1160                          AMDGPU::OpName::src0_modifiers);
1161 
1162   if (MI.getNumOperands() < DescNumOps &&
1163       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1164     insertNamedMCOperand(MI, MCOperand::createImm(0),
1165                          AMDGPU::OpName::src1_modifiers);
1166 }
1167 
1168 void AMDGPUDisassembler::convertFMAanyK(MCInst &MI, int ImmLitIdx) const {
1169   assert(HasLiteral && "Should have decoded a literal");
1170   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1171   unsigned DescNumOps = Desc.getNumOperands();
1172   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1173                        AMDGPU::OpName::immDeferred);
1174   assert(DescNumOps == MI.getNumOperands());
1175   for (unsigned I = 0; I < DescNumOps; ++I) {
1176     auto &Op = MI.getOperand(I);
1177     auto OpType = Desc.operands()[I].OperandType;
1178     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1179                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1180     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1181         IsDeferredOp)
1182       Op.setImm(Literal);
1183   }
1184 }
1185 
1186 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1187   return getContext().getRegisterInfo()->
1188     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1189 }
1190 
1191 inline
1192 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1193                                          const Twine& ErrMsg) const {
1194   *CommentStream << "Error: " + ErrMsg;
1195 
1196   // ToDo: add support for error operands to MCInst.h
1197   // return MCOperand::createError(V);
1198   return MCOperand();
1199 }
1200 
1201 inline
1202 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1203   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1204 }
1205 
1206 inline
1207 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1208                                                unsigned Val) const {
1209   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1210   if (Val >= RegCl.getNumRegs())
1211     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1212                            ": unknown register " + Twine(Val));
1213   return createRegOperand(RegCl.getRegister(Val));
1214 }
1215 
1216 inline
1217 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1218                                                 unsigned Val) const {
1219   // ToDo: SI/CI have 104 SGPRs, VI - 102
1220   // Valery: here we accepting as much as we can, let assembler sort it out
1221   int shift = 0;
1222   switch (SRegClassID) {
1223   case AMDGPU::SGPR_32RegClassID:
1224   case AMDGPU::TTMP_32RegClassID:
1225     break;
1226   case AMDGPU::SGPR_64RegClassID:
1227   case AMDGPU::TTMP_64RegClassID:
1228     shift = 1;
1229     break;
1230   case AMDGPU::SGPR_96RegClassID:
1231   case AMDGPU::TTMP_96RegClassID:
1232   case AMDGPU::SGPR_128RegClassID:
1233   case AMDGPU::TTMP_128RegClassID:
1234   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1235   // this bundle?
1236   case AMDGPU::SGPR_256RegClassID:
1237   case AMDGPU::TTMP_256RegClassID:
1238     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1239   // this bundle?
1240   case AMDGPU::SGPR_288RegClassID:
1241   case AMDGPU::TTMP_288RegClassID:
1242   case AMDGPU::SGPR_320RegClassID:
1243   case AMDGPU::TTMP_320RegClassID:
1244   case AMDGPU::SGPR_352RegClassID:
1245   case AMDGPU::TTMP_352RegClassID:
1246   case AMDGPU::SGPR_384RegClassID:
1247   case AMDGPU::TTMP_384RegClassID:
1248   case AMDGPU::SGPR_512RegClassID:
1249   case AMDGPU::TTMP_512RegClassID:
1250     shift = 2;
1251     break;
1252   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1253   // this bundle?
1254   default:
1255     llvm_unreachable("unhandled register class");
1256   }
1257 
1258   if (Val % (1 << shift)) {
1259     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1260                    << ": scalar reg isn't aligned " << Val;
1261   }
1262 
1263   return createRegOperand(SRegClassID, Val >> shift);
1264 }
1265 
1266 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1267                                                   bool IsHi) const {
1268   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1269   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1270 }
1271 
1272 // Decode Literals for insts which always have a literal in the encoding
1273 MCOperand
1274 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1275   if (HasLiteral) {
1276     assert(
1277         AMDGPU::hasVOPD(STI) &&
1278         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1279     if (Literal != Val)
1280       return errOperand(Val, "More than one unique literal is illegal");
1281   }
1282   HasLiteral = true;
1283   Literal = Val;
1284   return MCOperand::createImm(Literal);
1285 }
1286 
1287 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1288   // For now all literal constants are supposed to be unsigned integer
1289   // ToDo: deal with signed/unsigned 64-bit integer constants
1290   // ToDo: deal with float/double constants
1291   if (!HasLiteral) {
1292     if (Bytes.size() < 4) {
1293       return errOperand(0, "cannot read literal, inst bytes left " +
1294                         Twine(Bytes.size()));
1295     }
1296     HasLiteral = true;
1297     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1298     if (ExtendFP64)
1299       Literal64 <<= 32;
1300   }
1301   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1302 }
1303 
1304 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1305   using namespace AMDGPU::EncValues;
1306 
1307   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1308   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1309     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1310     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1311       // Cast prevents negative overflow.
1312 }
1313 
1314 static int64_t getInlineImmVal32(unsigned Imm) {
1315   switch (Imm) {
1316   case 240:
1317     return llvm::bit_cast<uint32_t>(0.5f);
1318   case 241:
1319     return llvm::bit_cast<uint32_t>(-0.5f);
1320   case 242:
1321     return llvm::bit_cast<uint32_t>(1.0f);
1322   case 243:
1323     return llvm::bit_cast<uint32_t>(-1.0f);
1324   case 244:
1325     return llvm::bit_cast<uint32_t>(2.0f);
1326   case 245:
1327     return llvm::bit_cast<uint32_t>(-2.0f);
1328   case 246:
1329     return llvm::bit_cast<uint32_t>(4.0f);
1330   case 247:
1331     return llvm::bit_cast<uint32_t>(-4.0f);
1332   case 248: // 1 / (2 * PI)
1333     return 0x3e22f983;
1334   default:
1335     llvm_unreachable("invalid fp inline imm");
1336   }
1337 }
1338 
1339 static int64_t getInlineImmVal64(unsigned Imm) {
1340   switch (Imm) {
1341   case 240:
1342     return llvm::bit_cast<uint64_t>(0.5);
1343   case 241:
1344     return llvm::bit_cast<uint64_t>(-0.5);
1345   case 242:
1346     return llvm::bit_cast<uint64_t>(1.0);
1347   case 243:
1348     return llvm::bit_cast<uint64_t>(-1.0);
1349   case 244:
1350     return llvm::bit_cast<uint64_t>(2.0);
1351   case 245:
1352     return llvm::bit_cast<uint64_t>(-2.0);
1353   case 246:
1354     return llvm::bit_cast<uint64_t>(4.0);
1355   case 247:
1356     return llvm::bit_cast<uint64_t>(-4.0);
1357   case 248: // 1 / (2 * PI)
1358     return 0x3fc45f306dc9c882;
1359   default:
1360     llvm_unreachable("invalid fp inline imm");
1361   }
1362 }
1363 
1364 static int64_t getInlineImmValF16(unsigned Imm) {
1365   switch (Imm) {
1366   case 240:
1367     return 0x3800;
1368   case 241:
1369     return 0xB800;
1370   case 242:
1371     return 0x3C00;
1372   case 243:
1373     return 0xBC00;
1374   case 244:
1375     return 0x4000;
1376   case 245:
1377     return 0xC000;
1378   case 246:
1379     return 0x4400;
1380   case 247:
1381     return 0xC400;
1382   case 248: // 1 / (2 * PI)
1383     return 0x3118;
1384   default:
1385     llvm_unreachable("invalid fp inline imm");
1386   }
1387 }
1388 
1389 static int64_t getInlineImmValBF16(unsigned Imm) {
1390   switch (Imm) {
1391   case 240:
1392     return 0x3F00;
1393   case 241:
1394     return 0xBF00;
1395   case 242:
1396     return 0x3F80;
1397   case 243:
1398     return 0xBF80;
1399   case 244:
1400     return 0x4000;
1401   case 245:
1402     return 0xC000;
1403   case 246:
1404     return 0x4080;
1405   case 247:
1406     return 0xC080;
1407   case 248: // 1 / (2 * PI)
1408     return 0x3E22;
1409   default:
1410     llvm_unreachable("invalid fp inline imm");
1411   }
1412 }
1413 
1414 static int64_t getInlineImmVal16(unsigned Imm, AMDGPU::OperandSemantics Sema) {
1415   return (Sema == AMDGPU::OperandSemantics::BF16) ? getInlineImmValBF16(Imm)
1416                                                   : getInlineImmValF16(Imm);
1417 }
1418 
1419 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm,
1420                                             AMDGPU::OperandSemantics Sema) {
1421   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN &&
1422          Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1423 
1424   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1425   // ImmWidth 0 is a default case where operand should not allow immediates.
1426   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1427   // use it to print verbose error message.
1428   switch (ImmWidth) {
1429   case 0:
1430   case 32:
1431     return MCOperand::createImm(getInlineImmVal32(Imm));
1432   case 64:
1433     return MCOperand::createImm(getInlineImmVal64(Imm));
1434   case 16:
1435     return MCOperand::createImm(getInlineImmVal16(Imm, Sema));
1436   default:
1437     llvm_unreachable("implement me");
1438   }
1439 }
1440 
1441 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1442   using namespace AMDGPU;
1443 
1444   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1445   switch (Width) {
1446   default: // fall
1447   case OPW32:
1448   case OPW16:
1449   case OPWV216:
1450     return VGPR_32RegClassID;
1451   case OPW64:
1452   case OPWV232: return VReg_64RegClassID;
1453   case OPW96: return VReg_96RegClassID;
1454   case OPW128: return VReg_128RegClassID;
1455   case OPW160: return VReg_160RegClassID;
1456   case OPW256: return VReg_256RegClassID;
1457   case OPW288: return VReg_288RegClassID;
1458   case OPW320: return VReg_320RegClassID;
1459   case OPW352: return VReg_352RegClassID;
1460   case OPW384: return VReg_384RegClassID;
1461   case OPW512: return VReg_512RegClassID;
1462   case OPW1024: return VReg_1024RegClassID;
1463   }
1464 }
1465 
1466 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1467   using namespace AMDGPU;
1468 
1469   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1470   switch (Width) {
1471   default: // fall
1472   case OPW32:
1473   case OPW16:
1474   case OPWV216:
1475     return AGPR_32RegClassID;
1476   case OPW64:
1477   case OPWV232: return AReg_64RegClassID;
1478   case OPW96: return AReg_96RegClassID;
1479   case OPW128: return AReg_128RegClassID;
1480   case OPW160: return AReg_160RegClassID;
1481   case OPW256: return AReg_256RegClassID;
1482   case OPW288: return AReg_288RegClassID;
1483   case OPW320: return AReg_320RegClassID;
1484   case OPW352: return AReg_352RegClassID;
1485   case OPW384: return AReg_384RegClassID;
1486   case OPW512: return AReg_512RegClassID;
1487   case OPW1024: return AReg_1024RegClassID;
1488   }
1489 }
1490 
1491 
1492 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1493   using namespace AMDGPU;
1494 
1495   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1496   switch (Width) {
1497   default: // fall
1498   case OPW32:
1499   case OPW16:
1500   case OPWV216:
1501     return SGPR_32RegClassID;
1502   case OPW64:
1503   case OPWV232: return SGPR_64RegClassID;
1504   case OPW96: return SGPR_96RegClassID;
1505   case OPW128: return SGPR_128RegClassID;
1506   case OPW160: return SGPR_160RegClassID;
1507   case OPW256: return SGPR_256RegClassID;
1508   case OPW288: return SGPR_288RegClassID;
1509   case OPW320: return SGPR_320RegClassID;
1510   case OPW352: return SGPR_352RegClassID;
1511   case OPW384: return SGPR_384RegClassID;
1512   case OPW512: return SGPR_512RegClassID;
1513   }
1514 }
1515 
1516 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1517   using namespace AMDGPU;
1518 
1519   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1520   switch (Width) {
1521   default: // fall
1522   case OPW32:
1523   case OPW16:
1524   case OPWV216:
1525     return TTMP_32RegClassID;
1526   case OPW64:
1527   case OPWV232: return TTMP_64RegClassID;
1528   case OPW128: return TTMP_128RegClassID;
1529   case OPW256: return TTMP_256RegClassID;
1530   case OPW288: return TTMP_288RegClassID;
1531   case OPW320: return TTMP_320RegClassID;
1532   case OPW352: return TTMP_352RegClassID;
1533   case OPW384: return TTMP_384RegClassID;
1534   case OPW512: return TTMP_512RegClassID;
1535   }
1536 }
1537 
1538 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1539   using namespace AMDGPU::EncValues;
1540 
1541   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1542   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1543 
1544   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1545 }
1546 
1547 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1548                                           bool MandatoryLiteral,
1549                                           unsigned ImmWidth,
1550                                           AMDGPU::OperandSemantics Sema) const {
1551   using namespace AMDGPU::EncValues;
1552 
1553   assert(Val < 1024); // enum10
1554 
1555   bool IsAGPR = Val & 512;
1556   Val &= 511;
1557 
1558   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1559     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1560                                    : getVgprClassId(Width), Val - VGPR_MIN);
1561   }
1562   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1563                             Sema);
1564 }
1565 
1566 MCOperand
1567 AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, unsigned Val,
1568                                        bool MandatoryLiteral, unsigned ImmWidth,
1569                                        AMDGPU::OperandSemantics Sema) const {
1570   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1571   // decoded earlier.
1572   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1573   using namespace AMDGPU::EncValues;
1574 
1575   if (Val <= SGPR_MAX) {
1576     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1577     static_assert(SGPR_MIN == 0);
1578     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1579   }
1580 
1581   int TTmpIdx = getTTmpIdx(Val);
1582   if (TTmpIdx >= 0) {
1583     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1584   }
1585 
1586   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1587     return decodeIntImmed(Val);
1588 
1589   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1590     return decodeFPImmed(ImmWidth, Val, Sema);
1591 
1592   if (Val == LITERAL_CONST) {
1593     if (MandatoryLiteral)
1594       // Keep a sentinel value for deferred setting
1595       return MCOperand::createImm(LITERAL_CONST);
1596     return decodeLiteralConstant(Sema == AMDGPU::OperandSemantics::FP64);
1597   }
1598 
1599   switch (Width) {
1600   case OPW32:
1601   case OPW16:
1602   case OPWV216:
1603     return decodeSpecialReg32(Val);
1604   case OPW64:
1605   case OPWV232:
1606     return decodeSpecialReg64(Val);
1607   default:
1608     llvm_unreachable("unexpected immediate type");
1609   }
1610 }
1611 
1612 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1613 // opposite of bit 0 of DstX.
1614 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1615                                                unsigned Val) const {
1616   int VDstXInd =
1617       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1618   assert(VDstXInd != -1);
1619   assert(Inst.getOperand(VDstXInd).isReg());
1620   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1621   Val |= ~XDstReg & 1;
1622   auto Width = llvm::AMDGPUDisassembler::OPW32;
1623   return createRegOperand(getVgprClassId(Width), Val);
1624 }
1625 
1626 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1627   using namespace AMDGPU;
1628 
1629   switch (Val) {
1630   // clang-format off
1631   case 102: return createRegOperand(FLAT_SCR_LO);
1632   case 103: return createRegOperand(FLAT_SCR_HI);
1633   case 104: return createRegOperand(XNACK_MASK_LO);
1634   case 105: return createRegOperand(XNACK_MASK_HI);
1635   case 106: return createRegOperand(VCC_LO);
1636   case 107: return createRegOperand(VCC_HI);
1637   case 108: return createRegOperand(TBA_LO);
1638   case 109: return createRegOperand(TBA_HI);
1639   case 110: return createRegOperand(TMA_LO);
1640   case 111: return createRegOperand(TMA_HI);
1641   case 124:
1642     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1643   case 125:
1644     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1645   case 126: return createRegOperand(EXEC_LO);
1646   case 127: return createRegOperand(EXEC_HI);
1647   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1648   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1649   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1650   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1651   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1652   case 251: return createRegOperand(SRC_VCCZ);
1653   case 252: return createRegOperand(SRC_EXECZ);
1654   case 253: return createRegOperand(SRC_SCC);
1655   case 254: return createRegOperand(LDS_DIRECT);
1656   default: break;
1657     // clang-format on
1658   }
1659   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1660 }
1661 
1662 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1663   using namespace AMDGPU;
1664 
1665   switch (Val) {
1666   case 102: return createRegOperand(FLAT_SCR);
1667   case 104: return createRegOperand(XNACK_MASK);
1668   case 106: return createRegOperand(VCC);
1669   case 108: return createRegOperand(TBA);
1670   case 110: return createRegOperand(TMA);
1671   case 124:
1672     if (isGFX11Plus())
1673       return createRegOperand(SGPR_NULL);
1674     break;
1675   case 125:
1676     if (!isGFX11Plus())
1677       return createRegOperand(SGPR_NULL);
1678     break;
1679   case 126: return createRegOperand(EXEC);
1680   case 235: return createRegOperand(SRC_SHARED_BASE);
1681   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1682   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1683   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1684   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1685   case 251: return createRegOperand(SRC_VCCZ);
1686   case 252: return createRegOperand(SRC_EXECZ);
1687   case 253: return createRegOperand(SRC_SCC);
1688   default: break;
1689   }
1690   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1691 }
1692 
1693 MCOperand
1694 AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, const unsigned Val,
1695                                   unsigned ImmWidth,
1696                                   AMDGPU::OperandSemantics Sema) const {
1697   using namespace AMDGPU::SDWA;
1698   using namespace AMDGPU::EncValues;
1699 
1700   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1701       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1702     // XXX: cast to int is needed to avoid stupid warning:
1703     // compare with unsigned is always true
1704     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1705         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1706       return createRegOperand(getVgprClassId(Width),
1707                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1708     }
1709     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1710         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1711                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1712       return createSRegOperand(getSgprClassId(Width),
1713                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1714     }
1715     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1716         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1717       return createSRegOperand(getTtmpClassId(Width),
1718                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1719     }
1720 
1721     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1722 
1723     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1724       return decodeIntImmed(SVal);
1725 
1726     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1727       return decodeFPImmed(ImmWidth, SVal, Sema);
1728 
1729     return decodeSpecialReg32(SVal);
1730   }
1731   if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands))
1732     return createRegOperand(getVgprClassId(Width), Val);
1733   llvm_unreachable("unsupported target");
1734 }
1735 
1736 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1737   return decodeSDWASrc(OPW16, Val, 16, AMDGPU::OperandSemantics::FP16);
1738 }
1739 
1740 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1741   return decodeSDWASrc(OPW32, Val, 32, AMDGPU::OperandSemantics::FP32);
1742 }
1743 
1744 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1745   using namespace AMDGPU::SDWA;
1746 
1747   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1748           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1749          "SDWAVopcDst should be present only on GFX9+");
1750 
1751   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1752 
1753   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1754     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1755 
1756     int TTmpIdx = getTTmpIdx(Val);
1757     if (TTmpIdx >= 0) {
1758       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1759       return createSRegOperand(TTmpClsId, TTmpIdx);
1760     }
1761     if (Val > SGPR_MAX) {
1762       return IsWave64 ? decodeSpecialReg64(Val) : decodeSpecialReg32(Val);
1763     }
1764     return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1765   }
1766   return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1767 }
1768 
1769 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1770   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1771              ? decodeSrcOp(OPW64, Val)
1772              : decodeSrcOp(OPW32, Val);
1773 }
1774 
1775 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1776   return decodeSrcOp(OPW32, Val);
1777 }
1778 
1779 MCOperand AMDGPUDisassembler::decodeDpp8FI(unsigned Val) const {
1780   if (Val != AMDGPU::DPP::DPP8_FI_0 && Val != AMDGPU::DPP::DPP8_FI_1)
1781     return MCOperand();
1782   return MCOperand::createImm(Val);
1783 }
1784 
1785 MCOperand AMDGPUDisassembler::decodeVersionImm(unsigned Imm) const {
1786   using VersionField = AMDGPU::EncodingField<7, 0>;
1787   using W64Bit = AMDGPU::EncodingBit<13>;
1788   using W32Bit = AMDGPU::EncodingBit<14>;
1789   using MDPBit = AMDGPU::EncodingBit<15>;
1790   using Encoding = AMDGPU::EncodingFields<VersionField, W64Bit, W32Bit, MDPBit>;
1791 
1792   auto [Version, W64, W32, MDP] = Encoding::decode(Imm);
1793 
1794   // Decode into a plain immediate if any unused bits are raised.
1795   if (Encoding::encode(Version, W64, W32, MDP) != Imm)
1796     return MCOperand::createImm(Imm);
1797 
1798   const auto &Versions = AMDGPU::UCVersion::getGFXVersions();
1799   const auto *I = find_if(
1800       Versions, [Version = Version](const AMDGPU::UCVersion::GFXVersion &V) {
1801         return V.Code == Version;
1802       });
1803   MCContext &Ctx = getContext();
1804   const MCExpr *E;
1805   if (I == Versions.end())
1806     E = MCConstantExpr::create(Version, Ctx);
1807   else
1808     E = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(I->Symbol), Ctx);
1809 
1810   if (W64)
1811     E = MCBinaryExpr::createOr(E, UCVersionW64Expr, Ctx);
1812   if (W32)
1813     E = MCBinaryExpr::createOr(E, UCVersionW32Expr, Ctx);
1814   if (MDP)
1815     E = MCBinaryExpr::createOr(E, UCVersionMDPExpr, Ctx);
1816 
1817   return MCOperand::createExpr(E);
1818 }
1819 
1820 bool AMDGPUDisassembler::isVI() const {
1821   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1822 }
1823 
1824 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1825 
1826 bool AMDGPUDisassembler::isGFX90A() const {
1827   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1828 }
1829 
1830 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1831 
1832 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1833 
1834 bool AMDGPUDisassembler::isGFX10Plus() const {
1835   return AMDGPU::isGFX10Plus(STI);
1836 }
1837 
1838 bool AMDGPUDisassembler::isGFX11() const {
1839   return STI.hasFeature(AMDGPU::FeatureGFX11);
1840 }
1841 
1842 bool AMDGPUDisassembler::isGFX11Plus() const {
1843   return AMDGPU::isGFX11Plus(STI);
1844 }
1845 
1846 bool AMDGPUDisassembler::isGFX12() const {
1847   return STI.hasFeature(AMDGPU::FeatureGFX12);
1848 }
1849 
1850 bool AMDGPUDisassembler::isGFX12Plus() const {
1851   return AMDGPU::isGFX12Plus(STI);
1852 }
1853 
1854 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1855   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1856 }
1857 
1858 bool AMDGPUDisassembler::hasKernargPreload() const {
1859   return AMDGPU::hasKernargPreload(STI);
1860 }
1861 
1862 //===----------------------------------------------------------------------===//
1863 // AMDGPU specific symbol handling
1864 //===----------------------------------------------------------------------===//
1865 
1866 /// Print a string describing the reserved bit range specified by Mask with
1867 /// offset BaseBytes for use in error comments. Mask is a single continuous
1868 /// range of 1s surrounded by zeros. The format here is meant to align with the
1869 /// tables that describe these bits in llvm.org/docs/AMDGPUUsage.html.
1870 static SmallString<32> getBitRangeFromMask(uint32_t Mask, unsigned BaseBytes) {
1871   SmallString<32> Result;
1872   raw_svector_ostream S(Result);
1873 
1874   int TrailingZeros = llvm::countr_zero(Mask);
1875   int PopCount = llvm::popcount(Mask);
1876 
1877   if (PopCount == 1) {
1878     S << "bit (" << (TrailingZeros + BaseBytes * CHAR_BIT) << ')';
1879   } else {
1880     S << "bits in range ("
1881       << (TrailingZeros + PopCount - 1 + BaseBytes * CHAR_BIT) << ':'
1882       << (TrailingZeros + BaseBytes * CHAR_BIT) << ')';
1883   }
1884 
1885   return Result;
1886 }
1887 
1888 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1889 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1890   do {                                                                         \
1891     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1892   } while (0)
1893 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1894   do {                                                                         \
1895     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1896              << GET_FIELD(MASK) << '\n';                                       \
1897   } while (0)
1898 
1899 #define CHECK_RESERVED_BITS_IMPL(MASK, DESC, MSG)                              \
1900   do {                                                                         \
1901     if (FourByteBuffer & (MASK)) {                                             \
1902       return createStringError(std::errc::invalid_argument,                    \
1903                                "kernel descriptor " DESC                       \
1904                                " reserved %s set" MSG,                         \
1905                                getBitRangeFromMask((MASK), 0).c_str());        \
1906     }                                                                          \
1907   } while (0)
1908 
1909 #define CHECK_RESERVED_BITS(MASK) CHECK_RESERVED_BITS_IMPL(MASK, #MASK, "")
1910 #define CHECK_RESERVED_BITS_MSG(MASK, MSG)                                     \
1911   CHECK_RESERVED_BITS_IMPL(MASK, #MASK, ", " MSG)
1912 #define CHECK_RESERVED_BITS_DESC(MASK, DESC)                                   \
1913   CHECK_RESERVED_BITS_IMPL(MASK, DESC, "")
1914 #define CHECK_RESERVED_BITS_DESC_MSG(MASK, DESC, MSG)                          \
1915   CHECK_RESERVED_BITS_IMPL(MASK, DESC, ", " MSG)
1916 
1917 // NOLINTNEXTLINE(readability-identifier-naming)
1918 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1919     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1920   using namespace amdhsa;
1921   StringRef Indent = "\t";
1922 
1923   // We cannot accurately backward compute #VGPRs used from
1924   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1925   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1926   // simply calculate the inverse of what the assembler does.
1927 
1928   uint32_t GranulatedWorkitemVGPRCount =
1929       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1930 
1931   uint32_t NextFreeVGPR =
1932       (GranulatedWorkitemVGPRCount + 1) *
1933       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1934 
1935   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1936 
1937   // We cannot backward compute values used to calculate
1938   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1939   // directives can't be computed:
1940   // .amdhsa_reserve_vcc
1941   // .amdhsa_reserve_flat_scratch
1942   // .amdhsa_reserve_xnack_mask
1943   // They take their respective default values if not specified in the assembly.
1944   //
1945   // GRANULATED_WAVEFRONT_SGPR_COUNT
1946   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1947   //
1948   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1949   // are set to 0. So while disassembling we consider that:
1950   //
1951   // GRANULATED_WAVEFRONT_SGPR_COUNT
1952   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1953   //
1954   // The disassembler cannot recover the original values of those 3 directives.
1955 
1956   uint32_t GranulatedWavefrontSGPRCount =
1957       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1958 
1959   if (isGFX10Plus())
1960     CHECK_RESERVED_BITS_MSG(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT,
1961                             "must be zero on gfx10+");
1962 
1963   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1964                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1965 
1966   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1967   if (!hasArchitectedFlatScratch())
1968     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1969   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1970   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1971 
1972   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_PRIORITY);
1973 
1974   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1975                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1976   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1977                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1978   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1979                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1980   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1981                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1982 
1983   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_PRIV);
1984 
1985   if (!isGFX12Plus())
1986     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1987                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1988 
1989   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_DEBUG_MODE);
1990 
1991   if (!isGFX12Plus())
1992     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1993                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1994 
1995   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_BULKY);
1996   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_CDBG_USER);
1997 
1998   if (isGFX9Plus())
1999     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
2000 
2001   if (!isGFX9Plus())
2002     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0,
2003                                  "COMPUTE_PGM_RSRC1", "must be zero pre-gfx9");
2004 
2005   CHECK_RESERVED_BITS_DESC(COMPUTE_PGM_RSRC1_RESERVED1, "COMPUTE_PGM_RSRC1");
2006 
2007   if (!isGFX10Plus())
2008     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2,
2009                                  "COMPUTE_PGM_RSRC1", "must be zero pre-gfx10");
2010 
2011   if (isGFX10Plus()) {
2012     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
2013                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
2014     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
2015     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
2016   }
2017 
2018   if (isGFX12Plus())
2019     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
2020                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
2021 
2022   return true;
2023 }
2024 
2025 // NOLINTNEXTLINE(readability-identifier-naming)
2026 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
2027     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2028   using namespace amdhsa;
2029   StringRef Indent = "\t";
2030   if (hasArchitectedFlatScratch())
2031     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
2032                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
2033   else
2034     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
2035                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
2036   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
2037                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
2038   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
2039                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
2040   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
2041                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
2042   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
2043                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
2044   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
2045                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
2046 
2047   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH);
2048   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY);
2049   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE);
2050 
2051   PRINT_DIRECTIVE(
2052       ".amdhsa_exception_fp_ieee_invalid_op",
2053       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
2054   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
2055                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
2056   PRINT_DIRECTIVE(
2057       ".amdhsa_exception_fp_ieee_div_zero",
2058       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
2059   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
2060                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
2061   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
2062                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
2063   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
2064                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
2065   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
2066                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
2067 
2068   CHECK_RESERVED_BITS_DESC(COMPUTE_PGM_RSRC2_RESERVED0, "COMPUTE_PGM_RSRC2");
2069 
2070   return true;
2071 }
2072 
2073 // NOLINTNEXTLINE(readability-identifier-naming)
2074 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
2075     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2076   using namespace amdhsa;
2077   StringRef Indent = "\t";
2078   if (isGFX90A()) {
2079     KdStream << Indent << ".amdhsa_accum_offset "
2080              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
2081              << '\n';
2082 
2083     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
2084 
2085     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX90A_RESERVED0,
2086                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx90a");
2087     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX90A_RESERVED1,
2088                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx90a");
2089   } else if (isGFX10Plus()) {
2090     // Bits [0-3].
2091     if (!isGFX12Plus()) {
2092       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2093         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2094                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2095       } else {
2096         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2097             "SHARED_VGPR_COUNT",
2098             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2099       }
2100     } else {
2101       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0,
2102                                    "COMPUTE_PGM_RSRC3",
2103                                    "must be zero on gfx12+");
2104     }
2105 
2106     // Bits [4-11].
2107     if (isGFX11()) {
2108       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2109                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2110       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2111                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2112       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2113                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2114     } else if (isGFX12Plus()) {
2115       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2116           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2117     } else {
2118       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_RESERVED1,
2119                                    "COMPUTE_PGM_RSRC3",
2120                                    "must be zero on gfx10");
2121     }
2122 
2123     // Bits [12].
2124     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2,
2125                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx10+");
2126 
2127     // Bits [13].
2128     if (isGFX12Plus()) {
2129       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2130                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2131     } else {
2132       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3,
2133                                    "COMPUTE_PGM_RSRC3",
2134                                    "must be zero on gfx10 or gfx11");
2135     }
2136 
2137     // Bits [14-30].
2138     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4,
2139                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx10+");
2140 
2141     // Bits [31].
2142     if (isGFX11Plus()) {
2143       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2144                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2145     } else {
2146       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_RESERVED5,
2147                                    "COMPUTE_PGM_RSRC3",
2148                                    "must be zero on gfx10");
2149     }
2150   } else if (FourByteBuffer) {
2151     return createStringError(
2152         std::errc::invalid_argument,
2153         "kernel descriptor COMPUTE_PGM_RSRC3 must be all zero before gfx9");
2154   }
2155   return true;
2156 }
2157 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2158 #undef PRINT_DIRECTIVE
2159 #undef GET_FIELD
2160 #undef CHECK_RESERVED_BITS_IMPL
2161 #undef CHECK_RESERVED_BITS
2162 #undef CHECK_RESERVED_BITS_MSG
2163 #undef CHECK_RESERVED_BITS_DESC
2164 #undef CHECK_RESERVED_BITS_DESC_MSG
2165 
2166 /// Create an error object to return from onSymbolStart for reserved kernel
2167 /// descriptor bits being set.
2168 static Error createReservedKDBitsError(uint32_t Mask, unsigned BaseBytes,
2169                                        const char *Msg = "") {
2170   return createStringError(
2171       std::errc::invalid_argument, "kernel descriptor reserved %s set%s%s",
2172       getBitRangeFromMask(Mask, BaseBytes).c_str(), *Msg ? ", " : "", Msg);
2173 }
2174 
2175 /// Create an error object to return from onSymbolStart for reserved kernel
2176 /// descriptor bytes being set.
2177 static Error createReservedKDBytesError(unsigned BaseInBytes,
2178                                         unsigned WidthInBytes) {
2179   // Create an error comment in the same format as the "Kernel Descriptor"
2180   // table here: https://llvm.org/docs/AMDGPUUsage.html#kernel-descriptor .
2181   return createStringError(
2182       std::errc::invalid_argument,
2183       "kernel descriptor reserved bits in range (%u:%u) set",
2184       (BaseInBytes + WidthInBytes) * CHAR_BIT - 1, BaseInBytes * CHAR_BIT);
2185 }
2186 
2187 Expected<bool> AMDGPUDisassembler::decodeKernelDescriptorDirective(
2188     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2189     raw_string_ostream &KdStream) const {
2190 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2191   do {                                                                         \
2192     KdStream << Indent << DIRECTIVE " "                                        \
2193              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2194   } while (0)
2195 
2196   uint16_t TwoByteBuffer = 0;
2197   uint32_t FourByteBuffer = 0;
2198 
2199   StringRef ReservedBytes;
2200   StringRef Indent = "\t";
2201 
2202   assert(Bytes.size() == 64);
2203   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2204 
2205   switch (Cursor.tell()) {
2206   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2207     FourByteBuffer = DE.getU32(Cursor);
2208     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2209              << '\n';
2210     return true;
2211 
2212   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2213     FourByteBuffer = DE.getU32(Cursor);
2214     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2215              << FourByteBuffer << '\n';
2216     return true;
2217 
2218   case amdhsa::KERNARG_SIZE_OFFSET:
2219     FourByteBuffer = DE.getU32(Cursor);
2220     KdStream << Indent << ".amdhsa_kernarg_size "
2221              << FourByteBuffer << '\n';
2222     return true;
2223 
2224   case amdhsa::RESERVED0_OFFSET:
2225     // 4 reserved bytes, must be 0.
2226     ReservedBytes = DE.getBytes(Cursor, 4);
2227     for (int I = 0; I < 4; ++I) {
2228       if (ReservedBytes[I] != 0)
2229         return createReservedKDBytesError(amdhsa::RESERVED0_OFFSET, 4);
2230     }
2231     return true;
2232 
2233   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2234     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2235     // So far no directive controls this for Code Object V3, so simply skip for
2236     // disassembly.
2237     DE.skip(Cursor, 8);
2238     return true;
2239 
2240   case amdhsa::RESERVED1_OFFSET:
2241     // 20 reserved bytes, must be 0.
2242     ReservedBytes = DE.getBytes(Cursor, 20);
2243     for (int I = 0; I < 20; ++I) {
2244       if (ReservedBytes[I] != 0)
2245         return createReservedKDBytesError(amdhsa::RESERVED1_OFFSET, 20);
2246     }
2247     return true;
2248 
2249   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2250     FourByteBuffer = DE.getU32(Cursor);
2251     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2252 
2253   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2254     FourByteBuffer = DE.getU32(Cursor);
2255     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2256 
2257   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2258     FourByteBuffer = DE.getU32(Cursor);
2259     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2260 
2261   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2262     using namespace amdhsa;
2263     TwoByteBuffer = DE.getU16(Cursor);
2264 
2265     if (!hasArchitectedFlatScratch())
2266       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2267                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2268     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2269                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2270     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2271                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2272     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2273                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2274     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2275                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2276     if (!hasArchitectedFlatScratch())
2277       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2278                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2279     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2280                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2281 
2282     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2283       return createReservedKDBitsError(KERNEL_CODE_PROPERTY_RESERVED0,
2284                                        amdhsa::KERNEL_CODE_PROPERTIES_OFFSET);
2285 
2286     // Reserved for GFX9
2287     if (isGFX9() &&
2288         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2289       return createReservedKDBitsError(
2290           KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
2291           amdhsa::KERNEL_CODE_PROPERTIES_OFFSET, "must be zero on gfx9");
2292     }
2293     if (isGFX10Plus()) {
2294       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2295                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2296     }
2297 
2298     if (CodeObjectVersion >= AMDGPU::AMDHSA_COV5)
2299       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2300                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2301 
2302     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) {
2303       return createReservedKDBitsError(KERNEL_CODE_PROPERTY_RESERVED1,
2304                                        amdhsa::KERNEL_CODE_PROPERTIES_OFFSET);
2305     }
2306 
2307     return true;
2308 
2309   case amdhsa::KERNARG_PRELOAD_OFFSET:
2310     using namespace amdhsa;
2311     TwoByteBuffer = DE.getU16(Cursor);
2312     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2313       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2314                       KERNARG_PRELOAD_SPEC_LENGTH);
2315     }
2316 
2317     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2318       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2319                       KERNARG_PRELOAD_SPEC_OFFSET);
2320     }
2321     return true;
2322 
2323   case amdhsa::RESERVED3_OFFSET:
2324     // 4 bytes from here are reserved, must be 0.
2325     ReservedBytes = DE.getBytes(Cursor, 4);
2326     for (int I = 0; I < 4; ++I) {
2327       if (ReservedBytes[I] != 0)
2328         return createReservedKDBytesError(amdhsa::RESERVED3_OFFSET, 4);
2329     }
2330     return true;
2331 
2332   default:
2333     llvm_unreachable("Unhandled index. Case statements cover everything.");
2334     return true;
2335   }
2336 #undef PRINT_DIRECTIVE
2337 }
2338 
2339 Expected<bool> AMDGPUDisassembler::decodeKernelDescriptor(
2340     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2341 
2342   // CP microcode requires the kernel descriptor to be 64 aligned.
2343   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2344     return createStringError(std::errc::invalid_argument,
2345                              "kernel descriptor must be 64-byte aligned");
2346 
2347   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2348   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2349   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2350   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2351   // when required.
2352   if (isGFX10Plus()) {
2353     uint16_t KernelCodeProperties =
2354         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2355                                 llvm::endianness::little);
2356     EnableWavefrontSize32 =
2357         AMDHSA_BITS_GET(KernelCodeProperties,
2358                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2359   }
2360 
2361   std::string Kd;
2362   raw_string_ostream KdStream(Kd);
2363   KdStream << ".amdhsa_kernel " << KdName << '\n';
2364 
2365   DataExtractor::Cursor C(0);
2366   while (C && C.tell() < Bytes.size()) {
2367     Expected<bool> Res = decodeKernelDescriptorDirective(C, Bytes, KdStream);
2368 
2369     cantFail(C.takeError());
2370 
2371     if (!Res)
2372       return Res;
2373   }
2374   KdStream << ".end_amdhsa_kernel\n";
2375   outs() << KdStream.str();
2376   return true;
2377 }
2378 
2379 Expected<bool> AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol,
2380                                                  uint64_t &Size,
2381                                                  ArrayRef<uint8_t> Bytes,
2382                                                  uint64_t Address) const {
2383   // Right now only kernel descriptor needs to be handled.
2384   // We ignore all other symbols for target specific handling.
2385   // TODO:
2386   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2387   // Object V2 and V3 when symbols are marked protected.
2388 
2389   // amd_kernel_code_t for Code Object V2.
2390   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2391     Size = 256;
2392     return createStringError(std::errc::invalid_argument,
2393                              "code object v2 is not supported");
2394   }
2395 
2396   // Code Object V3 kernel descriptors.
2397   StringRef Name = Symbol.Name;
2398   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2399     Size = 64; // Size = 64 regardless of success or failure.
2400     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2401   }
2402 
2403   return false;
2404 }
2405 
2406 const MCExpr *AMDGPUDisassembler::createConstantSymbolExpr(StringRef Id,
2407                                                            int64_t Val) {
2408   MCContext &Ctx = getContext();
2409   MCSymbol *Sym = Ctx.getOrCreateSymbol(Id);
2410   // Note: only set value to Val on a new symbol in case an dissassembler
2411   // has already been initialized in this context.
2412   if (!Sym->isVariable()) {
2413     Sym->setVariableValue(MCConstantExpr::create(Val, Ctx));
2414   } else {
2415     int64_t Res = ~Val;
2416     bool Valid = Sym->getVariableValue()->evaluateAsAbsolute(Res);
2417     if (!Valid || Res != Val)
2418       Ctx.reportWarning(SMLoc(), "unsupported redefinition of " + Id);
2419   }
2420   return MCSymbolRefExpr::create(Sym, Ctx);
2421 }
2422 
2423 //===----------------------------------------------------------------------===//
2424 // AMDGPUSymbolizer
2425 //===----------------------------------------------------------------------===//
2426 
2427 // Try to find symbol name for specified label
2428 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2429     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2430     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2431     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2432 
2433   if (!IsBranch) {
2434     return false;
2435   }
2436 
2437   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2438   if (!Symbols)
2439     return false;
2440 
2441   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2442     return Val.Addr == static_cast<uint64_t>(Value) &&
2443            Val.Type == ELF::STT_NOTYPE;
2444   });
2445   if (Result != Symbols->end()) {
2446     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2447     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2448     Inst.addOperand(MCOperand::createExpr(Add));
2449     return true;
2450   }
2451   // Add to list of referenced addresses, so caller can synthesize a label.
2452   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2453   return false;
2454 }
2455 
2456 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2457                                                        int64_t Value,
2458                                                        uint64_t Address) {
2459   llvm_unreachable("unimplemented");
2460 }
2461 
2462 //===----------------------------------------------------------------------===//
2463 // Initialization
2464 //===----------------------------------------------------------------------===//
2465 
2466 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2467                               LLVMOpInfoCallback /*GetOpInfo*/,
2468                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2469                               void *DisInfo,
2470                               MCContext *Ctx,
2471                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2472   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2473 }
2474 
2475 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2476                                                 const MCSubtargetInfo &STI,
2477                                                 MCContext &Ctx) {
2478   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2479 }
2480 
2481 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2482   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2483                                          createAMDGPUDisassembler);
2484   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2485                                        createAMDGPUSymbolizer);
2486 }
2487