xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision ab6c3d50345f7751f77c16d0909b17e942a3def7)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
95     Offset = Imm & 0xFFFFF;
96   } else {                    // GFX9+ supports 21-bit signed offsets.
97     Offset = SignExtend64<21>(Imm);
98   }
99   return addOperand(Inst, MCOperand::createImm(Offset));
100 }
101 
102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
103                                   const MCDisassembler *Decoder) {
104   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
105   return addOperand(Inst, DAsm->decodeBoolReg(Val));
106 }
107 
108 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
109   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
110                                         uint64_t /*Addr*/,                     \
111                                         const MCDisassembler *Decoder) {       \
112     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
113     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
114   }
115 
116 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
117 // number of register. Used by VGPR only and AGPR only operands.
118 #define DECODE_OPERAND_REG_8(RegClass)                                         \
119   static DecodeStatus Decode##RegClass##RegisterClass(                         \
120       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
121       const MCDisassembler *Decoder) {                                         \
122     assert(Imm < (1 << 8) && "8-bit encoding");                                \
123     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
124     return addOperand(                                                         \
125         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
126   }
127 
128 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
129                      ImmWidth)                                                 \
130   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
131                            const MCDisassembler *Decoder) {                    \
132     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
133     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
134     return addOperand(Inst,                                                    \
135                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
136                                         MandatoryLiteral, ImmWidth));          \
137   }
138 
139 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
140 // get register class. Used by SGPR only operands.
141 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
142   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
143 
144 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
145 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
146 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
147 // Used by AV_ register classes (AGPR or VGPR only register operands).
148 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
149   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
150                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
151 
152 // Decoder for Src(9-bit encoding) registers only.
153 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
154   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
155 
156 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
157 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
158 // only.
159 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
160   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
161 
162 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
163 // Imm{9} is acc, registers only.
164 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
165   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
166 
167 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
168 // register from RegClass or immediate. Registers that don't belong to RegClass
169 // will be decoded and InstPrinter will report warning. Immediate will be
170 // decoded into constant of size ImmWidth, should match width of immediate used
171 // by OperandType (important for floating point types).
172 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
173   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
174                false, ImmWidth)
175 
176 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
177 // and decode using 'enum10' from decodeSrcOp.
178 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
179   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
180                Imm | 512, false, ImmWidth)
181 
182 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
183   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
184                OpWidth, Imm, true, ImmWidth)
185 
186 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
187 // when RegisterClass is used as an operand. Most often used for destination
188 // operands.
189 
190 DECODE_OPERAND_REG_8(VGPR_32)
191 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
192 DECODE_OPERAND_REG_8(VReg_64)
193 DECODE_OPERAND_REG_8(VReg_96)
194 DECODE_OPERAND_REG_8(VReg_128)
195 DECODE_OPERAND_REG_8(VReg_256)
196 DECODE_OPERAND_REG_8(VReg_288)
197 DECODE_OPERAND_REG_8(VReg_352)
198 DECODE_OPERAND_REG_8(VReg_384)
199 DECODE_OPERAND_REG_8(VReg_512)
200 DECODE_OPERAND_REG_8(VReg_1024)
201 
202 DECODE_OPERAND_REG_7(SReg_32, OPW32)
203 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
204 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
205 DECODE_OPERAND_REG_7(SReg_64, OPW64)
206 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
207 DECODE_OPERAND_REG_7(SReg_128, OPW128)
208 DECODE_OPERAND_REG_7(SReg_256, OPW256)
209 DECODE_OPERAND_REG_7(SReg_512, OPW512)
210 
211 DECODE_OPERAND_REG_8(AGPR_32)
212 DECODE_OPERAND_REG_8(AReg_64)
213 DECODE_OPERAND_REG_8(AReg_128)
214 DECODE_OPERAND_REG_8(AReg_256)
215 DECODE_OPERAND_REG_8(AReg_512)
216 DECODE_OPERAND_REG_8(AReg_1024)
217 
218 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
219 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
220 
221 // Decoders for register only source RegisterOperands that use use 9-bit Src
222 // encoding: 'decodeOperand_<RegClass>'.
223 
224 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
225 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
226 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
227 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
228 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
229 
230 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
231 
232 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
233 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
234 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
235 
236 // Decoders for register or immediate RegisterOperands that use 9-bit Src
237 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
238 
239 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
240 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
243 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
253 
254 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
259 
260 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
264 
265 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
266                                                uint64_t /*Addr*/,
267                                                const MCDisassembler *Decoder) {
268   assert(isUInt<10>(Imm) && "10-bit encoding expected");
269   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
270 
271   bool IsHi = Imm & (1 << 9);
272   unsigned RegIdx = Imm & 0xff;
273   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
274   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
275 }
276 
277 static DecodeStatus
278 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
279                                  const MCDisassembler *Decoder) {
280   assert(isUInt<8>(Imm) && "8-bit encoding expected");
281 
282   bool IsHi = Imm & (1 << 7);
283   unsigned RegIdx = Imm & 0x7f;
284   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
285   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
286 }
287 
288 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
289                                                 uint64_t /*Addr*/,
290                                                 const MCDisassembler *Decoder) {
291   assert(isUInt<9>(Imm) && "9-bit encoding expected");
292 
293   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
294   bool IsVGPR = Imm & (1 << 8);
295   if (IsVGPR) {
296     bool IsHi = Imm & (1 << 7);
297     unsigned RegIdx = Imm & 0x7f;
298     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
299   }
300   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
301                                                    Imm & 0xFF, false, 16));
302 }
303 
304 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
305                                           uint64_t /*Addr*/,
306                                           const MCDisassembler *Decoder) {
307   assert(isUInt<10>(Imm) && "10-bit encoding expected");
308 
309   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
310   bool IsVGPR = Imm & (1 << 8);
311   if (IsVGPR) {
312     bool IsHi = Imm & (1 << 9);
313     unsigned RegIdx = Imm & 0xff;
314     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
315   }
316   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
317                                                    Imm & 0xFF, false, 16));
318 }
319 
320 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
321                                          uint64_t Addr,
322                                          const MCDisassembler *Decoder) {
323   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
324   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
325 }
326 
327 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
328                                           uint64_t Addr, const void *Decoder) {
329   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
330   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
331 }
332 
333 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
334                           const MCRegisterInfo *MRI) {
335   if (OpIdx < 0)
336     return false;
337 
338   const MCOperand &Op = Inst.getOperand(OpIdx);
339   if (!Op.isReg())
340     return false;
341 
342   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
343   auto Reg = Sub ? Sub : Op.getReg();
344   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
345 }
346 
347 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
348                                              AMDGPUDisassembler::OpWidthTy Opw,
349                                              const MCDisassembler *Decoder) {
350   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
351   if (!DAsm->isGFX90A()) {
352     Imm &= 511;
353   } else {
354     // If atomic has both vdata and vdst their register classes are tied.
355     // The bit is decoded along with the vdst, first operand. We need to
356     // change register class to AGPR if vdst was AGPR.
357     // If a DS instruction has both data0 and data1 their register classes
358     // are also tied.
359     unsigned Opc = Inst.getOpcode();
360     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
361     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
362                                                         : AMDGPU::OpName::vdata;
363     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
364     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
365     if ((int)Inst.getNumOperands() == DataIdx) {
366       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
367       if (IsAGPROperand(Inst, DstIdx, MRI))
368         Imm |= 512;
369     }
370 
371     if (TSFlags & SIInstrFlags::DS) {
372       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
373       if ((int)Inst.getNumOperands() == Data2Idx &&
374           IsAGPROperand(Inst, DataIdx, MRI))
375         Imm |= 512;
376     }
377   }
378   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
379 }
380 
381 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
382                                            uint64_t Addr,
383                                            const MCDisassembler *Decoder) {
384   assert(Imm < (1 << 9) && "9-bit encoding");
385   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
386   return addOperand(
387       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
388 }
389 
390 static DecodeStatus
391 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
392                              const MCDisassembler *Decoder) {
393   return decodeOperand_AVLdSt_Any(Inst, Imm,
394                                   AMDGPUDisassembler::OPW32, Decoder);
395 }
396 
397 static DecodeStatus
398 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
399                              const MCDisassembler *Decoder) {
400   return decodeOperand_AVLdSt_Any(Inst, Imm,
401                                   AMDGPUDisassembler::OPW64, Decoder);
402 }
403 
404 static DecodeStatus
405 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
406                              const MCDisassembler *Decoder) {
407   return decodeOperand_AVLdSt_Any(Inst, Imm,
408                                   AMDGPUDisassembler::OPW96, Decoder);
409 }
410 
411 static DecodeStatus
412 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
413                               const MCDisassembler *Decoder) {
414   return decodeOperand_AVLdSt_Any(Inst, Imm,
415                                   AMDGPUDisassembler::OPW128, Decoder);
416 }
417 
418 static DecodeStatus
419 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
420                               const MCDisassembler *Decoder) {
421   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
422                                   Decoder);
423 }
424 
425 #define DECODE_SDWA(DecName) \
426 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
427 
428 DECODE_SDWA(Src32)
429 DECODE_SDWA(Src16)
430 DECODE_SDWA(VopcDst)
431 
432 #include "AMDGPUGenDisassemblerTables.inc"
433 
434 //===----------------------------------------------------------------------===//
435 //
436 //===----------------------------------------------------------------------===//
437 
438 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
439   assert(Bytes.size() >= sizeof(T));
440   const auto Res =
441       support::endian::read<T, llvm::endianness::little>(Bytes.data());
442   Bytes = Bytes.slice(sizeof(T));
443   return Res;
444 }
445 
446 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
447   assert(Bytes.size() >= 12);
448   uint64_t Lo =
449       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
450   Bytes = Bytes.slice(8);
451   uint64_t Hi =
452       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
453   Bytes = Bytes.slice(4);
454   return DecoderUInt128(Lo, Hi);
455 }
456 
457 // The disassembler is greedy, so we need to check FI operand value to
458 // not parse a dpp if the correct literal is not set. For dpp16 the
459 // autogenerated decoder checks the dpp literal
460 static bool isValidDPP8(const MCInst &MI) {
461   using namespace llvm::AMDGPU::DPP;
462   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
463   assert(FiIdx != -1);
464   if ((unsigned)FiIdx >= MI.getNumOperands())
465     return false;
466   unsigned Fi = MI.getOperand(FiIdx).getImm();
467   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
468 }
469 
470 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
471                                                 ArrayRef<uint8_t> Bytes_,
472                                                 uint64_t Address,
473                                                 raw_ostream &CS) const {
474   bool IsSDWA = false;
475 
476   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
477   Bytes = Bytes_.slice(0, MaxInstBytesNum);
478 
479   DecodeStatus Res = MCDisassembler::Fail;
480   do {
481     // ToDo: better to switch encoding length using some bit predicate
482     // but it is unknown yet, so try all we can
483 
484     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
485     // encodings
486     if (isGFX11Plus() && Bytes.size() >= 12 ) {
487       DecoderUInt128 DecW = eat12Bytes(Bytes);
488       Res =
489           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
490                         MI, DecW, Address, CS);
491       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
492         break;
493       MI = MCInst(); // clear
494       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
495                           MI, DecW, Address, CS);
496       if (Res) {
497         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
498           convertVOP3PDPPInst(MI);
499         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
500           convertVOPCDPPInst(MI); // Special VOP3 case
501         else {
502           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
503           convertVOP3DPPInst(MI); // Regular VOP3 case
504         }
505         break;
506       }
507       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
508       if (Res)
509         break;
510     }
511     // Reinitialize Bytes
512     Bytes = Bytes_.slice(0, MaxInstBytesNum);
513 
514     if (Bytes.size() >= 8) {
515       const uint64_t QW = eatBytes<uint64_t>(Bytes);
516 
517       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
518         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
519         if (Res) {
520           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
521               == -1)
522             break;
523           if (convertDPP8Inst(MI) == MCDisassembler::Success)
524             break;
525           MI = MCInst(); // clear
526         }
527       }
528 
529       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
530       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
531         break;
532       MI = MCInst(); // clear
533 
534       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
535                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
536       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
537         break;
538       MI = MCInst(); // clear
539 
540       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
541       if (Res) break;
542 
543       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
544                           MI, QW, Address, CS);
545       if (Res) {
546         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
547           convertVOPCDPPInst(MI);
548         break;
549       }
550 
551       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
552       if (Res) { IsSDWA = true;  break; }
553 
554       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
555       if (Res) { IsSDWA = true;  break; }
556 
557       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
558       if (Res) { IsSDWA = true;  break; }
559 
560       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
561         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
562         if (Res)
563           break;
564       }
565 
566       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
567       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
568       // table first so we print the correct name.
569       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
570         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
571         if (Res)
572           break;
573       }
574     }
575 
576     // Reinitialize Bytes as DPP64 could have eaten too much
577     Bytes = Bytes_.slice(0, MaxInstBytesNum);
578 
579     // Try decode 32-bit instruction
580     if (Bytes.size() < 4) break;
581     const uint32_t DW = eatBytes<uint32_t>(Bytes);
582     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
583     if (Res) break;
584 
585     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
586     if (Res) break;
587 
588     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
589     if (Res) break;
590 
591     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
592       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
593       if (Res)
594         break;
595     }
596 
597     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
598       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
599       if (Res) break;
600     }
601 
602     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
603     if (Res) break;
604 
605     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
606                         Address, CS);
607     if (Res) break;
608 
609     if (Bytes.size() < 4) break;
610     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
611 
612     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
613       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
614       if (Res)
615         break;
616     }
617 
618     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
619       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
620       if (Res)
621         break;
622     }
623 
624     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
625     if (Res) break;
626 
627     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
628     if (Res) break;
629 
630     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
631     if (Res) break;
632 
633     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
634     if (Res) break;
635 
636     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
637                         Address, CS);
638     if (Res)
639       break;
640 
641     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
642   } while (false);
643 
644   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
645     // Insert dummy unused src2_modifiers.
646     insertNamedMCOperand(MI, MCOperand::createImm(0),
647                          AMDGPU::OpName::src2_modifiers);
648   }
649 
650   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
651           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
652     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
653                                              AMDGPU::OpName::cpol);
654     if (CPolPos != -1) {
655       unsigned CPol =
656           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
657               AMDGPU::CPol::GLC : 0;
658       if (MI.getNumOperands() <= (unsigned)CPolPos) {
659         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
660                              AMDGPU::OpName::cpol);
661       } else if (CPol) {
662         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
663       }
664     }
665   }
666 
667   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
668               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
669              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
670     // GFX90A lost TFE, its place is occupied by ACC.
671     int TFEOpIdx =
672         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
673     if (TFEOpIdx != -1) {
674       auto TFEIter = MI.begin();
675       std::advance(TFEIter, TFEOpIdx);
676       MI.insert(TFEIter, MCOperand::createImm(0));
677     }
678   }
679 
680   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
681               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
682     int SWZOpIdx =
683         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
684     if (SWZOpIdx != -1) {
685       auto SWZIter = MI.begin();
686       std::advance(SWZIter, SWZOpIdx);
687       MI.insert(SWZIter, MCOperand::createImm(0));
688     }
689   }
690 
691   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
692     int VAddr0Idx =
693         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
694     int RsrcIdx =
695         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
696     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
697     if (VAddr0Idx >= 0 && NSAArgs > 0) {
698       unsigned NSAWords = (NSAArgs + 3) / 4;
699       if (Bytes.size() < 4 * NSAWords) {
700         Res = MCDisassembler::Fail;
701       } else {
702         for (unsigned i = 0; i < NSAArgs; ++i) {
703           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
704           auto VAddrRCID =
705               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
706           MI.insert(MI.begin() + VAddrIdx,
707                     createRegOperand(VAddrRCID, Bytes[i]));
708         }
709         Bytes = Bytes.slice(4 * NSAWords);
710       }
711     }
712 
713     if (Res)
714       Res = convertMIMGInst(MI);
715   }
716 
717   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
718     Res = convertEXPInst(MI);
719 
720   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
721     Res = convertVINTERPInst(MI);
722 
723   if (Res && IsSDWA)
724     Res = convertSDWAInst(MI);
725 
726   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
727                                               AMDGPU::OpName::vdst_in);
728   if (VDstIn_Idx != -1) {
729     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
730                            MCOI::OperandConstraint::TIED_TO);
731     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
732          !MI.getOperand(VDstIn_Idx).isReg() ||
733          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
734       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
735         MI.erase(&MI.getOperand(VDstIn_Idx));
736       insertNamedMCOperand(MI,
737         MCOperand::createReg(MI.getOperand(Tied).getReg()),
738         AMDGPU::OpName::vdst_in);
739     }
740   }
741 
742   int ImmLitIdx =
743       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
744   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
745   if (Res && ImmLitIdx != -1 && !IsSOPK)
746     Res = convertFMAanyK(MI, ImmLitIdx);
747 
748   // if the opcode was not recognized we'll assume a Size of 4 bytes
749   // (unless there are fewer bytes left)
750   Size = Res ? (MaxInstBytesNum - Bytes.size())
751              : std::min((size_t)4, Bytes_.size());
752   return Res;
753 }
754 
755 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
756   if (STI.hasFeature(AMDGPU::FeatureGFX11)) {
757     // The MCInst still has these fields even though they are no longer encoded
758     // in the GFX11 instruction.
759     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
760     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
761   }
762   return MCDisassembler::Success;
763 }
764 
765 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
766   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
767       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
768       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
769       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
770     // The MCInst has this field that is not directly encoded in the
771     // instruction.
772     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
773   }
774   return MCDisassembler::Success;
775 }
776 
777 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
778   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
779       STI.hasFeature(AMDGPU::FeatureGFX10)) {
780     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
781       // VOPC - insert clamp
782       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
783   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
784     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
785     if (SDst != -1) {
786       // VOPC - insert VCC register as sdst
787       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
788                            AMDGPU::OpName::sdst);
789     } else {
790       // VOP1/2 - insert omod if present in instruction
791       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
792     }
793   }
794   return MCDisassembler::Success;
795 }
796 
797 struct VOPModifiers {
798   unsigned OpSel = 0;
799   unsigned OpSelHi = 0;
800   unsigned NegLo = 0;
801   unsigned NegHi = 0;
802 };
803 
804 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
805 // Note that these values do not affect disassembler output,
806 // so this is only necessary for consistency with src_modifiers.
807 static VOPModifiers collectVOPModifiers(const MCInst &MI,
808                                         bool IsVOP3P = false) {
809   VOPModifiers Modifiers;
810   unsigned Opc = MI.getOpcode();
811   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
812                         AMDGPU::OpName::src1_modifiers,
813                         AMDGPU::OpName::src2_modifiers};
814   for (int J = 0; J < 3; ++J) {
815     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
816     if (OpIdx == -1)
817       continue;
818 
819     unsigned Val = MI.getOperand(OpIdx).getImm();
820 
821     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
822     if (IsVOP3P) {
823       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
824       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
825       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
826     } else if (J == 0) {
827       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
828     }
829   }
830 
831   return Modifiers;
832 }
833 
834 // MAC opcodes have special old and src2 operands.
835 // src2 is tied to dst, while old is not tied (but assumed to be).
836 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
837   constexpr int DST_IDX = 0;
838   auto Opcode = MI.getOpcode();
839   const auto &Desc = MCII->get(Opcode);
840   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
841 
842   if (OldIdx != -1 && Desc.getOperandConstraint(
843                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
844     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
845     assert(Desc.getOperandConstraint(
846                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
847                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
848     (void)DST_IDX;
849     return true;
850   }
851 
852   return false;
853 }
854 
855 // Create dummy old operand and insert dummy unused src2_modifiers
856 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
857   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
858   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
859   insertNamedMCOperand(MI, MCOperand::createImm(0),
860                        AMDGPU::OpName::src2_modifiers);
861 }
862 
863 // We must check FI == literal to reject not genuine dpp8 insts, and we must
864 // first add optional MI operands to check FI
865 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
866   unsigned Opc = MI.getOpcode();
867   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
868     convertVOP3PDPPInst(MI);
869   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
870              AMDGPU::isVOPC64DPP(Opc)) {
871     convertVOPCDPPInst(MI);
872   } else {
873     if (isMacDPP(MI))
874       convertMacDPPInst(MI);
875 
876     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
877     if (MI.getNumOperands() < DescNumOps &&
878         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
879       auto Mods = collectVOPModifiers(MI);
880       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
881                            AMDGPU::OpName::op_sel);
882     } else {
883       // Insert dummy unused src modifiers.
884       if (MI.getNumOperands() < DescNumOps &&
885           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
886         insertNamedMCOperand(MI, MCOperand::createImm(0),
887                              AMDGPU::OpName::src0_modifiers);
888 
889       if (MI.getNumOperands() < DescNumOps &&
890           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
891         insertNamedMCOperand(MI, MCOperand::createImm(0),
892                              AMDGPU::OpName::src1_modifiers);
893     }
894   }
895   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
896 }
897 
898 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
899   if (isMacDPP(MI))
900     convertMacDPPInst(MI);
901 
902   unsigned Opc = MI.getOpcode();
903   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
904   if (MI.getNumOperands() < DescNumOps &&
905       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
906     auto Mods = collectVOPModifiers(MI);
907     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
908                          AMDGPU::OpName::op_sel);
909   }
910   return MCDisassembler::Success;
911 }
912 
913 // Note that before gfx10, the MIMG encoding provided no information about
914 // VADDR size. Consequently, decoded instructions always show address as if it
915 // has 1 dword, which could be not really so.
916 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
917 
918   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
919                                            AMDGPU::OpName::vdst);
920 
921   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
922                                             AMDGPU::OpName::vdata);
923   int VAddr0Idx =
924       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
925   int RsrcIdx =
926       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
927   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
928                                             AMDGPU::OpName::dmask);
929 
930   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
931                                             AMDGPU::OpName::tfe);
932   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
933                                             AMDGPU::OpName::d16);
934 
935   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
936   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
937       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
938 
939   assert(VDataIdx != -1);
940   if (BaseOpcode->BVH) {
941     // Add A16 operand for intersect_ray instructions
942     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
943     return MCDisassembler::Success;
944   }
945 
946   bool IsAtomic = (VDstIdx != -1);
947   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
948   bool IsNSA = false;
949   bool IsPartialNSA = false;
950   unsigned AddrSize = Info->VAddrDwords;
951 
952   if (isGFX10Plus()) {
953     unsigned DimIdx =
954         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
955     int A16Idx =
956         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
957     const AMDGPU::MIMGDimInfo *Dim =
958         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
959     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
960 
961     AddrSize =
962         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
963 
964     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
965             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
966     if (!IsNSA) {
967       if (AddrSize > 12)
968         AddrSize = 16;
969     } else {
970       if (AddrSize > Info->VAddrDwords) {
971         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
972           // The NSA encoding does not contain enough operands for the
973           // combination of base opcode / dimension. Should this be an error?
974           return MCDisassembler::Success;
975         }
976         IsPartialNSA = true;
977       }
978     }
979   }
980 
981   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
982   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
983 
984   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
985   if (D16 && AMDGPU::hasPackedD16(STI)) {
986     DstSize = (DstSize + 1) / 2;
987   }
988 
989   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
990     DstSize += 1;
991 
992   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
993     return MCDisassembler::Success;
994 
995   int NewOpcode =
996       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
997   if (NewOpcode == -1)
998     return MCDisassembler::Success;
999 
1000   // Widen the register to the correct number of enabled channels.
1001   unsigned NewVdata = AMDGPU::NoRegister;
1002   if (DstSize != Info->VDataDwords) {
1003     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1004 
1005     // Get first subregister of VData
1006     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1007     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1008     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1009 
1010     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1011                                        &MRI.getRegClass(DataRCID));
1012     if (NewVdata == AMDGPU::NoRegister) {
1013       // It's possible to encode this such that the low register + enabled
1014       // components exceeds the register count.
1015       return MCDisassembler::Success;
1016     }
1017   }
1018 
1019   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1020   // If using partial NSA on GFX11+ widen last address register.
1021   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1022   unsigned NewVAddrSA = AMDGPU::NoRegister;
1023   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1024       AddrSize != Info->VAddrDwords) {
1025     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1026     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1027     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1028 
1029     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1030     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1031                                         &MRI.getRegClass(AddrRCID));
1032     if (!NewVAddrSA)
1033       return MCDisassembler::Success;
1034   }
1035 
1036   MI.setOpcode(NewOpcode);
1037 
1038   if (NewVdata != AMDGPU::NoRegister) {
1039     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1040 
1041     if (IsAtomic) {
1042       // Atomic operations have an additional operand (a copy of data)
1043       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1044     }
1045   }
1046 
1047   if (NewVAddrSA) {
1048     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1049   } else if (IsNSA) {
1050     assert(AddrSize <= Info->VAddrDwords);
1051     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1052              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1053   }
1054 
1055   return MCDisassembler::Success;
1056 }
1057 
1058 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1059 // decoder only adds to src_modifiers, so manually add the bits to the other
1060 // operands.
1061 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1062   unsigned Opc = MI.getOpcode();
1063   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1064   auto Mods = collectVOPModifiers(MI, true);
1065 
1066   if (MI.getNumOperands() < DescNumOps &&
1067       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1068     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1069 
1070   if (MI.getNumOperands() < DescNumOps &&
1071       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1072     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1073                          AMDGPU::OpName::op_sel);
1074   if (MI.getNumOperands() < DescNumOps &&
1075       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1076     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1077                          AMDGPU::OpName::op_sel_hi);
1078   if (MI.getNumOperands() < DescNumOps &&
1079       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1080     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1081                          AMDGPU::OpName::neg_lo);
1082   if (MI.getNumOperands() < DescNumOps &&
1083       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1084     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1085                          AMDGPU::OpName::neg_hi);
1086 
1087   return MCDisassembler::Success;
1088 }
1089 
1090 // Create dummy old operand and insert optional operands
1091 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1092   unsigned Opc = MI.getOpcode();
1093   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1094 
1095   if (MI.getNumOperands() < DescNumOps &&
1096       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1097     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1098 
1099   if (MI.getNumOperands() < DescNumOps &&
1100       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1101     insertNamedMCOperand(MI, MCOperand::createImm(0),
1102                          AMDGPU::OpName::src0_modifiers);
1103 
1104   if (MI.getNumOperands() < DescNumOps &&
1105       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1106     insertNamedMCOperand(MI, MCOperand::createImm(0),
1107                          AMDGPU::OpName::src1_modifiers);
1108   return MCDisassembler::Success;
1109 }
1110 
1111 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1112                                                 int ImmLitIdx) const {
1113   assert(HasLiteral && "Should have decoded a literal");
1114   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1115   unsigned DescNumOps = Desc.getNumOperands();
1116   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1117                        AMDGPU::OpName::immDeferred);
1118   assert(DescNumOps == MI.getNumOperands());
1119   for (unsigned I = 0; I < DescNumOps; ++I) {
1120     auto &Op = MI.getOperand(I);
1121     auto OpType = Desc.operands()[I].OperandType;
1122     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1123                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1124     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1125         IsDeferredOp)
1126       Op.setImm(Literal);
1127   }
1128   return MCDisassembler::Success;
1129 }
1130 
1131 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1132   return getContext().getRegisterInfo()->
1133     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1134 }
1135 
1136 inline
1137 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1138                                          const Twine& ErrMsg) const {
1139   *CommentStream << "Error: " + ErrMsg;
1140 
1141   // ToDo: add support for error operands to MCInst.h
1142   // return MCOperand::createError(V);
1143   return MCOperand();
1144 }
1145 
1146 inline
1147 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1148   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1149 }
1150 
1151 inline
1152 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1153                                                unsigned Val) const {
1154   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1155   if (Val >= RegCl.getNumRegs())
1156     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1157                            ": unknown register " + Twine(Val));
1158   return createRegOperand(RegCl.getRegister(Val));
1159 }
1160 
1161 inline
1162 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1163                                                 unsigned Val) const {
1164   // ToDo: SI/CI have 104 SGPRs, VI - 102
1165   // Valery: here we accepting as much as we can, let assembler sort it out
1166   int shift = 0;
1167   switch (SRegClassID) {
1168   case AMDGPU::SGPR_32RegClassID:
1169   case AMDGPU::TTMP_32RegClassID:
1170     break;
1171   case AMDGPU::SGPR_64RegClassID:
1172   case AMDGPU::TTMP_64RegClassID:
1173     shift = 1;
1174     break;
1175   case AMDGPU::SGPR_128RegClassID:
1176   case AMDGPU::TTMP_128RegClassID:
1177   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1178   // this bundle?
1179   case AMDGPU::SGPR_256RegClassID:
1180   case AMDGPU::TTMP_256RegClassID:
1181     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1182   // this bundle?
1183   case AMDGPU::SGPR_288RegClassID:
1184   case AMDGPU::TTMP_288RegClassID:
1185   case AMDGPU::SGPR_320RegClassID:
1186   case AMDGPU::TTMP_320RegClassID:
1187   case AMDGPU::SGPR_352RegClassID:
1188   case AMDGPU::TTMP_352RegClassID:
1189   case AMDGPU::SGPR_384RegClassID:
1190   case AMDGPU::TTMP_384RegClassID:
1191   case AMDGPU::SGPR_512RegClassID:
1192   case AMDGPU::TTMP_512RegClassID:
1193     shift = 2;
1194     break;
1195   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1196   // this bundle?
1197   default:
1198     llvm_unreachable("unhandled register class");
1199   }
1200 
1201   if (Val % (1 << shift)) {
1202     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1203                    << ": scalar reg isn't aligned " << Val;
1204   }
1205 
1206   return createRegOperand(SRegClassID, Val >> shift);
1207 }
1208 
1209 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1210                                                   bool IsHi) const {
1211   unsigned RCID =
1212       IsHi ? AMDGPU::VGPR_HI16RegClassID : AMDGPU::VGPR_LO16RegClassID;
1213   return createRegOperand(RCID, RegIdx);
1214 }
1215 
1216 // Decode Literals for insts which always have a literal in the encoding
1217 MCOperand
1218 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1219   if (HasLiteral) {
1220     assert(
1221         AMDGPU::hasVOPD(STI) &&
1222         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1223     if (Literal != Val)
1224       return errOperand(Val, "More than one unique literal is illegal");
1225   }
1226   HasLiteral = true;
1227   Literal = Val;
1228   return MCOperand::createImm(Literal);
1229 }
1230 
1231 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1232   // For now all literal constants are supposed to be unsigned integer
1233   // ToDo: deal with signed/unsigned 64-bit integer constants
1234   // ToDo: deal with float/double constants
1235   if (!HasLiteral) {
1236     if (Bytes.size() < 4) {
1237       return errOperand(0, "cannot read literal, inst bytes left " +
1238                         Twine(Bytes.size()));
1239     }
1240     HasLiteral = true;
1241     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1242     if (ExtendFP64)
1243       Literal64 <<= 32;
1244   }
1245   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1246 }
1247 
1248 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1249   using namespace AMDGPU::EncValues;
1250 
1251   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1252   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1253     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1254     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1255       // Cast prevents negative overflow.
1256 }
1257 
1258 static int64_t getInlineImmVal32(unsigned Imm) {
1259   switch (Imm) {
1260   case 240:
1261     return llvm::bit_cast<uint32_t>(0.5f);
1262   case 241:
1263     return llvm::bit_cast<uint32_t>(-0.5f);
1264   case 242:
1265     return llvm::bit_cast<uint32_t>(1.0f);
1266   case 243:
1267     return llvm::bit_cast<uint32_t>(-1.0f);
1268   case 244:
1269     return llvm::bit_cast<uint32_t>(2.0f);
1270   case 245:
1271     return llvm::bit_cast<uint32_t>(-2.0f);
1272   case 246:
1273     return llvm::bit_cast<uint32_t>(4.0f);
1274   case 247:
1275     return llvm::bit_cast<uint32_t>(-4.0f);
1276   case 248: // 1 / (2 * PI)
1277     return 0x3e22f983;
1278   default:
1279     llvm_unreachable("invalid fp inline imm");
1280   }
1281 }
1282 
1283 static int64_t getInlineImmVal64(unsigned Imm) {
1284   switch (Imm) {
1285   case 240:
1286     return llvm::bit_cast<uint64_t>(0.5);
1287   case 241:
1288     return llvm::bit_cast<uint64_t>(-0.5);
1289   case 242:
1290     return llvm::bit_cast<uint64_t>(1.0);
1291   case 243:
1292     return llvm::bit_cast<uint64_t>(-1.0);
1293   case 244:
1294     return llvm::bit_cast<uint64_t>(2.0);
1295   case 245:
1296     return llvm::bit_cast<uint64_t>(-2.0);
1297   case 246:
1298     return llvm::bit_cast<uint64_t>(4.0);
1299   case 247:
1300     return llvm::bit_cast<uint64_t>(-4.0);
1301   case 248: // 1 / (2 * PI)
1302     return 0x3fc45f306dc9c882;
1303   default:
1304     llvm_unreachable("invalid fp inline imm");
1305   }
1306 }
1307 
1308 static int64_t getInlineImmVal16(unsigned Imm) {
1309   switch (Imm) {
1310   case 240:
1311     return 0x3800;
1312   case 241:
1313     return 0xB800;
1314   case 242:
1315     return 0x3C00;
1316   case 243:
1317     return 0xBC00;
1318   case 244:
1319     return 0x4000;
1320   case 245:
1321     return 0xC000;
1322   case 246:
1323     return 0x4400;
1324   case 247:
1325     return 0xC400;
1326   case 248: // 1 / (2 * PI)
1327     return 0x3118;
1328   default:
1329     llvm_unreachable("invalid fp inline imm");
1330   }
1331 }
1332 
1333 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1334   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1335       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1336 
1337   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1338   // ImmWidth 0 is a default case where operand should not allow immediates.
1339   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1340   // use it to print verbose error message.
1341   switch (ImmWidth) {
1342   case 0:
1343   case 32:
1344     return MCOperand::createImm(getInlineImmVal32(Imm));
1345   case 64:
1346     return MCOperand::createImm(getInlineImmVal64(Imm));
1347   case 16:
1348     return MCOperand::createImm(getInlineImmVal16(Imm));
1349   default:
1350     llvm_unreachable("implement me");
1351   }
1352 }
1353 
1354 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1355   using namespace AMDGPU;
1356 
1357   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1358   switch (Width) {
1359   default: // fall
1360   case OPW32:
1361   case OPW16:
1362   case OPWV216:
1363     return VGPR_32RegClassID;
1364   case OPW64:
1365   case OPWV232: return VReg_64RegClassID;
1366   case OPW96: return VReg_96RegClassID;
1367   case OPW128: return VReg_128RegClassID;
1368   case OPW160: return VReg_160RegClassID;
1369   case OPW256: return VReg_256RegClassID;
1370   case OPW288: return VReg_288RegClassID;
1371   case OPW320: return VReg_320RegClassID;
1372   case OPW352: return VReg_352RegClassID;
1373   case OPW384: return VReg_384RegClassID;
1374   case OPW512: return VReg_512RegClassID;
1375   case OPW1024: return VReg_1024RegClassID;
1376   }
1377 }
1378 
1379 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1380   using namespace AMDGPU;
1381 
1382   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1383   switch (Width) {
1384   default: // fall
1385   case OPW32:
1386   case OPW16:
1387   case OPWV216:
1388     return AGPR_32RegClassID;
1389   case OPW64:
1390   case OPWV232: return AReg_64RegClassID;
1391   case OPW96: return AReg_96RegClassID;
1392   case OPW128: return AReg_128RegClassID;
1393   case OPW160: return AReg_160RegClassID;
1394   case OPW256: return AReg_256RegClassID;
1395   case OPW288: return AReg_288RegClassID;
1396   case OPW320: return AReg_320RegClassID;
1397   case OPW352: return AReg_352RegClassID;
1398   case OPW384: return AReg_384RegClassID;
1399   case OPW512: return AReg_512RegClassID;
1400   case OPW1024: return AReg_1024RegClassID;
1401   }
1402 }
1403 
1404 
1405 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1406   using namespace AMDGPU;
1407 
1408   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1409   switch (Width) {
1410   default: // fall
1411   case OPW32:
1412   case OPW16:
1413   case OPWV216:
1414     return SGPR_32RegClassID;
1415   case OPW64:
1416   case OPWV232: return SGPR_64RegClassID;
1417   case OPW96: return SGPR_96RegClassID;
1418   case OPW128: return SGPR_128RegClassID;
1419   case OPW160: return SGPR_160RegClassID;
1420   case OPW256: return SGPR_256RegClassID;
1421   case OPW288: return SGPR_288RegClassID;
1422   case OPW320: return SGPR_320RegClassID;
1423   case OPW352: return SGPR_352RegClassID;
1424   case OPW384: return SGPR_384RegClassID;
1425   case OPW512: return SGPR_512RegClassID;
1426   }
1427 }
1428 
1429 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1430   using namespace AMDGPU;
1431 
1432   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1433   switch (Width) {
1434   default: // fall
1435   case OPW32:
1436   case OPW16:
1437   case OPWV216:
1438     return TTMP_32RegClassID;
1439   case OPW64:
1440   case OPWV232: return TTMP_64RegClassID;
1441   case OPW128: return TTMP_128RegClassID;
1442   case OPW256: return TTMP_256RegClassID;
1443   case OPW288: return TTMP_288RegClassID;
1444   case OPW320: return TTMP_320RegClassID;
1445   case OPW352: return TTMP_352RegClassID;
1446   case OPW384: return TTMP_384RegClassID;
1447   case OPW512: return TTMP_512RegClassID;
1448   }
1449 }
1450 
1451 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1452   using namespace AMDGPU::EncValues;
1453 
1454   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1455   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1456 
1457   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1458 }
1459 
1460 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1461                                           bool MandatoryLiteral,
1462                                           unsigned ImmWidth, bool IsFP) const {
1463   using namespace AMDGPU::EncValues;
1464 
1465   assert(Val < 1024); // enum10
1466 
1467   bool IsAGPR = Val & 512;
1468   Val &= 511;
1469 
1470   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1471     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1472                                    : getVgprClassId(Width), Val - VGPR_MIN);
1473   }
1474   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1475                             IsFP);
1476 }
1477 
1478 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1479                                                  unsigned Val,
1480                                                  bool MandatoryLiteral,
1481                                                  unsigned ImmWidth,
1482                                                  bool IsFP) const {
1483   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1484   // decoded earlier.
1485   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1486   using namespace AMDGPU::EncValues;
1487 
1488   if (Val <= SGPR_MAX) {
1489     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1490     static_assert(SGPR_MIN == 0);
1491     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1492   }
1493 
1494   int TTmpIdx = getTTmpIdx(Val);
1495   if (TTmpIdx >= 0) {
1496     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1497   }
1498 
1499   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1500     return decodeIntImmed(Val);
1501 
1502   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1503     return decodeFPImmed(ImmWidth, Val);
1504 
1505   if (Val == LITERAL_CONST) {
1506     if (MandatoryLiteral)
1507       // Keep a sentinel value for deferred setting
1508       return MCOperand::createImm(LITERAL_CONST);
1509     else
1510       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1511   }
1512 
1513   switch (Width) {
1514   case OPW32:
1515   case OPW16:
1516   case OPWV216:
1517     return decodeSpecialReg32(Val);
1518   case OPW64:
1519   case OPWV232:
1520     return decodeSpecialReg64(Val);
1521   default:
1522     llvm_unreachable("unexpected immediate type");
1523   }
1524 }
1525 
1526 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1527 // opposite of bit 0 of DstX.
1528 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1529                                                unsigned Val) const {
1530   int VDstXInd =
1531       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1532   assert(VDstXInd != -1);
1533   assert(Inst.getOperand(VDstXInd).isReg());
1534   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1535   Val |= ~XDstReg & 1;
1536   auto Width = llvm::AMDGPUDisassembler::OPW32;
1537   return createRegOperand(getVgprClassId(Width), Val);
1538 }
1539 
1540 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1541   using namespace AMDGPU;
1542 
1543   switch (Val) {
1544   // clang-format off
1545   case 102: return createRegOperand(FLAT_SCR_LO);
1546   case 103: return createRegOperand(FLAT_SCR_HI);
1547   case 104: return createRegOperand(XNACK_MASK_LO);
1548   case 105: return createRegOperand(XNACK_MASK_HI);
1549   case 106: return createRegOperand(VCC_LO);
1550   case 107: return createRegOperand(VCC_HI);
1551   case 108: return createRegOperand(TBA_LO);
1552   case 109: return createRegOperand(TBA_HI);
1553   case 110: return createRegOperand(TMA_LO);
1554   case 111: return createRegOperand(TMA_HI);
1555   case 124:
1556     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1557   case 125:
1558     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1559   case 126: return createRegOperand(EXEC_LO);
1560   case 127: return createRegOperand(EXEC_HI);
1561   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1562   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1563   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1564   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1565   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1566   case 251: return createRegOperand(SRC_VCCZ);
1567   case 252: return createRegOperand(SRC_EXECZ);
1568   case 253: return createRegOperand(SRC_SCC);
1569   case 254: return createRegOperand(LDS_DIRECT);
1570   default: break;
1571     // clang-format on
1572   }
1573   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1574 }
1575 
1576 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1577   using namespace AMDGPU;
1578 
1579   switch (Val) {
1580   case 102: return createRegOperand(FLAT_SCR);
1581   case 104: return createRegOperand(XNACK_MASK);
1582   case 106: return createRegOperand(VCC);
1583   case 108: return createRegOperand(TBA);
1584   case 110: return createRegOperand(TMA);
1585   case 124:
1586     if (isGFX11Plus())
1587       return createRegOperand(SGPR_NULL);
1588     break;
1589   case 125:
1590     if (!isGFX11Plus())
1591       return createRegOperand(SGPR_NULL);
1592     break;
1593   case 126: return createRegOperand(EXEC);
1594   case 235: return createRegOperand(SRC_SHARED_BASE);
1595   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1596   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1597   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1598   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1599   case 251: return createRegOperand(SRC_VCCZ);
1600   case 252: return createRegOperand(SRC_EXECZ);
1601   case 253: return createRegOperand(SRC_SCC);
1602   default: break;
1603   }
1604   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1605 }
1606 
1607 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1608                                             const unsigned Val,
1609                                             unsigned ImmWidth) const {
1610   using namespace AMDGPU::SDWA;
1611   using namespace AMDGPU::EncValues;
1612 
1613   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1614       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1615     // XXX: cast to int is needed to avoid stupid warning:
1616     // compare with unsigned is always true
1617     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1618         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1619       return createRegOperand(getVgprClassId(Width),
1620                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1621     }
1622     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1623         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1624                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1625       return createSRegOperand(getSgprClassId(Width),
1626                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1627     }
1628     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1629         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1630       return createSRegOperand(getTtmpClassId(Width),
1631                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1632     }
1633 
1634     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1635 
1636     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1637       return decodeIntImmed(SVal);
1638 
1639     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1640       return decodeFPImmed(ImmWidth, SVal);
1641 
1642     return decodeSpecialReg32(SVal);
1643   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1644     return createRegOperand(getVgprClassId(Width), Val);
1645   }
1646   llvm_unreachable("unsupported target");
1647 }
1648 
1649 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1650   return decodeSDWASrc(OPW16, Val, 16);
1651 }
1652 
1653 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1654   return decodeSDWASrc(OPW32, Val, 32);
1655 }
1656 
1657 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1658   using namespace AMDGPU::SDWA;
1659 
1660   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1661           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1662          "SDWAVopcDst should be present only on GFX9+");
1663 
1664   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1665 
1666   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1667     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1668 
1669     int TTmpIdx = getTTmpIdx(Val);
1670     if (TTmpIdx >= 0) {
1671       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1672       return createSRegOperand(TTmpClsId, TTmpIdx);
1673     } else if (Val > SGPR_MAX) {
1674       return IsWave64 ? decodeSpecialReg64(Val)
1675                       : decodeSpecialReg32(Val);
1676     } else {
1677       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1678     }
1679   } else {
1680     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1681   }
1682 }
1683 
1684 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1685   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1686              ? decodeSrcOp(OPW64, Val)
1687              : decodeSrcOp(OPW32, Val);
1688 }
1689 
1690 bool AMDGPUDisassembler::isVI() const {
1691   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1692 }
1693 
1694 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1695 
1696 bool AMDGPUDisassembler::isGFX90A() const {
1697   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1698 }
1699 
1700 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1701 
1702 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1703 
1704 bool AMDGPUDisassembler::isGFX10Plus() const {
1705   return AMDGPU::isGFX10Plus(STI);
1706 }
1707 
1708 bool AMDGPUDisassembler::isGFX11() const {
1709   return STI.hasFeature(AMDGPU::FeatureGFX11);
1710 }
1711 
1712 bool AMDGPUDisassembler::isGFX11Plus() const {
1713   return AMDGPU::isGFX11Plus(STI);
1714 }
1715 
1716 
1717 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1718   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1719 }
1720 
1721 bool AMDGPUDisassembler::hasKernargPreload() const {
1722   return AMDGPU::hasKernargPreload(STI);
1723 }
1724 
1725 //===----------------------------------------------------------------------===//
1726 // AMDGPU specific symbol handling
1727 //===----------------------------------------------------------------------===//
1728 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1729 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1730   do {                                                                         \
1731     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1732   } while (0)
1733 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1734   do {                                                                         \
1735     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1736              << GET_FIELD(MASK) << '\n';                                       \
1737   } while (0)
1738 
1739 // NOLINTNEXTLINE(readability-identifier-naming)
1740 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1741     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1742   using namespace amdhsa;
1743   StringRef Indent = "\t";
1744 
1745   // We cannot accurately backward compute #VGPRs used from
1746   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1747   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1748   // simply calculate the inverse of what the assembler does.
1749 
1750   uint32_t GranulatedWorkitemVGPRCount =
1751       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1752 
1753   uint32_t NextFreeVGPR =
1754       (GranulatedWorkitemVGPRCount + 1) *
1755       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1756 
1757   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1758 
1759   // We cannot backward compute values used to calculate
1760   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1761   // directives can't be computed:
1762   // .amdhsa_reserve_vcc
1763   // .amdhsa_reserve_flat_scratch
1764   // .amdhsa_reserve_xnack_mask
1765   // They take their respective default values if not specified in the assembly.
1766   //
1767   // GRANULATED_WAVEFRONT_SGPR_COUNT
1768   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1769   //
1770   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1771   // are set to 0. So while disassembling we consider that:
1772   //
1773   // GRANULATED_WAVEFRONT_SGPR_COUNT
1774   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1775   //
1776   // The disassembler cannot recover the original values of those 3 directives.
1777 
1778   uint32_t GranulatedWavefrontSGPRCount =
1779       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1780 
1781   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1782     return MCDisassembler::Fail;
1783 
1784   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1785                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1786 
1787   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1788   if (!hasArchitectedFlatScratch())
1789     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1790   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1791   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1792 
1793   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1794     return MCDisassembler::Fail;
1795 
1796   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1797                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1798   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1799                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1800   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1801                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1802   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1803                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1804 
1805   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1806     return MCDisassembler::Fail;
1807 
1808   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1809 
1810   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1811     return MCDisassembler::Fail;
1812 
1813   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1814 
1815   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1816     return MCDisassembler::Fail;
1817 
1818   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1819     return MCDisassembler::Fail;
1820 
1821   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1822 
1823   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1824     return MCDisassembler::Fail;
1825 
1826   if (isGFX10Plus()) {
1827     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1828                     COMPUTE_PGM_RSRC1_WGP_MODE);
1829     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1830     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1831   }
1832   return MCDisassembler::Success;
1833 }
1834 
1835 // NOLINTNEXTLINE(readability-identifier-naming)
1836 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1837     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1838   using namespace amdhsa;
1839   StringRef Indent = "\t";
1840   if (hasArchitectedFlatScratch())
1841     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1842                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1843   else
1844     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1845                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1846   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1847                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1848   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1849                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1850   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1851                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1852   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1853                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1854   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1855                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1856 
1857   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1858     return MCDisassembler::Fail;
1859 
1860   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1861     return MCDisassembler::Fail;
1862 
1863   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1864     return MCDisassembler::Fail;
1865 
1866   PRINT_DIRECTIVE(
1867       ".amdhsa_exception_fp_ieee_invalid_op",
1868       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1869   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1870                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1871   PRINT_DIRECTIVE(
1872       ".amdhsa_exception_fp_ieee_div_zero",
1873       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1874   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1875                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1876   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1877                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1878   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1879                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1880   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1881                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1882 
1883   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1884     return MCDisassembler::Fail;
1885 
1886   return MCDisassembler::Success;
1887 }
1888 
1889 // NOLINTNEXTLINE(readability-identifier-naming)
1890 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1891     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1892   using namespace amdhsa;
1893   StringRef Indent = "\t";
1894   if (isGFX90A()) {
1895     KdStream << Indent << ".amdhsa_accum_offset "
1896              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1897              << '\n';
1898     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1899       return MCDisassembler::Fail;
1900     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1901     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
1902       return MCDisassembler::Fail;
1903   } else if (isGFX10Plus()) {
1904     if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
1905       PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
1906                       COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1907     } else {
1908       PRINT_PSEUDO_DIRECTIVE_COMMENT(
1909           "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1910     }
1911     PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
1912                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_INST_PREF_SIZE);
1913     PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
1914                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START);
1915     PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
1916                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_END);
1917     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED0)
1918       return MCDisassembler::Fail;
1919     PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
1920                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START);
1921   } else if (FourByteBuffer) {
1922     return MCDisassembler::Fail;
1923   }
1924   return MCDisassembler::Success;
1925 }
1926 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
1927 #undef PRINT_DIRECTIVE
1928 #undef GET_FIELD
1929 
1930 MCDisassembler::DecodeStatus
1931 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1932     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1933     raw_string_ostream &KdStream) const {
1934 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1935   do {                                                                         \
1936     KdStream << Indent << DIRECTIVE " "                                        \
1937              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1938   } while (0)
1939 
1940   uint16_t TwoByteBuffer = 0;
1941   uint32_t FourByteBuffer = 0;
1942 
1943   StringRef ReservedBytes;
1944   StringRef Indent = "\t";
1945 
1946   assert(Bytes.size() == 64);
1947   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1948 
1949   switch (Cursor.tell()) {
1950   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1951     FourByteBuffer = DE.getU32(Cursor);
1952     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1953              << '\n';
1954     return MCDisassembler::Success;
1955 
1956   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1957     FourByteBuffer = DE.getU32(Cursor);
1958     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1959              << FourByteBuffer << '\n';
1960     return MCDisassembler::Success;
1961 
1962   case amdhsa::KERNARG_SIZE_OFFSET:
1963     FourByteBuffer = DE.getU32(Cursor);
1964     KdStream << Indent << ".amdhsa_kernarg_size "
1965              << FourByteBuffer << '\n';
1966     return MCDisassembler::Success;
1967 
1968   case amdhsa::RESERVED0_OFFSET:
1969     // 4 reserved bytes, must be 0.
1970     ReservedBytes = DE.getBytes(Cursor, 4);
1971     for (int I = 0; I < 4; ++I) {
1972       if (ReservedBytes[I] != 0) {
1973         return MCDisassembler::Fail;
1974       }
1975     }
1976     return MCDisassembler::Success;
1977 
1978   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1979     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1980     // So far no directive controls this for Code Object V3, so simply skip for
1981     // disassembly.
1982     DE.skip(Cursor, 8);
1983     return MCDisassembler::Success;
1984 
1985   case amdhsa::RESERVED1_OFFSET:
1986     // 20 reserved bytes, must be 0.
1987     ReservedBytes = DE.getBytes(Cursor, 20);
1988     for (int I = 0; I < 20; ++I) {
1989       if (ReservedBytes[I] != 0) {
1990         return MCDisassembler::Fail;
1991       }
1992     }
1993     return MCDisassembler::Success;
1994 
1995   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1996     FourByteBuffer = DE.getU32(Cursor);
1997     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
1998 
1999   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2000     FourByteBuffer = DE.getU32(Cursor);
2001     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2002 
2003   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2004     FourByteBuffer = DE.getU32(Cursor);
2005     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2006 
2007   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2008     using namespace amdhsa;
2009     TwoByteBuffer = DE.getU16(Cursor);
2010 
2011     if (!hasArchitectedFlatScratch())
2012       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2013                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2014     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2015                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2016     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2017                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2018     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2019                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2020     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2021                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2022     if (!hasArchitectedFlatScratch())
2023       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2024                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2025     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2026                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2027 
2028     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2029       return MCDisassembler::Fail;
2030 
2031     // Reserved for GFX9
2032     if (isGFX9() &&
2033         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2034       return MCDisassembler::Fail;
2035     } else if (isGFX10Plus()) {
2036       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2037                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2038     }
2039 
2040     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2041       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2042                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2043 
2044     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2045       return MCDisassembler::Fail;
2046 
2047     return MCDisassembler::Success;
2048 
2049   case amdhsa::KERNARG_PRELOAD_OFFSET:
2050     using namespace amdhsa;
2051     TwoByteBuffer = DE.getU16(Cursor);
2052     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2053       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2054                       KERNARG_PRELOAD_SPEC_LENGTH);
2055     }
2056 
2057     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2058       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2059                       KERNARG_PRELOAD_SPEC_OFFSET);
2060     }
2061     return MCDisassembler::Success;
2062 
2063   case amdhsa::RESERVED3_OFFSET:
2064     // 4 bytes from here are reserved, must be 0.
2065     ReservedBytes = DE.getBytes(Cursor, 4);
2066     for (int I = 0; I < 4; ++I) {
2067       if (ReservedBytes[I] != 0)
2068         return MCDisassembler::Fail;
2069     }
2070     return MCDisassembler::Success;
2071 
2072   default:
2073     llvm_unreachable("Unhandled index. Case statements cover everything.");
2074     return MCDisassembler::Fail;
2075   }
2076 #undef PRINT_DIRECTIVE
2077 }
2078 
2079 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2080     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2081   // CP microcode requires the kernel descriptor to be 64 aligned.
2082   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2083     return MCDisassembler::Fail;
2084 
2085   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2086   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2087   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2088   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2089   // when required.
2090   if (isGFX10Plus()) {
2091     uint16_t KernelCodeProperties =
2092         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2093                                 llvm::endianness::little);
2094     EnableWavefrontSize32 =
2095         AMDHSA_BITS_GET(KernelCodeProperties,
2096                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2097   }
2098 
2099   std::string Kd;
2100   raw_string_ostream KdStream(Kd);
2101   KdStream << ".amdhsa_kernel " << KdName << '\n';
2102 
2103   DataExtractor::Cursor C(0);
2104   while (C && C.tell() < Bytes.size()) {
2105     MCDisassembler::DecodeStatus Status =
2106         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2107 
2108     cantFail(C.takeError());
2109 
2110     if (Status == MCDisassembler::Fail)
2111       return MCDisassembler::Fail;
2112   }
2113   KdStream << ".end_amdhsa_kernel\n";
2114   outs() << KdStream.str();
2115   return MCDisassembler::Success;
2116 }
2117 
2118 std::optional<MCDisassembler::DecodeStatus>
2119 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2120                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2121                                   raw_ostream &CStream) const {
2122   // Right now only kernel descriptor needs to be handled.
2123   // We ignore all other symbols for target specific handling.
2124   // TODO:
2125   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2126   // Object V2 and V3 when symbols are marked protected.
2127 
2128   // amd_kernel_code_t for Code Object V2.
2129   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2130     Size = 256;
2131     return MCDisassembler::Fail;
2132   }
2133 
2134   // Code Object V3 kernel descriptors.
2135   StringRef Name = Symbol.Name;
2136   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2137     Size = 64; // Size = 64 regardless of success or failure.
2138     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2139   }
2140   return std::nullopt;
2141 }
2142 
2143 //===----------------------------------------------------------------------===//
2144 // AMDGPUSymbolizer
2145 //===----------------------------------------------------------------------===//
2146 
2147 // Try to find symbol name for specified label
2148 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2149     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2150     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2151     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2152 
2153   if (!IsBranch) {
2154     return false;
2155   }
2156 
2157   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2158   if (!Symbols)
2159     return false;
2160 
2161   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2162     return Val.Addr == static_cast<uint64_t>(Value) &&
2163            Val.Type == ELF::STT_NOTYPE;
2164   });
2165   if (Result != Symbols->end()) {
2166     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2167     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2168     Inst.addOperand(MCOperand::createExpr(Add));
2169     return true;
2170   }
2171   // Add to list of referenced addresses, so caller can synthesize a label.
2172   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2173   return false;
2174 }
2175 
2176 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2177                                                        int64_t Value,
2178                                                        uint64_t Address) {
2179   llvm_unreachable("unimplemented");
2180 }
2181 
2182 //===----------------------------------------------------------------------===//
2183 // Initialization
2184 //===----------------------------------------------------------------------===//
2185 
2186 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2187                               LLVMOpInfoCallback /*GetOpInfo*/,
2188                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2189                               void *DisInfo,
2190                               MCContext *Ctx,
2191                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2192   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2193 }
2194 
2195 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2196                                                 const MCSubtargetInfo &STI,
2197                                                 MCContext &Ctx) {
2198   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2199 }
2200 
2201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2202   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2203                                          createAMDGPUDisassembler);
2204   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2205                                        createAMDGPUSymbolizer);
2206 }
2207