xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision a98a6e95be1be9a5c28da15b4d19a6f39872461d)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)),
51       CodeObjectVersion(AMDGPU::getDefaultAMDHSACodeObjectVersion()) {
52   // ToDo: AMDGPUDisassembler supports only VI ISA.
53   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
54     report_fatal_error("Disassembly not yet supported for subtarget");
55 }
56 
57 void AMDGPUDisassembler::setABIVersion(unsigned Version) {
58   CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(Version);
59 }
60 
61 inline static MCDisassembler::DecodeStatus
62 addOperand(MCInst &Inst, const MCOperand& Opnd) {
63   Inst.addOperand(Opnd);
64   return Opnd.isValid() ?
65     MCDisassembler::Success :
66     MCDisassembler::Fail;
67 }
68 
69 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
70                                 uint16_t NameIdx) {
71   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
72   if (OpIdx != -1) {
73     auto I = MI.begin();
74     std::advance(I, OpIdx);
75     MI.insert(I, Op);
76   }
77   return OpIdx;
78 }
79 
80 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
81                                        uint64_t Addr,
82                                        const MCDisassembler *Decoder) {
83   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
84 
85   // Our branches take a simm16, but we need two extra bits to account for the
86   // factor of 4.
87   APInt SignedOffset(18, Imm * 4, true);
88   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
89 
90   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
91     return MCDisassembler::Success;
92   return addOperand(Inst, MCOperand::createImm(Imm));
93 }
94 
95 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
96                                      const MCDisassembler *Decoder) {
97   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
98   int64_t Offset;
99   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
100     Offset = SignExtend64<24>(Imm);
101   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
102     Offset = Imm & 0xFFFFF;
103   } else { // GFX9+ supports 21-bit signed offsets.
104     Offset = SignExtend64<21>(Imm);
105   }
106   return addOperand(Inst, MCOperand::createImm(Offset));
107 }
108 
109 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
110                                   const MCDisassembler *Decoder) {
111   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
112   return addOperand(Inst, DAsm->decodeBoolReg(Val));
113 }
114 
115 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
116                                        uint64_t Addr,
117                                        const MCDisassembler *Decoder) {
118   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
119   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
120 }
121 
122 static DecodeStatus decodeDpp8FI(MCInst &Inst, unsigned Val, uint64_t Addr,
123                                  const MCDisassembler *Decoder) {
124   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
125   return addOperand(Inst, DAsm->decodeDpp8FI(Val));
126 }
127 
128 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
129   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
130                                         uint64_t /*Addr*/,                     \
131                                         const MCDisassembler *Decoder) {       \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
134   }
135 
136 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
137 // number of register. Used by VGPR only and AGPR only operands.
138 #define DECODE_OPERAND_REG_8(RegClass)                                         \
139   static DecodeStatus Decode##RegClass##RegisterClass(                         \
140       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
141       const MCDisassembler *Decoder) {                                         \
142     assert(Imm < (1 << 8) && "8-bit encoding");                                \
143     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
144     return addOperand(                                                         \
145         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
146   }
147 
148 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
149                      ImmWidth)                                                 \
150   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
151                            const MCDisassembler *Decoder) {                    \
152     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
153     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
154     return addOperand(Inst,                                                    \
155                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
156                                         MandatoryLiteral, ImmWidth));          \
157   }
158 
159 static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize,
160                                 AMDGPUDisassembler::OpWidthTy OpWidth,
161                                 unsigned Imm, unsigned EncImm,
162                                 bool MandatoryLiteral, unsigned ImmWidth,
163                                 AMDGPU::OperandSemantics Sema,
164                                 const MCDisassembler *Decoder) {
165   assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!");
166   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
167   return addOperand(Inst, DAsm->decodeSrcOp(OpWidth, EncImm, MandatoryLiteral,
168                                             ImmWidth, Sema));
169 }
170 
171 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
172 // get register class. Used by SGPR only operands.
173 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
174   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
175 
176 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
177 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
178 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
179 // Used by AV_ register classes (AGPR or VGPR only register operands).
180 template <AMDGPUDisassembler::OpWidthTy OpWidth>
181 static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
182                                const MCDisassembler *Decoder) {
183   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm | AMDGPU::EncValues::IS_VGPR,
184                      false, 0, AMDGPU::OperandSemantics::INT, Decoder);
185 }
186 
187 // Decoder for Src(9-bit encoding) registers only.
188 template <AMDGPUDisassembler::OpWidthTy OpWidth>
189 static DecodeStatus decodeSrcReg9(MCInst &Inst, unsigned Imm,
190                                   uint64_t /* Addr */,
191                                   const MCDisassembler *Decoder) {
192   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, 0,
193                      AMDGPU::OperandSemantics::INT, Decoder);
194 }
195 
196 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
197 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
198 // only.
199 template <AMDGPUDisassembler::OpWidthTy OpWidth>
200 static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
201                                 const MCDisassembler *Decoder) {
202   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, 0,
203                      AMDGPU::OperandSemantics::INT, Decoder);
204 }
205 
206 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
207 // Imm{9} is acc, registers only.
208 template <AMDGPUDisassembler::OpWidthTy OpWidth>
209 static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm,
210                                   uint64_t /* Addr */,
211                                   const MCDisassembler *Decoder) {
212   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm, false, 0,
213                      AMDGPU::OperandSemantics::INT, Decoder);
214 }
215 
216 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
217 // register from RegClass or immediate. Registers that don't belong to RegClass
218 // will be decoded and InstPrinter will report warning. Immediate will be
219 // decoded into constant of size ImmWidth, should match width of immediate used
220 // by OperandType (important for floating point types).
221 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
222           unsigned OperandSemantics>
223 static DecodeStatus decodeSrcRegOrImm9(MCInst &Inst, unsigned Imm,
224                                        uint64_t /* Addr */,
225                                        const MCDisassembler *Decoder) {
226   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, ImmWidth,
227                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
228 }
229 
230 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
231 // and decode using 'enum10' from decodeSrcOp.
232 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
233           unsigned OperandSemantics>
234 static DecodeStatus decodeSrcRegOrImmA9(MCInst &Inst, unsigned Imm,
235                                         uint64_t /* Addr */,
236                                         const MCDisassembler *Decoder) {
237   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, ImmWidth,
238                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
239 }
240 
241 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
242           unsigned OperandSemantics>
243 static DecodeStatus decodeSrcRegOrImmDeferred9(MCInst &Inst, unsigned Imm,
244                                                uint64_t /* Addr */,
245                                                const MCDisassembler *Decoder) {
246   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, true, ImmWidth,
247                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
248 }
249 
250 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
251 // when RegisterClass is used as an operand. Most often used for destination
252 // operands.
253 
254 DECODE_OPERAND_REG_8(VGPR_32)
255 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
256 DECODE_OPERAND_REG_8(VReg_64)
257 DECODE_OPERAND_REG_8(VReg_96)
258 DECODE_OPERAND_REG_8(VReg_128)
259 DECODE_OPERAND_REG_8(VReg_256)
260 DECODE_OPERAND_REG_8(VReg_288)
261 DECODE_OPERAND_REG_8(VReg_352)
262 DECODE_OPERAND_REG_8(VReg_384)
263 DECODE_OPERAND_REG_8(VReg_512)
264 DECODE_OPERAND_REG_8(VReg_1024)
265 
266 DECODE_OPERAND_REG_7(SReg_32, OPW32)
267 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
268 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
269 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
270 DECODE_OPERAND_REG_7(SReg_64, OPW64)
271 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
272 DECODE_OPERAND_REG_7(SReg_96, OPW96)
273 DECODE_OPERAND_REG_7(SReg_128, OPW128)
274 DECODE_OPERAND_REG_7(SReg_256, OPW256)
275 DECODE_OPERAND_REG_7(SReg_512, OPW512)
276 
277 DECODE_OPERAND_REG_8(AGPR_32)
278 DECODE_OPERAND_REG_8(AReg_64)
279 DECODE_OPERAND_REG_8(AReg_128)
280 DECODE_OPERAND_REG_8(AReg_256)
281 DECODE_OPERAND_REG_8(AReg_512)
282 DECODE_OPERAND_REG_8(AReg_1024)
283 
284 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
285                                                uint64_t /*Addr*/,
286                                                const MCDisassembler *Decoder) {
287   assert(isUInt<10>(Imm) && "10-bit encoding expected");
288   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
289 
290   bool IsHi = Imm & (1 << 9);
291   unsigned RegIdx = Imm & 0xff;
292   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
293   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
294 }
295 
296 static DecodeStatus
297 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
298                                  const MCDisassembler *Decoder) {
299   assert(isUInt<8>(Imm) && "8-bit encoding expected");
300 
301   bool IsHi = Imm & (1 << 7);
302   unsigned RegIdx = Imm & 0x7f;
303   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
304   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
305 }
306 
307 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
308                                                 uint64_t /*Addr*/,
309                                                 const MCDisassembler *Decoder) {
310   assert(isUInt<9>(Imm) && "9-bit encoding expected");
311 
312   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
313   bool IsVGPR = Imm & (1 << 8);
314   if (IsVGPR) {
315     bool IsHi = Imm & (1 << 7);
316     unsigned RegIdx = Imm & 0x7f;
317     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
318   }
319   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
320                                                    Imm & 0xFF, false, 16));
321 }
322 
323 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
324                                           uint64_t /*Addr*/,
325                                           const MCDisassembler *Decoder) {
326   assert(isUInt<10>(Imm) && "10-bit encoding expected");
327 
328   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
329   bool IsVGPR = Imm & (1 << 8);
330   if (IsVGPR) {
331     bool IsHi = Imm & (1 << 9);
332     unsigned RegIdx = Imm & 0xff;
333     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
334   }
335   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
336                                                    Imm & 0xFF, false, 16));
337 }
338 
339 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
340                                          uint64_t Addr,
341                                          const MCDisassembler *Decoder) {
342   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
343   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
344 }
345 
346 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
347                                           uint64_t Addr, const void *Decoder) {
348   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
349   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
350 }
351 
352 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
353                           const MCRegisterInfo *MRI) {
354   if (OpIdx < 0)
355     return false;
356 
357   const MCOperand &Op = Inst.getOperand(OpIdx);
358   if (!Op.isReg())
359     return false;
360 
361   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
362   auto Reg = Sub ? Sub : Op.getReg();
363   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
364 }
365 
366 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
367                                  AMDGPUDisassembler::OpWidthTy Opw,
368                                  const MCDisassembler *Decoder) {
369   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
370   if (!DAsm->isGFX90A()) {
371     Imm &= 511;
372   } else {
373     // If atomic has both vdata and vdst their register classes are tied.
374     // The bit is decoded along with the vdst, first operand. We need to
375     // change register class to AGPR if vdst was AGPR.
376     // If a DS instruction has both data0 and data1 their register classes
377     // are also tied.
378     unsigned Opc = Inst.getOpcode();
379     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
380     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
381                                                         : AMDGPU::OpName::vdata;
382     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
383     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
384     if ((int)Inst.getNumOperands() == DataIdx) {
385       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
386       if (IsAGPROperand(Inst, DstIdx, MRI))
387         Imm |= 512;
388     }
389 
390     if (TSFlags & SIInstrFlags::DS) {
391       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
392       if ((int)Inst.getNumOperands() == Data2Idx &&
393           IsAGPROperand(Inst, DataIdx, MRI))
394         Imm |= 512;
395     }
396   }
397   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
398 }
399 
400 template <AMDGPUDisassembler::OpWidthTy Opw>
401 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
402                                  uint64_t /* Addr */,
403                                  const MCDisassembler *Decoder) {
404   return decodeAVLdSt(Inst, Imm, Opw, Decoder);
405 }
406 
407 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
408                                            uint64_t Addr,
409                                            const MCDisassembler *Decoder) {
410   assert(Imm < (1 << 9) && "9-bit encoding");
411   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
412   return addOperand(Inst,
413                     DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64,
414                                       AMDGPU::OperandSemantics::FP64));
415 }
416 
417 #define DECODE_SDWA(DecName) \
418 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
419 
420 DECODE_SDWA(Src32)
421 DECODE_SDWA(Src16)
422 DECODE_SDWA(VopcDst)
423 
424 #include "AMDGPUGenDisassemblerTables.inc"
425 
426 //===----------------------------------------------------------------------===//
427 //
428 //===----------------------------------------------------------------------===//
429 
430 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
431   assert(Bytes.size() >= sizeof(T));
432   const auto Res =
433       support::endian::read<T, llvm::endianness::little>(Bytes.data());
434   Bytes = Bytes.slice(sizeof(T));
435   return Res;
436 }
437 
438 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
439   assert(Bytes.size() >= 12);
440   uint64_t Lo =
441       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
442   Bytes = Bytes.slice(8);
443   uint64_t Hi =
444       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
445   Bytes = Bytes.slice(4);
446   return DecoderUInt128(Lo, Hi);
447 }
448 
449 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
450                                                 ArrayRef<uint8_t> Bytes_,
451                                                 uint64_t Address,
452                                                 raw_ostream &CS) const {
453   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
454   Bytes = Bytes_.slice(0, MaxInstBytesNum);
455 
456   // In case the opcode is not recognized we'll assume a Size of 4 bytes (unless
457   // there are fewer bytes left). This will be overridden on success.
458   Size = std::min((size_t)4, Bytes_.size());
459 
460   do {
461     // ToDo: better to switch encoding length using some bit predicate
462     // but it is unknown yet, so try all we can
463 
464     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
465     // encodings
466     if (isGFX11Plus() && Bytes.size() >= 12 ) {
467       DecoderUInt128 DecW = eat12Bytes(Bytes);
468 
469       if (isGFX11() &&
470           tryDecodeInst(DecoderTableGFX1196, DecoderTableGFX11_FAKE1696, MI,
471                         DecW, Address, CS))
472         break;
473 
474       if (isGFX12() &&
475           tryDecodeInst(DecoderTableGFX1296, DecoderTableGFX12_FAKE1696, MI,
476                         DecW, Address, CS))
477         break;
478 
479       if (isGFX12() &&
480           tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS))
481         break;
482     }
483 
484     // Reinitialize Bytes
485     Bytes = Bytes_.slice(0, MaxInstBytesNum);
486 
487     if (Bytes.size() >= 8) {
488       const uint64_t QW = eatBytes<uint64_t>(Bytes);
489 
490       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) &&
491           tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS))
492         break;
493 
494       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) &&
495           tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS))
496         break;
497 
498       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
499       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
500       // table first so we print the correct name.
501       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts) &&
502           tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS))
503         break;
504 
505       if (STI.hasFeature(AMDGPU::FeatureGFX940Insts) &&
506           tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS))
507         break;
508 
509       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) &&
510           tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS))
511         break;
512 
513       if ((isVI() || isGFX9()) &&
514           tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS))
515         break;
516 
517       if (isGFX9() && tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS))
518         break;
519 
520       if (isGFX10() && tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS))
521         break;
522 
523       if (isGFX12() &&
524           tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
525                         Address, CS))
526         break;
527 
528       if (isGFX11() &&
529           tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
530                         Address, CS))
531         break;
532 
533       if (isGFX11() &&
534           tryDecodeInst(DecoderTableGFX11W6464, MI, QW, Address, CS))
535         break;
536 
537       if (isGFX12() &&
538           tryDecodeInst(DecoderTableGFX12W6464, MI, QW, Address, CS))
539         break;
540     }
541 
542     // Reinitialize Bytes
543     Bytes = Bytes_.slice(0, MaxInstBytesNum);
544 
545     // Try decode 32-bit instruction
546     if (Bytes.size() >= 4) {
547       const uint32_t DW = eatBytes<uint32_t>(Bytes);
548 
549       if ((isVI() || isGFX9()) &&
550           tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS))
551         break;
552 
553       if (tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS))
554         break;
555 
556       if (isGFX9() && tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS))
557         break;
558 
559       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) &&
560           tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS))
561         break;
562 
563       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) &&
564           tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS))
565         break;
566 
567       if (isGFX10() && tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS))
568         break;
569 
570       if (isGFX11() &&
571           tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
572                         Address, CS))
573         break;
574 
575       if (isGFX12() &&
576           tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
577                         Address, CS))
578         break;
579     }
580 
581     return MCDisassembler::Fail;
582   } while (false);
583 
584   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DPP) {
585     if (isMacDPP(MI))
586       convertMacDPPInst(MI);
587 
588     if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
589       convertVOP3PDPPInst(MI);
590     else if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) ||
591              AMDGPU::isVOPC64DPP(MI.getOpcode()))
592       convertVOPCDPPInst(MI); // Special VOP3 case
593     else if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) !=
594              -1)
595       convertDPP8Inst(MI);
596     else if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3)
597       convertVOP3DPPInst(MI); // Regular VOP3 case
598   }
599 
600   if (AMDGPU::isMAC(MI.getOpcode())) {
601     // Insert dummy unused src2_modifiers.
602     insertNamedMCOperand(MI, MCOperand::createImm(0),
603                          AMDGPU::OpName::src2_modifiers);
604   }
605 
606   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
607       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp) {
608     // Insert dummy unused src2_modifiers.
609     insertNamedMCOperand(MI, MCOperand::createImm(0),
610                          AMDGPU::OpName::src2_modifiers);
611   }
612 
613   if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
614       !AMDGPU::hasGDS(STI)) {
615     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
616   }
617 
618   if (MCII->get(MI.getOpcode()).TSFlags &
619       (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD)) {
620     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
621                                              AMDGPU::OpName::cpol);
622     if (CPolPos != -1) {
623       unsigned CPol =
624           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
625               AMDGPU::CPol::GLC : 0;
626       if (MI.getNumOperands() <= (unsigned)CPolPos) {
627         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
628                              AMDGPU::OpName::cpol);
629       } else if (CPol) {
630         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
631       }
632     }
633   }
634 
635   if ((MCII->get(MI.getOpcode()).TSFlags &
636        (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
637       (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
638     // GFX90A lost TFE, its place is occupied by ACC.
639     int TFEOpIdx =
640         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
641     if (TFEOpIdx != -1) {
642       auto TFEIter = MI.begin();
643       std::advance(TFEIter, TFEOpIdx);
644       MI.insert(TFEIter, MCOperand::createImm(0));
645     }
646   }
647 
648   if (MCII->get(MI.getOpcode()).TSFlags &
649       (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) {
650     int SWZOpIdx =
651         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
652     if (SWZOpIdx != -1) {
653       auto SWZIter = MI.begin();
654       std::advance(SWZIter, SWZOpIdx);
655       MI.insert(SWZIter, MCOperand::createImm(0));
656     }
657   }
658 
659   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG) {
660     int VAddr0Idx =
661         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
662     int RsrcIdx =
663         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
664     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
665     if (VAddr0Idx >= 0 && NSAArgs > 0) {
666       unsigned NSAWords = (NSAArgs + 3) / 4;
667       if (Bytes.size() < 4 * NSAWords)
668         return MCDisassembler::Fail;
669       for (unsigned i = 0; i < NSAArgs; ++i) {
670         const unsigned VAddrIdx = VAddr0Idx + 1 + i;
671         auto VAddrRCID =
672             MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
673         MI.insert(MI.begin() + VAddrIdx, createRegOperand(VAddrRCID, Bytes[i]));
674       }
675       Bytes = Bytes.slice(4 * NSAWords);
676     }
677 
678     convertMIMGInst(MI);
679   }
680 
681   if (MCII->get(MI.getOpcode()).TSFlags &
682       (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE))
683     convertMIMGInst(MI);
684 
685   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)
686     convertEXPInst(MI);
687 
688   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)
689     convertVINTERPInst(MI);
690 
691   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SDWA)
692     convertSDWAInst(MI);
693 
694   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
695                                               AMDGPU::OpName::vdst_in);
696   if (VDstIn_Idx != -1) {
697     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
698                            MCOI::OperandConstraint::TIED_TO);
699     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
700          !MI.getOperand(VDstIn_Idx).isReg() ||
701          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
702       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
703         MI.erase(&MI.getOperand(VDstIn_Idx));
704       insertNamedMCOperand(MI,
705         MCOperand::createReg(MI.getOperand(Tied).getReg()),
706         AMDGPU::OpName::vdst_in);
707     }
708   }
709 
710   int ImmLitIdx =
711       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
712   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
713   if (ImmLitIdx != -1 && !IsSOPK)
714     convertFMAanyK(MI, ImmLitIdx);
715 
716   Size = MaxInstBytesNum - Bytes.size();
717   return MCDisassembler::Success;
718 }
719 
720 void AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
721   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
722     // The MCInst still has these fields even though they are no longer encoded
723     // in the GFX11 instruction.
724     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
725     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
726   }
727 }
728 
729 void AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
730   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
731       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
732       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
733       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
734       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
735       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
736       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
737       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
738     // The MCInst has this field that is not directly encoded in the
739     // instruction.
740     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
741   }
742 }
743 
744 void AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
745   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
746       STI.hasFeature(AMDGPU::FeatureGFX10)) {
747     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
748       // VOPC - insert clamp
749       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
750   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
751     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
752     if (SDst != -1) {
753       // VOPC - insert VCC register as sdst
754       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
755                            AMDGPU::OpName::sdst);
756     } else {
757       // VOP1/2 - insert omod if present in instruction
758       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
759     }
760   }
761 }
762 
763 struct VOPModifiers {
764   unsigned OpSel = 0;
765   unsigned OpSelHi = 0;
766   unsigned NegLo = 0;
767   unsigned NegHi = 0;
768 };
769 
770 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
771 // Note that these values do not affect disassembler output,
772 // so this is only necessary for consistency with src_modifiers.
773 static VOPModifiers collectVOPModifiers(const MCInst &MI,
774                                         bool IsVOP3P = false) {
775   VOPModifiers Modifiers;
776   unsigned Opc = MI.getOpcode();
777   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
778                         AMDGPU::OpName::src1_modifiers,
779                         AMDGPU::OpName::src2_modifiers};
780   for (int J = 0; J < 3; ++J) {
781     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
782     if (OpIdx == -1)
783       continue;
784 
785     unsigned Val = MI.getOperand(OpIdx).getImm();
786 
787     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
788     if (IsVOP3P) {
789       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
790       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
791       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
792     } else if (J == 0) {
793       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
794     }
795   }
796 
797   return Modifiers;
798 }
799 
800 // Instructions decode the op_sel/suffix bits into the src_modifier
801 // operands. Copy those bits into the src operands for true16 VGPRs.
802 void AMDGPUDisassembler::convertTrue16OpSel(MCInst &MI) const {
803   const unsigned Opc = MI.getOpcode();
804   const MCRegisterClass &ConversionRC =
805       MRI.getRegClass(AMDGPU::VGPR_16RegClassID);
806   constexpr std::array<std::tuple<int, int, unsigned>, 4> OpAndOpMods = {
807       {{AMDGPU::OpName::src0, AMDGPU::OpName::src0_modifiers,
808         SISrcMods::OP_SEL_0},
809        {AMDGPU::OpName::src1, AMDGPU::OpName::src1_modifiers,
810         SISrcMods::OP_SEL_0},
811        {AMDGPU::OpName::src2, AMDGPU::OpName::src2_modifiers,
812         SISrcMods::OP_SEL_0},
813        {AMDGPU::OpName::vdst, AMDGPU::OpName::src0_modifiers,
814         SISrcMods::DST_OP_SEL}}};
815   for (const auto &[OpName, OpModsName, OpSelMask] : OpAndOpMods) {
816     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, OpName);
817     int OpModsIdx = AMDGPU::getNamedOperandIdx(Opc, OpModsName);
818     if (OpIdx == -1 || OpModsIdx == -1)
819       continue;
820     MCOperand &Op = MI.getOperand(OpIdx);
821     if (!Op.isReg())
822       continue;
823     if (!ConversionRC.contains(Op.getReg()))
824       continue;
825     unsigned OpEnc = MRI.getEncodingValue(Op.getReg());
826     const MCOperand &OpMods = MI.getOperand(OpModsIdx);
827     unsigned ModVal = OpMods.getImm();
828     if (ModVal & OpSelMask) { // isHi
829       unsigned RegIdx = OpEnc & AMDGPU::HWEncoding::REG_IDX_MASK;
830       Op.setReg(ConversionRC.getRegister(RegIdx * 2 + 1));
831     }
832   }
833 }
834 
835 // MAC opcodes have special old and src2 operands.
836 // src2 is tied to dst, while old is not tied (but assumed to be).
837 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
838   constexpr int DST_IDX = 0;
839   auto Opcode = MI.getOpcode();
840   const auto &Desc = MCII->get(Opcode);
841   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
842 
843   if (OldIdx != -1 && Desc.getOperandConstraint(
844                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
845     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
846     assert(Desc.getOperandConstraint(
847                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
848                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
849     (void)DST_IDX;
850     return true;
851   }
852 
853   return false;
854 }
855 
856 // Create dummy old operand and insert dummy unused src2_modifiers
857 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
858   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
859   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
860   insertNamedMCOperand(MI, MCOperand::createImm(0),
861                        AMDGPU::OpName::src2_modifiers);
862 }
863 
864 void AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
865   unsigned Opc = MI.getOpcode();
866 
867   int VDstInIdx =
868       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
869   if (VDstInIdx != -1)
870     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
871 
872   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
873   if (MI.getNumOperands() < DescNumOps &&
874       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
875     convertTrue16OpSel(MI);
876     auto Mods = collectVOPModifiers(MI);
877     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
878                          AMDGPU::OpName::op_sel);
879   } else {
880     // Insert dummy unused src modifiers.
881     if (MI.getNumOperands() < DescNumOps &&
882         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
883       insertNamedMCOperand(MI, MCOperand::createImm(0),
884                            AMDGPU::OpName::src0_modifiers);
885 
886     if (MI.getNumOperands() < DescNumOps &&
887         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
888       insertNamedMCOperand(MI, MCOperand::createImm(0),
889                            AMDGPU::OpName::src1_modifiers);
890   }
891 }
892 
893 void AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
894   convertTrue16OpSel(MI);
895 
896   int VDstInIdx =
897       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
898   if (VDstInIdx != -1)
899     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
900 
901   unsigned Opc = MI.getOpcode();
902   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
903   if (MI.getNumOperands() < DescNumOps &&
904       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
905     auto Mods = collectVOPModifiers(MI);
906     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
907                          AMDGPU::OpName::op_sel);
908   }
909 }
910 
911 // Note that before gfx10, the MIMG encoding provided no information about
912 // VADDR size. Consequently, decoded instructions always show address as if it
913 // has 1 dword, which could be not really so.
914 void AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
915   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
916 
917   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
918                                            AMDGPU::OpName::vdst);
919 
920   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
921                                             AMDGPU::OpName::vdata);
922   int VAddr0Idx =
923       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
924   int RsrcOpName = (TSFlags & SIInstrFlags::MIMG) ? AMDGPU::OpName::srsrc
925                                                   : AMDGPU::OpName::rsrc;
926   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
927   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
928                                             AMDGPU::OpName::dmask);
929 
930   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
931                                             AMDGPU::OpName::tfe);
932   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
933                                             AMDGPU::OpName::d16);
934 
935   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
936   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
937       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
938 
939   assert(VDataIdx != -1);
940   if (BaseOpcode->BVH) {
941     // Add A16 operand for intersect_ray instructions
942     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
943     return;
944   }
945 
946   bool IsAtomic = (VDstIdx != -1);
947   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
948   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
949   bool IsNSA = false;
950   bool IsPartialNSA = false;
951   unsigned AddrSize = Info->VAddrDwords;
952 
953   if (isGFX10Plus()) {
954     unsigned DimIdx =
955         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
956     int A16Idx =
957         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
958     const AMDGPU::MIMGDimInfo *Dim =
959         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
960     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
961 
962     AddrSize =
963         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
964 
965     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
966     // VIMAGE insts other than BVH never use vaddr4.
967     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
968             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
969             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
970     if (!IsNSA) {
971       if (!IsVSample && AddrSize > 12)
972         AddrSize = 16;
973     } else {
974       if (AddrSize > Info->VAddrDwords) {
975         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
976           // The NSA encoding does not contain enough operands for the
977           // combination of base opcode / dimension. Should this be an error?
978           return;
979         }
980         IsPartialNSA = true;
981       }
982     }
983   }
984 
985   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
986   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
987 
988   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
989   if (D16 && AMDGPU::hasPackedD16(STI)) {
990     DstSize = (DstSize + 1) / 2;
991   }
992 
993   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
994     DstSize += 1;
995 
996   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
997     return;
998 
999   int NewOpcode =
1000       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1001   if (NewOpcode == -1)
1002     return;
1003 
1004   // Widen the register to the correct number of enabled channels.
1005   unsigned NewVdata = AMDGPU::NoRegister;
1006   if (DstSize != Info->VDataDwords) {
1007     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1008 
1009     // Get first subregister of VData
1010     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1011     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1012     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1013 
1014     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1015                                        &MRI.getRegClass(DataRCID));
1016     if (NewVdata == AMDGPU::NoRegister) {
1017       // It's possible to encode this such that the low register + enabled
1018       // components exceeds the register count.
1019       return;
1020     }
1021   }
1022 
1023   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1024   // If using partial NSA on GFX11+ widen last address register.
1025   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1026   unsigned NewVAddrSA = AMDGPU::NoRegister;
1027   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1028       AddrSize != Info->VAddrDwords) {
1029     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1030     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1031     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1032 
1033     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1034     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1035                                         &MRI.getRegClass(AddrRCID));
1036     if (!NewVAddrSA)
1037       return;
1038   }
1039 
1040   MI.setOpcode(NewOpcode);
1041 
1042   if (NewVdata != AMDGPU::NoRegister) {
1043     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1044 
1045     if (IsAtomic) {
1046       // Atomic operations have an additional operand (a copy of data)
1047       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1048     }
1049   }
1050 
1051   if (NewVAddrSA) {
1052     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1053   } else if (IsNSA) {
1054     assert(AddrSize <= Info->VAddrDwords);
1055     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1056              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1057   }
1058 }
1059 
1060 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1061 // decoder only adds to src_modifiers, so manually add the bits to the other
1062 // operands.
1063 void AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1064   unsigned Opc = MI.getOpcode();
1065   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1066   auto Mods = collectVOPModifiers(MI, true);
1067 
1068   if (MI.getNumOperands() < DescNumOps &&
1069       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1070     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1071 
1072   if (MI.getNumOperands() < DescNumOps &&
1073       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1074     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1075                          AMDGPU::OpName::op_sel);
1076   if (MI.getNumOperands() < DescNumOps &&
1077       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1078     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1079                          AMDGPU::OpName::op_sel_hi);
1080   if (MI.getNumOperands() < DescNumOps &&
1081       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1082     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1083                          AMDGPU::OpName::neg_lo);
1084   if (MI.getNumOperands() < DescNumOps &&
1085       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1086     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1087                          AMDGPU::OpName::neg_hi);
1088 }
1089 
1090 // Create dummy old operand and insert optional operands
1091 void AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1092   unsigned Opc = MI.getOpcode();
1093   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1094 
1095   if (MI.getNumOperands() < DescNumOps &&
1096       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1097     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1098 
1099   if (MI.getNumOperands() < DescNumOps &&
1100       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1101     insertNamedMCOperand(MI, MCOperand::createImm(0),
1102                          AMDGPU::OpName::src0_modifiers);
1103 
1104   if (MI.getNumOperands() < DescNumOps &&
1105       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1106     insertNamedMCOperand(MI, MCOperand::createImm(0),
1107                          AMDGPU::OpName::src1_modifiers);
1108 }
1109 
1110 void AMDGPUDisassembler::convertFMAanyK(MCInst &MI, int ImmLitIdx) const {
1111   assert(HasLiteral && "Should have decoded a literal");
1112   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1113   unsigned DescNumOps = Desc.getNumOperands();
1114   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1115                        AMDGPU::OpName::immDeferred);
1116   assert(DescNumOps == MI.getNumOperands());
1117   for (unsigned I = 0; I < DescNumOps; ++I) {
1118     auto &Op = MI.getOperand(I);
1119     auto OpType = Desc.operands()[I].OperandType;
1120     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1121                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1122     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1123         IsDeferredOp)
1124       Op.setImm(Literal);
1125   }
1126 }
1127 
1128 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1129   return getContext().getRegisterInfo()->
1130     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1131 }
1132 
1133 inline
1134 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1135                                          const Twine& ErrMsg) const {
1136   *CommentStream << "Error: " + ErrMsg;
1137 
1138   // ToDo: add support for error operands to MCInst.h
1139   // return MCOperand::createError(V);
1140   return MCOperand();
1141 }
1142 
1143 inline
1144 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1145   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1146 }
1147 
1148 inline
1149 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1150                                                unsigned Val) const {
1151   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1152   if (Val >= RegCl.getNumRegs())
1153     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1154                            ": unknown register " + Twine(Val));
1155   return createRegOperand(RegCl.getRegister(Val));
1156 }
1157 
1158 inline
1159 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1160                                                 unsigned Val) const {
1161   // ToDo: SI/CI have 104 SGPRs, VI - 102
1162   // Valery: here we accepting as much as we can, let assembler sort it out
1163   int shift = 0;
1164   switch (SRegClassID) {
1165   case AMDGPU::SGPR_32RegClassID:
1166   case AMDGPU::TTMP_32RegClassID:
1167     break;
1168   case AMDGPU::SGPR_64RegClassID:
1169   case AMDGPU::TTMP_64RegClassID:
1170     shift = 1;
1171     break;
1172   case AMDGPU::SGPR_96RegClassID:
1173   case AMDGPU::TTMP_96RegClassID:
1174   case AMDGPU::SGPR_128RegClassID:
1175   case AMDGPU::TTMP_128RegClassID:
1176   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1177   // this bundle?
1178   case AMDGPU::SGPR_256RegClassID:
1179   case AMDGPU::TTMP_256RegClassID:
1180     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1181   // this bundle?
1182   case AMDGPU::SGPR_288RegClassID:
1183   case AMDGPU::TTMP_288RegClassID:
1184   case AMDGPU::SGPR_320RegClassID:
1185   case AMDGPU::TTMP_320RegClassID:
1186   case AMDGPU::SGPR_352RegClassID:
1187   case AMDGPU::TTMP_352RegClassID:
1188   case AMDGPU::SGPR_384RegClassID:
1189   case AMDGPU::TTMP_384RegClassID:
1190   case AMDGPU::SGPR_512RegClassID:
1191   case AMDGPU::TTMP_512RegClassID:
1192     shift = 2;
1193     break;
1194   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1195   // this bundle?
1196   default:
1197     llvm_unreachable("unhandled register class");
1198   }
1199 
1200   if (Val % (1 << shift)) {
1201     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1202                    << ": scalar reg isn't aligned " << Val;
1203   }
1204 
1205   return createRegOperand(SRegClassID, Val >> shift);
1206 }
1207 
1208 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1209                                                   bool IsHi) const {
1210   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1211   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1212 }
1213 
1214 // Decode Literals for insts which always have a literal in the encoding
1215 MCOperand
1216 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1217   if (HasLiteral) {
1218     assert(
1219         AMDGPU::hasVOPD(STI) &&
1220         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1221     if (Literal != Val)
1222       return errOperand(Val, "More than one unique literal is illegal");
1223   }
1224   HasLiteral = true;
1225   Literal = Val;
1226   return MCOperand::createImm(Literal);
1227 }
1228 
1229 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1230   // For now all literal constants are supposed to be unsigned integer
1231   // ToDo: deal with signed/unsigned 64-bit integer constants
1232   // ToDo: deal with float/double constants
1233   if (!HasLiteral) {
1234     if (Bytes.size() < 4) {
1235       return errOperand(0, "cannot read literal, inst bytes left " +
1236                         Twine(Bytes.size()));
1237     }
1238     HasLiteral = true;
1239     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1240     if (ExtendFP64)
1241       Literal64 <<= 32;
1242   }
1243   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1244 }
1245 
1246 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1247   using namespace AMDGPU::EncValues;
1248 
1249   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1250   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1251     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1252     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1253       // Cast prevents negative overflow.
1254 }
1255 
1256 static int64_t getInlineImmVal32(unsigned Imm) {
1257   switch (Imm) {
1258   case 240:
1259     return llvm::bit_cast<uint32_t>(0.5f);
1260   case 241:
1261     return llvm::bit_cast<uint32_t>(-0.5f);
1262   case 242:
1263     return llvm::bit_cast<uint32_t>(1.0f);
1264   case 243:
1265     return llvm::bit_cast<uint32_t>(-1.0f);
1266   case 244:
1267     return llvm::bit_cast<uint32_t>(2.0f);
1268   case 245:
1269     return llvm::bit_cast<uint32_t>(-2.0f);
1270   case 246:
1271     return llvm::bit_cast<uint32_t>(4.0f);
1272   case 247:
1273     return llvm::bit_cast<uint32_t>(-4.0f);
1274   case 248: // 1 / (2 * PI)
1275     return 0x3e22f983;
1276   default:
1277     llvm_unreachable("invalid fp inline imm");
1278   }
1279 }
1280 
1281 static int64_t getInlineImmVal64(unsigned Imm) {
1282   switch (Imm) {
1283   case 240:
1284     return llvm::bit_cast<uint64_t>(0.5);
1285   case 241:
1286     return llvm::bit_cast<uint64_t>(-0.5);
1287   case 242:
1288     return llvm::bit_cast<uint64_t>(1.0);
1289   case 243:
1290     return llvm::bit_cast<uint64_t>(-1.0);
1291   case 244:
1292     return llvm::bit_cast<uint64_t>(2.0);
1293   case 245:
1294     return llvm::bit_cast<uint64_t>(-2.0);
1295   case 246:
1296     return llvm::bit_cast<uint64_t>(4.0);
1297   case 247:
1298     return llvm::bit_cast<uint64_t>(-4.0);
1299   case 248: // 1 / (2 * PI)
1300     return 0x3fc45f306dc9c882;
1301   default:
1302     llvm_unreachable("invalid fp inline imm");
1303   }
1304 }
1305 
1306 static int64_t getInlineImmValF16(unsigned Imm) {
1307   switch (Imm) {
1308   case 240:
1309     return 0x3800;
1310   case 241:
1311     return 0xB800;
1312   case 242:
1313     return 0x3C00;
1314   case 243:
1315     return 0xBC00;
1316   case 244:
1317     return 0x4000;
1318   case 245:
1319     return 0xC000;
1320   case 246:
1321     return 0x4400;
1322   case 247:
1323     return 0xC400;
1324   case 248: // 1 / (2 * PI)
1325     return 0x3118;
1326   default:
1327     llvm_unreachable("invalid fp inline imm");
1328   }
1329 }
1330 
1331 static int64_t getInlineImmValBF16(unsigned Imm) {
1332   switch (Imm) {
1333   case 240:
1334     return 0x3F00;
1335   case 241:
1336     return 0xBF00;
1337   case 242:
1338     return 0x3F80;
1339   case 243:
1340     return 0xBF80;
1341   case 244:
1342     return 0x4000;
1343   case 245:
1344     return 0xC000;
1345   case 246:
1346     return 0x4080;
1347   case 247:
1348     return 0xC080;
1349   case 248: // 1 / (2 * PI)
1350     return 0x3E22;
1351   default:
1352     llvm_unreachable("invalid fp inline imm");
1353   }
1354 }
1355 
1356 static int64_t getInlineImmVal16(unsigned Imm, AMDGPU::OperandSemantics Sema) {
1357   return (Sema == AMDGPU::OperandSemantics::BF16) ? getInlineImmValBF16(Imm)
1358                                                   : getInlineImmValF16(Imm);
1359 }
1360 
1361 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm,
1362                                             AMDGPU::OperandSemantics Sema) {
1363   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN &&
1364          Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1365 
1366   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1367   // ImmWidth 0 is a default case where operand should not allow immediates.
1368   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1369   // use it to print verbose error message.
1370   switch (ImmWidth) {
1371   case 0:
1372   case 32:
1373     return MCOperand::createImm(getInlineImmVal32(Imm));
1374   case 64:
1375     return MCOperand::createImm(getInlineImmVal64(Imm));
1376   case 16:
1377     return MCOperand::createImm(getInlineImmVal16(Imm, Sema));
1378   default:
1379     llvm_unreachable("implement me");
1380   }
1381 }
1382 
1383 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1384   using namespace AMDGPU;
1385 
1386   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1387   switch (Width) {
1388   default: // fall
1389   case OPW32:
1390   case OPW16:
1391   case OPWV216:
1392     return VGPR_32RegClassID;
1393   case OPW64:
1394   case OPWV232: return VReg_64RegClassID;
1395   case OPW96: return VReg_96RegClassID;
1396   case OPW128: return VReg_128RegClassID;
1397   case OPW160: return VReg_160RegClassID;
1398   case OPW256: return VReg_256RegClassID;
1399   case OPW288: return VReg_288RegClassID;
1400   case OPW320: return VReg_320RegClassID;
1401   case OPW352: return VReg_352RegClassID;
1402   case OPW384: return VReg_384RegClassID;
1403   case OPW512: return VReg_512RegClassID;
1404   case OPW1024: return VReg_1024RegClassID;
1405   }
1406 }
1407 
1408 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1409   using namespace AMDGPU;
1410 
1411   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1412   switch (Width) {
1413   default: // fall
1414   case OPW32:
1415   case OPW16:
1416   case OPWV216:
1417     return AGPR_32RegClassID;
1418   case OPW64:
1419   case OPWV232: return AReg_64RegClassID;
1420   case OPW96: return AReg_96RegClassID;
1421   case OPW128: return AReg_128RegClassID;
1422   case OPW160: return AReg_160RegClassID;
1423   case OPW256: return AReg_256RegClassID;
1424   case OPW288: return AReg_288RegClassID;
1425   case OPW320: return AReg_320RegClassID;
1426   case OPW352: return AReg_352RegClassID;
1427   case OPW384: return AReg_384RegClassID;
1428   case OPW512: return AReg_512RegClassID;
1429   case OPW1024: return AReg_1024RegClassID;
1430   }
1431 }
1432 
1433 
1434 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1435   using namespace AMDGPU;
1436 
1437   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1438   switch (Width) {
1439   default: // fall
1440   case OPW32:
1441   case OPW16:
1442   case OPWV216:
1443     return SGPR_32RegClassID;
1444   case OPW64:
1445   case OPWV232: return SGPR_64RegClassID;
1446   case OPW96: return SGPR_96RegClassID;
1447   case OPW128: return SGPR_128RegClassID;
1448   case OPW160: return SGPR_160RegClassID;
1449   case OPW256: return SGPR_256RegClassID;
1450   case OPW288: return SGPR_288RegClassID;
1451   case OPW320: return SGPR_320RegClassID;
1452   case OPW352: return SGPR_352RegClassID;
1453   case OPW384: return SGPR_384RegClassID;
1454   case OPW512: return SGPR_512RegClassID;
1455   }
1456 }
1457 
1458 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1459   using namespace AMDGPU;
1460 
1461   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1462   switch (Width) {
1463   default: // fall
1464   case OPW32:
1465   case OPW16:
1466   case OPWV216:
1467     return TTMP_32RegClassID;
1468   case OPW64:
1469   case OPWV232: return TTMP_64RegClassID;
1470   case OPW128: return TTMP_128RegClassID;
1471   case OPW256: return TTMP_256RegClassID;
1472   case OPW288: return TTMP_288RegClassID;
1473   case OPW320: return TTMP_320RegClassID;
1474   case OPW352: return TTMP_352RegClassID;
1475   case OPW384: return TTMP_384RegClassID;
1476   case OPW512: return TTMP_512RegClassID;
1477   }
1478 }
1479 
1480 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1481   using namespace AMDGPU::EncValues;
1482 
1483   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1484   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1485 
1486   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1487 }
1488 
1489 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1490                                           bool MandatoryLiteral,
1491                                           unsigned ImmWidth,
1492                                           AMDGPU::OperandSemantics Sema) const {
1493   using namespace AMDGPU::EncValues;
1494 
1495   assert(Val < 1024); // enum10
1496 
1497   bool IsAGPR = Val & 512;
1498   Val &= 511;
1499 
1500   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1501     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1502                                    : getVgprClassId(Width), Val - VGPR_MIN);
1503   }
1504   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1505                             Sema);
1506 }
1507 
1508 MCOperand
1509 AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, unsigned Val,
1510                                        bool MandatoryLiteral, unsigned ImmWidth,
1511                                        AMDGPU::OperandSemantics Sema) const {
1512   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1513   // decoded earlier.
1514   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1515   using namespace AMDGPU::EncValues;
1516 
1517   if (Val <= SGPR_MAX) {
1518     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1519     static_assert(SGPR_MIN == 0);
1520     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1521   }
1522 
1523   int TTmpIdx = getTTmpIdx(Val);
1524   if (TTmpIdx >= 0) {
1525     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1526   }
1527 
1528   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1529     return decodeIntImmed(Val);
1530 
1531   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1532     return decodeFPImmed(ImmWidth, Val, Sema);
1533 
1534   if (Val == LITERAL_CONST) {
1535     if (MandatoryLiteral)
1536       // Keep a sentinel value for deferred setting
1537       return MCOperand::createImm(LITERAL_CONST);
1538     else
1539       return decodeLiteralConstant(Sema == AMDGPU::OperandSemantics::FP64);
1540   }
1541 
1542   switch (Width) {
1543   case OPW32:
1544   case OPW16:
1545   case OPWV216:
1546     return decodeSpecialReg32(Val);
1547   case OPW64:
1548   case OPWV232:
1549     return decodeSpecialReg64(Val);
1550   default:
1551     llvm_unreachable("unexpected immediate type");
1552   }
1553 }
1554 
1555 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1556 // opposite of bit 0 of DstX.
1557 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1558                                                unsigned Val) const {
1559   int VDstXInd =
1560       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1561   assert(VDstXInd != -1);
1562   assert(Inst.getOperand(VDstXInd).isReg());
1563   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1564   Val |= ~XDstReg & 1;
1565   auto Width = llvm::AMDGPUDisassembler::OPW32;
1566   return createRegOperand(getVgprClassId(Width), Val);
1567 }
1568 
1569 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1570   using namespace AMDGPU;
1571 
1572   switch (Val) {
1573   // clang-format off
1574   case 102: return createRegOperand(FLAT_SCR_LO);
1575   case 103: return createRegOperand(FLAT_SCR_HI);
1576   case 104: return createRegOperand(XNACK_MASK_LO);
1577   case 105: return createRegOperand(XNACK_MASK_HI);
1578   case 106: return createRegOperand(VCC_LO);
1579   case 107: return createRegOperand(VCC_HI);
1580   case 108: return createRegOperand(TBA_LO);
1581   case 109: return createRegOperand(TBA_HI);
1582   case 110: return createRegOperand(TMA_LO);
1583   case 111: return createRegOperand(TMA_HI);
1584   case 124:
1585     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1586   case 125:
1587     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1588   case 126: return createRegOperand(EXEC_LO);
1589   case 127: return createRegOperand(EXEC_HI);
1590   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1591   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1592   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1593   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1594   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1595   case 251: return createRegOperand(SRC_VCCZ);
1596   case 252: return createRegOperand(SRC_EXECZ);
1597   case 253: return createRegOperand(SRC_SCC);
1598   case 254: return createRegOperand(LDS_DIRECT);
1599   default: break;
1600     // clang-format on
1601   }
1602   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1603 }
1604 
1605 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1606   using namespace AMDGPU;
1607 
1608   switch (Val) {
1609   case 102: return createRegOperand(FLAT_SCR);
1610   case 104: return createRegOperand(XNACK_MASK);
1611   case 106: return createRegOperand(VCC);
1612   case 108: return createRegOperand(TBA);
1613   case 110: return createRegOperand(TMA);
1614   case 124:
1615     if (isGFX11Plus())
1616       return createRegOperand(SGPR_NULL);
1617     break;
1618   case 125:
1619     if (!isGFX11Plus())
1620       return createRegOperand(SGPR_NULL);
1621     break;
1622   case 126: return createRegOperand(EXEC);
1623   case 235: return createRegOperand(SRC_SHARED_BASE);
1624   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1625   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1626   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1627   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1628   case 251: return createRegOperand(SRC_VCCZ);
1629   case 252: return createRegOperand(SRC_EXECZ);
1630   case 253: return createRegOperand(SRC_SCC);
1631   default: break;
1632   }
1633   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1634 }
1635 
1636 MCOperand
1637 AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, const unsigned Val,
1638                                   unsigned ImmWidth,
1639                                   AMDGPU::OperandSemantics Sema) const {
1640   using namespace AMDGPU::SDWA;
1641   using namespace AMDGPU::EncValues;
1642 
1643   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1644       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1645     // XXX: cast to int is needed to avoid stupid warning:
1646     // compare with unsigned is always true
1647     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1648         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1649       return createRegOperand(getVgprClassId(Width),
1650                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1651     }
1652     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1653         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1654                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1655       return createSRegOperand(getSgprClassId(Width),
1656                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1657     }
1658     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1659         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1660       return createSRegOperand(getTtmpClassId(Width),
1661                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1662     }
1663 
1664     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1665 
1666     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1667       return decodeIntImmed(SVal);
1668 
1669     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1670       return decodeFPImmed(ImmWidth, SVal, Sema);
1671 
1672     return decodeSpecialReg32(SVal);
1673   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1674     return createRegOperand(getVgprClassId(Width), Val);
1675   }
1676   llvm_unreachable("unsupported target");
1677 }
1678 
1679 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1680   return decodeSDWASrc(OPW16, Val, 16, AMDGPU::OperandSemantics::FP16);
1681 }
1682 
1683 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1684   return decodeSDWASrc(OPW32, Val, 32, AMDGPU::OperandSemantics::FP32);
1685 }
1686 
1687 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1688   using namespace AMDGPU::SDWA;
1689 
1690   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1691           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1692          "SDWAVopcDst should be present only on GFX9+");
1693 
1694   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1695 
1696   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1697     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1698 
1699     int TTmpIdx = getTTmpIdx(Val);
1700     if (TTmpIdx >= 0) {
1701       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1702       return createSRegOperand(TTmpClsId, TTmpIdx);
1703     } else if (Val > SGPR_MAX) {
1704       return IsWave64 ? decodeSpecialReg64(Val)
1705                       : decodeSpecialReg32(Val);
1706     } else {
1707       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1708     }
1709   } else {
1710     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1711   }
1712 }
1713 
1714 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1715   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1716              ? decodeSrcOp(OPW64, Val)
1717              : decodeSrcOp(OPW32, Val);
1718 }
1719 
1720 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1721   return decodeSrcOp(OPW32, Val);
1722 }
1723 
1724 MCOperand AMDGPUDisassembler::decodeDpp8FI(unsigned Val) const {
1725   if (Val != AMDGPU::DPP::DPP8_FI_0 && Val != AMDGPU::DPP::DPP8_FI_1)
1726     return MCOperand();
1727   return MCOperand::createImm(Val);
1728 }
1729 
1730 bool AMDGPUDisassembler::isVI() const {
1731   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1732 }
1733 
1734 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1735 
1736 bool AMDGPUDisassembler::isGFX90A() const {
1737   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1738 }
1739 
1740 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1741 
1742 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1743 
1744 bool AMDGPUDisassembler::isGFX10Plus() const {
1745   return AMDGPU::isGFX10Plus(STI);
1746 }
1747 
1748 bool AMDGPUDisassembler::isGFX11() const {
1749   return STI.hasFeature(AMDGPU::FeatureGFX11);
1750 }
1751 
1752 bool AMDGPUDisassembler::isGFX11Plus() const {
1753   return AMDGPU::isGFX11Plus(STI);
1754 }
1755 
1756 bool AMDGPUDisassembler::isGFX12() const {
1757   return STI.hasFeature(AMDGPU::FeatureGFX12);
1758 }
1759 
1760 bool AMDGPUDisassembler::isGFX12Plus() const {
1761   return AMDGPU::isGFX12Plus(STI);
1762 }
1763 
1764 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1765   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1766 }
1767 
1768 bool AMDGPUDisassembler::hasKernargPreload() const {
1769   return AMDGPU::hasKernargPreload(STI);
1770 }
1771 
1772 //===----------------------------------------------------------------------===//
1773 // AMDGPU specific symbol handling
1774 //===----------------------------------------------------------------------===//
1775 
1776 /// Print a string describing the reserved bit range specified by Mask with
1777 /// offset BaseBytes for use in error comments. Mask is a single continuous
1778 /// range of 1s surrounded by zeros. The format here is meant to align with the
1779 /// tables that describe these bits in llvm.org/docs/AMDGPUUsage.html.
1780 static SmallString<32> getBitRangeFromMask(uint32_t Mask, unsigned BaseBytes) {
1781   SmallString<32> Result;
1782   raw_svector_ostream S(Result);
1783 
1784   int TrailingZeros = llvm::countr_zero(Mask);
1785   int PopCount = llvm::popcount(Mask);
1786 
1787   if (PopCount == 1) {
1788     S << "bit (" << (TrailingZeros + BaseBytes * CHAR_BIT) << ')';
1789   } else {
1790     S << "bits in range ("
1791       << (TrailingZeros + PopCount - 1 + BaseBytes * CHAR_BIT) << ':'
1792       << (TrailingZeros + BaseBytes * CHAR_BIT) << ')';
1793   }
1794 
1795   return Result;
1796 }
1797 
1798 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1799 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1800   do {                                                                         \
1801     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1802   } while (0)
1803 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1804   do {                                                                         \
1805     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1806              << GET_FIELD(MASK) << '\n';                                       \
1807   } while (0)
1808 
1809 #define CHECK_RESERVED_BITS_IMPL(MASK, DESC, MSG)                              \
1810   do {                                                                         \
1811     if (FourByteBuffer & (MASK)) {                                             \
1812       return createStringError(std::errc::invalid_argument,                    \
1813                                "kernel descriptor " DESC                       \
1814                                " reserved %s set" MSG,                         \
1815                                getBitRangeFromMask((MASK), 0).c_str());        \
1816     }                                                                          \
1817   } while (0)
1818 
1819 #define CHECK_RESERVED_BITS(MASK) CHECK_RESERVED_BITS_IMPL(MASK, #MASK, "")
1820 #define CHECK_RESERVED_BITS_MSG(MASK, MSG)                                     \
1821   CHECK_RESERVED_BITS_IMPL(MASK, #MASK, ", " MSG)
1822 #define CHECK_RESERVED_BITS_DESC(MASK, DESC)                                   \
1823   CHECK_RESERVED_BITS_IMPL(MASK, DESC, "")
1824 #define CHECK_RESERVED_BITS_DESC_MSG(MASK, DESC, MSG)                          \
1825   CHECK_RESERVED_BITS_IMPL(MASK, DESC, ", " MSG)
1826 
1827 // NOLINTNEXTLINE(readability-identifier-naming)
1828 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1829     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1830   using namespace amdhsa;
1831   StringRef Indent = "\t";
1832 
1833   // We cannot accurately backward compute #VGPRs used from
1834   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1835   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1836   // simply calculate the inverse of what the assembler does.
1837 
1838   uint32_t GranulatedWorkitemVGPRCount =
1839       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1840 
1841   uint32_t NextFreeVGPR =
1842       (GranulatedWorkitemVGPRCount + 1) *
1843       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1844 
1845   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1846 
1847   // We cannot backward compute values used to calculate
1848   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1849   // directives can't be computed:
1850   // .amdhsa_reserve_vcc
1851   // .amdhsa_reserve_flat_scratch
1852   // .amdhsa_reserve_xnack_mask
1853   // They take their respective default values if not specified in the assembly.
1854   //
1855   // GRANULATED_WAVEFRONT_SGPR_COUNT
1856   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1857   //
1858   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1859   // are set to 0. So while disassembling we consider that:
1860   //
1861   // GRANULATED_WAVEFRONT_SGPR_COUNT
1862   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1863   //
1864   // The disassembler cannot recover the original values of those 3 directives.
1865 
1866   uint32_t GranulatedWavefrontSGPRCount =
1867       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1868 
1869   if (isGFX10Plus())
1870     CHECK_RESERVED_BITS_MSG(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT,
1871                             "must be zero on gfx10+");
1872 
1873   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1874                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1875 
1876   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1877   if (!hasArchitectedFlatScratch())
1878     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1879   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1880   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1881 
1882   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_PRIORITY);
1883 
1884   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1885                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1886   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1887                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1888   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1889                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1890   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1891                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1892 
1893   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_PRIV);
1894 
1895   if (!isGFX12Plus())
1896     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1897                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1898 
1899   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_DEBUG_MODE);
1900 
1901   if (!isGFX12Plus())
1902     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1903                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1904 
1905   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_BULKY);
1906   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_CDBG_USER);
1907 
1908   if (isGFX9Plus())
1909     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1910 
1911   if (!isGFX9Plus())
1912     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0,
1913                                  "COMPUTE_PGM_RSRC1", "must be zero pre-gfx9");
1914 
1915   CHECK_RESERVED_BITS_DESC(COMPUTE_PGM_RSRC1_RESERVED1, "COMPUTE_PGM_RSRC1");
1916 
1917   if (!isGFX10Plus())
1918     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2,
1919                                  "COMPUTE_PGM_RSRC1", "must be zero pre-gfx10");
1920 
1921   if (isGFX10Plus()) {
1922     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1923                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1924     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1925     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1926   }
1927 
1928   if (isGFX12Plus())
1929     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1930                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1931 
1932   return true;
1933 }
1934 
1935 // NOLINTNEXTLINE(readability-identifier-naming)
1936 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1937     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1938   using namespace amdhsa;
1939   StringRef Indent = "\t";
1940   if (hasArchitectedFlatScratch())
1941     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1942                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1943   else
1944     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1945                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1946   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1947                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1948   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1949                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1950   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1951                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1952   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1953                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1954   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1955                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1956 
1957   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH);
1958   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY);
1959   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE);
1960 
1961   PRINT_DIRECTIVE(
1962       ".amdhsa_exception_fp_ieee_invalid_op",
1963       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1964   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1965                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1966   PRINT_DIRECTIVE(
1967       ".amdhsa_exception_fp_ieee_div_zero",
1968       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1969   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1970                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1971   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1972                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1973   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1974                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1975   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1976                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1977 
1978   CHECK_RESERVED_BITS_DESC(COMPUTE_PGM_RSRC2_RESERVED0, "COMPUTE_PGM_RSRC2");
1979 
1980   return true;
1981 }
1982 
1983 // NOLINTNEXTLINE(readability-identifier-naming)
1984 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1985     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1986   using namespace amdhsa;
1987   StringRef Indent = "\t";
1988   if (isGFX90A()) {
1989     KdStream << Indent << ".amdhsa_accum_offset "
1990              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1991              << '\n';
1992 
1993     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1994 
1995     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX90A_RESERVED0,
1996                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx90a");
1997     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX90A_RESERVED1,
1998                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx90a");
1999   } else if (isGFX10Plus()) {
2000     // Bits [0-3].
2001     if (!isGFX12Plus()) {
2002       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2003         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2004                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2005       } else {
2006         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2007             "SHARED_VGPR_COUNT",
2008             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2009       }
2010     } else {
2011       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0,
2012                                    "COMPUTE_PGM_RSRC3",
2013                                    "must be zero on gfx12+");
2014     }
2015 
2016     // Bits [4-11].
2017     if (isGFX11()) {
2018       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2019                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2020       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2021                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2022       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2023                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2024     } else if (isGFX12Plus()) {
2025       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2026           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2027     } else {
2028       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_RESERVED1,
2029                                    "COMPUTE_PGM_RSRC3",
2030                                    "must be zero on gfx10");
2031     }
2032 
2033     // Bits [12].
2034     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2,
2035                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx10+");
2036 
2037     // Bits [13].
2038     if (isGFX12Plus()) {
2039       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2040                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2041     } else {
2042       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3,
2043                                    "COMPUTE_PGM_RSRC3",
2044                                    "must be zero on gfx10 or gfx11");
2045     }
2046 
2047     // Bits [14-30].
2048     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4,
2049                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx10+");
2050 
2051     // Bits [31].
2052     if (isGFX11Plus()) {
2053       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2054                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2055     } else {
2056       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_RESERVED5,
2057                                    "COMPUTE_PGM_RSRC3",
2058                                    "must be zero on gfx10");
2059     }
2060   } else if (FourByteBuffer) {
2061     return createStringError(
2062         std::errc::invalid_argument,
2063         "kernel descriptor COMPUTE_PGM_RSRC3 must be all zero before gfx9");
2064   }
2065   return true;
2066 }
2067 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2068 #undef PRINT_DIRECTIVE
2069 #undef GET_FIELD
2070 #undef CHECK_RESERVED_BITS_IMPL
2071 #undef CHECK_RESERVED_BITS
2072 #undef CHECK_RESERVED_BITS_MSG
2073 #undef CHECK_RESERVED_BITS_DESC
2074 #undef CHECK_RESERVED_BITS_DESC_MSG
2075 
2076 /// Create an error object to return from onSymbolStart for reserved kernel
2077 /// descriptor bits being set.
2078 static Error createReservedKDBitsError(uint32_t Mask, unsigned BaseBytes,
2079                                        const char *Msg = "") {
2080   return createStringError(
2081       std::errc::invalid_argument, "kernel descriptor reserved %s set%s%s",
2082       getBitRangeFromMask(Mask, BaseBytes).c_str(), *Msg ? ", " : "", Msg);
2083 }
2084 
2085 /// Create an error object to return from onSymbolStart for reserved kernel
2086 /// descriptor bytes being set.
2087 static Error createReservedKDBytesError(unsigned BaseInBytes,
2088                                         unsigned WidthInBytes) {
2089   // Create an error comment in the same format as the "Kernel Descriptor"
2090   // table here: https://llvm.org/docs/AMDGPUUsage.html#kernel-descriptor .
2091   return createStringError(
2092       std::errc::invalid_argument,
2093       "kernel descriptor reserved bits in range (%u:%u) set",
2094       (BaseInBytes + WidthInBytes) * CHAR_BIT - 1, BaseInBytes * CHAR_BIT);
2095 }
2096 
2097 Expected<bool> AMDGPUDisassembler::decodeKernelDescriptorDirective(
2098     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2099     raw_string_ostream &KdStream) const {
2100 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2101   do {                                                                         \
2102     KdStream << Indent << DIRECTIVE " "                                        \
2103              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2104   } while (0)
2105 
2106   uint16_t TwoByteBuffer = 0;
2107   uint32_t FourByteBuffer = 0;
2108 
2109   StringRef ReservedBytes;
2110   StringRef Indent = "\t";
2111 
2112   assert(Bytes.size() == 64);
2113   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2114 
2115   switch (Cursor.tell()) {
2116   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2117     FourByteBuffer = DE.getU32(Cursor);
2118     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2119              << '\n';
2120     return true;
2121 
2122   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2123     FourByteBuffer = DE.getU32(Cursor);
2124     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2125              << FourByteBuffer << '\n';
2126     return true;
2127 
2128   case amdhsa::KERNARG_SIZE_OFFSET:
2129     FourByteBuffer = DE.getU32(Cursor);
2130     KdStream << Indent << ".amdhsa_kernarg_size "
2131              << FourByteBuffer << '\n';
2132     return true;
2133 
2134   case amdhsa::RESERVED0_OFFSET:
2135     // 4 reserved bytes, must be 0.
2136     ReservedBytes = DE.getBytes(Cursor, 4);
2137     for (int I = 0; I < 4; ++I) {
2138       if (ReservedBytes[I] != 0)
2139         return createReservedKDBytesError(amdhsa::RESERVED0_OFFSET, 4);
2140     }
2141     return true;
2142 
2143   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2144     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2145     // So far no directive controls this for Code Object V3, so simply skip for
2146     // disassembly.
2147     DE.skip(Cursor, 8);
2148     return true;
2149 
2150   case amdhsa::RESERVED1_OFFSET:
2151     // 20 reserved bytes, must be 0.
2152     ReservedBytes = DE.getBytes(Cursor, 20);
2153     for (int I = 0; I < 20; ++I) {
2154       if (ReservedBytes[I] != 0)
2155         return createReservedKDBytesError(amdhsa::RESERVED1_OFFSET, 20);
2156     }
2157     return true;
2158 
2159   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2160     FourByteBuffer = DE.getU32(Cursor);
2161     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2162 
2163   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2164     FourByteBuffer = DE.getU32(Cursor);
2165     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2166 
2167   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2168     FourByteBuffer = DE.getU32(Cursor);
2169     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2170 
2171   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2172     using namespace amdhsa;
2173     TwoByteBuffer = DE.getU16(Cursor);
2174 
2175     if (!hasArchitectedFlatScratch())
2176       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2177                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2178     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2179                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2180     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2181                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2182     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2183                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2184     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2185                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2186     if (!hasArchitectedFlatScratch())
2187       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2188                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2189     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2190                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2191 
2192     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2193       return createReservedKDBitsError(KERNEL_CODE_PROPERTY_RESERVED0,
2194                                        amdhsa::KERNEL_CODE_PROPERTIES_OFFSET);
2195 
2196     // Reserved for GFX9
2197     if (isGFX9() &&
2198         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2199       return createReservedKDBitsError(
2200           KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
2201           amdhsa::KERNEL_CODE_PROPERTIES_OFFSET, "must be zero on gfx9");
2202     } else if (isGFX10Plus()) {
2203       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2204                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2205     }
2206 
2207     if (CodeObjectVersion >= AMDGPU::AMDHSA_COV5)
2208       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2209                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2210 
2211     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) {
2212       return createReservedKDBitsError(KERNEL_CODE_PROPERTY_RESERVED1,
2213                                        amdhsa::KERNEL_CODE_PROPERTIES_OFFSET);
2214     }
2215 
2216     return true;
2217 
2218   case amdhsa::KERNARG_PRELOAD_OFFSET:
2219     using namespace amdhsa;
2220     TwoByteBuffer = DE.getU16(Cursor);
2221     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2222       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2223                       KERNARG_PRELOAD_SPEC_LENGTH);
2224     }
2225 
2226     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2227       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2228                       KERNARG_PRELOAD_SPEC_OFFSET);
2229     }
2230     return true;
2231 
2232   case amdhsa::RESERVED3_OFFSET:
2233     // 4 bytes from here are reserved, must be 0.
2234     ReservedBytes = DE.getBytes(Cursor, 4);
2235     for (int I = 0; I < 4; ++I) {
2236       if (ReservedBytes[I] != 0)
2237         return createReservedKDBytesError(amdhsa::RESERVED3_OFFSET, 4);
2238     }
2239     return true;
2240 
2241   default:
2242     llvm_unreachable("Unhandled index. Case statements cover everything.");
2243     return true;
2244   }
2245 #undef PRINT_DIRECTIVE
2246 }
2247 
2248 Expected<bool> AMDGPUDisassembler::decodeKernelDescriptor(
2249     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2250 
2251   // CP microcode requires the kernel descriptor to be 64 aligned.
2252   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2253     return createStringError(std::errc::invalid_argument,
2254                              "kernel descriptor must be 64-byte aligned");
2255 
2256   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2257   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2258   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2259   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2260   // when required.
2261   if (isGFX10Plus()) {
2262     uint16_t KernelCodeProperties =
2263         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2264                                 llvm::endianness::little);
2265     EnableWavefrontSize32 =
2266         AMDHSA_BITS_GET(KernelCodeProperties,
2267                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2268   }
2269 
2270   std::string Kd;
2271   raw_string_ostream KdStream(Kd);
2272   KdStream << ".amdhsa_kernel " << KdName << '\n';
2273 
2274   DataExtractor::Cursor C(0);
2275   while (C && C.tell() < Bytes.size()) {
2276     Expected<bool> Res = decodeKernelDescriptorDirective(C, Bytes, KdStream);
2277 
2278     cantFail(C.takeError());
2279 
2280     if (!Res)
2281       return Res;
2282   }
2283   KdStream << ".end_amdhsa_kernel\n";
2284   outs() << KdStream.str();
2285   return true;
2286 }
2287 
2288 Expected<bool> AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol,
2289                                                  uint64_t &Size,
2290                                                  ArrayRef<uint8_t> Bytes,
2291                                                  uint64_t Address) const {
2292   // Right now only kernel descriptor needs to be handled.
2293   // We ignore all other symbols for target specific handling.
2294   // TODO:
2295   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2296   // Object V2 and V3 when symbols are marked protected.
2297 
2298   // amd_kernel_code_t for Code Object V2.
2299   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2300     Size = 256;
2301     return createStringError(std::errc::invalid_argument,
2302                              "code object v2 is not supported");
2303   }
2304 
2305   // Code Object V3 kernel descriptors.
2306   StringRef Name = Symbol.Name;
2307   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2308     Size = 64; // Size = 64 regardless of success or failure.
2309     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2310   }
2311 
2312   return false;
2313 }
2314 
2315 //===----------------------------------------------------------------------===//
2316 // AMDGPUSymbolizer
2317 //===----------------------------------------------------------------------===//
2318 
2319 // Try to find symbol name for specified label
2320 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2321     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2322     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2323     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2324 
2325   if (!IsBranch) {
2326     return false;
2327   }
2328 
2329   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2330   if (!Symbols)
2331     return false;
2332 
2333   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2334     return Val.Addr == static_cast<uint64_t>(Value) &&
2335            Val.Type == ELF::STT_NOTYPE;
2336   });
2337   if (Result != Symbols->end()) {
2338     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2339     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2340     Inst.addOperand(MCOperand::createExpr(Add));
2341     return true;
2342   }
2343   // Add to list of referenced addresses, so caller can synthesize a label.
2344   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2345   return false;
2346 }
2347 
2348 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2349                                                        int64_t Value,
2350                                                        uint64_t Address) {
2351   llvm_unreachable("unimplemented");
2352 }
2353 
2354 //===----------------------------------------------------------------------===//
2355 // Initialization
2356 //===----------------------------------------------------------------------===//
2357 
2358 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2359                               LLVMOpInfoCallback /*GetOpInfo*/,
2360                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2361                               void *DisInfo,
2362                               MCContext *Ctx,
2363                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2364   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2365 }
2366 
2367 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2368                                                 const MCSubtargetInfo &STI,
2369                                                 MCContext &Ctx) {
2370   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2371 }
2372 
2373 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2374   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2375                                          createAMDGPUDisassembler);
2376   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2377                                        createAMDGPUSymbolizer);
2378 }
2379