xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision a97028ac511c2cda607a1e93c3b11d654cbdbf72)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
95     Offset = SignExtend64<24>(Imm);
96   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else { // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
119 // number of register. Used by VGPR only and AGPR only operands.
120 #define DECODE_OPERAND_REG_8(RegClass)                                         \
121   static DecodeStatus Decode##RegClass##RegisterClass(                         \
122       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
123       const MCDisassembler *Decoder) {                                         \
124     assert(Imm < (1 << 8) && "8-bit encoding");                                \
125     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
126     return addOperand(                                                         \
127         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
128   }
129 
130 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
131                      ImmWidth)                                                 \
132   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
133                            const MCDisassembler *Decoder) {                    \
134     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
135     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
136     return addOperand(Inst,                                                    \
137                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
138                                         MandatoryLiteral, ImmWidth));          \
139   }
140 
141 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
142 // get register class. Used by SGPR only operands.
143 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
144   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
145 
146 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
147 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
148 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
149 // Used by AV_ register classes (AGPR or VGPR only register operands).
150 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
151   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
152                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
153 
154 // Decoder for Src(9-bit encoding) registers only.
155 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
156   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
157 
158 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
159 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
160 // only.
161 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
162   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
163 
164 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
165 // Imm{9} is acc, registers only.
166 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
167   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
168 
169 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
170 // register from RegClass or immediate. Registers that don't belong to RegClass
171 // will be decoded and InstPrinter will report warning. Immediate will be
172 // decoded into constant of size ImmWidth, should match width of immediate used
173 // by OperandType (important for floating point types).
174 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
175   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
176                false, ImmWidth)
177 
178 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
179 // and decode using 'enum10' from decodeSrcOp.
180 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
181   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
182                Imm | 512, false, ImmWidth)
183 
184 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
185   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
186                OpWidth, Imm, true, ImmWidth)
187 
188 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
189 // when RegisterClass is used as an operand. Most often used for destination
190 // operands.
191 
192 DECODE_OPERAND_REG_8(VGPR_32)
193 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
194 DECODE_OPERAND_REG_8(VReg_64)
195 DECODE_OPERAND_REG_8(VReg_96)
196 DECODE_OPERAND_REG_8(VReg_128)
197 DECODE_OPERAND_REG_8(VReg_256)
198 DECODE_OPERAND_REG_8(VReg_288)
199 DECODE_OPERAND_REG_8(VReg_352)
200 DECODE_OPERAND_REG_8(VReg_384)
201 DECODE_OPERAND_REG_8(VReg_512)
202 DECODE_OPERAND_REG_8(VReg_1024)
203 
204 DECODE_OPERAND_REG_7(SReg_32, OPW32)
205 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
206 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
207 DECODE_OPERAND_REG_7(SReg_64, OPW64)
208 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
209 DECODE_OPERAND_REG_7(SReg_128, OPW128)
210 DECODE_OPERAND_REG_7(SReg_256, OPW256)
211 DECODE_OPERAND_REG_7(SReg_512, OPW512)
212 
213 DECODE_OPERAND_REG_8(AGPR_32)
214 DECODE_OPERAND_REG_8(AReg_64)
215 DECODE_OPERAND_REG_8(AReg_128)
216 DECODE_OPERAND_REG_8(AReg_256)
217 DECODE_OPERAND_REG_8(AReg_512)
218 DECODE_OPERAND_REG_8(AReg_1024)
219 
220 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
221 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
222 
223 // Decoders for register only source RegisterOperands that use use 9-bit Src
224 // encoding: 'decodeOperand_<RegClass>'.
225 
226 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
227 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
228 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
229 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
230 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
231 
232 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
233 
234 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
235 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
236 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
237 
238 // Decoders for register or immediate RegisterOperands that use 9-bit Src
239 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
240 
241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
243 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
244 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
254 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
255 
256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
259 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
260 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
261 
262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
264 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
265 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
266 
267 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
268                                                uint64_t /*Addr*/,
269                                                const MCDisassembler *Decoder) {
270   assert(isUInt<10>(Imm) && "10-bit encoding expected");
271   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
272 
273   bool IsHi = Imm & (1 << 9);
274   unsigned RegIdx = Imm & 0xff;
275   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
276   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
277 }
278 
279 static DecodeStatus
280 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
281                                  const MCDisassembler *Decoder) {
282   assert(isUInt<8>(Imm) && "8-bit encoding expected");
283 
284   bool IsHi = Imm & (1 << 7);
285   unsigned RegIdx = Imm & 0x7f;
286   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
288 }
289 
290 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
291                                                 uint64_t /*Addr*/,
292                                                 const MCDisassembler *Decoder) {
293   assert(isUInt<9>(Imm) && "9-bit encoding expected");
294 
295   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
296   bool IsVGPR = Imm & (1 << 8);
297   if (IsVGPR) {
298     bool IsHi = Imm & (1 << 7);
299     unsigned RegIdx = Imm & 0x7f;
300     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
301   }
302   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
303                                                    Imm & 0xFF, false, 16));
304 }
305 
306 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
307                                           uint64_t /*Addr*/,
308                                           const MCDisassembler *Decoder) {
309   assert(isUInt<10>(Imm) && "10-bit encoding expected");
310 
311   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
312   bool IsVGPR = Imm & (1 << 8);
313   if (IsVGPR) {
314     bool IsHi = Imm & (1 << 9);
315     unsigned RegIdx = Imm & 0xff;
316     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
317   }
318   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
319                                                    Imm & 0xFF, false, 16));
320 }
321 
322 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
323                                          uint64_t Addr,
324                                          const MCDisassembler *Decoder) {
325   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
326   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
327 }
328 
329 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
330                                           uint64_t Addr, const void *Decoder) {
331   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
332   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
333 }
334 
335 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
336                           const MCRegisterInfo *MRI) {
337   if (OpIdx < 0)
338     return false;
339 
340   const MCOperand &Op = Inst.getOperand(OpIdx);
341   if (!Op.isReg())
342     return false;
343 
344   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
345   auto Reg = Sub ? Sub : Op.getReg();
346   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
347 }
348 
349 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
350                                              AMDGPUDisassembler::OpWidthTy Opw,
351                                              const MCDisassembler *Decoder) {
352   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
353   if (!DAsm->isGFX90A()) {
354     Imm &= 511;
355   } else {
356     // If atomic has both vdata and vdst their register classes are tied.
357     // The bit is decoded along with the vdst, first operand. We need to
358     // change register class to AGPR if vdst was AGPR.
359     // If a DS instruction has both data0 and data1 their register classes
360     // are also tied.
361     unsigned Opc = Inst.getOpcode();
362     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
363     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
364                                                         : AMDGPU::OpName::vdata;
365     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
366     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
367     if ((int)Inst.getNumOperands() == DataIdx) {
368       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
369       if (IsAGPROperand(Inst, DstIdx, MRI))
370         Imm |= 512;
371     }
372 
373     if (TSFlags & SIInstrFlags::DS) {
374       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
375       if ((int)Inst.getNumOperands() == Data2Idx &&
376           IsAGPROperand(Inst, DataIdx, MRI))
377         Imm |= 512;
378     }
379   }
380   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
381 }
382 
383 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
384                                            uint64_t Addr,
385                                            const MCDisassembler *Decoder) {
386   assert(Imm < (1 << 9) && "9-bit encoding");
387   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
388   return addOperand(
389       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
390 }
391 
392 static DecodeStatus
393 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
394                              const MCDisassembler *Decoder) {
395   return decodeOperand_AVLdSt_Any(Inst, Imm,
396                                   AMDGPUDisassembler::OPW32, Decoder);
397 }
398 
399 static DecodeStatus
400 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
401                              const MCDisassembler *Decoder) {
402   return decodeOperand_AVLdSt_Any(Inst, Imm,
403                                   AMDGPUDisassembler::OPW64, Decoder);
404 }
405 
406 static DecodeStatus
407 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
408                              const MCDisassembler *Decoder) {
409   return decodeOperand_AVLdSt_Any(Inst, Imm,
410                                   AMDGPUDisassembler::OPW96, Decoder);
411 }
412 
413 static DecodeStatus
414 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
415                               const MCDisassembler *Decoder) {
416   return decodeOperand_AVLdSt_Any(Inst, Imm,
417                                   AMDGPUDisassembler::OPW128, Decoder);
418 }
419 
420 static DecodeStatus
421 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
422                               const MCDisassembler *Decoder) {
423   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
424                                   Decoder);
425 }
426 
427 #define DECODE_SDWA(DecName) \
428 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
429 
430 DECODE_SDWA(Src32)
431 DECODE_SDWA(Src16)
432 DECODE_SDWA(VopcDst)
433 
434 #include "AMDGPUGenDisassemblerTables.inc"
435 
436 //===----------------------------------------------------------------------===//
437 //
438 //===----------------------------------------------------------------------===//
439 
440 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
441   assert(Bytes.size() >= sizeof(T));
442   const auto Res =
443       support::endian::read<T, llvm::endianness::little>(Bytes.data());
444   Bytes = Bytes.slice(sizeof(T));
445   return Res;
446 }
447 
448 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
449   assert(Bytes.size() >= 12);
450   uint64_t Lo =
451       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
452   Bytes = Bytes.slice(8);
453   uint64_t Hi =
454       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
455   Bytes = Bytes.slice(4);
456   return DecoderUInt128(Lo, Hi);
457 }
458 
459 // The disassembler is greedy, so we need to check FI operand value to
460 // not parse a dpp if the correct literal is not set. For dpp16 the
461 // autogenerated decoder checks the dpp literal
462 static bool isValidDPP8(const MCInst &MI) {
463   using namespace llvm::AMDGPU::DPP;
464   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
465   assert(FiIdx != -1);
466   if ((unsigned)FiIdx >= MI.getNumOperands())
467     return false;
468   unsigned Fi = MI.getOperand(FiIdx).getImm();
469   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
470 }
471 
472 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
473                                                 ArrayRef<uint8_t> Bytes_,
474                                                 uint64_t Address,
475                                                 raw_ostream &CS) const {
476   bool IsSDWA = false;
477 
478   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
479   Bytes = Bytes_.slice(0, MaxInstBytesNum);
480 
481   DecodeStatus Res = MCDisassembler::Fail;
482   do {
483     // ToDo: better to switch encoding length using some bit predicate
484     // but it is unknown yet, so try all we can
485 
486     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
487     // encodings
488     if (isGFX11Plus() && Bytes.size() >= 12 ) {
489       DecoderUInt128 DecW = eat12Bytes(Bytes);
490       Res =
491           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
492                         MI, DecW, Address, CS);
493       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
494         break;
495       MI = MCInst(); // clear
496       Res =
497           tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
498                         MI, DecW, Address, CS);
499       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
500         break;
501       MI = MCInst(); // clear
502 
503       const auto convertVOPDPP = [&]() {
504         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) {
505           convertVOP3PDPPInst(MI);
506         } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) {
507           convertVOPCDPPInst(MI); // Special VOP3 case
508         } else {
509           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
510           convertVOP3DPPInst(MI); // Regular VOP3 case
511         }
512       };
513       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
514                           MI, DecW, Address, CS);
515       if (Res) {
516         convertVOPDPP();
517         break;
518       }
519       Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
520                           MI, DecW, Address, CS);
521       if (Res) {
522         convertVOPDPP();
523         break;
524       }
525       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
526       if (Res)
527         break;
528 
529       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
530       if (Res)
531         break;
532     }
533     // Reinitialize Bytes
534     Bytes = Bytes_.slice(0, MaxInstBytesNum);
535 
536     if (Bytes.size() >= 8) {
537       const uint64_t QW = eatBytes<uint64_t>(Bytes);
538 
539       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
540         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
541         if (Res) {
542           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
543               == -1)
544             break;
545           if (convertDPP8Inst(MI) == MCDisassembler::Success)
546             break;
547           MI = MCInst(); // clear
548         }
549       }
550 
551       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
552       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
553         break;
554       MI = MCInst(); // clear
555 
556       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
557                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
558       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
559         break;
560       MI = MCInst(); // clear
561 
562       Res = tryDecodeInst(DecoderTableDPP8GFX1264,
563                           DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
564       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
565         break;
566       MI = MCInst(); // clear
567 
568       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
569       if (Res) break;
570 
571       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
572                           MI, QW, Address, CS);
573       if (Res) {
574         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
575           convertVOPCDPPInst(MI);
576         break;
577       }
578 
579       Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
580                           MI, QW, Address, CS);
581       if (Res) {
582         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
583           convertVOPCDPPInst(MI);
584         break;
585       }
586 
587       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
588       if (Res) { IsSDWA = true;  break; }
589 
590       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
591       if (Res) { IsSDWA = true;  break; }
592 
593       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
594       if (Res) { IsSDWA = true;  break; }
595 
596       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
597         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
598         if (Res)
599           break;
600       }
601 
602       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
603       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
604       // table first so we print the correct name.
605       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
606         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
607         if (Res)
608           break;
609       }
610     }
611 
612     // Reinitialize Bytes as DPP64 could have eaten too much
613     Bytes = Bytes_.slice(0, MaxInstBytesNum);
614 
615     // Try decode 32-bit instruction
616     if (Bytes.size() < 4) break;
617     const uint32_t DW = eatBytes<uint32_t>(Bytes);
618     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
619     if (Res) break;
620 
621     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
622     if (Res) break;
623 
624     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
625     if (Res) break;
626 
627     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
628       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
629       if (Res)
630         break;
631     }
632 
633     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
634       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
635       if (Res) break;
636     }
637 
638     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
639     if (Res) break;
640 
641     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
642                         Address, CS);
643     if (Res) break;
644 
645     Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
646                         Address, CS);
647     if (Res)
648       break;
649 
650     if (Bytes.size() < 4) break;
651     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
652 
653     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
654       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
655       if (Res)
656         break;
657     }
658 
659     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
660       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
661       if (Res)
662         break;
663     }
664 
665     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
666     if (Res) break;
667 
668     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
669     if (Res) break;
670 
671     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
672     if (Res) break;
673 
674     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
675     if (Res) break;
676 
677     Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
678                         Address, CS);
679     if (Res)
680       break;
681 
682     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
683                         Address, CS);
684     if (Res)
685       break;
686 
687     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
688   } while (false);
689 
690   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
691     // Insert dummy unused src2_modifiers.
692     insertNamedMCOperand(MI, MCOperand::createImm(0),
693                          AMDGPU::OpName::src2_modifiers);
694   }
695 
696   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
697           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
698     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
699                                              AMDGPU::OpName::cpol);
700     if (CPolPos != -1) {
701       unsigned CPol =
702           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
703               AMDGPU::CPol::GLC : 0;
704       if (MI.getNumOperands() <= (unsigned)CPolPos) {
705         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
706                              AMDGPU::OpName::cpol);
707       } else if (CPol) {
708         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
709       }
710     }
711   }
712 
713   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
714               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
715              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
716     // GFX90A lost TFE, its place is occupied by ACC.
717     int TFEOpIdx =
718         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
719     if (TFEOpIdx != -1) {
720       auto TFEIter = MI.begin();
721       std::advance(TFEIter, TFEOpIdx);
722       MI.insert(TFEIter, MCOperand::createImm(0));
723     }
724   }
725 
726   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
727               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
728     int SWZOpIdx =
729         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
730     if (SWZOpIdx != -1) {
731       auto SWZIter = MI.begin();
732       std::advance(SWZIter, SWZOpIdx);
733       MI.insert(SWZIter, MCOperand::createImm(0));
734     }
735   }
736 
737   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
738     int VAddr0Idx =
739         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
740     int RsrcIdx =
741         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
742     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
743     if (VAddr0Idx >= 0 && NSAArgs > 0) {
744       unsigned NSAWords = (NSAArgs + 3) / 4;
745       if (Bytes.size() < 4 * NSAWords) {
746         Res = MCDisassembler::Fail;
747       } else {
748         for (unsigned i = 0; i < NSAArgs; ++i) {
749           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
750           auto VAddrRCID =
751               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
752           MI.insert(MI.begin() + VAddrIdx,
753                     createRegOperand(VAddrRCID, Bytes[i]));
754         }
755         Bytes = Bytes.slice(4 * NSAWords);
756       }
757     }
758 
759     if (Res)
760       Res = convertMIMGInst(MI);
761   }
762 
763   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
764               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
765     Res = convertMIMGInst(MI);
766 
767   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
768     Res = convertEXPInst(MI);
769 
770   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
771     Res = convertVINTERPInst(MI);
772 
773   if (Res && IsSDWA)
774     Res = convertSDWAInst(MI);
775 
776   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
777                                               AMDGPU::OpName::vdst_in);
778   if (VDstIn_Idx != -1) {
779     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
780                            MCOI::OperandConstraint::TIED_TO);
781     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
782          !MI.getOperand(VDstIn_Idx).isReg() ||
783          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
784       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
785         MI.erase(&MI.getOperand(VDstIn_Idx));
786       insertNamedMCOperand(MI,
787         MCOperand::createReg(MI.getOperand(Tied).getReg()),
788         AMDGPU::OpName::vdst_in);
789     }
790   }
791 
792   int ImmLitIdx =
793       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
794   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
795   if (Res && ImmLitIdx != -1 && !IsSOPK)
796     Res = convertFMAanyK(MI, ImmLitIdx);
797 
798   // if the opcode was not recognized we'll assume a Size of 4 bytes
799   // (unless there are fewer bytes left)
800   Size = Res ? (MaxInstBytesNum - Bytes.size())
801              : std::min((size_t)4, Bytes_.size());
802   return Res;
803 }
804 
805 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
806   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
807     // The MCInst still has these fields even though they are no longer encoded
808     // in the GFX11 instruction.
809     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
810     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
811   }
812   return MCDisassembler::Success;
813 }
814 
815 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
816   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
817       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
818       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
819       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
820       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
821       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
822       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
823       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
824     // The MCInst has this field that is not directly encoded in the
825     // instruction.
826     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
827   }
828   return MCDisassembler::Success;
829 }
830 
831 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
832   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
833       STI.hasFeature(AMDGPU::FeatureGFX10)) {
834     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
835       // VOPC - insert clamp
836       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
837   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
838     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
839     if (SDst != -1) {
840       // VOPC - insert VCC register as sdst
841       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
842                            AMDGPU::OpName::sdst);
843     } else {
844       // VOP1/2 - insert omod if present in instruction
845       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
846     }
847   }
848   return MCDisassembler::Success;
849 }
850 
851 struct VOPModifiers {
852   unsigned OpSel = 0;
853   unsigned OpSelHi = 0;
854   unsigned NegLo = 0;
855   unsigned NegHi = 0;
856 };
857 
858 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
859 // Note that these values do not affect disassembler output,
860 // so this is only necessary for consistency with src_modifiers.
861 static VOPModifiers collectVOPModifiers(const MCInst &MI,
862                                         bool IsVOP3P = false) {
863   VOPModifiers Modifiers;
864   unsigned Opc = MI.getOpcode();
865   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
866                         AMDGPU::OpName::src1_modifiers,
867                         AMDGPU::OpName::src2_modifiers};
868   for (int J = 0; J < 3; ++J) {
869     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
870     if (OpIdx == -1)
871       continue;
872 
873     unsigned Val = MI.getOperand(OpIdx).getImm();
874 
875     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
876     if (IsVOP3P) {
877       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
878       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
879       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
880     } else if (J == 0) {
881       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
882     }
883   }
884 
885   return Modifiers;
886 }
887 
888 // MAC opcodes have special old and src2 operands.
889 // src2 is tied to dst, while old is not tied (but assumed to be).
890 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
891   constexpr int DST_IDX = 0;
892   auto Opcode = MI.getOpcode();
893   const auto &Desc = MCII->get(Opcode);
894   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
895 
896   if (OldIdx != -1 && Desc.getOperandConstraint(
897                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
898     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
899     assert(Desc.getOperandConstraint(
900                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
901                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
902     (void)DST_IDX;
903     return true;
904   }
905 
906   return false;
907 }
908 
909 // Create dummy old operand and insert dummy unused src2_modifiers
910 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
911   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
912   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
913   insertNamedMCOperand(MI, MCOperand::createImm(0),
914                        AMDGPU::OpName::src2_modifiers);
915 }
916 
917 // We must check FI == literal to reject not genuine dpp8 insts, and we must
918 // first add optional MI operands to check FI
919 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
920   unsigned Opc = MI.getOpcode();
921   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
922     convertVOP3PDPPInst(MI);
923   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
924              AMDGPU::isVOPC64DPP(Opc)) {
925     convertVOPCDPPInst(MI);
926   } else {
927     if (isMacDPP(MI))
928       convertMacDPPInst(MI);
929 
930     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
931     if (MI.getNumOperands() < DescNumOps &&
932         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
933       auto Mods = collectVOPModifiers(MI);
934       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
935                            AMDGPU::OpName::op_sel);
936     } else {
937       // Insert dummy unused src modifiers.
938       if (MI.getNumOperands() < DescNumOps &&
939           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
940         insertNamedMCOperand(MI, MCOperand::createImm(0),
941                              AMDGPU::OpName::src0_modifiers);
942 
943       if (MI.getNumOperands() < DescNumOps &&
944           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
945         insertNamedMCOperand(MI, MCOperand::createImm(0),
946                              AMDGPU::OpName::src1_modifiers);
947     }
948   }
949   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
950 }
951 
952 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
953   if (isMacDPP(MI))
954     convertMacDPPInst(MI);
955 
956   unsigned Opc = MI.getOpcode();
957   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
958   if (MI.getNumOperands() < DescNumOps &&
959       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
960     auto Mods = collectVOPModifiers(MI);
961     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
962                          AMDGPU::OpName::op_sel);
963   }
964   return MCDisassembler::Success;
965 }
966 
967 // Note that before gfx10, the MIMG encoding provided no information about
968 // VADDR size. Consequently, decoded instructions always show address as if it
969 // has 1 dword, which could be not really so.
970 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
971   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
972 
973   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
974                                            AMDGPU::OpName::vdst);
975 
976   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
977                                             AMDGPU::OpName::vdata);
978   int VAddr0Idx =
979       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
980   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
981                                                 : AMDGPU::OpName::rsrc;
982   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
983   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
984                                             AMDGPU::OpName::dmask);
985 
986   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
987                                             AMDGPU::OpName::tfe);
988   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
989                                             AMDGPU::OpName::d16);
990 
991   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
992   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
993       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
994 
995   assert(VDataIdx != -1);
996   if (BaseOpcode->BVH) {
997     // Add A16 operand for intersect_ray instructions
998     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
999     return MCDisassembler::Success;
1000   }
1001 
1002   bool IsAtomic = (VDstIdx != -1);
1003   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1004   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1005   bool IsNSA = false;
1006   bool IsPartialNSA = false;
1007   unsigned AddrSize = Info->VAddrDwords;
1008 
1009   if (isGFX10Plus()) {
1010     unsigned DimIdx =
1011         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1012     int A16Idx =
1013         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1014     const AMDGPU::MIMGDimInfo *Dim =
1015         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1016     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1017 
1018     AddrSize =
1019         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1020 
1021     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1022     // VIMAGE insts other than BVH never use vaddr4.
1023     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1024             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1025             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1026     if (!IsNSA) {
1027       if (!IsVSample && AddrSize > 12)
1028         AddrSize = 16;
1029     } else {
1030       if (AddrSize > Info->VAddrDwords) {
1031         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1032           // The NSA encoding does not contain enough operands for the
1033           // combination of base opcode / dimension. Should this be an error?
1034           return MCDisassembler::Success;
1035         }
1036         IsPartialNSA = true;
1037       }
1038     }
1039   }
1040 
1041   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1042   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1043 
1044   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1045   if (D16 && AMDGPU::hasPackedD16(STI)) {
1046     DstSize = (DstSize + 1) / 2;
1047   }
1048 
1049   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1050     DstSize += 1;
1051 
1052   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1053     return MCDisassembler::Success;
1054 
1055   int NewOpcode =
1056       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1057   if (NewOpcode == -1)
1058     return MCDisassembler::Success;
1059 
1060   // Widen the register to the correct number of enabled channels.
1061   unsigned NewVdata = AMDGPU::NoRegister;
1062   if (DstSize != Info->VDataDwords) {
1063     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1064 
1065     // Get first subregister of VData
1066     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1067     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1068     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1069 
1070     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1071                                        &MRI.getRegClass(DataRCID));
1072     if (NewVdata == AMDGPU::NoRegister) {
1073       // It's possible to encode this such that the low register + enabled
1074       // components exceeds the register count.
1075       return MCDisassembler::Success;
1076     }
1077   }
1078 
1079   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1080   // If using partial NSA on GFX11+ widen last address register.
1081   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1082   unsigned NewVAddrSA = AMDGPU::NoRegister;
1083   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1084       AddrSize != Info->VAddrDwords) {
1085     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1086     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1087     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1088 
1089     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1090     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1091                                         &MRI.getRegClass(AddrRCID));
1092     if (!NewVAddrSA)
1093       return MCDisassembler::Success;
1094   }
1095 
1096   MI.setOpcode(NewOpcode);
1097 
1098   if (NewVdata != AMDGPU::NoRegister) {
1099     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1100 
1101     if (IsAtomic) {
1102       // Atomic operations have an additional operand (a copy of data)
1103       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1104     }
1105   }
1106 
1107   if (NewVAddrSA) {
1108     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1109   } else if (IsNSA) {
1110     assert(AddrSize <= Info->VAddrDwords);
1111     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1112              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1113   }
1114 
1115   return MCDisassembler::Success;
1116 }
1117 
1118 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1119 // decoder only adds to src_modifiers, so manually add the bits to the other
1120 // operands.
1121 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1122   unsigned Opc = MI.getOpcode();
1123   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1124   auto Mods = collectVOPModifiers(MI, true);
1125 
1126   if (MI.getNumOperands() < DescNumOps &&
1127       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1128     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1129 
1130   if (MI.getNumOperands() < DescNumOps &&
1131       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1132     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1133                          AMDGPU::OpName::op_sel);
1134   if (MI.getNumOperands() < DescNumOps &&
1135       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1136     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1137                          AMDGPU::OpName::op_sel_hi);
1138   if (MI.getNumOperands() < DescNumOps &&
1139       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1140     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1141                          AMDGPU::OpName::neg_lo);
1142   if (MI.getNumOperands() < DescNumOps &&
1143       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1144     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1145                          AMDGPU::OpName::neg_hi);
1146 
1147   return MCDisassembler::Success;
1148 }
1149 
1150 // Create dummy old operand and insert optional operands
1151 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1152   unsigned Opc = MI.getOpcode();
1153   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1154 
1155   if (MI.getNumOperands() < DescNumOps &&
1156       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1157     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1158 
1159   if (MI.getNumOperands() < DescNumOps &&
1160       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1161     insertNamedMCOperand(MI, MCOperand::createImm(0),
1162                          AMDGPU::OpName::src0_modifiers);
1163 
1164   if (MI.getNumOperands() < DescNumOps &&
1165       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1166     insertNamedMCOperand(MI, MCOperand::createImm(0),
1167                          AMDGPU::OpName::src1_modifiers);
1168   return MCDisassembler::Success;
1169 }
1170 
1171 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1172                                                 int ImmLitIdx) const {
1173   assert(HasLiteral && "Should have decoded a literal");
1174   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1175   unsigned DescNumOps = Desc.getNumOperands();
1176   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1177                        AMDGPU::OpName::immDeferred);
1178   assert(DescNumOps == MI.getNumOperands());
1179   for (unsigned I = 0; I < DescNumOps; ++I) {
1180     auto &Op = MI.getOperand(I);
1181     auto OpType = Desc.operands()[I].OperandType;
1182     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1183                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1184     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1185         IsDeferredOp)
1186       Op.setImm(Literal);
1187   }
1188   return MCDisassembler::Success;
1189 }
1190 
1191 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1192   return getContext().getRegisterInfo()->
1193     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1194 }
1195 
1196 inline
1197 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1198                                          const Twine& ErrMsg) const {
1199   *CommentStream << "Error: " + ErrMsg;
1200 
1201   // ToDo: add support for error operands to MCInst.h
1202   // return MCOperand::createError(V);
1203   return MCOperand();
1204 }
1205 
1206 inline
1207 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1208   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1209 }
1210 
1211 inline
1212 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1213                                                unsigned Val) const {
1214   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1215   if (Val >= RegCl.getNumRegs())
1216     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1217                            ": unknown register " + Twine(Val));
1218   return createRegOperand(RegCl.getRegister(Val));
1219 }
1220 
1221 inline
1222 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1223                                                 unsigned Val) const {
1224   // ToDo: SI/CI have 104 SGPRs, VI - 102
1225   // Valery: here we accepting as much as we can, let assembler sort it out
1226   int shift = 0;
1227   switch (SRegClassID) {
1228   case AMDGPU::SGPR_32RegClassID:
1229   case AMDGPU::TTMP_32RegClassID:
1230     break;
1231   case AMDGPU::SGPR_64RegClassID:
1232   case AMDGPU::TTMP_64RegClassID:
1233     shift = 1;
1234     break;
1235   case AMDGPU::SGPR_128RegClassID:
1236   case AMDGPU::TTMP_128RegClassID:
1237   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1238   // this bundle?
1239   case AMDGPU::SGPR_256RegClassID:
1240   case AMDGPU::TTMP_256RegClassID:
1241     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1242   // this bundle?
1243   case AMDGPU::SGPR_288RegClassID:
1244   case AMDGPU::TTMP_288RegClassID:
1245   case AMDGPU::SGPR_320RegClassID:
1246   case AMDGPU::TTMP_320RegClassID:
1247   case AMDGPU::SGPR_352RegClassID:
1248   case AMDGPU::TTMP_352RegClassID:
1249   case AMDGPU::SGPR_384RegClassID:
1250   case AMDGPU::TTMP_384RegClassID:
1251   case AMDGPU::SGPR_512RegClassID:
1252   case AMDGPU::TTMP_512RegClassID:
1253     shift = 2;
1254     break;
1255   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1256   // this bundle?
1257   default:
1258     llvm_unreachable("unhandled register class");
1259   }
1260 
1261   if (Val % (1 << shift)) {
1262     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1263                    << ": scalar reg isn't aligned " << Val;
1264   }
1265 
1266   return createRegOperand(SRegClassID, Val >> shift);
1267 }
1268 
1269 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1270                                                   bool IsHi) const {
1271   unsigned RCID =
1272       IsHi ? AMDGPU::VGPR_HI16RegClassID : AMDGPU::VGPR_LO16RegClassID;
1273   return createRegOperand(RCID, RegIdx);
1274 }
1275 
1276 // Decode Literals for insts which always have a literal in the encoding
1277 MCOperand
1278 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1279   if (HasLiteral) {
1280     assert(
1281         AMDGPU::hasVOPD(STI) &&
1282         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1283     if (Literal != Val)
1284       return errOperand(Val, "More than one unique literal is illegal");
1285   }
1286   HasLiteral = true;
1287   Literal = Val;
1288   return MCOperand::createImm(Literal);
1289 }
1290 
1291 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1292   // For now all literal constants are supposed to be unsigned integer
1293   // ToDo: deal with signed/unsigned 64-bit integer constants
1294   // ToDo: deal with float/double constants
1295   if (!HasLiteral) {
1296     if (Bytes.size() < 4) {
1297       return errOperand(0, "cannot read literal, inst bytes left " +
1298                         Twine(Bytes.size()));
1299     }
1300     HasLiteral = true;
1301     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1302     if (ExtendFP64)
1303       Literal64 <<= 32;
1304   }
1305   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1306 }
1307 
1308 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1309   using namespace AMDGPU::EncValues;
1310 
1311   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1312   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1313     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1314     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1315       // Cast prevents negative overflow.
1316 }
1317 
1318 static int64_t getInlineImmVal32(unsigned Imm) {
1319   switch (Imm) {
1320   case 240:
1321     return llvm::bit_cast<uint32_t>(0.5f);
1322   case 241:
1323     return llvm::bit_cast<uint32_t>(-0.5f);
1324   case 242:
1325     return llvm::bit_cast<uint32_t>(1.0f);
1326   case 243:
1327     return llvm::bit_cast<uint32_t>(-1.0f);
1328   case 244:
1329     return llvm::bit_cast<uint32_t>(2.0f);
1330   case 245:
1331     return llvm::bit_cast<uint32_t>(-2.0f);
1332   case 246:
1333     return llvm::bit_cast<uint32_t>(4.0f);
1334   case 247:
1335     return llvm::bit_cast<uint32_t>(-4.0f);
1336   case 248: // 1 / (2 * PI)
1337     return 0x3e22f983;
1338   default:
1339     llvm_unreachable("invalid fp inline imm");
1340   }
1341 }
1342 
1343 static int64_t getInlineImmVal64(unsigned Imm) {
1344   switch (Imm) {
1345   case 240:
1346     return llvm::bit_cast<uint64_t>(0.5);
1347   case 241:
1348     return llvm::bit_cast<uint64_t>(-0.5);
1349   case 242:
1350     return llvm::bit_cast<uint64_t>(1.0);
1351   case 243:
1352     return llvm::bit_cast<uint64_t>(-1.0);
1353   case 244:
1354     return llvm::bit_cast<uint64_t>(2.0);
1355   case 245:
1356     return llvm::bit_cast<uint64_t>(-2.0);
1357   case 246:
1358     return llvm::bit_cast<uint64_t>(4.0);
1359   case 247:
1360     return llvm::bit_cast<uint64_t>(-4.0);
1361   case 248: // 1 / (2 * PI)
1362     return 0x3fc45f306dc9c882;
1363   default:
1364     llvm_unreachable("invalid fp inline imm");
1365   }
1366 }
1367 
1368 static int64_t getInlineImmVal16(unsigned Imm) {
1369   switch (Imm) {
1370   case 240:
1371     return 0x3800;
1372   case 241:
1373     return 0xB800;
1374   case 242:
1375     return 0x3C00;
1376   case 243:
1377     return 0xBC00;
1378   case 244:
1379     return 0x4000;
1380   case 245:
1381     return 0xC000;
1382   case 246:
1383     return 0x4400;
1384   case 247:
1385     return 0xC400;
1386   case 248: // 1 / (2 * PI)
1387     return 0x3118;
1388   default:
1389     llvm_unreachable("invalid fp inline imm");
1390   }
1391 }
1392 
1393 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1394   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1395       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1396 
1397   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1398   // ImmWidth 0 is a default case where operand should not allow immediates.
1399   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1400   // use it to print verbose error message.
1401   switch (ImmWidth) {
1402   case 0:
1403   case 32:
1404     return MCOperand::createImm(getInlineImmVal32(Imm));
1405   case 64:
1406     return MCOperand::createImm(getInlineImmVal64(Imm));
1407   case 16:
1408     return MCOperand::createImm(getInlineImmVal16(Imm));
1409   default:
1410     llvm_unreachable("implement me");
1411   }
1412 }
1413 
1414 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1415   using namespace AMDGPU;
1416 
1417   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1418   switch (Width) {
1419   default: // fall
1420   case OPW32:
1421   case OPW16:
1422   case OPWV216:
1423     return VGPR_32RegClassID;
1424   case OPW64:
1425   case OPWV232: return VReg_64RegClassID;
1426   case OPW96: return VReg_96RegClassID;
1427   case OPW128: return VReg_128RegClassID;
1428   case OPW160: return VReg_160RegClassID;
1429   case OPW256: return VReg_256RegClassID;
1430   case OPW288: return VReg_288RegClassID;
1431   case OPW320: return VReg_320RegClassID;
1432   case OPW352: return VReg_352RegClassID;
1433   case OPW384: return VReg_384RegClassID;
1434   case OPW512: return VReg_512RegClassID;
1435   case OPW1024: return VReg_1024RegClassID;
1436   }
1437 }
1438 
1439 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1440   using namespace AMDGPU;
1441 
1442   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1443   switch (Width) {
1444   default: // fall
1445   case OPW32:
1446   case OPW16:
1447   case OPWV216:
1448     return AGPR_32RegClassID;
1449   case OPW64:
1450   case OPWV232: return AReg_64RegClassID;
1451   case OPW96: return AReg_96RegClassID;
1452   case OPW128: return AReg_128RegClassID;
1453   case OPW160: return AReg_160RegClassID;
1454   case OPW256: return AReg_256RegClassID;
1455   case OPW288: return AReg_288RegClassID;
1456   case OPW320: return AReg_320RegClassID;
1457   case OPW352: return AReg_352RegClassID;
1458   case OPW384: return AReg_384RegClassID;
1459   case OPW512: return AReg_512RegClassID;
1460   case OPW1024: return AReg_1024RegClassID;
1461   }
1462 }
1463 
1464 
1465 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1466   using namespace AMDGPU;
1467 
1468   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1469   switch (Width) {
1470   default: // fall
1471   case OPW32:
1472   case OPW16:
1473   case OPWV216:
1474     return SGPR_32RegClassID;
1475   case OPW64:
1476   case OPWV232: return SGPR_64RegClassID;
1477   case OPW96: return SGPR_96RegClassID;
1478   case OPW128: return SGPR_128RegClassID;
1479   case OPW160: return SGPR_160RegClassID;
1480   case OPW256: return SGPR_256RegClassID;
1481   case OPW288: return SGPR_288RegClassID;
1482   case OPW320: return SGPR_320RegClassID;
1483   case OPW352: return SGPR_352RegClassID;
1484   case OPW384: return SGPR_384RegClassID;
1485   case OPW512: return SGPR_512RegClassID;
1486   }
1487 }
1488 
1489 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1490   using namespace AMDGPU;
1491 
1492   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1493   switch (Width) {
1494   default: // fall
1495   case OPW32:
1496   case OPW16:
1497   case OPWV216:
1498     return TTMP_32RegClassID;
1499   case OPW64:
1500   case OPWV232: return TTMP_64RegClassID;
1501   case OPW128: return TTMP_128RegClassID;
1502   case OPW256: return TTMP_256RegClassID;
1503   case OPW288: return TTMP_288RegClassID;
1504   case OPW320: return TTMP_320RegClassID;
1505   case OPW352: return TTMP_352RegClassID;
1506   case OPW384: return TTMP_384RegClassID;
1507   case OPW512: return TTMP_512RegClassID;
1508   }
1509 }
1510 
1511 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1512   using namespace AMDGPU::EncValues;
1513 
1514   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1515   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1516 
1517   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1518 }
1519 
1520 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1521                                           bool MandatoryLiteral,
1522                                           unsigned ImmWidth, bool IsFP) const {
1523   using namespace AMDGPU::EncValues;
1524 
1525   assert(Val < 1024); // enum10
1526 
1527   bool IsAGPR = Val & 512;
1528   Val &= 511;
1529 
1530   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1531     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1532                                    : getVgprClassId(Width), Val - VGPR_MIN);
1533   }
1534   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1535                             IsFP);
1536 }
1537 
1538 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1539                                                  unsigned Val,
1540                                                  bool MandatoryLiteral,
1541                                                  unsigned ImmWidth,
1542                                                  bool IsFP) const {
1543   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1544   // decoded earlier.
1545   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1546   using namespace AMDGPU::EncValues;
1547 
1548   if (Val <= SGPR_MAX) {
1549     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1550     static_assert(SGPR_MIN == 0);
1551     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1552   }
1553 
1554   int TTmpIdx = getTTmpIdx(Val);
1555   if (TTmpIdx >= 0) {
1556     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1557   }
1558 
1559   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1560     return decodeIntImmed(Val);
1561 
1562   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1563     return decodeFPImmed(ImmWidth, Val);
1564 
1565   if (Val == LITERAL_CONST) {
1566     if (MandatoryLiteral)
1567       // Keep a sentinel value for deferred setting
1568       return MCOperand::createImm(LITERAL_CONST);
1569     else
1570       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1571   }
1572 
1573   switch (Width) {
1574   case OPW32:
1575   case OPW16:
1576   case OPWV216:
1577     return decodeSpecialReg32(Val);
1578   case OPW64:
1579   case OPWV232:
1580     return decodeSpecialReg64(Val);
1581   default:
1582     llvm_unreachable("unexpected immediate type");
1583   }
1584 }
1585 
1586 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1587 // opposite of bit 0 of DstX.
1588 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1589                                                unsigned Val) const {
1590   int VDstXInd =
1591       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1592   assert(VDstXInd != -1);
1593   assert(Inst.getOperand(VDstXInd).isReg());
1594   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1595   Val |= ~XDstReg & 1;
1596   auto Width = llvm::AMDGPUDisassembler::OPW32;
1597   return createRegOperand(getVgprClassId(Width), Val);
1598 }
1599 
1600 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1601   using namespace AMDGPU;
1602 
1603   switch (Val) {
1604   // clang-format off
1605   case 102: return createRegOperand(FLAT_SCR_LO);
1606   case 103: return createRegOperand(FLAT_SCR_HI);
1607   case 104: return createRegOperand(XNACK_MASK_LO);
1608   case 105: return createRegOperand(XNACK_MASK_HI);
1609   case 106: return createRegOperand(VCC_LO);
1610   case 107: return createRegOperand(VCC_HI);
1611   case 108: return createRegOperand(TBA_LO);
1612   case 109: return createRegOperand(TBA_HI);
1613   case 110: return createRegOperand(TMA_LO);
1614   case 111: return createRegOperand(TMA_HI);
1615   case 124:
1616     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1617   case 125:
1618     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1619   case 126: return createRegOperand(EXEC_LO);
1620   case 127: return createRegOperand(EXEC_HI);
1621   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1622   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1623   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1624   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1625   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1626   case 251: return createRegOperand(SRC_VCCZ);
1627   case 252: return createRegOperand(SRC_EXECZ);
1628   case 253: return createRegOperand(SRC_SCC);
1629   case 254: return createRegOperand(LDS_DIRECT);
1630   default: break;
1631     // clang-format on
1632   }
1633   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1634 }
1635 
1636 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1637   using namespace AMDGPU;
1638 
1639   switch (Val) {
1640   case 102: return createRegOperand(FLAT_SCR);
1641   case 104: return createRegOperand(XNACK_MASK);
1642   case 106: return createRegOperand(VCC);
1643   case 108: return createRegOperand(TBA);
1644   case 110: return createRegOperand(TMA);
1645   case 124:
1646     if (isGFX11Plus())
1647       return createRegOperand(SGPR_NULL);
1648     break;
1649   case 125:
1650     if (!isGFX11Plus())
1651       return createRegOperand(SGPR_NULL);
1652     break;
1653   case 126: return createRegOperand(EXEC);
1654   case 235: return createRegOperand(SRC_SHARED_BASE);
1655   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1656   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1657   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1658   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1659   case 251: return createRegOperand(SRC_VCCZ);
1660   case 252: return createRegOperand(SRC_EXECZ);
1661   case 253: return createRegOperand(SRC_SCC);
1662   default: break;
1663   }
1664   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1665 }
1666 
1667 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1668                                             const unsigned Val,
1669                                             unsigned ImmWidth) const {
1670   using namespace AMDGPU::SDWA;
1671   using namespace AMDGPU::EncValues;
1672 
1673   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1674       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1675     // XXX: cast to int is needed to avoid stupid warning:
1676     // compare with unsigned is always true
1677     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1678         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1679       return createRegOperand(getVgprClassId(Width),
1680                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1681     }
1682     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1683         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1684                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1685       return createSRegOperand(getSgprClassId(Width),
1686                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1687     }
1688     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1689         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1690       return createSRegOperand(getTtmpClassId(Width),
1691                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1692     }
1693 
1694     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1695 
1696     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1697       return decodeIntImmed(SVal);
1698 
1699     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1700       return decodeFPImmed(ImmWidth, SVal);
1701 
1702     return decodeSpecialReg32(SVal);
1703   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1704     return createRegOperand(getVgprClassId(Width), Val);
1705   }
1706   llvm_unreachable("unsupported target");
1707 }
1708 
1709 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1710   return decodeSDWASrc(OPW16, Val, 16);
1711 }
1712 
1713 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1714   return decodeSDWASrc(OPW32, Val, 32);
1715 }
1716 
1717 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1718   using namespace AMDGPU::SDWA;
1719 
1720   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1721           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1722          "SDWAVopcDst should be present only on GFX9+");
1723 
1724   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1725 
1726   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1727     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1728 
1729     int TTmpIdx = getTTmpIdx(Val);
1730     if (TTmpIdx >= 0) {
1731       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1732       return createSRegOperand(TTmpClsId, TTmpIdx);
1733     } else if (Val > SGPR_MAX) {
1734       return IsWave64 ? decodeSpecialReg64(Val)
1735                       : decodeSpecialReg32(Val);
1736     } else {
1737       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1738     }
1739   } else {
1740     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1741   }
1742 }
1743 
1744 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1745   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1746              ? decodeSrcOp(OPW64, Val)
1747              : decodeSrcOp(OPW32, Val);
1748 }
1749 
1750 bool AMDGPUDisassembler::isVI() const {
1751   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1752 }
1753 
1754 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1755 
1756 bool AMDGPUDisassembler::isGFX90A() const {
1757   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1758 }
1759 
1760 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1761 
1762 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1763 
1764 bool AMDGPUDisassembler::isGFX10Plus() const {
1765   return AMDGPU::isGFX10Plus(STI);
1766 }
1767 
1768 bool AMDGPUDisassembler::isGFX11() const {
1769   return STI.hasFeature(AMDGPU::FeatureGFX11);
1770 }
1771 
1772 bool AMDGPUDisassembler::isGFX11Plus() const {
1773   return AMDGPU::isGFX11Plus(STI);
1774 }
1775 
1776 bool AMDGPUDisassembler::isGFX12Plus() const {
1777   return AMDGPU::isGFX12Plus(STI);
1778 }
1779 
1780 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1781   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1782 }
1783 
1784 bool AMDGPUDisassembler::hasKernargPreload() const {
1785   return AMDGPU::hasKernargPreload(STI);
1786 }
1787 
1788 //===----------------------------------------------------------------------===//
1789 // AMDGPU specific symbol handling
1790 //===----------------------------------------------------------------------===//
1791 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1792 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1793   do {                                                                         \
1794     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1795   } while (0)
1796 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1797   do {                                                                         \
1798     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1799              << GET_FIELD(MASK) << '\n';                                       \
1800   } while (0)
1801 
1802 // NOLINTNEXTLINE(readability-identifier-naming)
1803 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1804     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1805   using namespace amdhsa;
1806   StringRef Indent = "\t";
1807 
1808   // We cannot accurately backward compute #VGPRs used from
1809   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1810   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1811   // simply calculate the inverse of what the assembler does.
1812 
1813   uint32_t GranulatedWorkitemVGPRCount =
1814       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1815 
1816   uint32_t NextFreeVGPR =
1817       (GranulatedWorkitemVGPRCount + 1) *
1818       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1819 
1820   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1821 
1822   // We cannot backward compute values used to calculate
1823   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1824   // directives can't be computed:
1825   // .amdhsa_reserve_vcc
1826   // .amdhsa_reserve_flat_scratch
1827   // .amdhsa_reserve_xnack_mask
1828   // They take their respective default values if not specified in the assembly.
1829   //
1830   // GRANULATED_WAVEFRONT_SGPR_COUNT
1831   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1832   //
1833   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1834   // are set to 0. So while disassembling we consider that:
1835   //
1836   // GRANULATED_WAVEFRONT_SGPR_COUNT
1837   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1838   //
1839   // The disassembler cannot recover the original values of those 3 directives.
1840 
1841   uint32_t GranulatedWavefrontSGPRCount =
1842       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1843 
1844   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1845     return MCDisassembler::Fail;
1846 
1847   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1848                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1849 
1850   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1851   if (!hasArchitectedFlatScratch())
1852     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1853   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1854   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1855 
1856   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1857     return MCDisassembler::Fail;
1858 
1859   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1860                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1861   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1862                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1863   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1864                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1865   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1866                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1867 
1868   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1869     return MCDisassembler::Fail;
1870 
1871   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1872 
1873   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1874     return MCDisassembler::Fail;
1875 
1876   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1877 
1878   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1879     return MCDisassembler::Fail;
1880 
1881   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1882     return MCDisassembler::Fail;
1883 
1884   if (isGFX9Plus())
1885     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1886 
1887   if (!isGFX9Plus())
1888     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1889       return MCDisassembler::Fail;
1890   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1891     return MCDisassembler::Fail;
1892   if (!isGFX10Plus())
1893     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1894       return MCDisassembler::Fail;
1895 
1896   if (isGFX10Plus()) {
1897     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1898                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1899     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1900     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1901   }
1902   return MCDisassembler::Success;
1903 }
1904 
1905 // NOLINTNEXTLINE(readability-identifier-naming)
1906 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1907     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1908   using namespace amdhsa;
1909   StringRef Indent = "\t";
1910   if (hasArchitectedFlatScratch())
1911     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1912                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1913   else
1914     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1915                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1916   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1917                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1918   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1919                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1920   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1921                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1922   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1923                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1924   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1925                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1926 
1927   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1928     return MCDisassembler::Fail;
1929 
1930   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1931     return MCDisassembler::Fail;
1932 
1933   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1934     return MCDisassembler::Fail;
1935 
1936   PRINT_DIRECTIVE(
1937       ".amdhsa_exception_fp_ieee_invalid_op",
1938       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1939   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1940                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1941   PRINT_DIRECTIVE(
1942       ".amdhsa_exception_fp_ieee_div_zero",
1943       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1944   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1945                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1946   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1947                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1948   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1949                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1950   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1951                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1952 
1953   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1954     return MCDisassembler::Fail;
1955 
1956   return MCDisassembler::Success;
1957 }
1958 
1959 // NOLINTNEXTLINE(readability-identifier-naming)
1960 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1961     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1962   using namespace amdhsa;
1963   StringRef Indent = "\t";
1964   if (isGFX90A()) {
1965     KdStream << Indent << ".amdhsa_accum_offset "
1966              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1967              << '\n';
1968     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1969       return MCDisassembler::Fail;
1970     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1971     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
1972       return MCDisassembler::Fail;
1973   } else if (isGFX10Plus()) {
1974     if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
1975       PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
1976                       COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1977     } else {
1978       PRINT_PSEUDO_DIRECTIVE_COMMENT(
1979           "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1980     }
1981 
1982     if (isGFX11Plus()) {
1983       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
1984                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_INST_PREF_SIZE);
1985       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
1986                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
1987       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
1988                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_END);
1989     } else {
1990       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED0)
1991         return MCDisassembler::Fail;
1992     }
1993 
1994     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED1)
1995       return MCDisassembler::Fail;
1996 
1997     if (isGFX11Plus()) {
1998       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
1999                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
2000     } else {
2001       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED2)
2002         return MCDisassembler::Fail;
2003     }
2004   } else if (FourByteBuffer) {
2005     return MCDisassembler::Fail;
2006   }
2007   return MCDisassembler::Success;
2008 }
2009 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2010 #undef PRINT_DIRECTIVE
2011 #undef GET_FIELD
2012 
2013 MCDisassembler::DecodeStatus
2014 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2015     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2016     raw_string_ostream &KdStream) const {
2017 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2018   do {                                                                         \
2019     KdStream << Indent << DIRECTIVE " "                                        \
2020              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2021   } while (0)
2022 
2023   uint16_t TwoByteBuffer = 0;
2024   uint32_t FourByteBuffer = 0;
2025 
2026   StringRef ReservedBytes;
2027   StringRef Indent = "\t";
2028 
2029   assert(Bytes.size() == 64);
2030   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2031 
2032   switch (Cursor.tell()) {
2033   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2034     FourByteBuffer = DE.getU32(Cursor);
2035     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2036              << '\n';
2037     return MCDisassembler::Success;
2038 
2039   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2040     FourByteBuffer = DE.getU32(Cursor);
2041     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2042              << FourByteBuffer << '\n';
2043     return MCDisassembler::Success;
2044 
2045   case amdhsa::KERNARG_SIZE_OFFSET:
2046     FourByteBuffer = DE.getU32(Cursor);
2047     KdStream << Indent << ".amdhsa_kernarg_size "
2048              << FourByteBuffer << '\n';
2049     return MCDisassembler::Success;
2050 
2051   case amdhsa::RESERVED0_OFFSET:
2052     // 4 reserved bytes, must be 0.
2053     ReservedBytes = DE.getBytes(Cursor, 4);
2054     for (int I = 0; I < 4; ++I) {
2055       if (ReservedBytes[I] != 0) {
2056         return MCDisassembler::Fail;
2057       }
2058     }
2059     return MCDisassembler::Success;
2060 
2061   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2062     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2063     // So far no directive controls this for Code Object V3, so simply skip for
2064     // disassembly.
2065     DE.skip(Cursor, 8);
2066     return MCDisassembler::Success;
2067 
2068   case amdhsa::RESERVED1_OFFSET:
2069     // 20 reserved bytes, must be 0.
2070     ReservedBytes = DE.getBytes(Cursor, 20);
2071     for (int I = 0; I < 20; ++I) {
2072       if (ReservedBytes[I] != 0) {
2073         return MCDisassembler::Fail;
2074       }
2075     }
2076     return MCDisassembler::Success;
2077 
2078   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2079     FourByteBuffer = DE.getU32(Cursor);
2080     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2081 
2082   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2083     FourByteBuffer = DE.getU32(Cursor);
2084     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2085 
2086   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2087     FourByteBuffer = DE.getU32(Cursor);
2088     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2089 
2090   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2091     using namespace amdhsa;
2092     TwoByteBuffer = DE.getU16(Cursor);
2093 
2094     if (!hasArchitectedFlatScratch())
2095       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2096                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2097     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2098                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2099     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2100                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2101     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2102                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2103     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2104                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2105     if (!hasArchitectedFlatScratch())
2106       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2107                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2108     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2109                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2110 
2111     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2112       return MCDisassembler::Fail;
2113 
2114     // Reserved for GFX9
2115     if (isGFX9() &&
2116         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2117       return MCDisassembler::Fail;
2118     } else if (isGFX10Plus()) {
2119       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2120                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2121     }
2122 
2123     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2124       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2125                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2126 
2127     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2128       return MCDisassembler::Fail;
2129 
2130     return MCDisassembler::Success;
2131 
2132   case amdhsa::KERNARG_PRELOAD_OFFSET:
2133     using namespace amdhsa;
2134     TwoByteBuffer = DE.getU16(Cursor);
2135     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2136       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2137                       KERNARG_PRELOAD_SPEC_LENGTH);
2138     }
2139 
2140     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2141       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2142                       KERNARG_PRELOAD_SPEC_OFFSET);
2143     }
2144     return MCDisassembler::Success;
2145 
2146   case amdhsa::RESERVED3_OFFSET:
2147     // 4 bytes from here are reserved, must be 0.
2148     ReservedBytes = DE.getBytes(Cursor, 4);
2149     for (int I = 0; I < 4; ++I) {
2150       if (ReservedBytes[I] != 0)
2151         return MCDisassembler::Fail;
2152     }
2153     return MCDisassembler::Success;
2154 
2155   default:
2156     llvm_unreachable("Unhandled index. Case statements cover everything.");
2157     return MCDisassembler::Fail;
2158   }
2159 #undef PRINT_DIRECTIVE
2160 }
2161 
2162 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2163     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2164   // CP microcode requires the kernel descriptor to be 64 aligned.
2165   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2166     return MCDisassembler::Fail;
2167 
2168   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2169   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2170   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2171   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2172   // when required.
2173   if (isGFX10Plus()) {
2174     uint16_t KernelCodeProperties =
2175         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2176                                 llvm::endianness::little);
2177     EnableWavefrontSize32 =
2178         AMDHSA_BITS_GET(KernelCodeProperties,
2179                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2180   }
2181 
2182   std::string Kd;
2183   raw_string_ostream KdStream(Kd);
2184   KdStream << ".amdhsa_kernel " << KdName << '\n';
2185 
2186   DataExtractor::Cursor C(0);
2187   while (C && C.tell() < Bytes.size()) {
2188     MCDisassembler::DecodeStatus Status =
2189         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2190 
2191     cantFail(C.takeError());
2192 
2193     if (Status == MCDisassembler::Fail)
2194       return MCDisassembler::Fail;
2195   }
2196   KdStream << ".end_amdhsa_kernel\n";
2197   outs() << KdStream.str();
2198   return MCDisassembler::Success;
2199 }
2200 
2201 std::optional<MCDisassembler::DecodeStatus>
2202 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2203                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2204                                   raw_ostream &CStream) const {
2205   // Right now only kernel descriptor needs to be handled.
2206   // We ignore all other symbols for target specific handling.
2207   // TODO:
2208   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2209   // Object V2 and V3 when symbols are marked protected.
2210 
2211   // amd_kernel_code_t for Code Object V2.
2212   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2213     Size = 256;
2214     return MCDisassembler::Fail;
2215   }
2216 
2217   // Code Object V3 kernel descriptors.
2218   StringRef Name = Symbol.Name;
2219   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2220     Size = 64; // Size = 64 regardless of success or failure.
2221     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2222   }
2223   return std::nullopt;
2224 }
2225 
2226 //===----------------------------------------------------------------------===//
2227 // AMDGPUSymbolizer
2228 //===----------------------------------------------------------------------===//
2229 
2230 // Try to find symbol name for specified label
2231 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2232     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2233     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2234     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2235 
2236   if (!IsBranch) {
2237     return false;
2238   }
2239 
2240   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2241   if (!Symbols)
2242     return false;
2243 
2244   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2245     return Val.Addr == static_cast<uint64_t>(Value) &&
2246            Val.Type == ELF::STT_NOTYPE;
2247   });
2248   if (Result != Symbols->end()) {
2249     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2250     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2251     Inst.addOperand(MCOperand::createExpr(Add));
2252     return true;
2253   }
2254   // Add to list of referenced addresses, so caller can synthesize a label.
2255   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2256   return false;
2257 }
2258 
2259 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2260                                                        int64_t Value,
2261                                                        uint64_t Address) {
2262   llvm_unreachable("unimplemented");
2263 }
2264 
2265 //===----------------------------------------------------------------------===//
2266 // Initialization
2267 //===----------------------------------------------------------------------===//
2268 
2269 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2270                               LLVMOpInfoCallback /*GetOpInfo*/,
2271                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2272                               void *DisInfo,
2273                               MCContext *Ctx,
2274                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2275   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2276 }
2277 
2278 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2279                                                 const MCSubtargetInfo &STI,
2280                                                 MCContext &Ctx) {
2281   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2282 }
2283 
2284 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2285   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2286                                          createAMDGPUDisassembler);
2287   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2288                                        createAMDGPUSymbolizer);
2289 }
2290