1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, 49 MCInstrInfo const *MCII) : 50 MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 51 TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) { 52 53 // ToDo: AMDGPUDisassembler supports only VI ISA. 54 if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus()) 55 report_fatal_error("Disassembly not yet supported for subtarget"); 56 } 57 58 inline static MCDisassembler::DecodeStatus 59 addOperand(MCInst &Inst, const MCOperand& Opnd) { 60 Inst.addOperand(Opnd); 61 return Opnd.isValid() ? 62 MCDisassembler::Success : 63 MCDisassembler::Fail; 64 } 65 66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 67 uint16_t NameIdx) { 68 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 69 if (OpIdx != -1) { 70 auto I = MI.begin(); 71 std::advance(I, OpIdx); 72 MI.insert(I, Op); 73 } 74 return OpIdx; 75 } 76 77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm, 78 uint64_t Addr, 79 const MCDisassembler *Decoder) { 80 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 81 82 // Our branches take a simm16, but we need two extra bits to account for the 83 // factor of 4. 84 APInt SignedOffset(18, Imm * 4, true); 85 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 86 87 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 88 return MCDisassembler::Success; 89 return addOperand(Inst, MCOperand::createImm(Imm)); 90 } 91 92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 93 const MCDisassembler *Decoder) { 94 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 95 int64_t Offset; 96 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 111 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 112 uint64_t /*Addr*/, \ 113 const MCDisassembler *Decoder) { \ 114 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 115 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 116 } 117 118 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 119 // number of register. Used by VGPR only and AGPR only operands. 120 #define DECODE_OPERAND_REG_8(RegClass) \ 121 static DecodeStatus Decode##RegClass##RegisterClass( \ 122 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 123 const MCDisassembler *Decoder) { \ 124 assert(Imm < (1 << 8) && "8-bit encoding"); \ 125 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 126 return addOperand( \ 127 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 128 } 129 130 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 131 ImmWidth) \ 132 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 133 const MCDisassembler *Decoder) { \ 134 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 135 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 136 return addOperand(Inst, \ 137 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 138 MandatoryLiteral, ImmWidth)); \ 139 } 140 141 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 142 // get register class. Used by SGPR only operands. 143 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 144 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 145 146 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 147 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 148 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 149 // Used by AV_ register classes (AGPR or VGPR only register operands). 150 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 151 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 152 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 153 154 // Decoder for Src(9-bit encoding) registers only. 155 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 156 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 157 158 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 159 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 160 // only. 161 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 162 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 163 164 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 165 // Imm{9} is acc, registers only. 166 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 167 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 168 169 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 170 // register from RegClass or immediate. Registers that don't belong to RegClass 171 // will be decoded and InstPrinter will report warning. Immediate will be 172 // decoded into constant of size ImmWidth, should match width of immediate used 173 // by OperandType (important for floating point types). 174 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 175 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 176 false, ImmWidth) 177 178 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 179 // and decode using 'enum10' from decodeSrcOp. 180 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 181 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 182 Imm | 512, false, ImmWidth) 183 184 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 185 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 186 OpWidth, Imm, true, ImmWidth) 187 188 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 189 // when RegisterClass is used as an operand. Most often used for destination 190 // operands. 191 192 DECODE_OPERAND_REG_8(VGPR_32) 193 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 194 DECODE_OPERAND_REG_8(VReg_64) 195 DECODE_OPERAND_REG_8(VReg_96) 196 DECODE_OPERAND_REG_8(VReg_128) 197 DECODE_OPERAND_REG_8(VReg_256) 198 DECODE_OPERAND_REG_8(VReg_288) 199 DECODE_OPERAND_REG_8(VReg_352) 200 DECODE_OPERAND_REG_8(VReg_384) 201 DECODE_OPERAND_REG_8(VReg_512) 202 DECODE_OPERAND_REG_8(VReg_1024) 203 204 DECODE_OPERAND_REG_7(SReg_32, OPW32) 205 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 206 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 207 DECODE_OPERAND_REG_7(SReg_64, OPW64) 208 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 209 DECODE_OPERAND_REG_7(SReg_128, OPW128) 210 DECODE_OPERAND_REG_7(SReg_256, OPW256) 211 DECODE_OPERAND_REG_7(SReg_512, OPW512) 212 213 DECODE_OPERAND_REG_8(AGPR_32) 214 DECODE_OPERAND_REG_8(AReg_64) 215 DECODE_OPERAND_REG_8(AReg_128) 216 DECODE_OPERAND_REG_8(AReg_256) 217 DECODE_OPERAND_REG_8(AReg_512) 218 DECODE_OPERAND_REG_8(AReg_1024) 219 220 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 221 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 222 223 // Decoders for register only source RegisterOperands that use use 9-bit Src 224 // encoding: 'decodeOperand_<RegClass>'. 225 226 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 227 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 228 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 229 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 230 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 231 232 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 233 234 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 235 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 236 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 237 238 // Decoders for register or immediate RegisterOperands that use 9-bit Src 239 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 240 241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 243 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 253 254 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 259 260 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 263 264 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm, 265 uint64_t Addr, 266 const MCDisassembler *Decoder) { 267 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 268 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 269 } 270 271 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm, 272 uint64_t Addr, 273 const MCDisassembler *Decoder) { 274 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 275 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 276 } 277 278 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 279 uint64_t Addr, const void *Decoder) { 280 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 281 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 282 } 283 284 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 285 const MCRegisterInfo *MRI) { 286 if (OpIdx < 0) 287 return false; 288 289 const MCOperand &Op = Inst.getOperand(OpIdx); 290 if (!Op.isReg()) 291 return false; 292 293 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 294 auto Reg = Sub ? Sub : Op.getReg(); 295 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 296 } 297 298 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 299 AMDGPUDisassembler::OpWidthTy Opw, 300 const MCDisassembler *Decoder) { 301 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 302 if (!DAsm->isGFX90A()) { 303 Imm &= 511; 304 } else { 305 // If atomic has both vdata and vdst their register classes are tied. 306 // The bit is decoded along with the vdst, first operand. We need to 307 // change register class to AGPR if vdst was AGPR. 308 // If a DS instruction has both data0 and data1 their register classes 309 // are also tied. 310 unsigned Opc = Inst.getOpcode(); 311 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 312 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 313 : AMDGPU::OpName::vdata; 314 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 315 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 316 if ((int)Inst.getNumOperands() == DataIdx) { 317 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 318 if (IsAGPROperand(Inst, DstIdx, MRI)) 319 Imm |= 512; 320 } 321 322 if (TSFlags & SIInstrFlags::DS) { 323 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 324 if ((int)Inst.getNumOperands() == Data2Idx && 325 IsAGPROperand(Inst, DataIdx, MRI)) 326 Imm |= 512; 327 } 328 } 329 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 330 } 331 332 static DecodeStatus 333 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 334 const MCDisassembler *Decoder) { 335 return decodeOperand_AVLdSt_Any(Inst, Imm, 336 AMDGPUDisassembler::OPW32, Decoder); 337 } 338 339 static DecodeStatus 340 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 341 const MCDisassembler *Decoder) { 342 return decodeOperand_AVLdSt_Any(Inst, Imm, 343 AMDGPUDisassembler::OPW64, Decoder); 344 } 345 346 static DecodeStatus 347 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 348 const MCDisassembler *Decoder) { 349 return decodeOperand_AVLdSt_Any(Inst, Imm, 350 AMDGPUDisassembler::OPW96, Decoder); 351 } 352 353 static DecodeStatus 354 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 355 const MCDisassembler *Decoder) { 356 return decodeOperand_AVLdSt_Any(Inst, Imm, 357 AMDGPUDisassembler::OPW128, Decoder); 358 } 359 360 static DecodeStatus 361 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 362 const MCDisassembler *Decoder) { 363 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 364 Decoder); 365 } 366 367 #define DECODE_SDWA(DecName) \ 368 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 369 370 DECODE_SDWA(Src32) 371 DECODE_SDWA(Src16) 372 DECODE_SDWA(VopcDst) 373 374 #include "AMDGPUGenDisassemblerTables.inc" 375 376 //===----------------------------------------------------------------------===// 377 // 378 //===----------------------------------------------------------------------===// 379 380 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 381 assert(Bytes.size() >= sizeof(T)); 382 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); 383 Bytes = Bytes.slice(sizeof(T)); 384 return Res; 385 } 386 387 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 388 assert(Bytes.size() >= 12); 389 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>( 390 Bytes.data()); 391 Bytes = Bytes.slice(8); 392 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>( 393 Bytes.data()); 394 Bytes = Bytes.slice(4); 395 return DecoderUInt128(Lo, Hi); 396 } 397 398 // The disassembler is greedy, so we need to check FI operand value to 399 // not parse a dpp if the correct literal is not set. For dpp16 the 400 // autogenerated decoder checks the dpp literal 401 static bool isValidDPP8(const MCInst &MI) { 402 using namespace llvm::AMDGPU::DPP; 403 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 404 assert(FiIdx != -1); 405 if ((unsigned)FiIdx >= MI.getNumOperands()) 406 return false; 407 unsigned Fi = MI.getOperand(FiIdx).getImm(); 408 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 409 } 410 411 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 412 ArrayRef<uint8_t> Bytes_, 413 uint64_t Address, 414 raw_ostream &CS) const { 415 CommentStream = &CS; 416 bool IsSDWA = false; 417 418 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 419 Bytes = Bytes_.slice(0, MaxInstBytesNum); 420 421 DecodeStatus Res = MCDisassembler::Fail; 422 do { 423 // ToDo: better to switch encoding length using some bit predicate 424 // but it is unknown yet, so try all we can 425 426 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 427 // encodings 428 if (isGFX11Plus() && Bytes.size() >= 12 ) { 429 DecoderUInt128 DecW = eat12Bytes(Bytes); 430 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, 431 Address); 432 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 433 break; 434 MI = MCInst(); // clear 435 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, 436 Address); 437 if (Res) { 438 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 439 convertVOP3PDPPInst(MI); 440 else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) 441 convertVOPCDPPInst(MI); // Special VOP3 case 442 else { 443 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 444 convertVOP3DPPInst(MI); // Regular VOP3 case 445 } 446 break; 447 } 448 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address); 449 if (Res) 450 break; 451 } 452 // Reinitialize Bytes 453 Bytes = Bytes_.slice(0, MaxInstBytesNum); 454 455 if (Bytes.size() >= 8) { 456 const uint64_t QW = eatBytes<uint64_t>(Bytes); 457 458 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 459 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address); 460 if (Res) { 461 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 462 == -1) 463 break; 464 if (convertDPP8Inst(MI) == MCDisassembler::Success) 465 break; 466 MI = MCInst(); // clear 467 } 468 } 469 470 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address); 471 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 472 break; 473 MI = MCInst(); // clear 474 475 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address); 476 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 477 break; 478 MI = MCInst(); // clear 479 480 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address); 481 if (Res) break; 482 483 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address); 484 if (Res) { 485 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 486 convertVOPCDPPInst(MI); 487 break; 488 } 489 490 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address); 491 if (Res) { IsSDWA = true; break; } 492 493 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address); 494 if (Res) { IsSDWA = true; break; } 495 496 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address); 497 if (Res) { IsSDWA = true; break; } 498 499 if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) { 500 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address); 501 if (Res) 502 break; 503 } 504 505 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 506 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 507 // table first so we print the correct name. 508 if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) { 509 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address); 510 if (Res) 511 break; 512 } 513 } 514 515 // Reinitialize Bytes as DPP64 could have eaten too much 516 Bytes = Bytes_.slice(0, MaxInstBytesNum); 517 518 // Try decode 32-bit instruction 519 if (Bytes.size() < 4) break; 520 const uint32_t DW = eatBytes<uint32_t>(Bytes); 521 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address); 522 if (Res) break; 523 524 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address); 525 if (Res) break; 526 527 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address); 528 if (Res) break; 529 530 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 531 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address); 532 if (Res) 533 break; 534 } 535 536 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 537 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address); 538 if (Res) break; 539 } 540 541 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address); 542 if (Res) break; 543 544 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address); 545 if (Res) break; 546 547 if (Bytes.size() < 4) break; 548 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 549 550 if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) { 551 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address); 552 if (Res) 553 break; 554 } 555 556 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 557 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address); 558 if (Res) 559 break; 560 } 561 562 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address); 563 if (Res) break; 564 565 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address); 566 if (Res) break; 567 568 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address); 569 if (Res) break; 570 571 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address); 572 if (Res) break; 573 574 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address); 575 if (Res) 576 break; 577 578 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address); 579 } while (false); 580 581 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 582 // Insert dummy unused src2_modifiers. 583 insertNamedMCOperand(MI, MCOperand::createImm(0), 584 AMDGPU::OpName::src2_modifiers); 585 } 586 587 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 588 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 589 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 590 AMDGPU::OpName::cpol); 591 if (CPolPos != -1) { 592 unsigned CPol = 593 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 594 AMDGPU::CPol::GLC : 0; 595 if (MI.getNumOperands() <= (unsigned)CPolPos) { 596 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 597 AMDGPU::OpName::cpol); 598 } else if (CPol) { 599 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 600 } 601 } 602 } 603 604 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 605 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 606 (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) { 607 // GFX90A lost TFE, its place is occupied by ACC. 608 int TFEOpIdx = 609 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 610 if (TFEOpIdx != -1) { 611 auto TFEIter = MI.begin(); 612 std::advance(TFEIter, TFEOpIdx); 613 MI.insert(TFEIter, MCOperand::createImm(0)); 614 } 615 } 616 617 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 618 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 619 int SWZOpIdx = 620 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 621 if (SWZOpIdx != -1) { 622 auto SWZIter = MI.begin(); 623 std::advance(SWZIter, SWZOpIdx); 624 MI.insert(SWZIter, MCOperand::createImm(0)); 625 } 626 } 627 628 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 629 int VAddr0Idx = 630 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 631 int RsrcIdx = 632 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 633 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 634 if (VAddr0Idx >= 0 && NSAArgs > 0) { 635 unsigned NSAWords = (NSAArgs + 3) / 4; 636 if (Bytes.size() < 4 * NSAWords) { 637 Res = MCDisassembler::Fail; 638 } else { 639 for (unsigned i = 0; i < NSAArgs; ++i) { 640 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 641 auto VAddrRCID = 642 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 643 MI.insert(MI.begin() + VAddrIdx, 644 createRegOperand(VAddrRCID, Bytes[i])); 645 } 646 Bytes = Bytes.slice(4 * NSAWords); 647 } 648 } 649 650 if (Res) 651 Res = convertMIMGInst(MI); 652 } 653 654 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 655 Res = convertEXPInst(MI); 656 657 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 658 Res = convertVINTERPInst(MI); 659 660 if (Res && IsSDWA) 661 Res = convertSDWAInst(MI); 662 663 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 664 AMDGPU::OpName::vdst_in); 665 if (VDstIn_Idx != -1) { 666 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 667 MCOI::OperandConstraint::TIED_TO); 668 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 669 !MI.getOperand(VDstIn_Idx).isReg() || 670 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 671 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 672 MI.erase(&MI.getOperand(VDstIn_Idx)); 673 insertNamedMCOperand(MI, 674 MCOperand::createReg(MI.getOperand(Tied).getReg()), 675 AMDGPU::OpName::vdst_in); 676 } 677 } 678 679 int ImmLitIdx = 680 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 681 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 682 if (Res && ImmLitIdx != -1 && !IsSOPK) 683 Res = convertFMAanyK(MI, ImmLitIdx); 684 685 // if the opcode was not recognized we'll assume a Size of 4 bytes 686 // (unless there are fewer bytes left) 687 Size = Res ? (MaxInstBytesNum - Bytes.size()) 688 : std::min((size_t)4, Bytes_.size()); 689 return Res; 690 } 691 692 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 693 if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) { 694 // The MCInst still has these fields even though they are no longer encoded 695 // in the GFX11 instruction. 696 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 697 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 698 } 699 return MCDisassembler::Success; 700 } 701 702 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 703 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 704 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 705 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 706 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) { 707 // The MCInst has this field that is not directly encoded in the 708 // instruction. 709 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 710 } 711 return MCDisassembler::Success; 712 } 713 714 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 715 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 716 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 717 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 718 // VOPC - insert clamp 719 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 720 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 721 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 722 if (SDst != -1) { 723 // VOPC - insert VCC register as sdst 724 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 725 AMDGPU::OpName::sdst); 726 } else { 727 // VOP1/2 - insert omod if present in instruction 728 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 729 } 730 } 731 return MCDisassembler::Success; 732 } 733 734 struct VOPModifiers { 735 unsigned OpSel = 0; 736 unsigned OpSelHi = 0; 737 unsigned NegLo = 0; 738 unsigned NegHi = 0; 739 }; 740 741 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 742 // Note that these values do not affect disassembler output, 743 // so this is only necessary for consistency with src_modifiers. 744 static VOPModifiers collectVOPModifiers(const MCInst &MI, 745 bool IsVOP3P = false) { 746 VOPModifiers Modifiers; 747 unsigned Opc = MI.getOpcode(); 748 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 749 AMDGPU::OpName::src1_modifiers, 750 AMDGPU::OpName::src2_modifiers}; 751 for (int J = 0; J < 3; ++J) { 752 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 753 if (OpIdx == -1) 754 continue; 755 756 unsigned Val = MI.getOperand(OpIdx).getImm(); 757 758 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 759 if (IsVOP3P) { 760 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 761 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 762 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 763 } else if (J == 0) { 764 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 765 } 766 } 767 768 return Modifiers; 769 } 770 771 // MAC opcodes have special old and src2 operands. 772 // src2 is tied to dst, while old is not tied (but assumed to be). 773 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 774 constexpr int DST_IDX = 0; 775 auto Opcode = MI.getOpcode(); 776 const auto &Desc = MCII->get(Opcode); 777 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 778 779 if (OldIdx != -1 && Desc.getOperandConstraint( 780 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 781 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 782 assert(Desc.getOperandConstraint( 783 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 784 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 785 (void)DST_IDX; 786 return true; 787 } 788 789 return false; 790 } 791 792 // Create dummy old operand and insert dummy unused src2_modifiers 793 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 794 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 795 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 796 insertNamedMCOperand(MI, MCOperand::createImm(0), 797 AMDGPU::OpName::src2_modifiers); 798 } 799 800 // We must check FI == literal to reject not genuine dpp8 insts, and we must 801 // first add optional MI operands to check FI 802 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 803 unsigned Opc = MI.getOpcode(); 804 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 805 convertVOP3PDPPInst(MI); 806 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 807 AMDGPU::isVOPC64DPP(Opc)) { 808 convertVOPCDPPInst(MI); 809 } else { 810 if (isMacDPP(MI)) 811 convertMacDPPInst(MI); 812 813 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 814 if (MI.getNumOperands() < DescNumOps && 815 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 816 auto Mods = collectVOPModifiers(MI); 817 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 818 AMDGPU::OpName::op_sel); 819 } else { 820 // Insert dummy unused src modifiers. 821 if (MI.getNumOperands() < DescNumOps && 822 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 823 insertNamedMCOperand(MI, MCOperand::createImm(0), 824 AMDGPU::OpName::src0_modifiers); 825 826 if (MI.getNumOperands() < DescNumOps && 827 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 828 insertNamedMCOperand(MI, MCOperand::createImm(0), 829 AMDGPU::OpName::src1_modifiers); 830 } 831 } 832 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 833 } 834 835 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 836 if (isMacDPP(MI)) 837 convertMacDPPInst(MI); 838 839 unsigned Opc = MI.getOpcode(); 840 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 841 if (MI.getNumOperands() < DescNumOps && 842 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 843 auto Mods = collectVOPModifiers(MI); 844 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 845 AMDGPU::OpName::op_sel); 846 } 847 return MCDisassembler::Success; 848 } 849 850 // Note that before gfx10, the MIMG encoding provided no information about 851 // VADDR size. Consequently, decoded instructions always show address as if it 852 // has 1 dword, which could be not really so. 853 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 854 855 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 856 AMDGPU::OpName::vdst); 857 858 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 859 AMDGPU::OpName::vdata); 860 int VAddr0Idx = 861 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 862 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 863 AMDGPU::OpName::dmask); 864 865 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 866 AMDGPU::OpName::tfe); 867 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 868 AMDGPU::OpName::d16); 869 870 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 871 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 872 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 873 874 assert(VDataIdx != -1); 875 if (BaseOpcode->BVH) { 876 // Add A16 operand for intersect_ray instructions 877 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16)) 878 addOperand(MI, MCOperand::createImm(1)); 879 return MCDisassembler::Success; 880 } 881 882 bool IsAtomic = (VDstIdx != -1); 883 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; 884 bool IsNSA = false; 885 unsigned AddrSize = Info->VAddrDwords; 886 887 if (isGFX10Plus()) { 888 unsigned DimIdx = 889 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 890 int A16Idx = 891 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 892 const AMDGPU::MIMGDimInfo *Dim = 893 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 894 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 895 896 AddrSize = 897 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 898 899 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 900 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA; 901 if (!IsNSA) { 902 if (AddrSize > 12) 903 AddrSize = 16; 904 } else { 905 if (AddrSize > Info->VAddrDwords) { 906 // The NSA encoding does not contain enough operands for the combination 907 // of base opcode / dimension. Should this be an error? 908 return MCDisassembler::Success; 909 } 910 } 911 } 912 913 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 914 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 915 916 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 917 if (D16 && AMDGPU::hasPackedD16(STI)) { 918 DstSize = (DstSize + 1) / 2; 919 } 920 921 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 922 DstSize += 1; 923 924 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 925 return MCDisassembler::Success; 926 927 int NewOpcode = 928 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 929 if (NewOpcode == -1) 930 return MCDisassembler::Success; 931 932 // Widen the register to the correct number of enabled channels. 933 unsigned NewVdata = AMDGPU::NoRegister; 934 if (DstSize != Info->VDataDwords) { 935 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 936 937 // Get first subregister of VData 938 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 939 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 940 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 941 942 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 943 &MRI.getRegClass(DataRCID)); 944 if (NewVdata == AMDGPU::NoRegister) { 945 // It's possible to encode this such that the low register + enabled 946 // components exceeds the register count. 947 return MCDisassembler::Success; 948 } 949 } 950 951 // If not using NSA on GFX10+, widen address register to correct size. 952 unsigned NewVAddr0 = AMDGPU::NoRegister; 953 if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) { 954 unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg(); 955 unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0); 956 VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0; 957 958 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddr0Idx].RegClass; 959 NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0, 960 &MRI.getRegClass(AddrRCID)); 961 if (NewVAddr0 == AMDGPU::NoRegister) 962 return MCDisassembler::Success; 963 } 964 965 MI.setOpcode(NewOpcode); 966 967 if (NewVdata != AMDGPU::NoRegister) { 968 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 969 970 if (IsAtomic) { 971 // Atomic operations have an additional operand (a copy of data) 972 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 973 } 974 } 975 976 if (NewVAddr0 != AMDGPU::NoRegister) { 977 MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0); 978 } else if (IsNSA) { 979 assert(AddrSize <= Info->VAddrDwords); 980 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 981 MI.begin() + VAddr0Idx + Info->VAddrDwords); 982 } 983 984 return MCDisassembler::Success; 985 } 986 987 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 988 // decoder only adds to src_modifiers, so manually add the bits to the other 989 // operands. 990 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 991 unsigned Opc = MI.getOpcode(); 992 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 993 auto Mods = collectVOPModifiers(MI, true); 994 995 if (MI.getNumOperands() < DescNumOps && 996 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 997 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 998 999 if (MI.getNumOperands() < DescNumOps && 1000 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1001 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1002 AMDGPU::OpName::op_sel); 1003 if (MI.getNumOperands() < DescNumOps && 1004 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1005 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1006 AMDGPU::OpName::op_sel_hi); 1007 if (MI.getNumOperands() < DescNumOps && 1008 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1009 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1010 AMDGPU::OpName::neg_lo); 1011 if (MI.getNumOperands() < DescNumOps && 1012 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1013 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1014 AMDGPU::OpName::neg_hi); 1015 1016 return MCDisassembler::Success; 1017 } 1018 1019 // Create dummy old operand and insert optional operands 1020 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1021 unsigned Opc = MI.getOpcode(); 1022 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1023 1024 if (MI.getNumOperands() < DescNumOps && 1025 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1026 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1027 1028 if (MI.getNumOperands() < DescNumOps && 1029 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1030 insertNamedMCOperand(MI, MCOperand::createImm(0), 1031 AMDGPU::OpName::src0_modifiers); 1032 1033 if (MI.getNumOperands() < DescNumOps && 1034 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1035 insertNamedMCOperand(MI, MCOperand::createImm(0), 1036 AMDGPU::OpName::src1_modifiers); 1037 return MCDisassembler::Success; 1038 } 1039 1040 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1041 int ImmLitIdx) const { 1042 assert(HasLiteral && "Should have decoded a literal"); 1043 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1044 unsigned DescNumOps = Desc.getNumOperands(); 1045 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1046 AMDGPU::OpName::immDeferred); 1047 assert(DescNumOps == MI.getNumOperands()); 1048 for (unsigned I = 0; I < DescNumOps; ++I) { 1049 auto &Op = MI.getOperand(I); 1050 auto OpType = Desc.operands()[I].OperandType; 1051 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1052 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1053 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1054 IsDeferredOp) 1055 Op.setImm(Literal); 1056 } 1057 return MCDisassembler::Success; 1058 } 1059 1060 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1061 return getContext().getRegisterInfo()-> 1062 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1063 } 1064 1065 inline 1066 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1067 const Twine& ErrMsg) const { 1068 *CommentStream << "Error: " + ErrMsg; 1069 1070 // ToDo: add support for error operands to MCInst.h 1071 // return MCOperand::createError(V); 1072 return MCOperand(); 1073 } 1074 1075 inline 1076 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1077 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1078 } 1079 1080 inline 1081 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1082 unsigned Val) const { 1083 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1084 if (Val >= RegCl.getNumRegs()) 1085 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1086 ": unknown register " + Twine(Val)); 1087 return createRegOperand(RegCl.getRegister(Val)); 1088 } 1089 1090 inline 1091 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1092 unsigned Val) const { 1093 // ToDo: SI/CI have 104 SGPRs, VI - 102 1094 // Valery: here we accepting as much as we can, let assembler sort it out 1095 int shift = 0; 1096 switch (SRegClassID) { 1097 case AMDGPU::SGPR_32RegClassID: 1098 case AMDGPU::TTMP_32RegClassID: 1099 break; 1100 case AMDGPU::SGPR_64RegClassID: 1101 case AMDGPU::TTMP_64RegClassID: 1102 shift = 1; 1103 break; 1104 case AMDGPU::SGPR_128RegClassID: 1105 case AMDGPU::TTMP_128RegClassID: 1106 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1107 // this bundle? 1108 case AMDGPU::SGPR_256RegClassID: 1109 case AMDGPU::TTMP_256RegClassID: 1110 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1111 // this bundle? 1112 case AMDGPU::SGPR_288RegClassID: 1113 case AMDGPU::TTMP_288RegClassID: 1114 case AMDGPU::SGPR_320RegClassID: 1115 case AMDGPU::TTMP_320RegClassID: 1116 case AMDGPU::SGPR_352RegClassID: 1117 case AMDGPU::TTMP_352RegClassID: 1118 case AMDGPU::SGPR_384RegClassID: 1119 case AMDGPU::TTMP_384RegClassID: 1120 case AMDGPU::SGPR_512RegClassID: 1121 case AMDGPU::TTMP_512RegClassID: 1122 shift = 2; 1123 break; 1124 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1125 // this bundle? 1126 default: 1127 llvm_unreachable("unhandled register class"); 1128 } 1129 1130 if (Val % (1 << shift)) { 1131 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1132 << ": scalar reg isn't aligned " << Val; 1133 } 1134 1135 return createRegOperand(SRegClassID, Val >> shift); 1136 } 1137 1138 // Decode Literals for insts which always have a literal in the encoding 1139 MCOperand 1140 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1141 if (HasLiteral) { 1142 assert( 1143 AMDGPU::hasVOPD(STI) && 1144 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1145 if (Literal != Val) 1146 return errOperand(Val, "More than one unique literal is illegal"); 1147 } 1148 HasLiteral = true; 1149 Literal = Val; 1150 return MCOperand::createImm(Literal); 1151 } 1152 1153 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { 1154 // For now all literal constants are supposed to be unsigned integer 1155 // ToDo: deal with signed/unsigned 64-bit integer constants 1156 // ToDo: deal with float/double constants 1157 if (!HasLiteral) { 1158 if (Bytes.size() < 4) { 1159 return errOperand(0, "cannot read literal, inst bytes left " + 1160 Twine(Bytes.size())); 1161 } 1162 HasLiteral = true; 1163 Literal = eatBytes<uint32_t>(Bytes); 1164 } 1165 return MCOperand::createImm(Literal); 1166 } 1167 1168 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1169 using namespace AMDGPU::EncValues; 1170 1171 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1172 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1173 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1174 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1175 // Cast prevents negative overflow. 1176 } 1177 1178 static int64_t getInlineImmVal32(unsigned Imm) { 1179 switch (Imm) { 1180 case 240: 1181 return FloatToBits(0.5f); 1182 case 241: 1183 return FloatToBits(-0.5f); 1184 case 242: 1185 return FloatToBits(1.0f); 1186 case 243: 1187 return FloatToBits(-1.0f); 1188 case 244: 1189 return FloatToBits(2.0f); 1190 case 245: 1191 return FloatToBits(-2.0f); 1192 case 246: 1193 return FloatToBits(4.0f); 1194 case 247: 1195 return FloatToBits(-4.0f); 1196 case 248: // 1 / (2 * PI) 1197 return 0x3e22f983; 1198 default: 1199 llvm_unreachable("invalid fp inline imm"); 1200 } 1201 } 1202 1203 static int64_t getInlineImmVal64(unsigned Imm) { 1204 switch (Imm) { 1205 case 240: 1206 return DoubleToBits(0.5); 1207 case 241: 1208 return DoubleToBits(-0.5); 1209 case 242: 1210 return DoubleToBits(1.0); 1211 case 243: 1212 return DoubleToBits(-1.0); 1213 case 244: 1214 return DoubleToBits(2.0); 1215 case 245: 1216 return DoubleToBits(-2.0); 1217 case 246: 1218 return DoubleToBits(4.0); 1219 case 247: 1220 return DoubleToBits(-4.0); 1221 case 248: // 1 / (2 * PI) 1222 return 0x3fc45f306dc9c882; 1223 default: 1224 llvm_unreachable("invalid fp inline imm"); 1225 } 1226 } 1227 1228 static int64_t getInlineImmVal16(unsigned Imm) { 1229 switch (Imm) { 1230 case 240: 1231 return 0x3800; 1232 case 241: 1233 return 0xB800; 1234 case 242: 1235 return 0x3C00; 1236 case 243: 1237 return 0xBC00; 1238 case 244: 1239 return 0x4000; 1240 case 245: 1241 return 0xC000; 1242 case 246: 1243 return 0x4400; 1244 case 247: 1245 return 0xC400; 1246 case 248: // 1 / (2 * PI) 1247 return 0x3118; 1248 default: 1249 llvm_unreachable("invalid fp inline imm"); 1250 } 1251 } 1252 1253 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1254 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1255 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1256 1257 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1258 // ImmWidth 0 is a default case where operand should not allow immediates. 1259 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1260 // use it to print verbose error message. 1261 switch (ImmWidth) { 1262 case 0: 1263 case 32: 1264 return MCOperand::createImm(getInlineImmVal32(Imm)); 1265 case 64: 1266 return MCOperand::createImm(getInlineImmVal64(Imm)); 1267 case 16: 1268 return MCOperand::createImm(getInlineImmVal16(Imm)); 1269 default: 1270 llvm_unreachable("implement me"); 1271 } 1272 } 1273 1274 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1275 using namespace AMDGPU; 1276 1277 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1278 switch (Width) { 1279 default: // fall 1280 case OPW32: 1281 case OPW16: 1282 case OPWV216: 1283 return VGPR_32RegClassID; 1284 case OPW64: 1285 case OPWV232: return VReg_64RegClassID; 1286 case OPW96: return VReg_96RegClassID; 1287 case OPW128: return VReg_128RegClassID; 1288 case OPW160: return VReg_160RegClassID; 1289 case OPW256: return VReg_256RegClassID; 1290 case OPW288: return VReg_288RegClassID; 1291 case OPW320: return VReg_320RegClassID; 1292 case OPW352: return VReg_352RegClassID; 1293 case OPW384: return VReg_384RegClassID; 1294 case OPW512: return VReg_512RegClassID; 1295 case OPW1024: return VReg_1024RegClassID; 1296 } 1297 } 1298 1299 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1300 using namespace AMDGPU; 1301 1302 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1303 switch (Width) { 1304 default: // fall 1305 case OPW32: 1306 case OPW16: 1307 case OPWV216: 1308 return AGPR_32RegClassID; 1309 case OPW64: 1310 case OPWV232: return AReg_64RegClassID; 1311 case OPW96: return AReg_96RegClassID; 1312 case OPW128: return AReg_128RegClassID; 1313 case OPW160: return AReg_160RegClassID; 1314 case OPW256: return AReg_256RegClassID; 1315 case OPW288: return AReg_288RegClassID; 1316 case OPW320: return AReg_320RegClassID; 1317 case OPW352: return AReg_352RegClassID; 1318 case OPW384: return AReg_384RegClassID; 1319 case OPW512: return AReg_512RegClassID; 1320 case OPW1024: return AReg_1024RegClassID; 1321 } 1322 } 1323 1324 1325 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1326 using namespace AMDGPU; 1327 1328 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1329 switch (Width) { 1330 default: // fall 1331 case OPW32: 1332 case OPW16: 1333 case OPWV216: 1334 return SGPR_32RegClassID; 1335 case OPW64: 1336 case OPWV232: return SGPR_64RegClassID; 1337 case OPW96: return SGPR_96RegClassID; 1338 case OPW128: return SGPR_128RegClassID; 1339 case OPW160: return SGPR_160RegClassID; 1340 case OPW256: return SGPR_256RegClassID; 1341 case OPW288: return SGPR_288RegClassID; 1342 case OPW320: return SGPR_320RegClassID; 1343 case OPW352: return SGPR_352RegClassID; 1344 case OPW384: return SGPR_384RegClassID; 1345 case OPW512: return SGPR_512RegClassID; 1346 } 1347 } 1348 1349 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1350 using namespace AMDGPU; 1351 1352 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1353 switch (Width) { 1354 default: // fall 1355 case OPW32: 1356 case OPW16: 1357 case OPWV216: 1358 return TTMP_32RegClassID; 1359 case OPW64: 1360 case OPWV232: return TTMP_64RegClassID; 1361 case OPW128: return TTMP_128RegClassID; 1362 case OPW256: return TTMP_256RegClassID; 1363 case OPW288: return TTMP_288RegClassID; 1364 case OPW320: return TTMP_320RegClassID; 1365 case OPW352: return TTMP_352RegClassID; 1366 case OPW384: return TTMP_384RegClassID; 1367 case OPW512: return TTMP_512RegClassID; 1368 } 1369 } 1370 1371 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1372 using namespace AMDGPU::EncValues; 1373 1374 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1375 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1376 1377 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1378 } 1379 1380 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1381 bool MandatoryLiteral, 1382 unsigned ImmWidth) const { 1383 using namespace AMDGPU::EncValues; 1384 1385 assert(Val < 1024); // enum10 1386 1387 bool IsAGPR = Val & 512; 1388 Val &= 511; 1389 1390 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1391 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1392 : getVgprClassId(Width), Val - VGPR_MIN); 1393 } 1394 if (Val <= SGPR_MAX) { 1395 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1396 static_assert(SGPR_MIN == 0); 1397 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1398 } 1399 1400 int TTmpIdx = getTTmpIdx(Val); 1401 if (TTmpIdx >= 0) { 1402 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1403 } 1404 1405 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1406 return decodeIntImmed(Val); 1407 1408 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1409 return decodeFPImmed(ImmWidth, Val); 1410 1411 if (Val == LITERAL_CONST) { 1412 if (MandatoryLiteral) 1413 // Keep a sentinel value for deferred setting 1414 return MCOperand::createImm(LITERAL_CONST); 1415 else 1416 return decodeLiteralConstant(); 1417 } 1418 1419 switch (Width) { 1420 case OPW32: 1421 case OPW16: 1422 case OPWV216: 1423 return decodeSpecialReg32(Val); 1424 case OPW64: 1425 case OPWV232: 1426 return decodeSpecialReg64(Val); 1427 default: 1428 llvm_unreachable("unexpected immediate type"); 1429 } 1430 } 1431 1432 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1433 // opposite of bit 0 of DstX. 1434 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1435 unsigned Val) const { 1436 int VDstXInd = 1437 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1438 assert(VDstXInd != -1); 1439 assert(Inst.getOperand(VDstXInd).isReg()); 1440 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1441 Val |= ~XDstReg & 1; 1442 auto Width = llvm::AMDGPUDisassembler::OPW32; 1443 return createRegOperand(getVgprClassId(Width), Val); 1444 } 1445 1446 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1447 using namespace AMDGPU; 1448 1449 switch (Val) { 1450 // clang-format off 1451 case 102: return createRegOperand(FLAT_SCR_LO); 1452 case 103: return createRegOperand(FLAT_SCR_HI); 1453 case 104: return createRegOperand(XNACK_MASK_LO); 1454 case 105: return createRegOperand(XNACK_MASK_HI); 1455 case 106: return createRegOperand(VCC_LO); 1456 case 107: return createRegOperand(VCC_HI); 1457 case 108: return createRegOperand(TBA_LO); 1458 case 109: return createRegOperand(TBA_HI); 1459 case 110: return createRegOperand(TMA_LO); 1460 case 111: return createRegOperand(TMA_HI); 1461 case 124: 1462 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1463 case 125: 1464 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1465 case 126: return createRegOperand(EXEC_LO); 1466 case 127: return createRegOperand(EXEC_HI); 1467 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1468 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1469 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1470 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1471 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1472 case 251: return createRegOperand(SRC_VCCZ); 1473 case 252: return createRegOperand(SRC_EXECZ); 1474 case 253: return createRegOperand(SRC_SCC); 1475 case 254: return createRegOperand(LDS_DIRECT); 1476 default: break; 1477 // clang-format on 1478 } 1479 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1480 } 1481 1482 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1483 using namespace AMDGPU; 1484 1485 switch (Val) { 1486 case 102: return createRegOperand(FLAT_SCR); 1487 case 104: return createRegOperand(XNACK_MASK); 1488 case 106: return createRegOperand(VCC); 1489 case 108: return createRegOperand(TBA); 1490 case 110: return createRegOperand(TMA); 1491 case 124: 1492 if (isGFX11Plus()) 1493 return createRegOperand(SGPR_NULL); 1494 break; 1495 case 125: 1496 if (!isGFX11Plus()) 1497 return createRegOperand(SGPR_NULL); 1498 break; 1499 case 126: return createRegOperand(EXEC); 1500 case 235: return createRegOperand(SRC_SHARED_BASE); 1501 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1502 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1503 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1504 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1505 case 251: return createRegOperand(SRC_VCCZ); 1506 case 252: return createRegOperand(SRC_EXECZ); 1507 case 253: return createRegOperand(SRC_SCC); 1508 default: break; 1509 } 1510 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1511 } 1512 1513 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1514 const unsigned Val, 1515 unsigned ImmWidth) const { 1516 using namespace AMDGPU::SDWA; 1517 using namespace AMDGPU::EncValues; 1518 1519 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1520 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 1521 // XXX: cast to int is needed to avoid stupid warning: 1522 // compare with unsigned is always true 1523 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1524 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1525 return createRegOperand(getVgprClassId(Width), 1526 Val - SDWA9EncValues::SRC_VGPR_MIN); 1527 } 1528 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1529 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1530 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1531 return createSRegOperand(getSgprClassId(Width), 1532 Val - SDWA9EncValues::SRC_SGPR_MIN); 1533 } 1534 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1535 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1536 return createSRegOperand(getTtmpClassId(Width), 1537 Val - SDWA9EncValues::SRC_TTMP_MIN); 1538 } 1539 1540 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1541 1542 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1543 return decodeIntImmed(SVal); 1544 1545 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1546 return decodeFPImmed(ImmWidth, SVal); 1547 1548 return decodeSpecialReg32(SVal); 1549 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 1550 return createRegOperand(getVgprClassId(Width), Val); 1551 } 1552 llvm_unreachable("unsupported target"); 1553 } 1554 1555 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1556 return decodeSDWASrc(OPW16, Val, 16); 1557 } 1558 1559 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1560 return decodeSDWASrc(OPW32, Val, 32); 1561 } 1562 1563 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1564 using namespace AMDGPU::SDWA; 1565 1566 assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1567 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) && 1568 "SDWAVopcDst should be present only on GFX9+"); 1569 1570 bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64]; 1571 1572 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1573 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1574 1575 int TTmpIdx = getTTmpIdx(Val); 1576 if (TTmpIdx >= 0) { 1577 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1578 return createSRegOperand(TTmpClsId, TTmpIdx); 1579 } else if (Val > SGPR_MAX) { 1580 return IsWave64 ? decodeSpecialReg64(Val) 1581 : decodeSpecialReg32(Val); 1582 } else { 1583 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1584 } 1585 } else { 1586 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1587 } 1588 } 1589 1590 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1591 return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] 1592 ? decodeSrcOp(OPW64, Val) 1593 : decodeSrcOp(OPW32, Val); 1594 } 1595 1596 bool AMDGPUDisassembler::isVI() const { 1597 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1598 } 1599 1600 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1601 1602 bool AMDGPUDisassembler::isGFX90A() const { 1603 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; 1604 } 1605 1606 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1607 1608 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1609 1610 bool AMDGPUDisassembler::isGFX10Plus() const { 1611 return AMDGPU::isGFX10Plus(STI); 1612 } 1613 1614 bool AMDGPUDisassembler::isGFX11() const { 1615 return STI.getFeatureBits()[AMDGPU::FeatureGFX11]; 1616 } 1617 1618 bool AMDGPUDisassembler::isGFX11Plus() const { 1619 return AMDGPU::isGFX11Plus(STI); 1620 } 1621 1622 1623 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1624 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; 1625 } 1626 1627 //===----------------------------------------------------------------------===// 1628 // AMDGPU specific symbol handling 1629 //===----------------------------------------------------------------------===// 1630 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1631 do { \ 1632 KdStream << Indent << DIRECTIVE " " \ 1633 << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1634 } while (0) 1635 1636 // NOLINTNEXTLINE(readability-identifier-naming) 1637 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1638 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1639 using namespace amdhsa; 1640 StringRef Indent = "\t"; 1641 1642 // We cannot accurately backward compute #VGPRs used from 1643 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1644 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1645 // simply calculate the inverse of what the assembler does. 1646 1647 uint32_t GranulatedWorkitemVGPRCount = 1648 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >> 1649 COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT; 1650 1651 uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) * 1652 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI); 1653 1654 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1655 1656 // We cannot backward compute values used to calculate 1657 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1658 // directives can't be computed: 1659 // .amdhsa_reserve_vcc 1660 // .amdhsa_reserve_flat_scratch 1661 // .amdhsa_reserve_xnack_mask 1662 // They take their respective default values if not specified in the assembly. 1663 // 1664 // GRANULATED_WAVEFRONT_SGPR_COUNT 1665 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1666 // 1667 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1668 // are set to 0. So while disassembling we consider that: 1669 // 1670 // GRANULATED_WAVEFRONT_SGPR_COUNT 1671 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1672 // 1673 // The disassembler cannot recover the original values of those 3 directives. 1674 1675 uint32_t GranulatedWavefrontSGPRCount = 1676 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >> 1677 COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT; 1678 1679 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1680 return MCDisassembler::Fail; 1681 1682 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1683 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1684 1685 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1686 if (!hasArchitectedFlatScratch()) 1687 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1688 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1689 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1690 1691 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1692 return MCDisassembler::Fail; 1693 1694 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1695 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1696 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1697 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1698 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1699 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1700 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1701 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1702 1703 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1704 return MCDisassembler::Fail; 1705 1706 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); 1707 1708 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1709 return MCDisassembler::Fail; 1710 1711 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); 1712 1713 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1714 return MCDisassembler::Fail; 1715 1716 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1717 return MCDisassembler::Fail; 1718 1719 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); 1720 1721 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) 1722 return MCDisassembler::Fail; 1723 1724 if (isGFX10Plus()) { 1725 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1726 COMPUTE_PGM_RSRC1_WGP_MODE); 1727 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); 1728 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); 1729 } 1730 return MCDisassembler::Success; 1731 } 1732 1733 // NOLINTNEXTLINE(readability-identifier-naming) 1734 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1735 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1736 using namespace amdhsa; 1737 StringRef Indent = "\t"; 1738 if (hasArchitectedFlatScratch()) 1739 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1740 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1741 else 1742 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1743 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1744 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1745 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1746 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1747 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1748 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1749 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1750 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1751 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1752 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1753 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1754 1755 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1756 return MCDisassembler::Fail; 1757 1758 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1759 return MCDisassembler::Fail; 1760 1761 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1762 return MCDisassembler::Fail; 1763 1764 PRINT_DIRECTIVE( 1765 ".amdhsa_exception_fp_ieee_invalid_op", 1766 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1767 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1768 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1769 PRINT_DIRECTIVE( 1770 ".amdhsa_exception_fp_ieee_div_zero", 1771 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1772 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1773 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1774 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1775 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1776 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1777 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1778 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1779 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1780 1781 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1782 return MCDisassembler::Fail; 1783 1784 return MCDisassembler::Success; 1785 } 1786 1787 #undef PRINT_DIRECTIVE 1788 1789 MCDisassembler::DecodeStatus 1790 AMDGPUDisassembler::decodeKernelDescriptorDirective( 1791 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 1792 raw_string_ostream &KdStream) const { 1793 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1794 do { \ 1795 KdStream << Indent << DIRECTIVE " " \ 1796 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1797 } while (0) 1798 1799 uint16_t TwoByteBuffer = 0; 1800 uint32_t FourByteBuffer = 0; 1801 1802 StringRef ReservedBytes; 1803 StringRef Indent = "\t"; 1804 1805 assert(Bytes.size() == 64); 1806 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 1807 1808 switch (Cursor.tell()) { 1809 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 1810 FourByteBuffer = DE.getU32(Cursor); 1811 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 1812 << '\n'; 1813 return MCDisassembler::Success; 1814 1815 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 1816 FourByteBuffer = DE.getU32(Cursor); 1817 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 1818 << FourByteBuffer << '\n'; 1819 return MCDisassembler::Success; 1820 1821 case amdhsa::KERNARG_SIZE_OFFSET: 1822 FourByteBuffer = DE.getU32(Cursor); 1823 KdStream << Indent << ".amdhsa_kernarg_size " 1824 << FourByteBuffer << '\n'; 1825 return MCDisassembler::Success; 1826 1827 case amdhsa::RESERVED0_OFFSET: 1828 // 4 reserved bytes, must be 0. 1829 ReservedBytes = DE.getBytes(Cursor, 4); 1830 for (int I = 0; I < 4; ++I) { 1831 if (ReservedBytes[I] != 0) { 1832 return MCDisassembler::Fail; 1833 } 1834 } 1835 return MCDisassembler::Success; 1836 1837 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 1838 // KERNEL_CODE_ENTRY_BYTE_OFFSET 1839 // So far no directive controls this for Code Object V3, so simply skip for 1840 // disassembly. 1841 DE.skip(Cursor, 8); 1842 return MCDisassembler::Success; 1843 1844 case amdhsa::RESERVED1_OFFSET: 1845 // 20 reserved bytes, must be 0. 1846 ReservedBytes = DE.getBytes(Cursor, 20); 1847 for (int I = 0; I < 20; ++I) { 1848 if (ReservedBytes[I] != 0) { 1849 return MCDisassembler::Fail; 1850 } 1851 } 1852 return MCDisassembler::Success; 1853 1854 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 1855 // COMPUTE_PGM_RSRC3 1856 // - Only set for GFX10, GFX6-9 have this to be 0. 1857 // - Currently no directives directly control this. 1858 FourByteBuffer = DE.getU32(Cursor); 1859 if (!isGFX10Plus() && FourByteBuffer) { 1860 return MCDisassembler::Fail; 1861 } 1862 return MCDisassembler::Success; 1863 1864 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 1865 FourByteBuffer = DE.getU32(Cursor); 1866 if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) == 1867 MCDisassembler::Fail) { 1868 return MCDisassembler::Fail; 1869 } 1870 return MCDisassembler::Success; 1871 1872 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 1873 FourByteBuffer = DE.getU32(Cursor); 1874 if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) == 1875 MCDisassembler::Fail) { 1876 return MCDisassembler::Fail; 1877 } 1878 return MCDisassembler::Success; 1879 1880 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 1881 using namespace amdhsa; 1882 TwoByteBuffer = DE.getU16(Cursor); 1883 1884 if (!hasArchitectedFlatScratch()) 1885 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 1886 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 1887 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 1888 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 1889 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 1890 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 1891 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 1892 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 1893 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 1894 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 1895 if (!hasArchitectedFlatScratch()) 1896 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 1897 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 1898 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 1899 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 1900 1901 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 1902 return MCDisassembler::Fail; 1903 1904 // Reserved for GFX9 1905 if (isGFX9() && 1906 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 1907 return MCDisassembler::Fail; 1908 } else if (isGFX10Plus()) { 1909 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 1910 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1911 } 1912 1913 if (AMDGPU::getAmdhsaCodeObjectVersion() >= 5) 1914 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 1915 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 1916 1917 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 1918 return MCDisassembler::Fail; 1919 1920 return MCDisassembler::Success; 1921 1922 case amdhsa::RESERVED2_OFFSET: 1923 // 6 bytes from here are reserved, must be 0. 1924 ReservedBytes = DE.getBytes(Cursor, 6); 1925 for (int I = 0; I < 6; ++I) { 1926 if (ReservedBytes[I] != 0) 1927 return MCDisassembler::Fail; 1928 } 1929 return MCDisassembler::Success; 1930 1931 default: 1932 llvm_unreachable("Unhandled index. Case statements cover everything."); 1933 return MCDisassembler::Fail; 1934 } 1935 #undef PRINT_DIRECTIVE 1936 } 1937 1938 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 1939 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 1940 // CP microcode requires the kernel descriptor to be 64 aligned. 1941 if (Bytes.size() != 64 || KdAddress % 64 != 0) 1942 return MCDisassembler::Fail; 1943 1944 std::string Kd; 1945 raw_string_ostream KdStream(Kd); 1946 KdStream << ".amdhsa_kernel " << KdName << '\n'; 1947 1948 DataExtractor::Cursor C(0); 1949 while (C && C.tell() < Bytes.size()) { 1950 MCDisassembler::DecodeStatus Status = 1951 decodeKernelDescriptorDirective(C, Bytes, KdStream); 1952 1953 cantFail(C.takeError()); 1954 1955 if (Status == MCDisassembler::Fail) 1956 return MCDisassembler::Fail; 1957 } 1958 KdStream << ".end_amdhsa_kernel\n"; 1959 outs() << KdStream.str(); 1960 return MCDisassembler::Success; 1961 } 1962 1963 std::optional<MCDisassembler::DecodeStatus> 1964 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 1965 ArrayRef<uint8_t> Bytes, uint64_t Address, 1966 raw_ostream &CStream) const { 1967 // Right now only kernel descriptor needs to be handled. 1968 // We ignore all other symbols for target specific handling. 1969 // TODO: 1970 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 1971 // Object V2 and V3 when symbols are marked protected. 1972 1973 // amd_kernel_code_t for Code Object V2. 1974 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 1975 Size = 256; 1976 return MCDisassembler::Fail; 1977 } 1978 1979 // Code Object V3 kernel descriptors. 1980 StringRef Name = Symbol.Name; 1981 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { 1982 Size = 64; // Size = 64 regardless of success or failure. 1983 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 1984 } 1985 return std::nullopt; 1986 } 1987 1988 //===----------------------------------------------------------------------===// 1989 // AMDGPUSymbolizer 1990 //===----------------------------------------------------------------------===// 1991 1992 // Try to find symbol name for specified label 1993 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 1994 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 1995 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 1996 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 1997 1998 if (!IsBranch) { 1999 return false; 2000 } 2001 2002 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2003 if (!Symbols) 2004 return false; 2005 2006 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2007 return Val.Addr == static_cast<uint64_t>(Value) && 2008 Val.Type == ELF::STT_NOTYPE; 2009 }); 2010 if (Result != Symbols->end()) { 2011 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2012 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2013 Inst.addOperand(MCOperand::createExpr(Add)); 2014 return true; 2015 } 2016 // Add to list of referenced addresses, so caller can synthesize a label. 2017 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2018 return false; 2019 } 2020 2021 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2022 int64_t Value, 2023 uint64_t Address) { 2024 llvm_unreachable("unimplemented"); 2025 } 2026 2027 //===----------------------------------------------------------------------===// 2028 // Initialization 2029 //===----------------------------------------------------------------------===// 2030 2031 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2032 LLVMOpInfoCallback /*GetOpInfo*/, 2033 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2034 void *DisInfo, 2035 MCContext *Ctx, 2036 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2037 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2038 } 2039 2040 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2041 const MCSubtargetInfo &STI, 2042 MCContext &Ctx) { 2043 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2044 } 2045 2046 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2047 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2048 createAMDGPUDisassembler); 2049 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2050 createAMDGPUSymbolizer); 2051 } 2052