1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, MCInstrInfo const *MCII) 49 : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 50 MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) { 51 // ToDo: AMDGPUDisassembler supports only VI ISA. 52 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 53 report_fatal_error("Disassembly not yet supported for subtarget"); 54 } 55 56 inline static MCDisassembler::DecodeStatus 57 addOperand(MCInst &Inst, const MCOperand& Opnd) { 58 Inst.addOperand(Opnd); 59 return Opnd.isValid() ? 60 MCDisassembler::Success : 61 MCDisassembler::Fail; 62 } 63 64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 65 uint16_t NameIdx) { 66 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 67 if (OpIdx != -1) { 68 auto I = MI.begin(); 69 std::advance(I, OpIdx); 70 MI.insert(I, Op); 71 } 72 return OpIdx; 73 } 74 75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, 76 uint64_t Addr, 77 const MCDisassembler *Decoder) { 78 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 79 80 // Our branches take a simm16, but we need two extra bits to account for the 81 // factor of 4. 82 APInt SignedOffset(18, Imm * 4, true); 83 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 84 85 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 86 return MCDisassembler::Success; 87 return addOperand(Inst, MCOperand::createImm(Imm)); 88 } 89 90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 91 const MCDisassembler *Decoder) { 92 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 93 int64_t Offset; 94 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 95 Offset = Imm & 0xFFFFF; 96 } else { // GFX9+ supports 21-bit signed offsets. 97 Offset = SignExtend64<21>(Imm); 98 } 99 return addOperand(Inst, MCOperand::createImm(Offset)); 100 } 101 102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 103 const MCDisassembler *Decoder) { 104 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 105 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 106 } 107 108 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 109 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 110 uint64_t /*Addr*/, \ 111 const MCDisassembler *Decoder) { \ 112 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 113 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 114 } 115 116 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 117 // number of register. Used by VGPR only and AGPR only operands. 118 #define DECODE_OPERAND_REG_8(RegClass) \ 119 static DecodeStatus Decode##RegClass##RegisterClass( \ 120 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 121 const MCDisassembler *Decoder) { \ 122 assert(Imm < (1 << 8) && "8-bit encoding"); \ 123 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 124 return addOperand( \ 125 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 126 } 127 128 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 129 ImmWidth) \ 130 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 131 const MCDisassembler *Decoder) { \ 132 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 133 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 134 return addOperand(Inst, \ 135 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 136 MandatoryLiteral, ImmWidth)); \ 137 } 138 139 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 140 // get register class. Used by SGPR only operands. 141 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 142 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 143 144 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 145 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 146 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 147 // Used by AV_ register classes (AGPR or VGPR only register operands). 148 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 149 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 150 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 151 152 // Decoder for Src(9-bit encoding) registers only. 153 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 154 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 155 156 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 157 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 158 // only. 159 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 160 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 161 162 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 163 // Imm{9} is acc, registers only. 164 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 165 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 166 167 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 168 // register from RegClass or immediate. Registers that don't belong to RegClass 169 // will be decoded and InstPrinter will report warning. Immediate will be 170 // decoded into constant of size ImmWidth, should match width of immediate used 171 // by OperandType (important for floating point types). 172 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 173 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 174 false, ImmWidth) 175 176 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 177 // and decode using 'enum10' from decodeSrcOp. 178 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 179 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 180 Imm | 512, false, ImmWidth) 181 182 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 183 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 184 OpWidth, Imm, true, ImmWidth) 185 186 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 187 // when RegisterClass is used as an operand. Most often used for destination 188 // operands. 189 190 DECODE_OPERAND_REG_8(VGPR_32) 191 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 192 DECODE_OPERAND_REG_8(VReg_64) 193 DECODE_OPERAND_REG_8(VReg_96) 194 DECODE_OPERAND_REG_8(VReg_128) 195 DECODE_OPERAND_REG_8(VReg_256) 196 DECODE_OPERAND_REG_8(VReg_288) 197 DECODE_OPERAND_REG_8(VReg_352) 198 DECODE_OPERAND_REG_8(VReg_384) 199 DECODE_OPERAND_REG_8(VReg_512) 200 DECODE_OPERAND_REG_8(VReg_1024) 201 202 DECODE_OPERAND_REG_7(SReg_32, OPW32) 203 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 204 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 205 DECODE_OPERAND_REG_7(SReg_64, OPW64) 206 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 207 DECODE_OPERAND_REG_7(SReg_128, OPW128) 208 DECODE_OPERAND_REG_7(SReg_256, OPW256) 209 DECODE_OPERAND_REG_7(SReg_512, OPW512) 210 211 DECODE_OPERAND_REG_8(AGPR_32) 212 DECODE_OPERAND_REG_8(AReg_64) 213 DECODE_OPERAND_REG_8(AReg_128) 214 DECODE_OPERAND_REG_8(AReg_256) 215 DECODE_OPERAND_REG_8(AReg_512) 216 DECODE_OPERAND_REG_8(AReg_1024) 217 218 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 219 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 220 221 // Decoders for register only source RegisterOperands that use use 9-bit Src 222 // encoding: 'decodeOperand_<RegClass>'. 223 224 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 225 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 226 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 227 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 228 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 229 230 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 231 232 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 233 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 234 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 235 236 // Decoders for register or immediate RegisterOperands that use 9-bit Src 237 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 238 239 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 240 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 242 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 243 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) 247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 252 253 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 254 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 258 259 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 260 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 262 263 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, 264 uint64_t Addr, 265 const MCDisassembler *Decoder) { 266 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 267 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 268 } 269 270 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 271 uint64_t Addr, const void *Decoder) { 272 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 273 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 274 } 275 276 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 277 const MCRegisterInfo *MRI) { 278 if (OpIdx < 0) 279 return false; 280 281 const MCOperand &Op = Inst.getOperand(OpIdx); 282 if (!Op.isReg()) 283 return false; 284 285 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 286 auto Reg = Sub ? Sub : Op.getReg(); 287 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 288 } 289 290 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 291 AMDGPUDisassembler::OpWidthTy Opw, 292 const MCDisassembler *Decoder) { 293 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 294 if (!DAsm->isGFX90A()) { 295 Imm &= 511; 296 } else { 297 // If atomic has both vdata and vdst their register classes are tied. 298 // The bit is decoded along with the vdst, first operand. We need to 299 // change register class to AGPR if vdst was AGPR. 300 // If a DS instruction has both data0 and data1 their register classes 301 // are also tied. 302 unsigned Opc = Inst.getOpcode(); 303 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 304 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 305 : AMDGPU::OpName::vdata; 306 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 307 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 308 if ((int)Inst.getNumOperands() == DataIdx) { 309 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 310 if (IsAGPROperand(Inst, DstIdx, MRI)) 311 Imm |= 512; 312 } 313 314 if (TSFlags & SIInstrFlags::DS) { 315 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 316 if ((int)Inst.getNumOperands() == Data2Idx && 317 IsAGPROperand(Inst, DataIdx, MRI)) 318 Imm |= 512; 319 } 320 } 321 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 322 } 323 324 static DecodeStatus 325 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 326 const MCDisassembler *Decoder) { 327 return decodeOperand_AVLdSt_Any(Inst, Imm, 328 AMDGPUDisassembler::OPW32, Decoder); 329 } 330 331 static DecodeStatus 332 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 333 const MCDisassembler *Decoder) { 334 return decodeOperand_AVLdSt_Any(Inst, Imm, 335 AMDGPUDisassembler::OPW64, Decoder); 336 } 337 338 static DecodeStatus 339 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 340 const MCDisassembler *Decoder) { 341 return decodeOperand_AVLdSt_Any(Inst, Imm, 342 AMDGPUDisassembler::OPW96, Decoder); 343 } 344 345 static DecodeStatus 346 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 347 const MCDisassembler *Decoder) { 348 return decodeOperand_AVLdSt_Any(Inst, Imm, 349 AMDGPUDisassembler::OPW128, Decoder); 350 } 351 352 static DecodeStatus 353 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 354 const MCDisassembler *Decoder) { 355 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 356 Decoder); 357 } 358 359 #define DECODE_SDWA(DecName) \ 360 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 361 362 DECODE_SDWA(Src32) 363 DECODE_SDWA(Src16) 364 DECODE_SDWA(VopcDst) 365 366 #include "AMDGPUGenDisassemblerTables.inc" 367 368 //===----------------------------------------------------------------------===// 369 // 370 //===----------------------------------------------------------------------===// 371 372 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 373 assert(Bytes.size() >= sizeof(T)); 374 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); 375 Bytes = Bytes.slice(sizeof(T)); 376 return Res; 377 } 378 379 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 380 assert(Bytes.size() >= 12); 381 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>( 382 Bytes.data()); 383 Bytes = Bytes.slice(8); 384 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>( 385 Bytes.data()); 386 Bytes = Bytes.slice(4); 387 return DecoderUInt128(Lo, Hi); 388 } 389 390 // The disassembler is greedy, so we need to check FI operand value to 391 // not parse a dpp if the correct literal is not set. For dpp16 the 392 // autogenerated decoder checks the dpp literal 393 static bool isValidDPP8(const MCInst &MI) { 394 using namespace llvm::AMDGPU::DPP; 395 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 396 assert(FiIdx != -1); 397 if ((unsigned)FiIdx >= MI.getNumOperands()) 398 return false; 399 unsigned Fi = MI.getOperand(FiIdx).getImm(); 400 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 401 } 402 403 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 404 ArrayRef<uint8_t> Bytes_, 405 uint64_t Address, 406 raw_ostream &CS) const { 407 bool IsSDWA = false; 408 409 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 410 Bytes = Bytes_.slice(0, MaxInstBytesNum); 411 412 DecodeStatus Res = MCDisassembler::Fail; 413 do { 414 // ToDo: better to switch encoding length using some bit predicate 415 // but it is unknown yet, so try all we can 416 417 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 418 // encodings 419 if (isGFX11Plus() && Bytes.size() >= 12 ) { 420 DecoderUInt128 DecW = eat12Bytes(Bytes); 421 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, Address, CS); 422 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 423 break; 424 MI = MCInst(); // clear 425 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, Address, CS); 426 if (Res) { 427 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 428 convertVOP3PDPPInst(MI); 429 else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) 430 convertVOPCDPPInst(MI); // Special VOP3 case 431 else { 432 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 433 convertVOP3DPPInst(MI); // Regular VOP3 case 434 } 435 break; 436 } 437 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS); 438 if (Res) 439 break; 440 } 441 // Reinitialize Bytes 442 Bytes = Bytes_.slice(0, MaxInstBytesNum); 443 444 if (Bytes.size() >= 8) { 445 const uint64_t QW = eatBytes<uint64_t>(Bytes); 446 447 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 448 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS); 449 if (Res) { 450 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 451 == -1) 452 break; 453 if (convertDPP8Inst(MI) == MCDisassembler::Success) 454 break; 455 MI = MCInst(); // clear 456 } 457 } 458 459 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS); 460 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 461 break; 462 MI = MCInst(); // clear 463 464 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address, CS); 465 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 466 break; 467 MI = MCInst(); // clear 468 469 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS); 470 if (Res) break; 471 472 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address, CS); 473 if (Res) { 474 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 475 convertVOPCDPPInst(MI); 476 break; 477 } 478 479 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS); 480 if (Res) { IsSDWA = true; break; } 481 482 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS); 483 if (Res) { IsSDWA = true; break; } 484 485 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS); 486 if (Res) { IsSDWA = true; break; } 487 488 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) { 489 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS); 490 if (Res) 491 break; 492 } 493 494 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 495 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 496 // table first so we print the correct name. 497 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) { 498 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS); 499 if (Res) 500 break; 501 } 502 } 503 504 // Reinitialize Bytes as DPP64 could have eaten too much 505 Bytes = Bytes_.slice(0, MaxInstBytesNum); 506 507 // Try decode 32-bit instruction 508 if (Bytes.size() < 4) break; 509 const uint32_t DW = eatBytes<uint32_t>(Bytes); 510 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS); 511 if (Res) break; 512 513 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS); 514 if (Res) break; 515 516 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS); 517 if (Res) break; 518 519 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 520 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS); 521 if (Res) 522 break; 523 } 524 525 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 526 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS); 527 if (Res) break; 528 } 529 530 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS); 531 if (Res) break; 532 533 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address, CS); 534 if (Res) break; 535 536 if (Bytes.size() < 4) break; 537 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 538 539 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) { 540 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS); 541 if (Res) 542 break; 543 } 544 545 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 546 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS); 547 if (Res) 548 break; 549 } 550 551 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS); 552 if (Res) break; 553 554 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS); 555 if (Res) break; 556 557 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS); 558 if (Res) break; 559 560 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS); 561 if (Res) break; 562 563 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address, CS); 564 if (Res) 565 break; 566 567 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS); 568 } while (false); 569 570 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 571 // Insert dummy unused src2_modifiers. 572 insertNamedMCOperand(MI, MCOperand::createImm(0), 573 AMDGPU::OpName::src2_modifiers); 574 } 575 576 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 577 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 578 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 579 AMDGPU::OpName::cpol); 580 if (CPolPos != -1) { 581 unsigned CPol = 582 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 583 AMDGPU::CPol::GLC : 0; 584 if (MI.getNumOperands() <= (unsigned)CPolPos) { 585 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 586 AMDGPU::OpName::cpol); 587 } else if (CPol) { 588 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 589 } 590 } 591 } 592 593 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 594 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 595 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 596 // GFX90A lost TFE, its place is occupied by ACC. 597 int TFEOpIdx = 598 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 599 if (TFEOpIdx != -1) { 600 auto TFEIter = MI.begin(); 601 std::advance(TFEIter, TFEOpIdx); 602 MI.insert(TFEIter, MCOperand::createImm(0)); 603 } 604 } 605 606 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 607 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 608 int SWZOpIdx = 609 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 610 if (SWZOpIdx != -1) { 611 auto SWZIter = MI.begin(); 612 std::advance(SWZIter, SWZOpIdx); 613 MI.insert(SWZIter, MCOperand::createImm(0)); 614 } 615 } 616 617 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 618 int VAddr0Idx = 619 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 620 int RsrcIdx = 621 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 622 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 623 if (VAddr0Idx >= 0 && NSAArgs > 0) { 624 unsigned NSAWords = (NSAArgs + 3) / 4; 625 if (Bytes.size() < 4 * NSAWords) { 626 Res = MCDisassembler::Fail; 627 } else { 628 for (unsigned i = 0; i < NSAArgs; ++i) { 629 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 630 auto VAddrRCID = 631 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 632 MI.insert(MI.begin() + VAddrIdx, 633 createRegOperand(VAddrRCID, Bytes[i])); 634 } 635 Bytes = Bytes.slice(4 * NSAWords); 636 } 637 } 638 639 if (Res) 640 Res = convertMIMGInst(MI); 641 } 642 643 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 644 Res = convertEXPInst(MI); 645 646 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 647 Res = convertVINTERPInst(MI); 648 649 if (Res && IsSDWA) 650 Res = convertSDWAInst(MI); 651 652 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 653 AMDGPU::OpName::vdst_in); 654 if (VDstIn_Idx != -1) { 655 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 656 MCOI::OperandConstraint::TIED_TO); 657 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 658 !MI.getOperand(VDstIn_Idx).isReg() || 659 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 660 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 661 MI.erase(&MI.getOperand(VDstIn_Idx)); 662 insertNamedMCOperand(MI, 663 MCOperand::createReg(MI.getOperand(Tied).getReg()), 664 AMDGPU::OpName::vdst_in); 665 } 666 } 667 668 int ImmLitIdx = 669 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 670 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 671 if (Res && ImmLitIdx != -1 && !IsSOPK) 672 Res = convertFMAanyK(MI, ImmLitIdx); 673 674 // if the opcode was not recognized we'll assume a Size of 4 bytes 675 // (unless there are fewer bytes left) 676 Size = Res ? (MaxInstBytesNum - Bytes.size()) 677 : std::min((size_t)4, Bytes_.size()); 678 return Res; 679 } 680 681 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 682 if (STI.hasFeature(AMDGPU::FeatureGFX11)) { 683 // The MCInst still has these fields even though they are no longer encoded 684 // in the GFX11 instruction. 685 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 686 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 687 } 688 return MCDisassembler::Success; 689 } 690 691 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 692 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 693 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 694 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 695 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) { 696 // The MCInst has this field that is not directly encoded in the 697 // instruction. 698 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 699 } 700 return MCDisassembler::Success; 701 } 702 703 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 704 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 705 STI.hasFeature(AMDGPU::FeatureGFX10)) { 706 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 707 // VOPC - insert clamp 708 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 709 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 710 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 711 if (SDst != -1) { 712 // VOPC - insert VCC register as sdst 713 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 714 AMDGPU::OpName::sdst); 715 } else { 716 // VOP1/2 - insert omod if present in instruction 717 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 718 } 719 } 720 return MCDisassembler::Success; 721 } 722 723 struct VOPModifiers { 724 unsigned OpSel = 0; 725 unsigned OpSelHi = 0; 726 unsigned NegLo = 0; 727 unsigned NegHi = 0; 728 }; 729 730 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 731 // Note that these values do not affect disassembler output, 732 // so this is only necessary for consistency with src_modifiers. 733 static VOPModifiers collectVOPModifiers(const MCInst &MI, 734 bool IsVOP3P = false) { 735 VOPModifiers Modifiers; 736 unsigned Opc = MI.getOpcode(); 737 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 738 AMDGPU::OpName::src1_modifiers, 739 AMDGPU::OpName::src2_modifiers}; 740 for (int J = 0; J < 3; ++J) { 741 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 742 if (OpIdx == -1) 743 continue; 744 745 unsigned Val = MI.getOperand(OpIdx).getImm(); 746 747 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 748 if (IsVOP3P) { 749 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 750 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 751 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 752 } else if (J == 0) { 753 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 754 } 755 } 756 757 return Modifiers; 758 } 759 760 // MAC opcodes have special old and src2 operands. 761 // src2 is tied to dst, while old is not tied (but assumed to be). 762 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 763 constexpr int DST_IDX = 0; 764 auto Opcode = MI.getOpcode(); 765 const auto &Desc = MCII->get(Opcode); 766 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 767 768 if (OldIdx != -1 && Desc.getOperandConstraint( 769 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 770 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 771 assert(Desc.getOperandConstraint( 772 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 773 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 774 (void)DST_IDX; 775 return true; 776 } 777 778 return false; 779 } 780 781 // Create dummy old operand and insert dummy unused src2_modifiers 782 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 783 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 784 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 785 insertNamedMCOperand(MI, MCOperand::createImm(0), 786 AMDGPU::OpName::src2_modifiers); 787 } 788 789 // We must check FI == literal to reject not genuine dpp8 insts, and we must 790 // first add optional MI operands to check FI 791 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 792 unsigned Opc = MI.getOpcode(); 793 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 794 convertVOP3PDPPInst(MI); 795 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 796 AMDGPU::isVOPC64DPP(Opc)) { 797 convertVOPCDPPInst(MI); 798 } else { 799 if (isMacDPP(MI)) 800 convertMacDPPInst(MI); 801 802 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 803 if (MI.getNumOperands() < DescNumOps && 804 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 805 auto Mods = collectVOPModifiers(MI); 806 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 807 AMDGPU::OpName::op_sel); 808 } else { 809 // Insert dummy unused src modifiers. 810 if (MI.getNumOperands() < DescNumOps && 811 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 812 insertNamedMCOperand(MI, MCOperand::createImm(0), 813 AMDGPU::OpName::src0_modifiers); 814 815 if (MI.getNumOperands() < DescNumOps && 816 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 817 insertNamedMCOperand(MI, MCOperand::createImm(0), 818 AMDGPU::OpName::src1_modifiers); 819 } 820 } 821 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 822 } 823 824 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 825 if (isMacDPP(MI)) 826 convertMacDPPInst(MI); 827 828 unsigned Opc = MI.getOpcode(); 829 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 830 if (MI.getNumOperands() < DescNumOps && 831 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 832 auto Mods = collectVOPModifiers(MI); 833 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 834 AMDGPU::OpName::op_sel); 835 } 836 return MCDisassembler::Success; 837 } 838 839 // Note that before gfx10, the MIMG encoding provided no information about 840 // VADDR size. Consequently, decoded instructions always show address as if it 841 // has 1 dword, which could be not really so. 842 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 843 844 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 845 AMDGPU::OpName::vdst); 846 847 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 848 AMDGPU::OpName::vdata); 849 int VAddr0Idx = 850 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 851 int RsrcIdx = 852 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 853 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 854 AMDGPU::OpName::dmask); 855 856 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 857 AMDGPU::OpName::tfe); 858 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 859 AMDGPU::OpName::d16); 860 861 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 862 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 863 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 864 865 assert(VDataIdx != -1); 866 if (BaseOpcode->BVH) { 867 // Add A16 operand for intersect_ray instructions 868 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16)) 869 addOperand(MI, MCOperand::createImm(1)); 870 return MCDisassembler::Success; 871 } 872 873 bool IsAtomic = (VDstIdx != -1); 874 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; 875 bool IsNSA = false; 876 bool IsPartialNSA = false; 877 unsigned AddrSize = Info->VAddrDwords; 878 879 if (isGFX10Plus()) { 880 unsigned DimIdx = 881 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 882 int A16Idx = 883 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 884 const AMDGPU::MIMGDimInfo *Dim = 885 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 886 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 887 888 AddrSize = 889 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 890 891 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 892 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA; 893 if (!IsNSA) { 894 if (AddrSize > 12) 895 AddrSize = 16; 896 } else { 897 if (AddrSize > Info->VAddrDwords) { 898 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 899 // The NSA encoding does not contain enough operands for the 900 // combination of base opcode / dimension. Should this be an error? 901 return MCDisassembler::Success; 902 } 903 IsPartialNSA = true; 904 } 905 } 906 } 907 908 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 909 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 910 911 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 912 if (D16 && AMDGPU::hasPackedD16(STI)) { 913 DstSize = (DstSize + 1) / 2; 914 } 915 916 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 917 DstSize += 1; 918 919 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 920 return MCDisassembler::Success; 921 922 int NewOpcode = 923 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 924 if (NewOpcode == -1) 925 return MCDisassembler::Success; 926 927 // Widen the register to the correct number of enabled channels. 928 unsigned NewVdata = AMDGPU::NoRegister; 929 if (DstSize != Info->VDataDwords) { 930 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 931 932 // Get first subregister of VData 933 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 934 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 935 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 936 937 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 938 &MRI.getRegClass(DataRCID)); 939 if (NewVdata == AMDGPU::NoRegister) { 940 // It's possible to encode this such that the low register + enabled 941 // components exceeds the register count. 942 return MCDisassembler::Success; 943 } 944 } 945 946 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 947 // If using partial NSA on GFX11+ widen last address register. 948 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 949 unsigned NewVAddrSA = AMDGPU::NoRegister; 950 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 951 AddrSize != Info->VAddrDwords) { 952 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 953 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 954 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 955 956 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 957 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 958 &MRI.getRegClass(AddrRCID)); 959 if (!NewVAddrSA) 960 return MCDisassembler::Success; 961 } 962 963 MI.setOpcode(NewOpcode); 964 965 if (NewVdata != AMDGPU::NoRegister) { 966 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 967 968 if (IsAtomic) { 969 // Atomic operations have an additional operand (a copy of data) 970 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 971 } 972 } 973 974 if (NewVAddrSA) { 975 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 976 } else if (IsNSA) { 977 assert(AddrSize <= Info->VAddrDwords); 978 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 979 MI.begin() + VAddr0Idx + Info->VAddrDwords); 980 } 981 982 return MCDisassembler::Success; 983 } 984 985 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 986 // decoder only adds to src_modifiers, so manually add the bits to the other 987 // operands. 988 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 989 unsigned Opc = MI.getOpcode(); 990 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 991 auto Mods = collectVOPModifiers(MI, true); 992 993 if (MI.getNumOperands() < DescNumOps && 994 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 995 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 996 997 if (MI.getNumOperands() < DescNumOps && 998 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 999 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1000 AMDGPU::OpName::op_sel); 1001 if (MI.getNumOperands() < DescNumOps && 1002 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1003 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1004 AMDGPU::OpName::op_sel_hi); 1005 if (MI.getNumOperands() < DescNumOps && 1006 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1007 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1008 AMDGPU::OpName::neg_lo); 1009 if (MI.getNumOperands() < DescNumOps && 1010 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1011 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1012 AMDGPU::OpName::neg_hi); 1013 1014 return MCDisassembler::Success; 1015 } 1016 1017 // Create dummy old operand and insert optional operands 1018 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1019 unsigned Opc = MI.getOpcode(); 1020 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1021 1022 if (MI.getNumOperands() < DescNumOps && 1023 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1024 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1025 1026 if (MI.getNumOperands() < DescNumOps && 1027 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1028 insertNamedMCOperand(MI, MCOperand::createImm(0), 1029 AMDGPU::OpName::src0_modifiers); 1030 1031 if (MI.getNumOperands() < DescNumOps && 1032 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1033 insertNamedMCOperand(MI, MCOperand::createImm(0), 1034 AMDGPU::OpName::src1_modifiers); 1035 return MCDisassembler::Success; 1036 } 1037 1038 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1039 int ImmLitIdx) const { 1040 assert(HasLiteral && "Should have decoded a literal"); 1041 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1042 unsigned DescNumOps = Desc.getNumOperands(); 1043 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1044 AMDGPU::OpName::immDeferred); 1045 assert(DescNumOps == MI.getNumOperands()); 1046 for (unsigned I = 0; I < DescNumOps; ++I) { 1047 auto &Op = MI.getOperand(I); 1048 auto OpType = Desc.operands()[I].OperandType; 1049 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1050 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1051 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1052 IsDeferredOp) 1053 Op.setImm(Literal); 1054 } 1055 return MCDisassembler::Success; 1056 } 1057 1058 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1059 return getContext().getRegisterInfo()-> 1060 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1061 } 1062 1063 inline 1064 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1065 const Twine& ErrMsg) const { 1066 *CommentStream << "Error: " + ErrMsg; 1067 1068 // ToDo: add support for error operands to MCInst.h 1069 // return MCOperand::createError(V); 1070 return MCOperand(); 1071 } 1072 1073 inline 1074 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1075 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1076 } 1077 1078 inline 1079 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1080 unsigned Val) const { 1081 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1082 if (Val >= RegCl.getNumRegs()) 1083 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1084 ": unknown register " + Twine(Val)); 1085 return createRegOperand(RegCl.getRegister(Val)); 1086 } 1087 1088 inline 1089 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1090 unsigned Val) const { 1091 // ToDo: SI/CI have 104 SGPRs, VI - 102 1092 // Valery: here we accepting as much as we can, let assembler sort it out 1093 int shift = 0; 1094 switch (SRegClassID) { 1095 case AMDGPU::SGPR_32RegClassID: 1096 case AMDGPU::TTMP_32RegClassID: 1097 break; 1098 case AMDGPU::SGPR_64RegClassID: 1099 case AMDGPU::TTMP_64RegClassID: 1100 shift = 1; 1101 break; 1102 case AMDGPU::SGPR_128RegClassID: 1103 case AMDGPU::TTMP_128RegClassID: 1104 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1105 // this bundle? 1106 case AMDGPU::SGPR_256RegClassID: 1107 case AMDGPU::TTMP_256RegClassID: 1108 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1109 // this bundle? 1110 case AMDGPU::SGPR_288RegClassID: 1111 case AMDGPU::TTMP_288RegClassID: 1112 case AMDGPU::SGPR_320RegClassID: 1113 case AMDGPU::TTMP_320RegClassID: 1114 case AMDGPU::SGPR_352RegClassID: 1115 case AMDGPU::TTMP_352RegClassID: 1116 case AMDGPU::SGPR_384RegClassID: 1117 case AMDGPU::TTMP_384RegClassID: 1118 case AMDGPU::SGPR_512RegClassID: 1119 case AMDGPU::TTMP_512RegClassID: 1120 shift = 2; 1121 break; 1122 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1123 // this bundle? 1124 default: 1125 llvm_unreachable("unhandled register class"); 1126 } 1127 1128 if (Val % (1 << shift)) { 1129 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1130 << ": scalar reg isn't aligned " << Val; 1131 } 1132 1133 return createRegOperand(SRegClassID, Val >> shift); 1134 } 1135 1136 // Decode Literals for insts which always have a literal in the encoding 1137 MCOperand 1138 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1139 if (HasLiteral) { 1140 assert( 1141 AMDGPU::hasVOPD(STI) && 1142 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1143 if (Literal != Val) 1144 return errOperand(Val, "More than one unique literal is illegal"); 1145 } 1146 HasLiteral = true; 1147 Literal = Val; 1148 return MCOperand::createImm(Literal); 1149 } 1150 1151 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { 1152 // For now all literal constants are supposed to be unsigned integer 1153 // ToDo: deal with signed/unsigned 64-bit integer constants 1154 // ToDo: deal with float/double constants 1155 if (!HasLiteral) { 1156 if (Bytes.size() < 4) { 1157 return errOperand(0, "cannot read literal, inst bytes left " + 1158 Twine(Bytes.size())); 1159 } 1160 HasLiteral = true; 1161 Literal = eatBytes<uint32_t>(Bytes); 1162 } 1163 return MCOperand::createImm(Literal); 1164 } 1165 1166 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1167 using namespace AMDGPU::EncValues; 1168 1169 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1170 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1171 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1172 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1173 // Cast prevents negative overflow. 1174 } 1175 1176 static int64_t getInlineImmVal32(unsigned Imm) { 1177 switch (Imm) { 1178 case 240: 1179 return llvm::bit_cast<uint32_t>(0.5f); 1180 case 241: 1181 return llvm::bit_cast<uint32_t>(-0.5f); 1182 case 242: 1183 return llvm::bit_cast<uint32_t>(1.0f); 1184 case 243: 1185 return llvm::bit_cast<uint32_t>(-1.0f); 1186 case 244: 1187 return llvm::bit_cast<uint32_t>(2.0f); 1188 case 245: 1189 return llvm::bit_cast<uint32_t>(-2.0f); 1190 case 246: 1191 return llvm::bit_cast<uint32_t>(4.0f); 1192 case 247: 1193 return llvm::bit_cast<uint32_t>(-4.0f); 1194 case 248: // 1 / (2 * PI) 1195 return 0x3e22f983; 1196 default: 1197 llvm_unreachable("invalid fp inline imm"); 1198 } 1199 } 1200 1201 static int64_t getInlineImmVal64(unsigned Imm) { 1202 switch (Imm) { 1203 case 240: 1204 return llvm::bit_cast<uint64_t>(0.5); 1205 case 241: 1206 return llvm::bit_cast<uint64_t>(-0.5); 1207 case 242: 1208 return llvm::bit_cast<uint64_t>(1.0); 1209 case 243: 1210 return llvm::bit_cast<uint64_t>(-1.0); 1211 case 244: 1212 return llvm::bit_cast<uint64_t>(2.0); 1213 case 245: 1214 return llvm::bit_cast<uint64_t>(-2.0); 1215 case 246: 1216 return llvm::bit_cast<uint64_t>(4.0); 1217 case 247: 1218 return llvm::bit_cast<uint64_t>(-4.0); 1219 case 248: // 1 / (2 * PI) 1220 return 0x3fc45f306dc9c882; 1221 default: 1222 llvm_unreachable("invalid fp inline imm"); 1223 } 1224 } 1225 1226 static int64_t getInlineImmVal16(unsigned Imm) { 1227 switch (Imm) { 1228 case 240: 1229 return 0x3800; 1230 case 241: 1231 return 0xB800; 1232 case 242: 1233 return 0x3C00; 1234 case 243: 1235 return 0xBC00; 1236 case 244: 1237 return 0x4000; 1238 case 245: 1239 return 0xC000; 1240 case 246: 1241 return 0x4400; 1242 case 247: 1243 return 0xC400; 1244 case 248: // 1 / (2 * PI) 1245 return 0x3118; 1246 default: 1247 llvm_unreachable("invalid fp inline imm"); 1248 } 1249 } 1250 1251 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1252 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1253 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1254 1255 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1256 // ImmWidth 0 is a default case where operand should not allow immediates. 1257 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1258 // use it to print verbose error message. 1259 switch (ImmWidth) { 1260 case 0: 1261 case 32: 1262 return MCOperand::createImm(getInlineImmVal32(Imm)); 1263 case 64: 1264 return MCOperand::createImm(getInlineImmVal64(Imm)); 1265 case 16: 1266 return MCOperand::createImm(getInlineImmVal16(Imm)); 1267 default: 1268 llvm_unreachable("implement me"); 1269 } 1270 } 1271 1272 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1273 using namespace AMDGPU; 1274 1275 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1276 switch (Width) { 1277 default: // fall 1278 case OPW32: 1279 case OPW16: 1280 case OPWV216: 1281 return VGPR_32RegClassID; 1282 case OPW64: 1283 case OPWV232: return VReg_64RegClassID; 1284 case OPW96: return VReg_96RegClassID; 1285 case OPW128: return VReg_128RegClassID; 1286 case OPW160: return VReg_160RegClassID; 1287 case OPW256: return VReg_256RegClassID; 1288 case OPW288: return VReg_288RegClassID; 1289 case OPW320: return VReg_320RegClassID; 1290 case OPW352: return VReg_352RegClassID; 1291 case OPW384: return VReg_384RegClassID; 1292 case OPW512: return VReg_512RegClassID; 1293 case OPW1024: return VReg_1024RegClassID; 1294 } 1295 } 1296 1297 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1298 using namespace AMDGPU; 1299 1300 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1301 switch (Width) { 1302 default: // fall 1303 case OPW32: 1304 case OPW16: 1305 case OPWV216: 1306 return AGPR_32RegClassID; 1307 case OPW64: 1308 case OPWV232: return AReg_64RegClassID; 1309 case OPW96: return AReg_96RegClassID; 1310 case OPW128: return AReg_128RegClassID; 1311 case OPW160: return AReg_160RegClassID; 1312 case OPW256: return AReg_256RegClassID; 1313 case OPW288: return AReg_288RegClassID; 1314 case OPW320: return AReg_320RegClassID; 1315 case OPW352: return AReg_352RegClassID; 1316 case OPW384: return AReg_384RegClassID; 1317 case OPW512: return AReg_512RegClassID; 1318 case OPW1024: return AReg_1024RegClassID; 1319 } 1320 } 1321 1322 1323 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1324 using namespace AMDGPU; 1325 1326 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1327 switch (Width) { 1328 default: // fall 1329 case OPW32: 1330 case OPW16: 1331 case OPWV216: 1332 return SGPR_32RegClassID; 1333 case OPW64: 1334 case OPWV232: return SGPR_64RegClassID; 1335 case OPW96: return SGPR_96RegClassID; 1336 case OPW128: return SGPR_128RegClassID; 1337 case OPW160: return SGPR_160RegClassID; 1338 case OPW256: return SGPR_256RegClassID; 1339 case OPW288: return SGPR_288RegClassID; 1340 case OPW320: return SGPR_320RegClassID; 1341 case OPW352: return SGPR_352RegClassID; 1342 case OPW384: return SGPR_384RegClassID; 1343 case OPW512: return SGPR_512RegClassID; 1344 } 1345 } 1346 1347 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1348 using namespace AMDGPU; 1349 1350 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1351 switch (Width) { 1352 default: // fall 1353 case OPW32: 1354 case OPW16: 1355 case OPWV216: 1356 return TTMP_32RegClassID; 1357 case OPW64: 1358 case OPWV232: return TTMP_64RegClassID; 1359 case OPW128: return TTMP_128RegClassID; 1360 case OPW256: return TTMP_256RegClassID; 1361 case OPW288: return TTMP_288RegClassID; 1362 case OPW320: return TTMP_320RegClassID; 1363 case OPW352: return TTMP_352RegClassID; 1364 case OPW384: return TTMP_384RegClassID; 1365 case OPW512: return TTMP_512RegClassID; 1366 } 1367 } 1368 1369 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1370 using namespace AMDGPU::EncValues; 1371 1372 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1373 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1374 1375 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1376 } 1377 1378 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1379 bool MandatoryLiteral, 1380 unsigned ImmWidth) const { 1381 using namespace AMDGPU::EncValues; 1382 1383 assert(Val < 1024); // enum10 1384 1385 bool IsAGPR = Val & 512; 1386 Val &= 511; 1387 1388 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1389 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1390 : getVgprClassId(Width), Val - VGPR_MIN); 1391 } 1392 if (Val <= SGPR_MAX) { 1393 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1394 static_assert(SGPR_MIN == 0); 1395 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1396 } 1397 1398 int TTmpIdx = getTTmpIdx(Val); 1399 if (TTmpIdx >= 0) { 1400 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1401 } 1402 1403 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1404 return decodeIntImmed(Val); 1405 1406 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1407 return decodeFPImmed(ImmWidth, Val); 1408 1409 if (Val == LITERAL_CONST) { 1410 if (MandatoryLiteral) 1411 // Keep a sentinel value for deferred setting 1412 return MCOperand::createImm(LITERAL_CONST); 1413 else 1414 return decodeLiteralConstant(); 1415 } 1416 1417 switch (Width) { 1418 case OPW32: 1419 case OPW16: 1420 case OPWV216: 1421 return decodeSpecialReg32(Val); 1422 case OPW64: 1423 case OPWV232: 1424 return decodeSpecialReg64(Val); 1425 default: 1426 llvm_unreachable("unexpected immediate type"); 1427 } 1428 } 1429 1430 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1431 // opposite of bit 0 of DstX. 1432 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1433 unsigned Val) const { 1434 int VDstXInd = 1435 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1436 assert(VDstXInd != -1); 1437 assert(Inst.getOperand(VDstXInd).isReg()); 1438 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1439 Val |= ~XDstReg & 1; 1440 auto Width = llvm::AMDGPUDisassembler::OPW32; 1441 return createRegOperand(getVgprClassId(Width), Val); 1442 } 1443 1444 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1445 using namespace AMDGPU; 1446 1447 switch (Val) { 1448 // clang-format off 1449 case 102: return createRegOperand(FLAT_SCR_LO); 1450 case 103: return createRegOperand(FLAT_SCR_HI); 1451 case 104: return createRegOperand(XNACK_MASK_LO); 1452 case 105: return createRegOperand(XNACK_MASK_HI); 1453 case 106: return createRegOperand(VCC_LO); 1454 case 107: return createRegOperand(VCC_HI); 1455 case 108: return createRegOperand(TBA_LO); 1456 case 109: return createRegOperand(TBA_HI); 1457 case 110: return createRegOperand(TMA_LO); 1458 case 111: return createRegOperand(TMA_HI); 1459 case 124: 1460 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1461 case 125: 1462 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1463 case 126: return createRegOperand(EXEC_LO); 1464 case 127: return createRegOperand(EXEC_HI); 1465 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1466 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1467 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1468 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1469 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1470 case 251: return createRegOperand(SRC_VCCZ); 1471 case 252: return createRegOperand(SRC_EXECZ); 1472 case 253: return createRegOperand(SRC_SCC); 1473 case 254: return createRegOperand(LDS_DIRECT); 1474 default: break; 1475 // clang-format on 1476 } 1477 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1478 } 1479 1480 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1481 using namespace AMDGPU; 1482 1483 switch (Val) { 1484 case 102: return createRegOperand(FLAT_SCR); 1485 case 104: return createRegOperand(XNACK_MASK); 1486 case 106: return createRegOperand(VCC); 1487 case 108: return createRegOperand(TBA); 1488 case 110: return createRegOperand(TMA); 1489 case 124: 1490 if (isGFX11Plus()) 1491 return createRegOperand(SGPR_NULL); 1492 break; 1493 case 125: 1494 if (!isGFX11Plus()) 1495 return createRegOperand(SGPR_NULL); 1496 break; 1497 case 126: return createRegOperand(EXEC); 1498 case 235: return createRegOperand(SRC_SHARED_BASE); 1499 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1500 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1501 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1502 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1503 case 251: return createRegOperand(SRC_VCCZ); 1504 case 252: return createRegOperand(SRC_EXECZ); 1505 case 253: return createRegOperand(SRC_SCC); 1506 default: break; 1507 } 1508 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1509 } 1510 1511 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1512 const unsigned Val, 1513 unsigned ImmWidth) const { 1514 using namespace AMDGPU::SDWA; 1515 using namespace AMDGPU::EncValues; 1516 1517 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1518 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1519 // XXX: cast to int is needed to avoid stupid warning: 1520 // compare with unsigned is always true 1521 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1522 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1523 return createRegOperand(getVgprClassId(Width), 1524 Val - SDWA9EncValues::SRC_VGPR_MIN); 1525 } 1526 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1527 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1528 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1529 return createSRegOperand(getSgprClassId(Width), 1530 Val - SDWA9EncValues::SRC_SGPR_MIN); 1531 } 1532 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1533 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1534 return createSRegOperand(getTtmpClassId(Width), 1535 Val - SDWA9EncValues::SRC_TTMP_MIN); 1536 } 1537 1538 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1539 1540 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1541 return decodeIntImmed(SVal); 1542 1543 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1544 return decodeFPImmed(ImmWidth, SVal); 1545 1546 return decodeSpecialReg32(SVal); 1547 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 1548 return createRegOperand(getVgprClassId(Width), Val); 1549 } 1550 llvm_unreachable("unsupported target"); 1551 } 1552 1553 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1554 return decodeSDWASrc(OPW16, Val, 16); 1555 } 1556 1557 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1558 return decodeSDWASrc(OPW32, Val, 32); 1559 } 1560 1561 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1562 using namespace AMDGPU::SDWA; 1563 1564 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1565 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1566 "SDWAVopcDst should be present only on GFX9+"); 1567 1568 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1569 1570 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1571 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1572 1573 int TTmpIdx = getTTmpIdx(Val); 1574 if (TTmpIdx >= 0) { 1575 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1576 return createSRegOperand(TTmpClsId, TTmpIdx); 1577 } else if (Val > SGPR_MAX) { 1578 return IsWave64 ? decodeSpecialReg64(Val) 1579 : decodeSpecialReg32(Val); 1580 } else { 1581 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1582 } 1583 } else { 1584 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1585 } 1586 } 1587 1588 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1589 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1590 ? decodeSrcOp(OPW64, Val) 1591 : decodeSrcOp(OPW32, Val); 1592 } 1593 1594 bool AMDGPUDisassembler::isVI() const { 1595 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1596 } 1597 1598 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1599 1600 bool AMDGPUDisassembler::isGFX90A() const { 1601 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1602 } 1603 1604 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1605 1606 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1607 1608 bool AMDGPUDisassembler::isGFX10Plus() const { 1609 return AMDGPU::isGFX10Plus(STI); 1610 } 1611 1612 bool AMDGPUDisassembler::isGFX11() const { 1613 return STI.hasFeature(AMDGPU::FeatureGFX11); 1614 } 1615 1616 bool AMDGPUDisassembler::isGFX11Plus() const { 1617 return AMDGPU::isGFX11Plus(STI); 1618 } 1619 1620 1621 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1622 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1623 } 1624 1625 //===----------------------------------------------------------------------===// 1626 // AMDGPU specific symbol handling 1627 //===----------------------------------------------------------------------===// 1628 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1629 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1630 do { \ 1631 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1632 } while (0) 1633 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ 1634 do { \ 1635 KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ 1636 << GET_FIELD(MASK) << '\n'; \ 1637 } while (0) 1638 1639 // NOLINTNEXTLINE(readability-identifier-naming) 1640 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1641 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1642 using namespace amdhsa; 1643 StringRef Indent = "\t"; 1644 1645 // We cannot accurately backward compute #VGPRs used from 1646 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1647 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1648 // simply calculate the inverse of what the assembler does. 1649 1650 uint32_t GranulatedWorkitemVGPRCount = 1651 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1652 1653 uint32_t NextFreeVGPR = 1654 (GranulatedWorkitemVGPRCount + 1) * 1655 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); 1656 1657 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1658 1659 // We cannot backward compute values used to calculate 1660 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1661 // directives can't be computed: 1662 // .amdhsa_reserve_vcc 1663 // .amdhsa_reserve_flat_scratch 1664 // .amdhsa_reserve_xnack_mask 1665 // They take their respective default values if not specified in the assembly. 1666 // 1667 // GRANULATED_WAVEFRONT_SGPR_COUNT 1668 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1669 // 1670 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1671 // are set to 0. So while disassembling we consider that: 1672 // 1673 // GRANULATED_WAVEFRONT_SGPR_COUNT 1674 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1675 // 1676 // The disassembler cannot recover the original values of those 3 directives. 1677 1678 uint32_t GranulatedWavefrontSGPRCount = 1679 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1680 1681 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1682 return MCDisassembler::Fail; 1683 1684 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1685 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1686 1687 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1688 if (!hasArchitectedFlatScratch()) 1689 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1690 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1691 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1692 1693 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1694 return MCDisassembler::Fail; 1695 1696 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1697 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1698 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1699 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1700 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1701 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1702 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1703 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1704 1705 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1706 return MCDisassembler::Fail; 1707 1708 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); 1709 1710 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1711 return MCDisassembler::Fail; 1712 1713 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); 1714 1715 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1716 return MCDisassembler::Fail; 1717 1718 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1719 return MCDisassembler::Fail; 1720 1721 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); 1722 1723 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) 1724 return MCDisassembler::Fail; 1725 1726 if (isGFX10Plus()) { 1727 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1728 COMPUTE_PGM_RSRC1_WGP_MODE); 1729 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); 1730 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); 1731 } 1732 return MCDisassembler::Success; 1733 } 1734 1735 // NOLINTNEXTLINE(readability-identifier-naming) 1736 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1737 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1738 using namespace amdhsa; 1739 StringRef Indent = "\t"; 1740 if (hasArchitectedFlatScratch()) 1741 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1742 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1743 else 1744 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1745 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1746 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1747 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1748 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1749 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1750 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1751 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1752 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1753 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1754 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1755 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1756 1757 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1758 return MCDisassembler::Fail; 1759 1760 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1761 return MCDisassembler::Fail; 1762 1763 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1764 return MCDisassembler::Fail; 1765 1766 PRINT_DIRECTIVE( 1767 ".amdhsa_exception_fp_ieee_invalid_op", 1768 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1769 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1770 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1771 PRINT_DIRECTIVE( 1772 ".amdhsa_exception_fp_ieee_div_zero", 1773 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1774 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1775 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1776 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1777 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1778 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1779 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1780 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1781 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1782 1783 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1784 return MCDisassembler::Fail; 1785 1786 return MCDisassembler::Success; 1787 } 1788 1789 // NOLINTNEXTLINE(readability-identifier-naming) 1790 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 1791 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1792 using namespace amdhsa; 1793 StringRef Indent = "\t"; 1794 if (isGFX90A()) { 1795 KdStream << Indent << ".amdhsa_accum_offset " 1796 << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 1797 << '\n'; 1798 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0) 1799 return MCDisassembler::Fail; 1800 PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); 1801 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1) 1802 return MCDisassembler::Fail; 1803 } else if (isGFX10Plus()) { 1804 if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { 1805 PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", 1806 COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 1807 } else { 1808 PRINT_PSEUDO_DIRECTIVE_COMMENT( 1809 "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 1810 } 1811 PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", 1812 COMPUTE_PGM_RSRC3_GFX10_PLUS_INST_PREF_SIZE); 1813 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", 1814 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START); 1815 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", 1816 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_END); 1817 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED0) 1818 return MCDisassembler::Fail; 1819 PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", 1820 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START); 1821 } else if (FourByteBuffer) { 1822 return MCDisassembler::Fail; 1823 } 1824 return MCDisassembler::Success; 1825 } 1826 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT 1827 #undef PRINT_DIRECTIVE 1828 #undef GET_FIELD 1829 1830 MCDisassembler::DecodeStatus 1831 AMDGPUDisassembler::decodeKernelDescriptorDirective( 1832 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 1833 raw_string_ostream &KdStream) const { 1834 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1835 do { \ 1836 KdStream << Indent << DIRECTIVE " " \ 1837 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1838 } while (0) 1839 1840 uint16_t TwoByteBuffer = 0; 1841 uint32_t FourByteBuffer = 0; 1842 1843 StringRef ReservedBytes; 1844 StringRef Indent = "\t"; 1845 1846 assert(Bytes.size() == 64); 1847 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 1848 1849 switch (Cursor.tell()) { 1850 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 1851 FourByteBuffer = DE.getU32(Cursor); 1852 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 1853 << '\n'; 1854 return MCDisassembler::Success; 1855 1856 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 1857 FourByteBuffer = DE.getU32(Cursor); 1858 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 1859 << FourByteBuffer << '\n'; 1860 return MCDisassembler::Success; 1861 1862 case amdhsa::KERNARG_SIZE_OFFSET: 1863 FourByteBuffer = DE.getU32(Cursor); 1864 KdStream << Indent << ".amdhsa_kernarg_size " 1865 << FourByteBuffer << '\n'; 1866 return MCDisassembler::Success; 1867 1868 case amdhsa::RESERVED0_OFFSET: 1869 // 4 reserved bytes, must be 0. 1870 ReservedBytes = DE.getBytes(Cursor, 4); 1871 for (int I = 0; I < 4; ++I) { 1872 if (ReservedBytes[I] != 0) { 1873 return MCDisassembler::Fail; 1874 } 1875 } 1876 return MCDisassembler::Success; 1877 1878 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 1879 // KERNEL_CODE_ENTRY_BYTE_OFFSET 1880 // So far no directive controls this for Code Object V3, so simply skip for 1881 // disassembly. 1882 DE.skip(Cursor, 8); 1883 return MCDisassembler::Success; 1884 1885 case amdhsa::RESERVED1_OFFSET: 1886 // 20 reserved bytes, must be 0. 1887 ReservedBytes = DE.getBytes(Cursor, 20); 1888 for (int I = 0; I < 20; ++I) { 1889 if (ReservedBytes[I] != 0) { 1890 return MCDisassembler::Fail; 1891 } 1892 } 1893 return MCDisassembler::Success; 1894 1895 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 1896 FourByteBuffer = DE.getU32(Cursor); 1897 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 1898 1899 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 1900 FourByteBuffer = DE.getU32(Cursor); 1901 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 1902 1903 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 1904 FourByteBuffer = DE.getU32(Cursor); 1905 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 1906 1907 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 1908 using namespace amdhsa; 1909 TwoByteBuffer = DE.getU16(Cursor); 1910 1911 if (!hasArchitectedFlatScratch()) 1912 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 1913 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 1914 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 1915 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 1916 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 1917 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 1918 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 1919 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 1920 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 1921 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 1922 if (!hasArchitectedFlatScratch()) 1923 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 1924 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 1925 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 1926 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 1927 1928 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 1929 return MCDisassembler::Fail; 1930 1931 // Reserved for GFX9 1932 if (isGFX9() && 1933 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 1934 return MCDisassembler::Fail; 1935 } else if (isGFX10Plus()) { 1936 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 1937 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1938 } 1939 1940 if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5) 1941 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 1942 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 1943 1944 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 1945 return MCDisassembler::Fail; 1946 1947 return MCDisassembler::Success; 1948 1949 case amdhsa::RESERVED2_OFFSET: 1950 // 6 bytes from here are reserved, must be 0. 1951 ReservedBytes = DE.getBytes(Cursor, 6); 1952 for (int I = 0; I < 6; ++I) { 1953 if (ReservedBytes[I] != 0) 1954 return MCDisassembler::Fail; 1955 } 1956 return MCDisassembler::Success; 1957 1958 default: 1959 llvm_unreachable("Unhandled index. Case statements cover everything."); 1960 return MCDisassembler::Fail; 1961 } 1962 #undef PRINT_DIRECTIVE 1963 } 1964 1965 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 1966 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 1967 // CP microcode requires the kernel descriptor to be 64 aligned. 1968 if (Bytes.size() != 64 || KdAddress % 64 != 0) 1969 return MCDisassembler::Fail; 1970 1971 // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 1972 // requires us to know the setting of .amdhsa_wavefront_size32 in order to 1973 // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong 1974 // order. Workaround this by first looking up .amdhsa_wavefront_size32 here 1975 // when required. 1976 if (isGFX10Plus()) { 1977 uint16_t KernelCodeProperties = 1978 support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], 1979 support::endianness::little); 1980 EnableWavefrontSize32 = 1981 AMDHSA_BITS_GET(KernelCodeProperties, 1982 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1983 } 1984 1985 std::string Kd; 1986 raw_string_ostream KdStream(Kd); 1987 KdStream << ".amdhsa_kernel " << KdName << '\n'; 1988 1989 DataExtractor::Cursor C(0); 1990 while (C && C.tell() < Bytes.size()) { 1991 MCDisassembler::DecodeStatus Status = 1992 decodeKernelDescriptorDirective(C, Bytes, KdStream); 1993 1994 cantFail(C.takeError()); 1995 1996 if (Status == MCDisassembler::Fail) 1997 return MCDisassembler::Fail; 1998 } 1999 KdStream << ".end_amdhsa_kernel\n"; 2000 outs() << KdStream.str(); 2001 return MCDisassembler::Success; 2002 } 2003 2004 std::optional<MCDisassembler::DecodeStatus> 2005 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2006 ArrayRef<uint8_t> Bytes, uint64_t Address, 2007 raw_ostream &CStream) const { 2008 // Right now only kernel descriptor needs to be handled. 2009 // We ignore all other symbols for target specific handling. 2010 // TODO: 2011 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2012 // Object V2 and V3 when symbols are marked protected. 2013 2014 // amd_kernel_code_t for Code Object V2. 2015 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2016 Size = 256; 2017 return MCDisassembler::Fail; 2018 } 2019 2020 // Code Object V3 kernel descriptors. 2021 StringRef Name = Symbol.Name; 2022 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { 2023 Size = 64; // Size = 64 regardless of success or failure. 2024 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2025 } 2026 return std::nullopt; 2027 } 2028 2029 //===----------------------------------------------------------------------===// 2030 // AMDGPUSymbolizer 2031 //===----------------------------------------------------------------------===// 2032 2033 // Try to find symbol name for specified label 2034 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2035 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2036 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2037 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2038 2039 if (!IsBranch) { 2040 return false; 2041 } 2042 2043 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2044 if (!Symbols) 2045 return false; 2046 2047 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2048 return Val.Addr == static_cast<uint64_t>(Value) && 2049 Val.Type == ELF::STT_NOTYPE; 2050 }); 2051 if (Result != Symbols->end()) { 2052 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2053 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2054 Inst.addOperand(MCOperand::createExpr(Add)); 2055 return true; 2056 } 2057 // Add to list of referenced addresses, so caller can synthesize a label. 2058 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2059 return false; 2060 } 2061 2062 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2063 int64_t Value, 2064 uint64_t Address) { 2065 llvm_unreachable("unimplemented"); 2066 } 2067 2068 //===----------------------------------------------------------------------===// 2069 // Initialization 2070 //===----------------------------------------------------------------------===// 2071 2072 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2073 LLVMOpInfoCallback /*GetOpInfo*/, 2074 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2075 void *DisInfo, 2076 MCContext *Ctx, 2077 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2078 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2079 } 2080 2081 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2082 const MCSubtargetInfo &STI, 2083 MCContext &Ctx) { 2084 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2085 } 2086 2087 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2088 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2089 createAMDGPUDisassembler); 2090 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2091 createAMDGPUSymbolizer); 2092 } 2093