xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 986001c8274a3f31c3849c16d68ee36a04809986)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
95     Offset = Imm & 0xFFFFF;
96   } else {                    // GFX9+ supports 21-bit signed offsets.
97     Offset = SignExtend64<21>(Imm);
98   }
99   return addOperand(Inst, MCOperand::createImm(Offset));
100 }
101 
102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
103                                   const MCDisassembler *Decoder) {
104   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
105   return addOperand(Inst, DAsm->decodeBoolReg(Val));
106 }
107 
108 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
109   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
110                                         uint64_t /*Addr*/,                     \
111                                         const MCDisassembler *Decoder) {       \
112     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
113     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
114   }
115 
116 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
117 // number of register. Used by VGPR only and AGPR only operands.
118 #define DECODE_OPERAND_REG_8(RegClass)                                         \
119   static DecodeStatus Decode##RegClass##RegisterClass(                         \
120       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
121       const MCDisassembler *Decoder) {                                         \
122     assert(Imm < (1 << 8) && "8-bit encoding");                                \
123     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
124     return addOperand(                                                         \
125         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
126   }
127 
128 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
129                      ImmWidth)                                                 \
130   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
131                            const MCDisassembler *Decoder) {                    \
132     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
133     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
134     return addOperand(Inst,                                                    \
135                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
136                                         MandatoryLiteral, ImmWidth));          \
137   }
138 
139 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
140 // get register class. Used by SGPR only operands.
141 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
142   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
143 
144 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
145 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
146 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
147 // Used by AV_ register classes (AGPR or VGPR only register operands).
148 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
149   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
150                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
151 
152 // Decoder for Src(9-bit encoding) registers only.
153 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
154   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
155 
156 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
157 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
158 // only.
159 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
160   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
161 
162 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
163 // Imm{9} is acc, registers only.
164 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
165   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
166 
167 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
168 // register from RegClass or immediate. Registers that don't belong to RegClass
169 // will be decoded and InstPrinter will report warning. Immediate will be
170 // decoded into constant of size ImmWidth, should match width of immediate used
171 // by OperandType (important for floating point types).
172 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
173   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
174                false, ImmWidth)
175 
176 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
177 // and decode using 'enum10' from decodeSrcOp.
178 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
179   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
180                Imm | 512, false, ImmWidth)
181 
182 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
183   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
184                OpWidth, Imm, true, ImmWidth)
185 
186 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
187 // when RegisterClass is used as an operand. Most often used for destination
188 // operands.
189 
190 DECODE_OPERAND_REG_8(VGPR_32)
191 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
192 DECODE_OPERAND_REG_8(VReg_64)
193 DECODE_OPERAND_REG_8(VReg_96)
194 DECODE_OPERAND_REG_8(VReg_128)
195 DECODE_OPERAND_REG_8(VReg_256)
196 DECODE_OPERAND_REG_8(VReg_288)
197 DECODE_OPERAND_REG_8(VReg_352)
198 DECODE_OPERAND_REG_8(VReg_384)
199 DECODE_OPERAND_REG_8(VReg_512)
200 DECODE_OPERAND_REG_8(VReg_1024)
201 
202 DECODE_OPERAND_REG_7(SReg_32, OPW32)
203 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
204 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
205 DECODE_OPERAND_REG_7(SReg_64, OPW64)
206 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
207 DECODE_OPERAND_REG_7(SReg_128, OPW128)
208 DECODE_OPERAND_REG_7(SReg_256, OPW256)
209 DECODE_OPERAND_REG_7(SReg_512, OPW512)
210 
211 DECODE_OPERAND_REG_8(AGPR_32)
212 DECODE_OPERAND_REG_8(AReg_64)
213 DECODE_OPERAND_REG_8(AReg_128)
214 DECODE_OPERAND_REG_8(AReg_256)
215 DECODE_OPERAND_REG_8(AReg_512)
216 DECODE_OPERAND_REG_8(AReg_1024)
217 
218 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
219 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
220 
221 // Decoders for register only source RegisterOperands that use use 9-bit Src
222 // encoding: 'decodeOperand_<RegClass>'.
223 
224 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
225 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
226 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
227 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
228 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
229 
230 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
231 
232 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
233 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
234 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
235 
236 // Decoders for register or immediate RegisterOperands that use 9-bit Src
237 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
238 
239 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
240 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
242 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
243 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
252 
253 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
254 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
258 
259 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
260 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
262 
263 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
264                                          uint64_t Addr,
265                                          const MCDisassembler *Decoder) {
266   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
267   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
268 }
269 
270 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
271                                           uint64_t Addr, const void *Decoder) {
272   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
273   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
274 }
275 
276 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
277                           const MCRegisterInfo *MRI) {
278   if (OpIdx < 0)
279     return false;
280 
281   const MCOperand &Op = Inst.getOperand(OpIdx);
282   if (!Op.isReg())
283     return false;
284 
285   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
286   auto Reg = Sub ? Sub : Op.getReg();
287   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
288 }
289 
290 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
291                                              AMDGPUDisassembler::OpWidthTy Opw,
292                                              const MCDisassembler *Decoder) {
293   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
294   if (!DAsm->isGFX90A()) {
295     Imm &= 511;
296   } else {
297     // If atomic has both vdata and vdst their register classes are tied.
298     // The bit is decoded along with the vdst, first operand. We need to
299     // change register class to AGPR if vdst was AGPR.
300     // If a DS instruction has both data0 and data1 their register classes
301     // are also tied.
302     unsigned Opc = Inst.getOpcode();
303     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
304     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
305                                                         : AMDGPU::OpName::vdata;
306     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
307     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
308     if ((int)Inst.getNumOperands() == DataIdx) {
309       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
310       if (IsAGPROperand(Inst, DstIdx, MRI))
311         Imm |= 512;
312     }
313 
314     if (TSFlags & SIInstrFlags::DS) {
315       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
316       if ((int)Inst.getNumOperands() == Data2Idx &&
317           IsAGPROperand(Inst, DataIdx, MRI))
318         Imm |= 512;
319     }
320   }
321   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
322 }
323 
324 static DecodeStatus
325 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
326                              const MCDisassembler *Decoder) {
327   return decodeOperand_AVLdSt_Any(Inst, Imm,
328                                   AMDGPUDisassembler::OPW32, Decoder);
329 }
330 
331 static DecodeStatus
332 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
333                              const MCDisassembler *Decoder) {
334   return decodeOperand_AVLdSt_Any(Inst, Imm,
335                                   AMDGPUDisassembler::OPW64, Decoder);
336 }
337 
338 static DecodeStatus
339 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
340                              const MCDisassembler *Decoder) {
341   return decodeOperand_AVLdSt_Any(Inst, Imm,
342                                   AMDGPUDisassembler::OPW96, Decoder);
343 }
344 
345 static DecodeStatus
346 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
347                               const MCDisassembler *Decoder) {
348   return decodeOperand_AVLdSt_Any(Inst, Imm,
349                                   AMDGPUDisassembler::OPW128, Decoder);
350 }
351 
352 static DecodeStatus
353 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
354                               const MCDisassembler *Decoder) {
355   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
356                                   Decoder);
357 }
358 
359 #define DECODE_SDWA(DecName) \
360 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
361 
362 DECODE_SDWA(Src32)
363 DECODE_SDWA(Src16)
364 DECODE_SDWA(VopcDst)
365 
366 #include "AMDGPUGenDisassemblerTables.inc"
367 
368 //===----------------------------------------------------------------------===//
369 //
370 //===----------------------------------------------------------------------===//
371 
372 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
373   assert(Bytes.size() >= sizeof(T));
374   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
375   Bytes = Bytes.slice(sizeof(T));
376   return Res;
377 }
378 
379 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
380   assert(Bytes.size() >= 12);
381   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
382       Bytes.data());
383   Bytes = Bytes.slice(8);
384   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
385       Bytes.data());
386   Bytes = Bytes.slice(4);
387   return DecoderUInt128(Lo, Hi);
388 }
389 
390 // The disassembler is greedy, so we need to check FI operand value to
391 // not parse a dpp if the correct literal is not set. For dpp16 the
392 // autogenerated decoder checks the dpp literal
393 static bool isValidDPP8(const MCInst &MI) {
394   using namespace llvm::AMDGPU::DPP;
395   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
396   assert(FiIdx != -1);
397   if ((unsigned)FiIdx >= MI.getNumOperands())
398     return false;
399   unsigned Fi = MI.getOperand(FiIdx).getImm();
400   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
401 }
402 
403 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
404                                                 ArrayRef<uint8_t> Bytes_,
405                                                 uint64_t Address,
406                                                 raw_ostream &CS) const {
407   bool IsSDWA = false;
408 
409   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
410   Bytes = Bytes_.slice(0, MaxInstBytesNum);
411 
412   DecodeStatus Res = MCDisassembler::Fail;
413   do {
414     // ToDo: better to switch encoding length using some bit predicate
415     // but it is unknown yet, so try all we can
416 
417     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
418     // encodings
419     if (isGFX11Plus() && Bytes.size() >= 12 ) {
420       DecoderUInt128 DecW = eat12Bytes(Bytes);
421       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, Address, CS);
422       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
423         break;
424       MI = MCInst(); // clear
425       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, Address, CS);
426       if (Res) {
427         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
428           convertVOP3PDPPInst(MI);
429         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
430           convertVOPCDPPInst(MI); // Special VOP3 case
431         else {
432           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
433           convertVOP3DPPInst(MI); // Regular VOP3 case
434         }
435         break;
436       }
437       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
438       if (Res)
439         break;
440     }
441     // Reinitialize Bytes
442     Bytes = Bytes_.slice(0, MaxInstBytesNum);
443 
444     if (Bytes.size() >= 8) {
445       const uint64_t QW = eatBytes<uint64_t>(Bytes);
446 
447       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
448         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
449         if (Res) {
450           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
451               == -1)
452             break;
453           if (convertDPP8Inst(MI) == MCDisassembler::Success)
454             break;
455           MI = MCInst(); // clear
456         }
457       }
458 
459       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
460       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
461         break;
462       MI = MCInst(); // clear
463 
464       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address, CS);
465       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
466         break;
467       MI = MCInst(); // clear
468 
469       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
470       if (Res) break;
471 
472       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address, CS);
473       if (Res) {
474         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
475           convertVOPCDPPInst(MI);
476         break;
477       }
478 
479       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
480       if (Res) { IsSDWA = true;  break; }
481 
482       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
483       if (Res) { IsSDWA = true;  break; }
484 
485       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
486       if (Res) { IsSDWA = true;  break; }
487 
488       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
489         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
490         if (Res)
491           break;
492       }
493 
494       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
495       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
496       // table first so we print the correct name.
497       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
498         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
499         if (Res)
500           break;
501       }
502     }
503 
504     // Reinitialize Bytes as DPP64 could have eaten too much
505     Bytes = Bytes_.slice(0, MaxInstBytesNum);
506 
507     // Try decode 32-bit instruction
508     if (Bytes.size() < 4) break;
509     const uint32_t DW = eatBytes<uint32_t>(Bytes);
510     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
511     if (Res) break;
512 
513     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
514     if (Res) break;
515 
516     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
517     if (Res) break;
518 
519     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
520       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
521       if (Res)
522         break;
523     }
524 
525     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
526       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
527       if (Res) break;
528     }
529 
530     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
531     if (Res) break;
532 
533     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address, CS);
534     if (Res) break;
535 
536     if (Bytes.size() < 4) break;
537     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
538 
539     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
540       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
541       if (Res)
542         break;
543     }
544 
545     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
546       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
547       if (Res)
548         break;
549     }
550 
551     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
552     if (Res) break;
553 
554     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
555     if (Res) break;
556 
557     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
558     if (Res) break;
559 
560     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
561     if (Res) break;
562 
563     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address, CS);
564     if (Res)
565       break;
566 
567     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
568   } while (false);
569 
570   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
571     // Insert dummy unused src2_modifiers.
572     insertNamedMCOperand(MI, MCOperand::createImm(0),
573                          AMDGPU::OpName::src2_modifiers);
574   }
575 
576   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
577           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
578     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
579                                              AMDGPU::OpName::cpol);
580     if (CPolPos != -1) {
581       unsigned CPol =
582           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
583               AMDGPU::CPol::GLC : 0;
584       if (MI.getNumOperands() <= (unsigned)CPolPos) {
585         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
586                              AMDGPU::OpName::cpol);
587       } else if (CPol) {
588         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
589       }
590     }
591   }
592 
593   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
594               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
595              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
596     // GFX90A lost TFE, its place is occupied by ACC.
597     int TFEOpIdx =
598         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
599     if (TFEOpIdx != -1) {
600       auto TFEIter = MI.begin();
601       std::advance(TFEIter, TFEOpIdx);
602       MI.insert(TFEIter, MCOperand::createImm(0));
603     }
604   }
605 
606   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
607               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
608     int SWZOpIdx =
609         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
610     if (SWZOpIdx != -1) {
611       auto SWZIter = MI.begin();
612       std::advance(SWZIter, SWZOpIdx);
613       MI.insert(SWZIter, MCOperand::createImm(0));
614     }
615   }
616 
617   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
618     int VAddr0Idx =
619         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
620     int RsrcIdx =
621         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
622     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
623     if (VAddr0Idx >= 0 && NSAArgs > 0) {
624       unsigned NSAWords = (NSAArgs + 3) / 4;
625       if (Bytes.size() < 4 * NSAWords) {
626         Res = MCDisassembler::Fail;
627       } else {
628         for (unsigned i = 0; i < NSAArgs; ++i) {
629           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
630           auto VAddrRCID =
631               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
632           MI.insert(MI.begin() + VAddrIdx,
633                     createRegOperand(VAddrRCID, Bytes[i]));
634         }
635         Bytes = Bytes.slice(4 * NSAWords);
636       }
637     }
638 
639     if (Res)
640       Res = convertMIMGInst(MI);
641   }
642 
643   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
644     Res = convertEXPInst(MI);
645 
646   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
647     Res = convertVINTERPInst(MI);
648 
649   if (Res && IsSDWA)
650     Res = convertSDWAInst(MI);
651 
652   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
653                                               AMDGPU::OpName::vdst_in);
654   if (VDstIn_Idx != -1) {
655     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
656                            MCOI::OperandConstraint::TIED_TO);
657     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
658          !MI.getOperand(VDstIn_Idx).isReg() ||
659          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
660       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
661         MI.erase(&MI.getOperand(VDstIn_Idx));
662       insertNamedMCOperand(MI,
663         MCOperand::createReg(MI.getOperand(Tied).getReg()),
664         AMDGPU::OpName::vdst_in);
665     }
666   }
667 
668   int ImmLitIdx =
669       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
670   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
671   if (Res && ImmLitIdx != -1 && !IsSOPK)
672     Res = convertFMAanyK(MI, ImmLitIdx);
673 
674   // if the opcode was not recognized we'll assume a Size of 4 bytes
675   // (unless there are fewer bytes left)
676   Size = Res ? (MaxInstBytesNum - Bytes.size())
677              : std::min((size_t)4, Bytes_.size());
678   return Res;
679 }
680 
681 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
682   if (STI.hasFeature(AMDGPU::FeatureGFX11)) {
683     // The MCInst still has these fields even though they are no longer encoded
684     // in the GFX11 instruction.
685     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
686     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
687   }
688   return MCDisassembler::Success;
689 }
690 
691 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
692   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
693       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
694       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
695       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
696     // The MCInst has this field that is not directly encoded in the
697     // instruction.
698     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
699   }
700   return MCDisassembler::Success;
701 }
702 
703 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
704   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
705       STI.hasFeature(AMDGPU::FeatureGFX10)) {
706     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
707       // VOPC - insert clamp
708       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
709   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
710     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
711     if (SDst != -1) {
712       // VOPC - insert VCC register as sdst
713       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
714                            AMDGPU::OpName::sdst);
715     } else {
716       // VOP1/2 - insert omod if present in instruction
717       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
718     }
719   }
720   return MCDisassembler::Success;
721 }
722 
723 struct VOPModifiers {
724   unsigned OpSel = 0;
725   unsigned OpSelHi = 0;
726   unsigned NegLo = 0;
727   unsigned NegHi = 0;
728 };
729 
730 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
731 // Note that these values do not affect disassembler output,
732 // so this is only necessary for consistency with src_modifiers.
733 static VOPModifiers collectVOPModifiers(const MCInst &MI,
734                                         bool IsVOP3P = false) {
735   VOPModifiers Modifiers;
736   unsigned Opc = MI.getOpcode();
737   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
738                         AMDGPU::OpName::src1_modifiers,
739                         AMDGPU::OpName::src2_modifiers};
740   for (int J = 0; J < 3; ++J) {
741     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
742     if (OpIdx == -1)
743       continue;
744 
745     unsigned Val = MI.getOperand(OpIdx).getImm();
746 
747     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
748     if (IsVOP3P) {
749       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
750       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
751       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
752     } else if (J == 0) {
753       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
754     }
755   }
756 
757   return Modifiers;
758 }
759 
760 // MAC opcodes have special old and src2 operands.
761 // src2 is tied to dst, while old is not tied (but assumed to be).
762 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
763   constexpr int DST_IDX = 0;
764   auto Opcode = MI.getOpcode();
765   const auto &Desc = MCII->get(Opcode);
766   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
767 
768   if (OldIdx != -1 && Desc.getOperandConstraint(
769                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
770     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
771     assert(Desc.getOperandConstraint(
772                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
773                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
774     (void)DST_IDX;
775     return true;
776   }
777 
778   return false;
779 }
780 
781 // Create dummy old operand and insert dummy unused src2_modifiers
782 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
783   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
784   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
785   insertNamedMCOperand(MI, MCOperand::createImm(0),
786                        AMDGPU::OpName::src2_modifiers);
787 }
788 
789 // We must check FI == literal to reject not genuine dpp8 insts, and we must
790 // first add optional MI operands to check FI
791 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
792   unsigned Opc = MI.getOpcode();
793   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
794     convertVOP3PDPPInst(MI);
795   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
796              AMDGPU::isVOPC64DPP(Opc)) {
797     convertVOPCDPPInst(MI);
798   } else {
799     if (isMacDPP(MI))
800       convertMacDPPInst(MI);
801 
802     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
803     if (MI.getNumOperands() < DescNumOps &&
804         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
805       auto Mods = collectVOPModifiers(MI);
806       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
807                            AMDGPU::OpName::op_sel);
808     } else {
809       // Insert dummy unused src modifiers.
810       if (MI.getNumOperands() < DescNumOps &&
811           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
812         insertNamedMCOperand(MI, MCOperand::createImm(0),
813                              AMDGPU::OpName::src0_modifiers);
814 
815       if (MI.getNumOperands() < DescNumOps &&
816           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
817         insertNamedMCOperand(MI, MCOperand::createImm(0),
818                              AMDGPU::OpName::src1_modifiers);
819     }
820   }
821   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
822 }
823 
824 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
825   if (isMacDPP(MI))
826     convertMacDPPInst(MI);
827 
828   unsigned Opc = MI.getOpcode();
829   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
830   if (MI.getNumOperands() < DescNumOps &&
831       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
832     auto Mods = collectVOPModifiers(MI);
833     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
834                          AMDGPU::OpName::op_sel);
835   }
836   return MCDisassembler::Success;
837 }
838 
839 // Note that before gfx10, the MIMG encoding provided no information about
840 // VADDR size. Consequently, decoded instructions always show address as if it
841 // has 1 dword, which could be not really so.
842 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
843 
844   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
845                                            AMDGPU::OpName::vdst);
846 
847   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
848                                             AMDGPU::OpName::vdata);
849   int VAddr0Idx =
850       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
851   int RsrcIdx =
852       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
853   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
854                                             AMDGPU::OpName::dmask);
855 
856   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
857                                             AMDGPU::OpName::tfe);
858   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
859                                             AMDGPU::OpName::d16);
860 
861   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
862   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
863       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
864 
865   assert(VDataIdx != -1);
866   if (BaseOpcode->BVH) {
867     // Add A16 operand for intersect_ray instructions
868     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16))
869       addOperand(MI, MCOperand::createImm(1));
870     return MCDisassembler::Success;
871   }
872 
873   bool IsAtomic = (VDstIdx != -1);
874   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
875   bool IsNSA = false;
876   bool IsPartialNSA = false;
877   unsigned AddrSize = Info->VAddrDwords;
878 
879   if (isGFX10Plus()) {
880     unsigned DimIdx =
881         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
882     int A16Idx =
883         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
884     const AMDGPU::MIMGDimInfo *Dim =
885         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
886     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
887 
888     AddrSize =
889         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
890 
891     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
892             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
893     if (!IsNSA) {
894       if (AddrSize > 12)
895         AddrSize = 16;
896     } else {
897       if (AddrSize > Info->VAddrDwords) {
898         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
899           // The NSA encoding does not contain enough operands for the
900           // combination of base opcode / dimension. Should this be an error?
901           return MCDisassembler::Success;
902         }
903         IsPartialNSA = true;
904       }
905     }
906   }
907 
908   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
909   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
910 
911   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
912   if (D16 && AMDGPU::hasPackedD16(STI)) {
913     DstSize = (DstSize + 1) / 2;
914   }
915 
916   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
917     DstSize += 1;
918 
919   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
920     return MCDisassembler::Success;
921 
922   int NewOpcode =
923       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
924   if (NewOpcode == -1)
925     return MCDisassembler::Success;
926 
927   // Widen the register to the correct number of enabled channels.
928   unsigned NewVdata = AMDGPU::NoRegister;
929   if (DstSize != Info->VDataDwords) {
930     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
931 
932     // Get first subregister of VData
933     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
934     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
935     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
936 
937     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
938                                        &MRI.getRegClass(DataRCID));
939     if (NewVdata == AMDGPU::NoRegister) {
940       // It's possible to encode this such that the low register + enabled
941       // components exceeds the register count.
942       return MCDisassembler::Success;
943     }
944   }
945 
946   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
947   // If using partial NSA on GFX11+ widen last address register.
948   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
949   unsigned NewVAddrSA = AMDGPU::NoRegister;
950   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
951       AddrSize != Info->VAddrDwords) {
952     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
953     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
954     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
955 
956     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
957     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
958                                         &MRI.getRegClass(AddrRCID));
959     if (!NewVAddrSA)
960       return MCDisassembler::Success;
961   }
962 
963   MI.setOpcode(NewOpcode);
964 
965   if (NewVdata != AMDGPU::NoRegister) {
966     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
967 
968     if (IsAtomic) {
969       // Atomic operations have an additional operand (a copy of data)
970       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
971     }
972   }
973 
974   if (NewVAddrSA) {
975     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
976   } else if (IsNSA) {
977     assert(AddrSize <= Info->VAddrDwords);
978     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
979              MI.begin() + VAddr0Idx + Info->VAddrDwords);
980   }
981 
982   return MCDisassembler::Success;
983 }
984 
985 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
986 // decoder only adds to src_modifiers, so manually add the bits to the other
987 // operands.
988 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
989   unsigned Opc = MI.getOpcode();
990   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
991   auto Mods = collectVOPModifiers(MI, true);
992 
993   if (MI.getNumOperands() < DescNumOps &&
994       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
995     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
996 
997   if (MI.getNumOperands() < DescNumOps &&
998       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
999     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1000                          AMDGPU::OpName::op_sel);
1001   if (MI.getNumOperands() < DescNumOps &&
1002       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1003     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1004                          AMDGPU::OpName::op_sel_hi);
1005   if (MI.getNumOperands() < DescNumOps &&
1006       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1007     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1008                          AMDGPU::OpName::neg_lo);
1009   if (MI.getNumOperands() < DescNumOps &&
1010       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1011     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1012                          AMDGPU::OpName::neg_hi);
1013 
1014   return MCDisassembler::Success;
1015 }
1016 
1017 // Create dummy old operand and insert optional operands
1018 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1019   unsigned Opc = MI.getOpcode();
1020   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1021 
1022   if (MI.getNumOperands() < DescNumOps &&
1023       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1024     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1025 
1026   if (MI.getNumOperands() < DescNumOps &&
1027       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1028     insertNamedMCOperand(MI, MCOperand::createImm(0),
1029                          AMDGPU::OpName::src0_modifiers);
1030 
1031   if (MI.getNumOperands() < DescNumOps &&
1032       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1033     insertNamedMCOperand(MI, MCOperand::createImm(0),
1034                          AMDGPU::OpName::src1_modifiers);
1035   return MCDisassembler::Success;
1036 }
1037 
1038 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1039                                                 int ImmLitIdx) const {
1040   assert(HasLiteral && "Should have decoded a literal");
1041   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1042   unsigned DescNumOps = Desc.getNumOperands();
1043   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1044                        AMDGPU::OpName::immDeferred);
1045   assert(DescNumOps == MI.getNumOperands());
1046   for (unsigned I = 0; I < DescNumOps; ++I) {
1047     auto &Op = MI.getOperand(I);
1048     auto OpType = Desc.operands()[I].OperandType;
1049     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1050                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1051     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1052         IsDeferredOp)
1053       Op.setImm(Literal);
1054   }
1055   return MCDisassembler::Success;
1056 }
1057 
1058 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1059   return getContext().getRegisterInfo()->
1060     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1061 }
1062 
1063 inline
1064 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1065                                          const Twine& ErrMsg) const {
1066   *CommentStream << "Error: " + ErrMsg;
1067 
1068   // ToDo: add support for error operands to MCInst.h
1069   // return MCOperand::createError(V);
1070   return MCOperand();
1071 }
1072 
1073 inline
1074 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1075   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1076 }
1077 
1078 inline
1079 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1080                                                unsigned Val) const {
1081   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1082   if (Val >= RegCl.getNumRegs())
1083     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1084                            ": unknown register " + Twine(Val));
1085   return createRegOperand(RegCl.getRegister(Val));
1086 }
1087 
1088 inline
1089 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1090                                                 unsigned Val) const {
1091   // ToDo: SI/CI have 104 SGPRs, VI - 102
1092   // Valery: here we accepting as much as we can, let assembler sort it out
1093   int shift = 0;
1094   switch (SRegClassID) {
1095   case AMDGPU::SGPR_32RegClassID:
1096   case AMDGPU::TTMP_32RegClassID:
1097     break;
1098   case AMDGPU::SGPR_64RegClassID:
1099   case AMDGPU::TTMP_64RegClassID:
1100     shift = 1;
1101     break;
1102   case AMDGPU::SGPR_128RegClassID:
1103   case AMDGPU::TTMP_128RegClassID:
1104   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1105   // this bundle?
1106   case AMDGPU::SGPR_256RegClassID:
1107   case AMDGPU::TTMP_256RegClassID:
1108     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1109   // this bundle?
1110   case AMDGPU::SGPR_288RegClassID:
1111   case AMDGPU::TTMP_288RegClassID:
1112   case AMDGPU::SGPR_320RegClassID:
1113   case AMDGPU::TTMP_320RegClassID:
1114   case AMDGPU::SGPR_352RegClassID:
1115   case AMDGPU::TTMP_352RegClassID:
1116   case AMDGPU::SGPR_384RegClassID:
1117   case AMDGPU::TTMP_384RegClassID:
1118   case AMDGPU::SGPR_512RegClassID:
1119   case AMDGPU::TTMP_512RegClassID:
1120     shift = 2;
1121     break;
1122   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1123   // this bundle?
1124   default:
1125     llvm_unreachable("unhandled register class");
1126   }
1127 
1128   if (Val % (1 << shift)) {
1129     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1130                    << ": scalar reg isn't aligned " << Val;
1131   }
1132 
1133   return createRegOperand(SRegClassID, Val >> shift);
1134 }
1135 
1136 // Decode Literals for insts which always have a literal in the encoding
1137 MCOperand
1138 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1139   if (HasLiteral) {
1140     assert(
1141         AMDGPU::hasVOPD(STI) &&
1142         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1143     if (Literal != Val)
1144       return errOperand(Val, "More than one unique literal is illegal");
1145   }
1146   HasLiteral = true;
1147   Literal = Val;
1148   return MCOperand::createImm(Literal);
1149 }
1150 
1151 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1152   // For now all literal constants are supposed to be unsigned integer
1153   // ToDo: deal with signed/unsigned 64-bit integer constants
1154   // ToDo: deal with float/double constants
1155   if (!HasLiteral) {
1156     if (Bytes.size() < 4) {
1157       return errOperand(0, "cannot read literal, inst bytes left " +
1158                         Twine(Bytes.size()));
1159     }
1160     HasLiteral = true;
1161     Literal = eatBytes<uint32_t>(Bytes);
1162   }
1163   return MCOperand::createImm(Literal);
1164 }
1165 
1166 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1167   using namespace AMDGPU::EncValues;
1168 
1169   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1170   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1171     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1172     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1173       // Cast prevents negative overflow.
1174 }
1175 
1176 static int64_t getInlineImmVal32(unsigned Imm) {
1177   switch (Imm) {
1178   case 240:
1179     return llvm::bit_cast<uint32_t>(0.5f);
1180   case 241:
1181     return llvm::bit_cast<uint32_t>(-0.5f);
1182   case 242:
1183     return llvm::bit_cast<uint32_t>(1.0f);
1184   case 243:
1185     return llvm::bit_cast<uint32_t>(-1.0f);
1186   case 244:
1187     return llvm::bit_cast<uint32_t>(2.0f);
1188   case 245:
1189     return llvm::bit_cast<uint32_t>(-2.0f);
1190   case 246:
1191     return llvm::bit_cast<uint32_t>(4.0f);
1192   case 247:
1193     return llvm::bit_cast<uint32_t>(-4.0f);
1194   case 248: // 1 / (2 * PI)
1195     return 0x3e22f983;
1196   default:
1197     llvm_unreachable("invalid fp inline imm");
1198   }
1199 }
1200 
1201 static int64_t getInlineImmVal64(unsigned Imm) {
1202   switch (Imm) {
1203   case 240:
1204     return llvm::bit_cast<uint64_t>(0.5);
1205   case 241:
1206     return llvm::bit_cast<uint64_t>(-0.5);
1207   case 242:
1208     return llvm::bit_cast<uint64_t>(1.0);
1209   case 243:
1210     return llvm::bit_cast<uint64_t>(-1.0);
1211   case 244:
1212     return llvm::bit_cast<uint64_t>(2.0);
1213   case 245:
1214     return llvm::bit_cast<uint64_t>(-2.0);
1215   case 246:
1216     return llvm::bit_cast<uint64_t>(4.0);
1217   case 247:
1218     return llvm::bit_cast<uint64_t>(-4.0);
1219   case 248: // 1 / (2 * PI)
1220     return 0x3fc45f306dc9c882;
1221   default:
1222     llvm_unreachable("invalid fp inline imm");
1223   }
1224 }
1225 
1226 static int64_t getInlineImmVal16(unsigned Imm) {
1227   switch (Imm) {
1228   case 240:
1229     return 0x3800;
1230   case 241:
1231     return 0xB800;
1232   case 242:
1233     return 0x3C00;
1234   case 243:
1235     return 0xBC00;
1236   case 244:
1237     return 0x4000;
1238   case 245:
1239     return 0xC000;
1240   case 246:
1241     return 0x4400;
1242   case 247:
1243     return 0xC400;
1244   case 248: // 1 / (2 * PI)
1245     return 0x3118;
1246   default:
1247     llvm_unreachable("invalid fp inline imm");
1248   }
1249 }
1250 
1251 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1252   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1253       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1254 
1255   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1256   // ImmWidth 0 is a default case where operand should not allow immediates.
1257   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1258   // use it to print verbose error message.
1259   switch (ImmWidth) {
1260   case 0:
1261   case 32:
1262     return MCOperand::createImm(getInlineImmVal32(Imm));
1263   case 64:
1264     return MCOperand::createImm(getInlineImmVal64(Imm));
1265   case 16:
1266     return MCOperand::createImm(getInlineImmVal16(Imm));
1267   default:
1268     llvm_unreachable("implement me");
1269   }
1270 }
1271 
1272 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1273   using namespace AMDGPU;
1274 
1275   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1276   switch (Width) {
1277   default: // fall
1278   case OPW32:
1279   case OPW16:
1280   case OPWV216:
1281     return VGPR_32RegClassID;
1282   case OPW64:
1283   case OPWV232: return VReg_64RegClassID;
1284   case OPW96: return VReg_96RegClassID;
1285   case OPW128: return VReg_128RegClassID;
1286   case OPW160: return VReg_160RegClassID;
1287   case OPW256: return VReg_256RegClassID;
1288   case OPW288: return VReg_288RegClassID;
1289   case OPW320: return VReg_320RegClassID;
1290   case OPW352: return VReg_352RegClassID;
1291   case OPW384: return VReg_384RegClassID;
1292   case OPW512: return VReg_512RegClassID;
1293   case OPW1024: return VReg_1024RegClassID;
1294   }
1295 }
1296 
1297 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1298   using namespace AMDGPU;
1299 
1300   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1301   switch (Width) {
1302   default: // fall
1303   case OPW32:
1304   case OPW16:
1305   case OPWV216:
1306     return AGPR_32RegClassID;
1307   case OPW64:
1308   case OPWV232: return AReg_64RegClassID;
1309   case OPW96: return AReg_96RegClassID;
1310   case OPW128: return AReg_128RegClassID;
1311   case OPW160: return AReg_160RegClassID;
1312   case OPW256: return AReg_256RegClassID;
1313   case OPW288: return AReg_288RegClassID;
1314   case OPW320: return AReg_320RegClassID;
1315   case OPW352: return AReg_352RegClassID;
1316   case OPW384: return AReg_384RegClassID;
1317   case OPW512: return AReg_512RegClassID;
1318   case OPW1024: return AReg_1024RegClassID;
1319   }
1320 }
1321 
1322 
1323 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1324   using namespace AMDGPU;
1325 
1326   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1327   switch (Width) {
1328   default: // fall
1329   case OPW32:
1330   case OPW16:
1331   case OPWV216:
1332     return SGPR_32RegClassID;
1333   case OPW64:
1334   case OPWV232: return SGPR_64RegClassID;
1335   case OPW96: return SGPR_96RegClassID;
1336   case OPW128: return SGPR_128RegClassID;
1337   case OPW160: return SGPR_160RegClassID;
1338   case OPW256: return SGPR_256RegClassID;
1339   case OPW288: return SGPR_288RegClassID;
1340   case OPW320: return SGPR_320RegClassID;
1341   case OPW352: return SGPR_352RegClassID;
1342   case OPW384: return SGPR_384RegClassID;
1343   case OPW512: return SGPR_512RegClassID;
1344   }
1345 }
1346 
1347 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1348   using namespace AMDGPU;
1349 
1350   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1351   switch (Width) {
1352   default: // fall
1353   case OPW32:
1354   case OPW16:
1355   case OPWV216:
1356     return TTMP_32RegClassID;
1357   case OPW64:
1358   case OPWV232: return TTMP_64RegClassID;
1359   case OPW128: return TTMP_128RegClassID;
1360   case OPW256: return TTMP_256RegClassID;
1361   case OPW288: return TTMP_288RegClassID;
1362   case OPW320: return TTMP_320RegClassID;
1363   case OPW352: return TTMP_352RegClassID;
1364   case OPW384: return TTMP_384RegClassID;
1365   case OPW512: return TTMP_512RegClassID;
1366   }
1367 }
1368 
1369 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1370   using namespace AMDGPU::EncValues;
1371 
1372   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1373   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1374 
1375   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1376 }
1377 
1378 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1379                                           bool MandatoryLiteral,
1380                                           unsigned ImmWidth) const {
1381   using namespace AMDGPU::EncValues;
1382 
1383   assert(Val < 1024); // enum10
1384 
1385   bool IsAGPR = Val & 512;
1386   Val &= 511;
1387 
1388   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1389     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1390                                    : getVgprClassId(Width), Val - VGPR_MIN);
1391   }
1392   if (Val <= SGPR_MAX) {
1393     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1394     static_assert(SGPR_MIN == 0);
1395     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1396   }
1397 
1398   int TTmpIdx = getTTmpIdx(Val);
1399   if (TTmpIdx >= 0) {
1400     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1401   }
1402 
1403   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1404     return decodeIntImmed(Val);
1405 
1406   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1407     return decodeFPImmed(ImmWidth, Val);
1408 
1409   if (Val == LITERAL_CONST) {
1410     if (MandatoryLiteral)
1411       // Keep a sentinel value for deferred setting
1412       return MCOperand::createImm(LITERAL_CONST);
1413     else
1414       return decodeLiteralConstant();
1415   }
1416 
1417   switch (Width) {
1418   case OPW32:
1419   case OPW16:
1420   case OPWV216:
1421     return decodeSpecialReg32(Val);
1422   case OPW64:
1423   case OPWV232:
1424     return decodeSpecialReg64(Val);
1425   default:
1426     llvm_unreachable("unexpected immediate type");
1427   }
1428 }
1429 
1430 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1431 // opposite of bit 0 of DstX.
1432 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1433                                                unsigned Val) const {
1434   int VDstXInd =
1435       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1436   assert(VDstXInd != -1);
1437   assert(Inst.getOperand(VDstXInd).isReg());
1438   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1439   Val |= ~XDstReg & 1;
1440   auto Width = llvm::AMDGPUDisassembler::OPW32;
1441   return createRegOperand(getVgprClassId(Width), Val);
1442 }
1443 
1444 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1445   using namespace AMDGPU;
1446 
1447   switch (Val) {
1448   // clang-format off
1449   case 102: return createRegOperand(FLAT_SCR_LO);
1450   case 103: return createRegOperand(FLAT_SCR_HI);
1451   case 104: return createRegOperand(XNACK_MASK_LO);
1452   case 105: return createRegOperand(XNACK_MASK_HI);
1453   case 106: return createRegOperand(VCC_LO);
1454   case 107: return createRegOperand(VCC_HI);
1455   case 108: return createRegOperand(TBA_LO);
1456   case 109: return createRegOperand(TBA_HI);
1457   case 110: return createRegOperand(TMA_LO);
1458   case 111: return createRegOperand(TMA_HI);
1459   case 124:
1460     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1461   case 125:
1462     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1463   case 126: return createRegOperand(EXEC_LO);
1464   case 127: return createRegOperand(EXEC_HI);
1465   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1466   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1467   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1468   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1469   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1470   case 251: return createRegOperand(SRC_VCCZ);
1471   case 252: return createRegOperand(SRC_EXECZ);
1472   case 253: return createRegOperand(SRC_SCC);
1473   case 254: return createRegOperand(LDS_DIRECT);
1474   default: break;
1475     // clang-format on
1476   }
1477   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1478 }
1479 
1480 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1481   using namespace AMDGPU;
1482 
1483   switch (Val) {
1484   case 102: return createRegOperand(FLAT_SCR);
1485   case 104: return createRegOperand(XNACK_MASK);
1486   case 106: return createRegOperand(VCC);
1487   case 108: return createRegOperand(TBA);
1488   case 110: return createRegOperand(TMA);
1489   case 124:
1490     if (isGFX11Plus())
1491       return createRegOperand(SGPR_NULL);
1492     break;
1493   case 125:
1494     if (!isGFX11Plus())
1495       return createRegOperand(SGPR_NULL);
1496     break;
1497   case 126: return createRegOperand(EXEC);
1498   case 235: return createRegOperand(SRC_SHARED_BASE);
1499   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1500   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1501   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1502   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1503   case 251: return createRegOperand(SRC_VCCZ);
1504   case 252: return createRegOperand(SRC_EXECZ);
1505   case 253: return createRegOperand(SRC_SCC);
1506   default: break;
1507   }
1508   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1509 }
1510 
1511 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1512                                             const unsigned Val,
1513                                             unsigned ImmWidth) const {
1514   using namespace AMDGPU::SDWA;
1515   using namespace AMDGPU::EncValues;
1516 
1517   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1518       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1519     // XXX: cast to int is needed to avoid stupid warning:
1520     // compare with unsigned is always true
1521     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1522         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1523       return createRegOperand(getVgprClassId(Width),
1524                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1525     }
1526     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1527         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1528                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1529       return createSRegOperand(getSgprClassId(Width),
1530                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1531     }
1532     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1533         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1534       return createSRegOperand(getTtmpClassId(Width),
1535                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1536     }
1537 
1538     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1539 
1540     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1541       return decodeIntImmed(SVal);
1542 
1543     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1544       return decodeFPImmed(ImmWidth, SVal);
1545 
1546     return decodeSpecialReg32(SVal);
1547   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1548     return createRegOperand(getVgprClassId(Width), Val);
1549   }
1550   llvm_unreachable("unsupported target");
1551 }
1552 
1553 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1554   return decodeSDWASrc(OPW16, Val, 16);
1555 }
1556 
1557 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1558   return decodeSDWASrc(OPW32, Val, 32);
1559 }
1560 
1561 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1562   using namespace AMDGPU::SDWA;
1563 
1564   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1565           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1566          "SDWAVopcDst should be present only on GFX9+");
1567 
1568   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1569 
1570   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1571     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1572 
1573     int TTmpIdx = getTTmpIdx(Val);
1574     if (TTmpIdx >= 0) {
1575       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1576       return createSRegOperand(TTmpClsId, TTmpIdx);
1577     } else if (Val > SGPR_MAX) {
1578       return IsWave64 ? decodeSpecialReg64(Val)
1579                       : decodeSpecialReg32(Val);
1580     } else {
1581       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1582     }
1583   } else {
1584     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1585   }
1586 }
1587 
1588 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1589   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1590              ? decodeSrcOp(OPW64, Val)
1591              : decodeSrcOp(OPW32, Val);
1592 }
1593 
1594 bool AMDGPUDisassembler::isVI() const {
1595   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1596 }
1597 
1598 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1599 
1600 bool AMDGPUDisassembler::isGFX90A() const {
1601   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1602 }
1603 
1604 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1605 
1606 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1607 
1608 bool AMDGPUDisassembler::isGFX10Plus() const {
1609   return AMDGPU::isGFX10Plus(STI);
1610 }
1611 
1612 bool AMDGPUDisassembler::isGFX11() const {
1613   return STI.hasFeature(AMDGPU::FeatureGFX11);
1614 }
1615 
1616 bool AMDGPUDisassembler::isGFX11Plus() const {
1617   return AMDGPU::isGFX11Plus(STI);
1618 }
1619 
1620 
1621 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1622   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1623 }
1624 
1625 //===----------------------------------------------------------------------===//
1626 // AMDGPU specific symbol handling
1627 //===----------------------------------------------------------------------===//
1628 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1629 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1630   do {                                                                         \
1631     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1632   } while (0)
1633 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1634   do {                                                                         \
1635     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1636              << GET_FIELD(MASK) << '\n';                                       \
1637   } while (0)
1638 
1639 // NOLINTNEXTLINE(readability-identifier-naming)
1640 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1641     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1642   using namespace amdhsa;
1643   StringRef Indent = "\t";
1644 
1645   // We cannot accurately backward compute #VGPRs used from
1646   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1647   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1648   // simply calculate the inverse of what the assembler does.
1649 
1650   uint32_t GranulatedWorkitemVGPRCount =
1651       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1652 
1653   uint32_t NextFreeVGPR =
1654       (GranulatedWorkitemVGPRCount + 1) *
1655       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1656 
1657   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1658 
1659   // We cannot backward compute values used to calculate
1660   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1661   // directives can't be computed:
1662   // .amdhsa_reserve_vcc
1663   // .amdhsa_reserve_flat_scratch
1664   // .amdhsa_reserve_xnack_mask
1665   // They take their respective default values if not specified in the assembly.
1666   //
1667   // GRANULATED_WAVEFRONT_SGPR_COUNT
1668   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1669   //
1670   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1671   // are set to 0. So while disassembling we consider that:
1672   //
1673   // GRANULATED_WAVEFRONT_SGPR_COUNT
1674   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1675   //
1676   // The disassembler cannot recover the original values of those 3 directives.
1677 
1678   uint32_t GranulatedWavefrontSGPRCount =
1679       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1680 
1681   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1682     return MCDisassembler::Fail;
1683 
1684   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1685                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1686 
1687   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1688   if (!hasArchitectedFlatScratch())
1689     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1690   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1691   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1692 
1693   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1694     return MCDisassembler::Fail;
1695 
1696   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1697                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1698   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1699                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1700   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1701                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1702   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1703                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1704 
1705   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1706     return MCDisassembler::Fail;
1707 
1708   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1709 
1710   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1711     return MCDisassembler::Fail;
1712 
1713   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1714 
1715   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1716     return MCDisassembler::Fail;
1717 
1718   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1719     return MCDisassembler::Fail;
1720 
1721   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1722 
1723   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1724     return MCDisassembler::Fail;
1725 
1726   if (isGFX10Plus()) {
1727     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1728                     COMPUTE_PGM_RSRC1_WGP_MODE);
1729     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1730     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1731   }
1732   return MCDisassembler::Success;
1733 }
1734 
1735 // NOLINTNEXTLINE(readability-identifier-naming)
1736 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1737     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1738   using namespace amdhsa;
1739   StringRef Indent = "\t";
1740   if (hasArchitectedFlatScratch())
1741     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1742                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1743   else
1744     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1745                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1746   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1747                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1748   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1749                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1750   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1751                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1752   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1753                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1754   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1755                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1756 
1757   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1758     return MCDisassembler::Fail;
1759 
1760   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1761     return MCDisassembler::Fail;
1762 
1763   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1764     return MCDisassembler::Fail;
1765 
1766   PRINT_DIRECTIVE(
1767       ".amdhsa_exception_fp_ieee_invalid_op",
1768       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1769   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1770                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1771   PRINT_DIRECTIVE(
1772       ".amdhsa_exception_fp_ieee_div_zero",
1773       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1774   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1775                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1776   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1777                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1778   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1779                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1780   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1781                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1782 
1783   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1784     return MCDisassembler::Fail;
1785 
1786   return MCDisassembler::Success;
1787 }
1788 
1789 // NOLINTNEXTLINE(readability-identifier-naming)
1790 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1791     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1792   using namespace amdhsa;
1793   StringRef Indent = "\t";
1794   if (isGFX90A()) {
1795     KdStream << Indent << ".amdhsa_accum_offset "
1796              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1797              << '\n';
1798     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1799       return MCDisassembler::Fail;
1800     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1801     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
1802       return MCDisassembler::Fail;
1803   } else if (isGFX10Plus()) {
1804     if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
1805       PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
1806                       COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1807     } else {
1808       PRINT_PSEUDO_DIRECTIVE_COMMENT(
1809           "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1810     }
1811     PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
1812                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_INST_PREF_SIZE);
1813     PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
1814                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START);
1815     PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
1816                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_END);
1817     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED0)
1818       return MCDisassembler::Fail;
1819     PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
1820                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START);
1821   } else if (FourByteBuffer) {
1822     return MCDisassembler::Fail;
1823   }
1824   return MCDisassembler::Success;
1825 }
1826 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
1827 #undef PRINT_DIRECTIVE
1828 #undef GET_FIELD
1829 
1830 MCDisassembler::DecodeStatus
1831 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1832     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1833     raw_string_ostream &KdStream) const {
1834 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1835   do {                                                                         \
1836     KdStream << Indent << DIRECTIVE " "                                        \
1837              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1838   } while (0)
1839 
1840   uint16_t TwoByteBuffer = 0;
1841   uint32_t FourByteBuffer = 0;
1842 
1843   StringRef ReservedBytes;
1844   StringRef Indent = "\t";
1845 
1846   assert(Bytes.size() == 64);
1847   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1848 
1849   switch (Cursor.tell()) {
1850   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1851     FourByteBuffer = DE.getU32(Cursor);
1852     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1853              << '\n';
1854     return MCDisassembler::Success;
1855 
1856   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1857     FourByteBuffer = DE.getU32(Cursor);
1858     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1859              << FourByteBuffer << '\n';
1860     return MCDisassembler::Success;
1861 
1862   case amdhsa::KERNARG_SIZE_OFFSET:
1863     FourByteBuffer = DE.getU32(Cursor);
1864     KdStream << Indent << ".amdhsa_kernarg_size "
1865              << FourByteBuffer << '\n';
1866     return MCDisassembler::Success;
1867 
1868   case amdhsa::RESERVED0_OFFSET:
1869     // 4 reserved bytes, must be 0.
1870     ReservedBytes = DE.getBytes(Cursor, 4);
1871     for (int I = 0; I < 4; ++I) {
1872       if (ReservedBytes[I] != 0) {
1873         return MCDisassembler::Fail;
1874       }
1875     }
1876     return MCDisassembler::Success;
1877 
1878   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1879     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1880     // So far no directive controls this for Code Object V3, so simply skip for
1881     // disassembly.
1882     DE.skip(Cursor, 8);
1883     return MCDisassembler::Success;
1884 
1885   case amdhsa::RESERVED1_OFFSET:
1886     // 20 reserved bytes, must be 0.
1887     ReservedBytes = DE.getBytes(Cursor, 20);
1888     for (int I = 0; I < 20; ++I) {
1889       if (ReservedBytes[I] != 0) {
1890         return MCDisassembler::Fail;
1891       }
1892     }
1893     return MCDisassembler::Success;
1894 
1895   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1896     FourByteBuffer = DE.getU32(Cursor);
1897     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
1898 
1899   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1900     FourByteBuffer = DE.getU32(Cursor);
1901     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
1902 
1903   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1904     FourByteBuffer = DE.getU32(Cursor);
1905     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
1906 
1907   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1908     using namespace amdhsa;
1909     TwoByteBuffer = DE.getU16(Cursor);
1910 
1911     if (!hasArchitectedFlatScratch())
1912       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1913                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1914     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1915                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1916     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1917                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1918     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1919                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1920     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1921                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1922     if (!hasArchitectedFlatScratch())
1923       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1924                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1925     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1926                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1927 
1928     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1929       return MCDisassembler::Fail;
1930 
1931     // Reserved for GFX9
1932     if (isGFX9() &&
1933         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1934       return MCDisassembler::Fail;
1935     } else if (isGFX10Plus()) {
1936       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1937                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1938     }
1939 
1940     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
1941       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
1942                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
1943 
1944     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1945       return MCDisassembler::Fail;
1946 
1947     return MCDisassembler::Success;
1948 
1949   case amdhsa::RESERVED2_OFFSET:
1950     // 6 bytes from here are reserved, must be 0.
1951     ReservedBytes = DE.getBytes(Cursor, 6);
1952     for (int I = 0; I < 6; ++I) {
1953       if (ReservedBytes[I] != 0)
1954         return MCDisassembler::Fail;
1955     }
1956     return MCDisassembler::Success;
1957 
1958   default:
1959     llvm_unreachable("Unhandled index. Case statements cover everything.");
1960     return MCDisassembler::Fail;
1961   }
1962 #undef PRINT_DIRECTIVE
1963 }
1964 
1965 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1966     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1967   // CP microcode requires the kernel descriptor to be 64 aligned.
1968   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1969     return MCDisassembler::Fail;
1970 
1971   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
1972   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
1973   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
1974   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
1975   // when required.
1976   if (isGFX10Plus()) {
1977     uint16_t KernelCodeProperties =
1978         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
1979                                 support::endianness::little);
1980     EnableWavefrontSize32 =
1981         AMDHSA_BITS_GET(KernelCodeProperties,
1982                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1983   }
1984 
1985   std::string Kd;
1986   raw_string_ostream KdStream(Kd);
1987   KdStream << ".amdhsa_kernel " << KdName << '\n';
1988 
1989   DataExtractor::Cursor C(0);
1990   while (C && C.tell() < Bytes.size()) {
1991     MCDisassembler::DecodeStatus Status =
1992         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1993 
1994     cantFail(C.takeError());
1995 
1996     if (Status == MCDisassembler::Fail)
1997       return MCDisassembler::Fail;
1998   }
1999   KdStream << ".end_amdhsa_kernel\n";
2000   outs() << KdStream.str();
2001   return MCDisassembler::Success;
2002 }
2003 
2004 std::optional<MCDisassembler::DecodeStatus>
2005 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2006                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2007                                   raw_ostream &CStream) const {
2008   // Right now only kernel descriptor needs to be handled.
2009   // We ignore all other symbols for target specific handling.
2010   // TODO:
2011   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2012   // Object V2 and V3 when symbols are marked protected.
2013 
2014   // amd_kernel_code_t for Code Object V2.
2015   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2016     Size = 256;
2017     return MCDisassembler::Fail;
2018   }
2019 
2020   // Code Object V3 kernel descriptors.
2021   StringRef Name = Symbol.Name;
2022   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2023     Size = 64; // Size = 64 regardless of success or failure.
2024     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2025   }
2026   return std::nullopt;
2027 }
2028 
2029 //===----------------------------------------------------------------------===//
2030 // AMDGPUSymbolizer
2031 //===----------------------------------------------------------------------===//
2032 
2033 // Try to find symbol name for specified label
2034 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2035     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2036     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2037     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2038 
2039   if (!IsBranch) {
2040     return false;
2041   }
2042 
2043   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2044   if (!Symbols)
2045     return false;
2046 
2047   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2048     return Val.Addr == static_cast<uint64_t>(Value) &&
2049            Val.Type == ELF::STT_NOTYPE;
2050   });
2051   if (Result != Symbols->end()) {
2052     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2053     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2054     Inst.addOperand(MCOperand::createExpr(Add));
2055     return true;
2056   }
2057   // Add to list of referenced addresses, so caller can synthesize a label.
2058   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2059   return false;
2060 }
2061 
2062 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2063                                                        int64_t Value,
2064                                                        uint64_t Address) {
2065   llvm_unreachable("unimplemented");
2066 }
2067 
2068 //===----------------------------------------------------------------------===//
2069 // Initialization
2070 //===----------------------------------------------------------------------===//
2071 
2072 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2073                               LLVMOpInfoCallback /*GetOpInfo*/,
2074                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2075                               void *DisInfo,
2076                               MCContext *Ctx,
2077                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2078   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2079 }
2080 
2081 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2082                                                 const MCSubtargetInfo &STI,
2083                                                 MCContext &Ctx) {
2084   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2085 }
2086 
2087 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2088   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2089                                          createAMDGPUDisassembler);
2090   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2091                                        createAMDGPUSymbolizer);
2092 }
2093