1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, MCInstrInfo const *MCII) 49 : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 50 MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) { 51 // ToDo: AMDGPUDisassembler supports only VI ISA. 52 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 53 report_fatal_error("Disassembly not yet supported for subtarget"); 54 } 55 56 inline static MCDisassembler::DecodeStatus 57 addOperand(MCInst &Inst, const MCOperand& Opnd) { 58 Inst.addOperand(Opnd); 59 return Opnd.isValid() ? 60 MCDisassembler::Success : 61 MCDisassembler::Fail; 62 } 63 64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 65 uint16_t NameIdx) { 66 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 67 if (OpIdx != -1) { 68 auto I = MI.begin(); 69 std::advance(I, OpIdx); 70 MI.insert(I, Op); 71 } 72 return OpIdx; 73 } 74 75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, 76 uint64_t Addr, 77 const MCDisassembler *Decoder) { 78 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 79 80 // Our branches take a simm16, but we need two extra bits to account for the 81 // factor of 4. 82 APInt SignedOffset(18, Imm * 4, true); 83 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 84 85 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 86 return MCDisassembler::Success; 87 return addOperand(Inst, MCOperand::createImm(Imm)); 88 } 89 90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 91 const MCDisassembler *Decoder) { 92 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 93 int64_t Offset; 94 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 95 Offset = Imm & 0xFFFFF; 96 } else { // GFX9+ supports 21-bit signed offsets. 97 Offset = SignExtend64<21>(Imm); 98 } 99 return addOperand(Inst, MCOperand::createImm(Offset)); 100 } 101 102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 103 const MCDisassembler *Decoder) { 104 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 105 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 106 } 107 108 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 109 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 110 uint64_t /*Addr*/, \ 111 const MCDisassembler *Decoder) { \ 112 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 113 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 114 } 115 116 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 117 // number of register. Used by VGPR only and AGPR only operands. 118 #define DECODE_OPERAND_REG_8(RegClass) \ 119 static DecodeStatus Decode##RegClass##RegisterClass( \ 120 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 121 const MCDisassembler *Decoder) { \ 122 assert(Imm < (1 << 8) && "8-bit encoding"); \ 123 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 124 return addOperand( \ 125 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 126 } 127 128 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 129 ImmWidth) \ 130 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 131 const MCDisassembler *Decoder) { \ 132 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 133 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 134 return addOperand(Inst, \ 135 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 136 MandatoryLiteral, ImmWidth)); \ 137 } 138 139 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 140 // get register class. Used by SGPR only operands. 141 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 142 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 143 144 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 145 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 146 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 147 // Used by AV_ register classes (AGPR or VGPR only register operands). 148 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 149 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 150 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 151 152 // Decoder for Src(9-bit encoding) registers only. 153 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 154 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 155 156 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 157 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 158 // only. 159 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 160 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 161 162 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 163 // Imm{9} is acc, registers only. 164 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 165 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 166 167 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 168 // register from RegClass or immediate. Registers that don't belong to RegClass 169 // will be decoded and InstPrinter will report warning. Immediate will be 170 // decoded into constant of size ImmWidth, should match width of immediate used 171 // by OperandType (important for floating point types). 172 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 173 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 174 false, ImmWidth) 175 176 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 177 // and decode using 'enum10' from decodeSrcOp. 178 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 179 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 180 Imm | 512, false, ImmWidth) 181 182 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 183 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 184 OpWidth, Imm, true, ImmWidth) 185 186 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 187 // when RegisterClass is used as an operand. Most often used for destination 188 // operands. 189 190 DECODE_OPERAND_REG_8(VGPR_32) 191 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 192 DECODE_OPERAND_REG_8(VReg_64) 193 DECODE_OPERAND_REG_8(VReg_96) 194 DECODE_OPERAND_REG_8(VReg_128) 195 DECODE_OPERAND_REG_8(VReg_256) 196 DECODE_OPERAND_REG_8(VReg_288) 197 DECODE_OPERAND_REG_8(VReg_352) 198 DECODE_OPERAND_REG_8(VReg_384) 199 DECODE_OPERAND_REG_8(VReg_512) 200 DECODE_OPERAND_REG_8(VReg_1024) 201 202 DECODE_OPERAND_REG_7(SReg_32, OPW32) 203 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 204 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 205 DECODE_OPERAND_REG_7(SReg_64, OPW64) 206 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 207 DECODE_OPERAND_REG_7(SReg_128, OPW128) 208 DECODE_OPERAND_REG_7(SReg_256, OPW256) 209 DECODE_OPERAND_REG_7(SReg_512, OPW512) 210 211 DECODE_OPERAND_REG_8(AGPR_32) 212 DECODE_OPERAND_REG_8(AReg_64) 213 DECODE_OPERAND_REG_8(AReg_128) 214 DECODE_OPERAND_REG_8(AReg_256) 215 DECODE_OPERAND_REG_8(AReg_512) 216 DECODE_OPERAND_REG_8(AReg_1024) 217 218 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 219 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 220 221 // Decoders for register only source RegisterOperands that use use 9-bit Src 222 // encoding: 'decodeOperand_<RegClass>'. 223 224 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 225 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 226 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 227 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 228 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 229 230 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 231 232 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 233 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 234 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 235 236 // Decoders for register or immediate RegisterOperands that use 9-bit Src 237 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 238 239 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 240 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16) 242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 243 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) 248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 253 254 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 259 260 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32) 264 265 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm, 266 uint64_t /*Addr*/, 267 const MCDisassembler *Decoder) { 268 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 269 assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used"); 270 271 bool IsHi = Imm & (1 << 9); 272 unsigned RegIdx = Imm & 0xff; 273 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 274 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 275 } 276 277 static DecodeStatus 278 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, 279 const MCDisassembler *Decoder) { 280 assert(isUInt<8>(Imm) && "8-bit encoding expected"); 281 282 bool IsHi = Imm & (1 << 7); 283 unsigned RegIdx = Imm & 0x7f; 284 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 285 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 286 } 287 288 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm, 289 uint64_t /*Addr*/, 290 const MCDisassembler *Decoder) { 291 assert(isUInt<9>(Imm) && "9-bit encoding expected"); 292 293 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 294 bool IsVGPR = Imm & (1 << 8); 295 if (IsVGPR) { 296 bool IsHi = Imm & (1 << 7); 297 unsigned RegIdx = Imm & 0x7f; 298 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 299 } 300 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 301 Imm & 0xFF, false, 16)); 302 } 303 304 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm, 305 uint64_t /*Addr*/, 306 const MCDisassembler *Decoder) { 307 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 308 309 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 310 bool IsVGPR = Imm & (1 << 8); 311 if (IsVGPR) { 312 bool IsHi = Imm & (1 << 9); 313 unsigned RegIdx = Imm & 0xff; 314 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 315 } 316 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 317 Imm & 0xFF, false, 16)); 318 } 319 320 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, 321 uint64_t Addr, 322 const MCDisassembler *Decoder) { 323 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 324 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 325 } 326 327 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 328 uint64_t Addr, const void *Decoder) { 329 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 330 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 331 } 332 333 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 334 const MCRegisterInfo *MRI) { 335 if (OpIdx < 0) 336 return false; 337 338 const MCOperand &Op = Inst.getOperand(OpIdx); 339 if (!Op.isReg()) 340 return false; 341 342 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 343 auto Reg = Sub ? Sub : Op.getReg(); 344 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 345 } 346 347 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 348 AMDGPUDisassembler::OpWidthTy Opw, 349 const MCDisassembler *Decoder) { 350 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 351 if (!DAsm->isGFX90A()) { 352 Imm &= 511; 353 } else { 354 // If atomic has both vdata and vdst their register classes are tied. 355 // The bit is decoded along with the vdst, first operand. We need to 356 // change register class to AGPR if vdst was AGPR. 357 // If a DS instruction has both data0 and data1 their register classes 358 // are also tied. 359 unsigned Opc = Inst.getOpcode(); 360 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 361 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 362 : AMDGPU::OpName::vdata; 363 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 364 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 365 if ((int)Inst.getNumOperands() == DataIdx) { 366 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 367 if (IsAGPROperand(Inst, DstIdx, MRI)) 368 Imm |= 512; 369 } 370 371 if (TSFlags & SIInstrFlags::DS) { 372 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 373 if ((int)Inst.getNumOperands() == Data2Idx && 374 IsAGPROperand(Inst, DataIdx, MRI)) 375 Imm |= 512; 376 } 377 } 378 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 379 } 380 381 static DecodeStatus 382 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 383 const MCDisassembler *Decoder) { 384 return decodeOperand_AVLdSt_Any(Inst, Imm, 385 AMDGPUDisassembler::OPW32, Decoder); 386 } 387 388 static DecodeStatus 389 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 390 const MCDisassembler *Decoder) { 391 return decodeOperand_AVLdSt_Any(Inst, Imm, 392 AMDGPUDisassembler::OPW64, Decoder); 393 } 394 395 static DecodeStatus 396 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 397 const MCDisassembler *Decoder) { 398 return decodeOperand_AVLdSt_Any(Inst, Imm, 399 AMDGPUDisassembler::OPW96, Decoder); 400 } 401 402 static DecodeStatus 403 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 404 const MCDisassembler *Decoder) { 405 return decodeOperand_AVLdSt_Any(Inst, Imm, 406 AMDGPUDisassembler::OPW128, Decoder); 407 } 408 409 static DecodeStatus 410 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 411 const MCDisassembler *Decoder) { 412 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 413 Decoder); 414 } 415 416 #define DECODE_SDWA(DecName) \ 417 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 418 419 DECODE_SDWA(Src32) 420 DECODE_SDWA(Src16) 421 DECODE_SDWA(VopcDst) 422 423 #include "AMDGPUGenDisassemblerTables.inc" 424 425 //===----------------------------------------------------------------------===// 426 // 427 //===----------------------------------------------------------------------===// 428 429 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 430 assert(Bytes.size() >= sizeof(T)); 431 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); 432 Bytes = Bytes.slice(sizeof(T)); 433 return Res; 434 } 435 436 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 437 assert(Bytes.size() >= 12); 438 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>( 439 Bytes.data()); 440 Bytes = Bytes.slice(8); 441 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>( 442 Bytes.data()); 443 Bytes = Bytes.slice(4); 444 return DecoderUInt128(Lo, Hi); 445 } 446 447 // The disassembler is greedy, so we need to check FI operand value to 448 // not parse a dpp if the correct literal is not set. For dpp16 the 449 // autogenerated decoder checks the dpp literal 450 static bool isValidDPP8(const MCInst &MI) { 451 using namespace llvm::AMDGPU::DPP; 452 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 453 assert(FiIdx != -1); 454 if ((unsigned)FiIdx >= MI.getNumOperands()) 455 return false; 456 unsigned Fi = MI.getOperand(FiIdx).getImm(); 457 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 458 } 459 460 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 461 ArrayRef<uint8_t> Bytes_, 462 uint64_t Address, 463 raw_ostream &CS) const { 464 bool IsSDWA = false; 465 466 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 467 Bytes = Bytes_.slice(0, MaxInstBytesNum); 468 469 DecodeStatus Res = MCDisassembler::Fail; 470 do { 471 // ToDo: better to switch encoding length using some bit predicate 472 // but it is unknown yet, so try all we can 473 474 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 475 // encodings 476 if (isGFX11Plus() && Bytes.size() >= 12 ) { 477 DecoderUInt128 DecW = eat12Bytes(Bytes); 478 Res = 479 tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696, 480 MI, DecW, Address, CS); 481 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 482 break; 483 MI = MCInst(); // clear 484 Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696, 485 MI, DecW, Address, CS); 486 if (Res) { 487 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 488 convertVOP3PDPPInst(MI); 489 else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) 490 convertVOPCDPPInst(MI); // Special VOP3 case 491 else { 492 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 493 convertVOP3DPPInst(MI); // Regular VOP3 case 494 } 495 break; 496 } 497 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS); 498 if (Res) 499 break; 500 } 501 // Reinitialize Bytes 502 Bytes = Bytes_.slice(0, MaxInstBytesNum); 503 504 if (Bytes.size() >= 8) { 505 const uint64_t QW = eatBytes<uint64_t>(Bytes); 506 507 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 508 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS); 509 if (Res) { 510 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 511 == -1) 512 break; 513 if (convertDPP8Inst(MI) == MCDisassembler::Success) 514 break; 515 MI = MCInst(); // clear 516 } 517 } 518 519 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS); 520 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 521 break; 522 MI = MCInst(); // clear 523 524 Res = tryDecodeInst(DecoderTableDPP8GFX1164, 525 DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS); 526 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 527 break; 528 MI = MCInst(); // clear 529 530 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS); 531 if (Res) break; 532 533 Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664, 534 MI, QW, Address, CS); 535 if (Res) { 536 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 537 convertVOPCDPPInst(MI); 538 break; 539 } 540 541 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS); 542 if (Res) { IsSDWA = true; break; } 543 544 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS); 545 if (Res) { IsSDWA = true; break; } 546 547 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS); 548 if (Res) { IsSDWA = true; break; } 549 550 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) { 551 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS); 552 if (Res) 553 break; 554 } 555 556 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 557 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 558 // table first so we print the correct name. 559 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) { 560 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS); 561 if (Res) 562 break; 563 } 564 } 565 566 // Reinitialize Bytes as DPP64 could have eaten too much 567 Bytes = Bytes_.slice(0, MaxInstBytesNum); 568 569 // Try decode 32-bit instruction 570 if (Bytes.size() < 4) break; 571 const uint32_t DW = eatBytes<uint32_t>(Bytes); 572 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS); 573 if (Res) break; 574 575 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS); 576 if (Res) break; 577 578 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS); 579 if (Res) break; 580 581 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 582 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS); 583 if (Res) 584 break; 585 } 586 587 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 588 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS); 589 if (Res) break; 590 } 591 592 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS); 593 if (Res) break; 594 595 Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW, 596 Address, CS); 597 if (Res) break; 598 599 if (Bytes.size() < 4) break; 600 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 601 602 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) { 603 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS); 604 if (Res) 605 break; 606 } 607 608 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 609 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS); 610 if (Res) 611 break; 612 } 613 614 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS); 615 if (Res) break; 616 617 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS); 618 if (Res) break; 619 620 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS); 621 if (Res) break; 622 623 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS); 624 if (Res) break; 625 626 Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW, 627 Address, CS); 628 if (Res) 629 break; 630 631 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS); 632 } while (false); 633 634 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 635 // Insert dummy unused src2_modifiers. 636 insertNamedMCOperand(MI, MCOperand::createImm(0), 637 AMDGPU::OpName::src2_modifiers); 638 } 639 640 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 641 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 642 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 643 AMDGPU::OpName::cpol); 644 if (CPolPos != -1) { 645 unsigned CPol = 646 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 647 AMDGPU::CPol::GLC : 0; 648 if (MI.getNumOperands() <= (unsigned)CPolPos) { 649 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 650 AMDGPU::OpName::cpol); 651 } else if (CPol) { 652 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 653 } 654 } 655 } 656 657 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 658 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 659 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 660 // GFX90A lost TFE, its place is occupied by ACC. 661 int TFEOpIdx = 662 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 663 if (TFEOpIdx != -1) { 664 auto TFEIter = MI.begin(); 665 std::advance(TFEIter, TFEOpIdx); 666 MI.insert(TFEIter, MCOperand::createImm(0)); 667 } 668 } 669 670 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 671 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 672 int SWZOpIdx = 673 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 674 if (SWZOpIdx != -1) { 675 auto SWZIter = MI.begin(); 676 std::advance(SWZIter, SWZOpIdx); 677 MI.insert(SWZIter, MCOperand::createImm(0)); 678 } 679 } 680 681 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 682 int VAddr0Idx = 683 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 684 int RsrcIdx = 685 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 686 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 687 if (VAddr0Idx >= 0 && NSAArgs > 0) { 688 unsigned NSAWords = (NSAArgs + 3) / 4; 689 if (Bytes.size() < 4 * NSAWords) { 690 Res = MCDisassembler::Fail; 691 } else { 692 for (unsigned i = 0; i < NSAArgs; ++i) { 693 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 694 auto VAddrRCID = 695 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 696 MI.insert(MI.begin() + VAddrIdx, 697 createRegOperand(VAddrRCID, Bytes[i])); 698 } 699 Bytes = Bytes.slice(4 * NSAWords); 700 } 701 } 702 703 if (Res) 704 Res = convertMIMGInst(MI); 705 } 706 707 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 708 Res = convertEXPInst(MI); 709 710 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 711 Res = convertVINTERPInst(MI); 712 713 if (Res && IsSDWA) 714 Res = convertSDWAInst(MI); 715 716 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 717 AMDGPU::OpName::vdst_in); 718 if (VDstIn_Idx != -1) { 719 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 720 MCOI::OperandConstraint::TIED_TO); 721 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 722 !MI.getOperand(VDstIn_Idx).isReg() || 723 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 724 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 725 MI.erase(&MI.getOperand(VDstIn_Idx)); 726 insertNamedMCOperand(MI, 727 MCOperand::createReg(MI.getOperand(Tied).getReg()), 728 AMDGPU::OpName::vdst_in); 729 } 730 } 731 732 int ImmLitIdx = 733 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 734 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 735 if (Res && ImmLitIdx != -1 && !IsSOPK) 736 Res = convertFMAanyK(MI, ImmLitIdx); 737 738 // if the opcode was not recognized we'll assume a Size of 4 bytes 739 // (unless there are fewer bytes left) 740 Size = Res ? (MaxInstBytesNum - Bytes.size()) 741 : std::min((size_t)4, Bytes_.size()); 742 return Res; 743 } 744 745 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 746 if (STI.hasFeature(AMDGPU::FeatureGFX11)) { 747 // The MCInst still has these fields even though they are no longer encoded 748 // in the GFX11 instruction. 749 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 750 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 751 } 752 return MCDisassembler::Success; 753 } 754 755 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 756 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 757 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 758 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 759 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) { 760 // The MCInst has this field that is not directly encoded in the 761 // instruction. 762 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 763 } 764 return MCDisassembler::Success; 765 } 766 767 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 768 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 769 STI.hasFeature(AMDGPU::FeatureGFX10)) { 770 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 771 // VOPC - insert clamp 772 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 773 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 774 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 775 if (SDst != -1) { 776 // VOPC - insert VCC register as sdst 777 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 778 AMDGPU::OpName::sdst); 779 } else { 780 // VOP1/2 - insert omod if present in instruction 781 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 782 } 783 } 784 return MCDisassembler::Success; 785 } 786 787 struct VOPModifiers { 788 unsigned OpSel = 0; 789 unsigned OpSelHi = 0; 790 unsigned NegLo = 0; 791 unsigned NegHi = 0; 792 }; 793 794 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 795 // Note that these values do not affect disassembler output, 796 // so this is only necessary for consistency with src_modifiers. 797 static VOPModifiers collectVOPModifiers(const MCInst &MI, 798 bool IsVOP3P = false) { 799 VOPModifiers Modifiers; 800 unsigned Opc = MI.getOpcode(); 801 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 802 AMDGPU::OpName::src1_modifiers, 803 AMDGPU::OpName::src2_modifiers}; 804 for (int J = 0; J < 3; ++J) { 805 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 806 if (OpIdx == -1) 807 continue; 808 809 unsigned Val = MI.getOperand(OpIdx).getImm(); 810 811 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 812 if (IsVOP3P) { 813 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 814 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 815 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 816 } else if (J == 0) { 817 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 818 } 819 } 820 821 return Modifiers; 822 } 823 824 // MAC opcodes have special old and src2 operands. 825 // src2 is tied to dst, while old is not tied (but assumed to be). 826 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 827 constexpr int DST_IDX = 0; 828 auto Opcode = MI.getOpcode(); 829 const auto &Desc = MCII->get(Opcode); 830 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 831 832 if (OldIdx != -1 && Desc.getOperandConstraint( 833 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 834 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 835 assert(Desc.getOperandConstraint( 836 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 837 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 838 (void)DST_IDX; 839 return true; 840 } 841 842 return false; 843 } 844 845 // Create dummy old operand and insert dummy unused src2_modifiers 846 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 847 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 848 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 849 insertNamedMCOperand(MI, MCOperand::createImm(0), 850 AMDGPU::OpName::src2_modifiers); 851 } 852 853 // We must check FI == literal to reject not genuine dpp8 insts, and we must 854 // first add optional MI operands to check FI 855 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 856 unsigned Opc = MI.getOpcode(); 857 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 858 convertVOP3PDPPInst(MI); 859 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 860 AMDGPU::isVOPC64DPP(Opc)) { 861 convertVOPCDPPInst(MI); 862 } else { 863 if (isMacDPP(MI)) 864 convertMacDPPInst(MI); 865 866 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 867 if (MI.getNumOperands() < DescNumOps && 868 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 869 auto Mods = collectVOPModifiers(MI); 870 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 871 AMDGPU::OpName::op_sel); 872 } else { 873 // Insert dummy unused src modifiers. 874 if (MI.getNumOperands() < DescNumOps && 875 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 876 insertNamedMCOperand(MI, MCOperand::createImm(0), 877 AMDGPU::OpName::src0_modifiers); 878 879 if (MI.getNumOperands() < DescNumOps && 880 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 881 insertNamedMCOperand(MI, MCOperand::createImm(0), 882 AMDGPU::OpName::src1_modifiers); 883 } 884 } 885 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 886 } 887 888 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 889 if (isMacDPP(MI)) 890 convertMacDPPInst(MI); 891 892 unsigned Opc = MI.getOpcode(); 893 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 894 if (MI.getNumOperands() < DescNumOps && 895 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 896 auto Mods = collectVOPModifiers(MI); 897 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 898 AMDGPU::OpName::op_sel); 899 } 900 return MCDisassembler::Success; 901 } 902 903 // Note that before gfx10, the MIMG encoding provided no information about 904 // VADDR size. Consequently, decoded instructions always show address as if it 905 // has 1 dword, which could be not really so. 906 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 907 908 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 909 AMDGPU::OpName::vdst); 910 911 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 912 AMDGPU::OpName::vdata); 913 int VAddr0Idx = 914 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 915 int RsrcIdx = 916 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 917 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 918 AMDGPU::OpName::dmask); 919 920 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 921 AMDGPU::OpName::tfe); 922 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 923 AMDGPU::OpName::d16); 924 925 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 926 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 927 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 928 929 assert(VDataIdx != -1); 930 if (BaseOpcode->BVH) { 931 // Add A16 operand for intersect_ray instructions 932 addOperand(MI, MCOperand::createImm(BaseOpcode->A16)); 933 return MCDisassembler::Success; 934 } 935 936 bool IsAtomic = (VDstIdx != -1); 937 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; 938 bool IsNSA = false; 939 bool IsPartialNSA = false; 940 unsigned AddrSize = Info->VAddrDwords; 941 942 if (isGFX10Plus()) { 943 unsigned DimIdx = 944 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 945 int A16Idx = 946 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 947 const AMDGPU::MIMGDimInfo *Dim = 948 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 949 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 950 951 AddrSize = 952 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 953 954 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 955 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA; 956 if (!IsNSA) { 957 if (AddrSize > 12) 958 AddrSize = 16; 959 } else { 960 if (AddrSize > Info->VAddrDwords) { 961 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 962 // The NSA encoding does not contain enough operands for the 963 // combination of base opcode / dimension. Should this be an error? 964 return MCDisassembler::Success; 965 } 966 IsPartialNSA = true; 967 } 968 } 969 } 970 971 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 972 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 973 974 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 975 if (D16 && AMDGPU::hasPackedD16(STI)) { 976 DstSize = (DstSize + 1) / 2; 977 } 978 979 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 980 DstSize += 1; 981 982 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 983 return MCDisassembler::Success; 984 985 int NewOpcode = 986 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 987 if (NewOpcode == -1) 988 return MCDisassembler::Success; 989 990 // Widen the register to the correct number of enabled channels. 991 unsigned NewVdata = AMDGPU::NoRegister; 992 if (DstSize != Info->VDataDwords) { 993 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 994 995 // Get first subregister of VData 996 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 997 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 998 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 999 1000 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 1001 &MRI.getRegClass(DataRCID)); 1002 if (NewVdata == AMDGPU::NoRegister) { 1003 // It's possible to encode this such that the low register + enabled 1004 // components exceeds the register count. 1005 return MCDisassembler::Success; 1006 } 1007 } 1008 1009 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 1010 // If using partial NSA on GFX11+ widen last address register. 1011 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 1012 unsigned NewVAddrSA = AMDGPU::NoRegister; 1013 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 1014 AddrSize != Info->VAddrDwords) { 1015 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 1016 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 1017 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 1018 1019 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 1020 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 1021 &MRI.getRegClass(AddrRCID)); 1022 if (!NewVAddrSA) 1023 return MCDisassembler::Success; 1024 } 1025 1026 MI.setOpcode(NewOpcode); 1027 1028 if (NewVdata != AMDGPU::NoRegister) { 1029 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 1030 1031 if (IsAtomic) { 1032 // Atomic operations have an additional operand (a copy of data) 1033 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 1034 } 1035 } 1036 1037 if (NewVAddrSA) { 1038 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 1039 } else if (IsNSA) { 1040 assert(AddrSize <= Info->VAddrDwords); 1041 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 1042 MI.begin() + VAddr0Idx + Info->VAddrDwords); 1043 } 1044 1045 return MCDisassembler::Success; 1046 } 1047 1048 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 1049 // decoder only adds to src_modifiers, so manually add the bits to the other 1050 // operands. 1051 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 1052 unsigned Opc = MI.getOpcode(); 1053 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1054 auto Mods = collectVOPModifiers(MI, true); 1055 1056 if (MI.getNumOperands() < DescNumOps && 1057 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 1058 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 1059 1060 if (MI.getNumOperands() < DescNumOps && 1061 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1062 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1063 AMDGPU::OpName::op_sel); 1064 if (MI.getNumOperands() < DescNumOps && 1065 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1066 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1067 AMDGPU::OpName::op_sel_hi); 1068 if (MI.getNumOperands() < DescNumOps && 1069 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1070 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1071 AMDGPU::OpName::neg_lo); 1072 if (MI.getNumOperands() < DescNumOps && 1073 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1074 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1075 AMDGPU::OpName::neg_hi); 1076 1077 return MCDisassembler::Success; 1078 } 1079 1080 // Create dummy old operand and insert optional operands 1081 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1082 unsigned Opc = MI.getOpcode(); 1083 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1084 1085 if (MI.getNumOperands() < DescNumOps && 1086 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1087 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1088 1089 if (MI.getNumOperands() < DescNumOps && 1090 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1091 insertNamedMCOperand(MI, MCOperand::createImm(0), 1092 AMDGPU::OpName::src0_modifiers); 1093 1094 if (MI.getNumOperands() < DescNumOps && 1095 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1096 insertNamedMCOperand(MI, MCOperand::createImm(0), 1097 AMDGPU::OpName::src1_modifiers); 1098 return MCDisassembler::Success; 1099 } 1100 1101 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1102 int ImmLitIdx) const { 1103 assert(HasLiteral && "Should have decoded a literal"); 1104 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1105 unsigned DescNumOps = Desc.getNumOperands(); 1106 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1107 AMDGPU::OpName::immDeferred); 1108 assert(DescNumOps == MI.getNumOperands()); 1109 for (unsigned I = 0; I < DescNumOps; ++I) { 1110 auto &Op = MI.getOperand(I); 1111 auto OpType = Desc.operands()[I].OperandType; 1112 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1113 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1114 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1115 IsDeferredOp) 1116 Op.setImm(Literal); 1117 } 1118 return MCDisassembler::Success; 1119 } 1120 1121 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1122 return getContext().getRegisterInfo()-> 1123 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1124 } 1125 1126 inline 1127 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1128 const Twine& ErrMsg) const { 1129 *CommentStream << "Error: " + ErrMsg; 1130 1131 // ToDo: add support for error operands to MCInst.h 1132 // return MCOperand::createError(V); 1133 return MCOperand(); 1134 } 1135 1136 inline 1137 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1138 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1139 } 1140 1141 inline 1142 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1143 unsigned Val) const { 1144 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1145 if (Val >= RegCl.getNumRegs()) 1146 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1147 ": unknown register " + Twine(Val)); 1148 return createRegOperand(RegCl.getRegister(Val)); 1149 } 1150 1151 inline 1152 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1153 unsigned Val) const { 1154 // ToDo: SI/CI have 104 SGPRs, VI - 102 1155 // Valery: here we accepting as much as we can, let assembler sort it out 1156 int shift = 0; 1157 switch (SRegClassID) { 1158 case AMDGPU::SGPR_32RegClassID: 1159 case AMDGPU::TTMP_32RegClassID: 1160 break; 1161 case AMDGPU::SGPR_64RegClassID: 1162 case AMDGPU::TTMP_64RegClassID: 1163 shift = 1; 1164 break; 1165 case AMDGPU::SGPR_128RegClassID: 1166 case AMDGPU::TTMP_128RegClassID: 1167 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1168 // this bundle? 1169 case AMDGPU::SGPR_256RegClassID: 1170 case AMDGPU::TTMP_256RegClassID: 1171 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1172 // this bundle? 1173 case AMDGPU::SGPR_288RegClassID: 1174 case AMDGPU::TTMP_288RegClassID: 1175 case AMDGPU::SGPR_320RegClassID: 1176 case AMDGPU::TTMP_320RegClassID: 1177 case AMDGPU::SGPR_352RegClassID: 1178 case AMDGPU::TTMP_352RegClassID: 1179 case AMDGPU::SGPR_384RegClassID: 1180 case AMDGPU::TTMP_384RegClassID: 1181 case AMDGPU::SGPR_512RegClassID: 1182 case AMDGPU::TTMP_512RegClassID: 1183 shift = 2; 1184 break; 1185 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1186 // this bundle? 1187 default: 1188 llvm_unreachable("unhandled register class"); 1189 } 1190 1191 if (Val % (1 << shift)) { 1192 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1193 << ": scalar reg isn't aligned " << Val; 1194 } 1195 1196 return createRegOperand(SRegClassID, Val >> shift); 1197 } 1198 1199 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx, 1200 bool IsHi) const { 1201 unsigned RCID = 1202 IsHi ? AMDGPU::VGPR_HI16RegClassID : AMDGPU::VGPR_LO16RegClassID; 1203 return createRegOperand(RCID, RegIdx); 1204 } 1205 1206 // Decode Literals for insts which always have a literal in the encoding 1207 MCOperand 1208 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1209 if (HasLiteral) { 1210 assert( 1211 AMDGPU::hasVOPD(STI) && 1212 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1213 if (Literal != Val) 1214 return errOperand(Val, "More than one unique literal is illegal"); 1215 } 1216 HasLiteral = true; 1217 Literal = Val; 1218 return MCOperand::createImm(Literal); 1219 } 1220 1221 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { 1222 // For now all literal constants are supposed to be unsigned integer 1223 // ToDo: deal with signed/unsigned 64-bit integer constants 1224 // ToDo: deal with float/double constants 1225 if (!HasLiteral) { 1226 if (Bytes.size() < 4) { 1227 return errOperand(0, "cannot read literal, inst bytes left " + 1228 Twine(Bytes.size())); 1229 } 1230 HasLiteral = true; 1231 Literal = eatBytes<uint32_t>(Bytes); 1232 } 1233 return MCOperand::createImm(Literal); 1234 } 1235 1236 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1237 using namespace AMDGPU::EncValues; 1238 1239 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1240 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1241 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1242 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1243 // Cast prevents negative overflow. 1244 } 1245 1246 static int64_t getInlineImmVal32(unsigned Imm) { 1247 switch (Imm) { 1248 case 240: 1249 return llvm::bit_cast<uint32_t>(0.5f); 1250 case 241: 1251 return llvm::bit_cast<uint32_t>(-0.5f); 1252 case 242: 1253 return llvm::bit_cast<uint32_t>(1.0f); 1254 case 243: 1255 return llvm::bit_cast<uint32_t>(-1.0f); 1256 case 244: 1257 return llvm::bit_cast<uint32_t>(2.0f); 1258 case 245: 1259 return llvm::bit_cast<uint32_t>(-2.0f); 1260 case 246: 1261 return llvm::bit_cast<uint32_t>(4.0f); 1262 case 247: 1263 return llvm::bit_cast<uint32_t>(-4.0f); 1264 case 248: // 1 / (2 * PI) 1265 return 0x3e22f983; 1266 default: 1267 llvm_unreachable("invalid fp inline imm"); 1268 } 1269 } 1270 1271 static int64_t getInlineImmVal64(unsigned Imm) { 1272 switch (Imm) { 1273 case 240: 1274 return llvm::bit_cast<uint64_t>(0.5); 1275 case 241: 1276 return llvm::bit_cast<uint64_t>(-0.5); 1277 case 242: 1278 return llvm::bit_cast<uint64_t>(1.0); 1279 case 243: 1280 return llvm::bit_cast<uint64_t>(-1.0); 1281 case 244: 1282 return llvm::bit_cast<uint64_t>(2.0); 1283 case 245: 1284 return llvm::bit_cast<uint64_t>(-2.0); 1285 case 246: 1286 return llvm::bit_cast<uint64_t>(4.0); 1287 case 247: 1288 return llvm::bit_cast<uint64_t>(-4.0); 1289 case 248: // 1 / (2 * PI) 1290 return 0x3fc45f306dc9c882; 1291 default: 1292 llvm_unreachable("invalid fp inline imm"); 1293 } 1294 } 1295 1296 static int64_t getInlineImmVal16(unsigned Imm) { 1297 switch (Imm) { 1298 case 240: 1299 return 0x3800; 1300 case 241: 1301 return 0xB800; 1302 case 242: 1303 return 0x3C00; 1304 case 243: 1305 return 0xBC00; 1306 case 244: 1307 return 0x4000; 1308 case 245: 1309 return 0xC000; 1310 case 246: 1311 return 0x4400; 1312 case 247: 1313 return 0xC400; 1314 case 248: // 1 / (2 * PI) 1315 return 0x3118; 1316 default: 1317 llvm_unreachable("invalid fp inline imm"); 1318 } 1319 } 1320 1321 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1322 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1323 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1324 1325 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1326 // ImmWidth 0 is a default case where operand should not allow immediates. 1327 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1328 // use it to print verbose error message. 1329 switch (ImmWidth) { 1330 case 0: 1331 case 32: 1332 return MCOperand::createImm(getInlineImmVal32(Imm)); 1333 case 64: 1334 return MCOperand::createImm(getInlineImmVal64(Imm)); 1335 case 16: 1336 return MCOperand::createImm(getInlineImmVal16(Imm)); 1337 default: 1338 llvm_unreachable("implement me"); 1339 } 1340 } 1341 1342 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1343 using namespace AMDGPU; 1344 1345 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1346 switch (Width) { 1347 default: // fall 1348 case OPW32: 1349 case OPW16: 1350 case OPWV216: 1351 return VGPR_32RegClassID; 1352 case OPW64: 1353 case OPWV232: return VReg_64RegClassID; 1354 case OPW96: return VReg_96RegClassID; 1355 case OPW128: return VReg_128RegClassID; 1356 case OPW160: return VReg_160RegClassID; 1357 case OPW256: return VReg_256RegClassID; 1358 case OPW288: return VReg_288RegClassID; 1359 case OPW320: return VReg_320RegClassID; 1360 case OPW352: return VReg_352RegClassID; 1361 case OPW384: return VReg_384RegClassID; 1362 case OPW512: return VReg_512RegClassID; 1363 case OPW1024: return VReg_1024RegClassID; 1364 } 1365 } 1366 1367 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1368 using namespace AMDGPU; 1369 1370 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1371 switch (Width) { 1372 default: // fall 1373 case OPW32: 1374 case OPW16: 1375 case OPWV216: 1376 return AGPR_32RegClassID; 1377 case OPW64: 1378 case OPWV232: return AReg_64RegClassID; 1379 case OPW96: return AReg_96RegClassID; 1380 case OPW128: return AReg_128RegClassID; 1381 case OPW160: return AReg_160RegClassID; 1382 case OPW256: return AReg_256RegClassID; 1383 case OPW288: return AReg_288RegClassID; 1384 case OPW320: return AReg_320RegClassID; 1385 case OPW352: return AReg_352RegClassID; 1386 case OPW384: return AReg_384RegClassID; 1387 case OPW512: return AReg_512RegClassID; 1388 case OPW1024: return AReg_1024RegClassID; 1389 } 1390 } 1391 1392 1393 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1394 using namespace AMDGPU; 1395 1396 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1397 switch (Width) { 1398 default: // fall 1399 case OPW32: 1400 case OPW16: 1401 case OPWV216: 1402 return SGPR_32RegClassID; 1403 case OPW64: 1404 case OPWV232: return SGPR_64RegClassID; 1405 case OPW96: return SGPR_96RegClassID; 1406 case OPW128: return SGPR_128RegClassID; 1407 case OPW160: return SGPR_160RegClassID; 1408 case OPW256: return SGPR_256RegClassID; 1409 case OPW288: return SGPR_288RegClassID; 1410 case OPW320: return SGPR_320RegClassID; 1411 case OPW352: return SGPR_352RegClassID; 1412 case OPW384: return SGPR_384RegClassID; 1413 case OPW512: return SGPR_512RegClassID; 1414 } 1415 } 1416 1417 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1418 using namespace AMDGPU; 1419 1420 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1421 switch (Width) { 1422 default: // fall 1423 case OPW32: 1424 case OPW16: 1425 case OPWV216: 1426 return TTMP_32RegClassID; 1427 case OPW64: 1428 case OPWV232: return TTMP_64RegClassID; 1429 case OPW128: return TTMP_128RegClassID; 1430 case OPW256: return TTMP_256RegClassID; 1431 case OPW288: return TTMP_288RegClassID; 1432 case OPW320: return TTMP_320RegClassID; 1433 case OPW352: return TTMP_352RegClassID; 1434 case OPW384: return TTMP_384RegClassID; 1435 case OPW512: return TTMP_512RegClassID; 1436 } 1437 } 1438 1439 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1440 using namespace AMDGPU::EncValues; 1441 1442 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1443 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1444 1445 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1446 } 1447 1448 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1449 bool MandatoryLiteral, 1450 unsigned ImmWidth) const { 1451 using namespace AMDGPU::EncValues; 1452 1453 assert(Val < 1024); // enum10 1454 1455 bool IsAGPR = Val & 512; 1456 Val &= 511; 1457 1458 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1459 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1460 : getVgprClassId(Width), Val - VGPR_MIN); 1461 } 1462 return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth); 1463 } 1464 1465 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, 1466 unsigned Val, 1467 bool MandatoryLiteral, 1468 unsigned ImmWidth) const { 1469 // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been 1470 // decoded earlier. 1471 assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0"); 1472 using namespace AMDGPU::EncValues; 1473 1474 if (Val <= SGPR_MAX) { 1475 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1476 static_assert(SGPR_MIN == 0); 1477 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1478 } 1479 1480 int TTmpIdx = getTTmpIdx(Val); 1481 if (TTmpIdx >= 0) { 1482 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1483 } 1484 1485 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1486 return decodeIntImmed(Val); 1487 1488 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1489 return decodeFPImmed(ImmWidth, Val); 1490 1491 if (Val == LITERAL_CONST) { 1492 if (MandatoryLiteral) 1493 // Keep a sentinel value for deferred setting 1494 return MCOperand::createImm(LITERAL_CONST); 1495 else 1496 return decodeLiteralConstant(); 1497 } 1498 1499 switch (Width) { 1500 case OPW32: 1501 case OPW16: 1502 case OPWV216: 1503 return decodeSpecialReg32(Val); 1504 case OPW64: 1505 case OPWV232: 1506 return decodeSpecialReg64(Val); 1507 default: 1508 llvm_unreachable("unexpected immediate type"); 1509 } 1510 } 1511 1512 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1513 // opposite of bit 0 of DstX. 1514 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1515 unsigned Val) const { 1516 int VDstXInd = 1517 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1518 assert(VDstXInd != -1); 1519 assert(Inst.getOperand(VDstXInd).isReg()); 1520 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1521 Val |= ~XDstReg & 1; 1522 auto Width = llvm::AMDGPUDisassembler::OPW32; 1523 return createRegOperand(getVgprClassId(Width), Val); 1524 } 1525 1526 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1527 using namespace AMDGPU; 1528 1529 switch (Val) { 1530 // clang-format off 1531 case 102: return createRegOperand(FLAT_SCR_LO); 1532 case 103: return createRegOperand(FLAT_SCR_HI); 1533 case 104: return createRegOperand(XNACK_MASK_LO); 1534 case 105: return createRegOperand(XNACK_MASK_HI); 1535 case 106: return createRegOperand(VCC_LO); 1536 case 107: return createRegOperand(VCC_HI); 1537 case 108: return createRegOperand(TBA_LO); 1538 case 109: return createRegOperand(TBA_HI); 1539 case 110: return createRegOperand(TMA_LO); 1540 case 111: return createRegOperand(TMA_HI); 1541 case 124: 1542 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1543 case 125: 1544 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1545 case 126: return createRegOperand(EXEC_LO); 1546 case 127: return createRegOperand(EXEC_HI); 1547 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1548 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1549 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1550 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1551 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1552 case 251: return createRegOperand(SRC_VCCZ); 1553 case 252: return createRegOperand(SRC_EXECZ); 1554 case 253: return createRegOperand(SRC_SCC); 1555 case 254: return createRegOperand(LDS_DIRECT); 1556 default: break; 1557 // clang-format on 1558 } 1559 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1560 } 1561 1562 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1563 using namespace AMDGPU; 1564 1565 switch (Val) { 1566 case 102: return createRegOperand(FLAT_SCR); 1567 case 104: return createRegOperand(XNACK_MASK); 1568 case 106: return createRegOperand(VCC); 1569 case 108: return createRegOperand(TBA); 1570 case 110: return createRegOperand(TMA); 1571 case 124: 1572 if (isGFX11Plus()) 1573 return createRegOperand(SGPR_NULL); 1574 break; 1575 case 125: 1576 if (!isGFX11Plus()) 1577 return createRegOperand(SGPR_NULL); 1578 break; 1579 case 126: return createRegOperand(EXEC); 1580 case 235: return createRegOperand(SRC_SHARED_BASE); 1581 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1582 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1583 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1584 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1585 case 251: return createRegOperand(SRC_VCCZ); 1586 case 252: return createRegOperand(SRC_EXECZ); 1587 case 253: return createRegOperand(SRC_SCC); 1588 default: break; 1589 } 1590 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1591 } 1592 1593 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1594 const unsigned Val, 1595 unsigned ImmWidth) const { 1596 using namespace AMDGPU::SDWA; 1597 using namespace AMDGPU::EncValues; 1598 1599 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1600 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1601 // XXX: cast to int is needed to avoid stupid warning: 1602 // compare with unsigned is always true 1603 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1604 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1605 return createRegOperand(getVgprClassId(Width), 1606 Val - SDWA9EncValues::SRC_VGPR_MIN); 1607 } 1608 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1609 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1610 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1611 return createSRegOperand(getSgprClassId(Width), 1612 Val - SDWA9EncValues::SRC_SGPR_MIN); 1613 } 1614 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1615 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1616 return createSRegOperand(getTtmpClassId(Width), 1617 Val - SDWA9EncValues::SRC_TTMP_MIN); 1618 } 1619 1620 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1621 1622 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1623 return decodeIntImmed(SVal); 1624 1625 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1626 return decodeFPImmed(ImmWidth, SVal); 1627 1628 return decodeSpecialReg32(SVal); 1629 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 1630 return createRegOperand(getVgprClassId(Width), Val); 1631 } 1632 llvm_unreachable("unsupported target"); 1633 } 1634 1635 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1636 return decodeSDWASrc(OPW16, Val, 16); 1637 } 1638 1639 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1640 return decodeSDWASrc(OPW32, Val, 32); 1641 } 1642 1643 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1644 using namespace AMDGPU::SDWA; 1645 1646 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1647 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1648 "SDWAVopcDst should be present only on GFX9+"); 1649 1650 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1651 1652 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1653 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1654 1655 int TTmpIdx = getTTmpIdx(Val); 1656 if (TTmpIdx >= 0) { 1657 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1658 return createSRegOperand(TTmpClsId, TTmpIdx); 1659 } else if (Val > SGPR_MAX) { 1660 return IsWave64 ? decodeSpecialReg64(Val) 1661 : decodeSpecialReg32(Val); 1662 } else { 1663 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1664 } 1665 } else { 1666 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1667 } 1668 } 1669 1670 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1671 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1672 ? decodeSrcOp(OPW64, Val) 1673 : decodeSrcOp(OPW32, Val); 1674 } 1675 1676 bool AMDGPUDisassembler::isVI() const { 1677 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1678 } 1679 1680 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1681 1682 bool AMDGPUDisassembler::isGFX90A() const { 1683 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1684 } 1685 1686 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1687 1688 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1689 1690 bool AMDGPUDisassembler::isGFX10Plus() const { 1691 return AMDGPU::isGFX10Plus(STI); 1692 } 1693 1694 bool AMDGPUDisassembler::isGFX11() const { 1695 return STI.hasFeature(AMDGPU::FeatureGFX11); 1696 } 1697 1698 bool AMDGPUDisassembler::isGFX11Plus() const { 1699 return AMDGPU::isGFX11Plus(STI); 1700 } 1701 1702 1703 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1704 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1705 } 1706 1707 bool AMDGPUDisassembler::hasKernargPreload() const { 1708 return AMDGPU::hasKernargPreload(STI); 1709 } 1710 1711 //===----------------------------------------------------------------------===// 1712 // AMDGPU specific symbol handling 1713 //===----------------------------------------------------------------------===// 1714 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1715 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1716 do { \ 1717 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1718 } while (0) 1719 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ 1720 do { \ 1721 KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ 1722 << GET_FIELD(MASK) << '\n'; \ 1723 } while (0) 1724 1725 // NOLINTNEXTLINE(readability-identifier-naming) 1726 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1727 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1728 using namespace amdhsa; 1729 StringRef Indent = "\t"; 1730 1731 // We cannot accurately backward compute #VGPRs used from 1732 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1733 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1734 // simply calculate the inverse of what the assembler does. 1735 1736 uint32_t GranulatedWorkitemVGPRCount = 1737 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1738 1739 uint32_t NextFreeVGPR = 1740 (GranulatedWorkitemVGPRCount + 1) * 1741 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); 1742 1743 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1744 1745 // We cannot backward compute values used to calculate 1746 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1747 // directives can't be computed: 1748 // .amdhsa_reserve_vcc 1749 // .amdhsa_reserve_flat_scratch 1750 // .amdhsa_reserve_xnack_mask 1751 // They take their respective default values if not specified in the assembly. 1752 // 1753 // GRANULATED_WAVEFRONT_SGPR_COUNT 1754 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1755 // 1756 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1757 // are set to 0. So while disassembling we consider that: 1758 // 1759 // GRANULATED_WAVEFRONT_SGPR_COUNT 1760 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1761 // 1762 // The disassembler cannot recover the original values of those 3 directives. 1763 1764 uint32_t GranulatedWavefrontSGPRCount = 1765 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1766 1767 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1768 return MCDisassembler::Fail; 1769 1770 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1771 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1772 1773 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1774 if (!hasArchitectedFlatScratch()) 1775 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1776 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1777 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1778 1779 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1780 return MCDisassembler::Fail; 1781 1782 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1783 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1784 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1785 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1786 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1787 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1788 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1789 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1790 1791 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1792 return MCDisassembler::Fail; 1793 1794 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); 1795 1796 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1797 return MCDisassembler::Fail; 1798 1799 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); 1800 1801 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1802 return MCDisassembler::Fail; 1803 1804 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1805 return MCDisassembler::Fail; 1806 1807 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); 1808 1809 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) 1810 return MCDisassembler::Fail; 1811 1812 if (isGFX10Plus()) { 1813 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1814 COMPUTE_PGM_RSRC1_WGP_MODE); 1815 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); 1816 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); 1817 } 1818 return MCDisassembler::Success; 1819 } 1820 1821 // NOLINTNEXTLINE(readability-identifier-naming) 1822 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1823 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1824 using namespace amdhsa; 1825 StringRef Indent = "\t"; 1826 if (hasArchitectedFlatScratch()) 1827 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1828 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1829 else 1830 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1831 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1832 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1833 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1834 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1835 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1836 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1837 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1838 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1839 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1840 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1841 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1842 1843 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1844 return MCDisassembler::Fail; 1845 1846 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1847 return MCDisassembler::Fail; 1848 1849 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1850 return MCDisassembler::Fail; 1851 1852 PRINT_DIRECTIVE( 1853 ".amdhsa_exception_fp_ieee_invalid_op", 1854 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1855 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1856 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1857 PRINT_DIRECTIVE( 1858 ".amdhsa_exception_fp_ieee_div_zero", 1859 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1860 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1861 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1862 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1863 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1864 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1865 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1866 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1867 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1868 1869 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1870 return MCDisassembler::Fail; 1871 1872 return MCDisassembler::Success; 1873 } 1874 1875 // NOLINTNEXTLINE(readability-identifier-naming) 1876 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 1877 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1878 using namespace amdhsa; 1879 StringRef Indent = "\t"; 1880 if (isGFX90A()) { 1881 KdStream << Indent << ".amdhsa_accum_offset " 1882 << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 1883 << '\n'; 1884 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0) 1885 return MCDisassembler::Fail; 1886 PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); 1887 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1) 1888 return MCDisassembler::Fail; 1889 } else if (isGFX10Plus()) { 1890 if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { 1891 PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", 1892 COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 1893 } else { 1894 PRINT_PSEUDO_DIRECTIVE_COMMENT( 1895 "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 1896 } 1897 PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", 1898 COMPUTE_PGM_RSRC3_GFX10_PLUS_INST_PREF_SIZE); 1899 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", 1900 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START); 1901 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", 1902 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_END); 1903 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED0) 1904 return MCDisassembler::Fail; 1905 PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", 1906 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START); 1907 } else if (FourByteBuffer) { 1908 return MCDisassembler::Fail; 1909 } 1910 return MCDisassembler::Success; 1911 } 1912 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT 1913 #undef PRINT_DIRECTIVE 1914 #undef GET_FIELD 1915 1916 MCDisassembler::DecodeStatus 1917 AMDGPUDisassembler::decodeKernelDescriptorDirective( 1918 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 1919 raw_string_ostream &KdStream) const { 1920 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1921 do { \ 1922 KdStream << Indent << DIRECTIVE " " \ 1923 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1924 } while (0) 1925 1926 uint16_t TwoByteBuffer = 0; 1927 uint32_t FourByteBuffer = 0; 1928 1929 StringRef ReservedBytes; 1930 StringRef Indent = "\t"; 1931 1932 assert(Bytes.size() == 64); 1933 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 1934 1935 switch (Cursor.tell()) { 1936 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 1937 FourByteBuffer = DE.getU32(Cursor); 1938 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 1939 << '\n'; 1940 return MCDisassembler::Success; 1941 1942 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 1943 FourByteBuffer = DE.getU32(Cursor); 1944 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 1945 << FourByteBuffer << '\n'; 1946 return MCDisassembler::Success; 1947 1948 case amdhsa::KERNARG_SIZE_OFFSET: 1949 FourByteBuffer = DE.getU32(Cursor); 1950 KdStream << Indent << ".amdhsa_kernarg_size " 1951 << FourByteBuffer << '\n'; 1952 return MCDisassembler::Success; 1953 1954 case amdhsa::RESERVED0_OFFSET: 1955 // 4 reserved bytes, must be 0. 1956 ReservedBytes = DE.getBytes(Cursor, 4); 1957 for (int I = 0; I < 4; ++I) { 1958 if (ReservedBytes[I] != 0) { 1959 return MCDisassembler::Fail; 1960 } 1961 } 1962 return MCDisassembler::Success; 1963 1964 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 1965 // KERNEL_CODE_ENTRY_BYTE_OFFSET 1966 // So far no directive controls this for Code Object V3, so simply skip for 1967 // disassembly. 1968 DE.skip(Cursor, 8); 1969 return MCDisassembler::Success; 1970 1971 case amdhsa::RESERVED1_OFFSET: 1972 // 20 reserved bytes, must be 0. 1973 ReservedBytes = DE.getBytes(Cursor, 20); 1974 for (int I = 0; I < 20; ++I) { 1975 if (ReservedBytes[I] != 0) { 1976 return MCDisassembler::Fail; 1977 } 1978 } 1979 return MCDisassembler::Success; 1980 1981 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 1982 FourByteBuffer = DE.getU32(Cursor); 1983 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 1984 1985 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 1986 FourByteBuffer = DE.getU32(Cursor); 1987 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 1988 1989 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 1990 FourByteBuffer = DE.getU32(Cursor); 1991 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 1992 1993 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 1994 using namespace amdhsa; 1995 TwoByteBuffer = DE.getU16(Cursor); 1996 1997 if (!hasArchitectedFlatScratch()) 1998 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 1999 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 2000 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 2001 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 2002 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 2003 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 2004 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 2005 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 2006 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 2007 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 2008 if (!hasArchitectedFlatScratch()) 2009 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 2010 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 2011 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 2012 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 2013 2014 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 2015 return MCDisassembler::Fail; 2016 2017 // Reserved for GFX9 2018 if (isGFX9() && 2019 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 2020 return MCDisassembler::Fail; 2021 } else if (isGFX10Plus()) { 2022 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 2023 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2024 } 2025 2026 if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5) 2027 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 2028 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 2029 2030 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 2031 return MCDisassembler::Fail; 2032 2033 return MCDisassembler::Success; 2034 2035 case amdhsa::KERNARG_PRELOAD_OFFSET: 2036 using namespace amdhsa; 2037 TwoByteBuffer = DE.getU16(Cursor); 2038 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) { 2039 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length", 2040 KERNARG_PRELOAD_SPEC_LENGTH); 2041 } 2042 2043 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) { 2044 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset", 2045 KERNARG_PRELOAD_SPEC_OFFSET); 2046 } 2047 return MCDisassembler::Success; 2048 2049 case amdhsa::RESERVED3_OFFSET: 2050 // 4 bytes from here are reserved, must be 0. 2051 ReservedBytes = DE.getBytes(Cursor, 4); 2052 for (int I = 0; I < 4; ++I) { 2053 if (ReservedBytes[I] != 0) 2054 return MCDisassembler::Fail; 2055 } 2056 return MCDisassembler::Success; 2057 2058 default: 2059 llvm_unreachable("Unhandled index. Case statements cover everything."); 2060 return MCDisassembler::Fail; 2061 } 2062 #undef PRINT_DIRECTIVE 2063 } 2064 2065 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 2066 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 2067 // CP microcode requires the kernel descriptor to be 64 aligned. 2068 if (Bytes.size() != 64 || KdAddress % 64 != 0) 2069 return MCDisassembler::Fail; 2070 2071 // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 2072 // requires us to know the setting of .amdhsa_wavefront_size32 in order to 2073 // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong 2074 // order. Workaround this by first looking up .amdhsa_wavefront_size32 here 2075 // when required. 2076 if (isGFX10Plus()) { 2077 uint16_t KernelCodeProperties = 2078 support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], 2079 support::endianness::little); 2080 EnableWavefrontSize32 = 2081 AMDHSA_BITS_GET(KernelCodeProperties, 2082 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2083 } 2084 2085 std::string Kd; 2086 raw_string_ostream KdStream(Kd); 2087 KdStream << ".amdhsa_kernel " << KdName << '\n'; 2088 2089 DataExtractor::Cursor C(0); 2090 while (C && C.tell() < Bytes.size()) { 2091 MCDisassembler::DecodeStatus Status = 2092 decodeKernelDescriptorDirective(C, Bytes, KdStream); 2093 2094 cantFail(C.takeError()); 2095 2096 if (Status == MCDisassembler::Fail) 2097 return MCDisassembler::Fail; 2098 } 2099 KdStream << ".end_amdhsa_kernel\n"; 2100 outs() << KdStream.str(); 2101 return MCDisassembler::Success; 2102 } 2103 2104 std::optional<MCDisassembler::DecodeStatus> 2105 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2106 ArrayRef<uint8_t> Bytes, uint64_t Address, 2107 raw_ostream &CStream) const { 2108 // Right now only kernel descriptor needs to be handled. 2109 // We ignore all other symbols for target specific handling. 2110 // TODO: 2111 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2112 // Object V2 and V3 when symbols are marked protected. 2113 2114 // amd_kernel_code_t for Code Object V2. 2115 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2116 Size = 256; 2117 return MCDisassembler::Fail; 2118 } 2119 2120 // Code Object V3 kernel descriptors. 2121 StringRef Name = Symbol.Name; 2122 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { 2123 Size = 64; // Size = 64 regardless of success or failure. 2124 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2125 } 2126 return std::nullopt; 2127 } 2128 2129 //===----------------------------------------------------------------------===// 2130 // AMDGPUSymbolizer 2131 //===----------------------------------------------------------------------===// 2132 2133 // Try to find symbol name for specified label 2134 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2135 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2136 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2137 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2138 2139 if (!IsBranch) { 2140 return false; 2141 } 2142 2143 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2144 if (!Symbols) 2145 return false; 2146 2147 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2148 return Val.Addr == static_cast<uint64_t>(Value) && 2149 Val.Type == ELF::STT_NOTYPE; 2150 }); 2151 if (Result != Symbols->end()) { 2152 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2153 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2154 Inst.addOperand(MCOperand::createExpr(Add)); 2155 return true; 2156 } 2157 // Add to list of referenced addresses, so caller can synthesize a label. 2158 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2159 return false; 2160 } 2161 2162 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2163 int64_t Value, 2164 uint64_t Address) { 2165 llvm_unreachable("unimplemented"); 2166 } 2167 2168 //===----------------------------------------------------------------------===// 2169 // Initialization 2170 //===----------------------------------------------------------------------===// 2171 2172 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2173 LLVMOpInfoCallback /*GetOpInfo*/, 2174 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2175 void *DisInfo, 2176 MCContext *Ctx, 2177 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2178 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2179 } 2180 2181 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2182 const MCSubtargetInfo &STI, 2183 MCContext &Ctx) { 2184 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2185 } 2186 2187 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2188 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2189 createAMDGPUDisassembler); 2190 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2191 createAMDGPUSymbolizer); 2192 } 2193