xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 9310baa596f05de61c49f9504dc66c8840b81ca2)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
95     Offset = Imm & 0xFFFFF;
96   } else {                    // GFX9+ supports 21-bit signed offsets.
97     Offset = SignExtend64<21>(Imm);
98   }
99   return addOperand(Inst, MCOperand::createImm(Offset));
100 }
101 
102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
103                                   const MCDisassembler *Decoder) {
104   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
105   return addOperand(Inst, DAsm->decodeBoolReg(Val));
106 }
107 
108 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
109   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
110                                         uint64_t /*Addr*/,                     \
111                                         const MCDisassembler *Decoder) {       \
112     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
113     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
114   }
115 
116 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
117 // number of register. Used by VGPR only and AGPR only operands.
118 #define DECODE_OPERAND_REG_8(RegClass)                                         \
119   static DecodeStatus Decode##RegClass##RegisterClass(                         \
120       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
121       const MCDisassembler *Decoder) {                                         \
122     assert(Imm < (1 << 8) && "8-bit encoding");                                \
123     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
124     return addOperand(                                                         \
125         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
126   }
127 
128 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
129                      ImmWidth)                                                 \
130   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
131                            const MCDisassembler *Decoder) {                    \
132     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
133     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
134     return addOperand(Inst,                                                    \
135                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
136                                         MandatoryLiteral, ImmWidth));          \
137   }
138 
139 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
140 // get register class. Used by SGPR only operands.
141 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
142   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
143 
144 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
145 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
146 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
147 // Used by AV_ register classes (AGPR or VGPR only register operands).
148 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
149   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
150                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
151 
152 // Decoder for Src(9-bit encoding) registers only.
153 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
154   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
155 
156 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
157 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
158 // only.
159 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
160   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
161 
162 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
163 // Imm{9} is acc, registers only.
164 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
165   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
166 
167 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
168 // register from RegClass or immediate. Registers that don't belong to RegClass
169 // will be decoded and InstPrinter will report warning. Immediate will be
170 // decoded into constant of size ImmWidth, should match width of immediate used
171 // by OperandType (important for floating point types).
172 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
173   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
174                false, ImmWidth)
175 
176 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
177 // and decode using 'enum10' from decodeSrcOp.
178 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
179   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
180                Imm | 512, false, ImmWidth)
181 
182 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
183   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
184                OpWidth, Imm, true, ImmWidth)
185 
186 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
187 // when RegisterClass is used as an operand. Most often used for destination
188 // operands.
189 
190 DECODE_OPERAND_REG_8(VGPR_32)
191 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
192 DECODE_OPERAND_REG_8(VReg_64)
193 DECODE_OPERAND_REG_8(VReg_96)
194 DECODE_OPERAND_REG_8(VReg_128)
195 DECODE_OPERAND_REG_8(VReg_256)
196 DECODE_OPERAND_REG_8(VReg_288)
197 DECODE_OPERAND_REG_8(VReg_352)
198 DECODE_OPERAND_REG_8(VReg_384)
199 DECODE_OPERAND_REG_8(VReg_512)
200 DECODE_OPERAND_REG_8(VReg_1024)
201 
202 DECODE_OPERAND_REG_7(SReg_32, OPW32)
203 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
204 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
205 DECODE_OPERAND_REG_7(SReg_64, OPW64)
206 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
207 DECODE_OPERAND_REG_7(SReg_128, OPW128)
208 DECODE_OPERAND_REG_7(SReg_256, OPW256)
209 DECODE_OPERAND_REG_7(SReg_512, OPW512)
210 
211 DECODE_OPERAND_REG_8(AGPR_32)
212 DECODE_OPERAND_REG_8(AReg_64)
213 DECODE_OPERAND_REG_8(AReg_128)
214 DECODE_OPERAND_REG_8(AReg_256)
215 DECODE_OPERAND_REG_8(AReg_512)
216 DECODE_OPERAND_REG_8(AReg_1024)
217 
218 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
219 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
220 
221 // Decoders for register only source RegisterOperands that use use 9-bit Src
222 // encoding: 'decodeOperand_<RegClass>'.
223 
224 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
225 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
226 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
227 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
228 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
229 
230 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
231 
232 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
233 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
234 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
235 
236 // Decoders for register or immediate RegisterOperands that use 9-bit Src
237 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
238 
239 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
240 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
243 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
253 
254 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
259 
260 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
264 
265 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
266                                                uint64_t /*Addr*/,
267                                                const MCDisassembler *Decoder) {
268   assert(isUInt<10>(Imm) && "10-bit encoding expected");
269   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
270 
271   bool IsHi = Imm & (1 << 9);
272   unsigned RegIdx = Imm & 0xff;
273   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
274   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
275 }
276 
277 static DecodeStatus
278 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
279                                  const MCDisassembler *Decoder) {
280   assert(isUInt<8>(Imm) && "8-bit encoding expected");
281 
282   bool IsHi = Imm & (1 << 7);
283   unsigned RegIdx = Imm & 0x7f;
284   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
285   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
286 }
287 
288 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
289                                                 uint64_t /*Addr*/,
290                                                 const MCDisassembler *Decoder) {
291   assert(isUInt<9>(Imm) && "9-bit encoding expected");
292 
293   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
294   bool IsVGPR = Imm & (1 << 8);
295   if (IsVGPR) {
296     bool IsHi = Imm & (1 << 7);
297     unsigned RegIdx = Imm & 0x7f;
298     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
299   }
300   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
301                                                    Imm & 0xFF, false, 16));
302 }
303 
304 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
305                                           uint64_t /*Addr*/,
306                                           const MCDisassembler *Decoder) {
307   assert(isUInt<10>(Imm) && "10-bit encoding expected");
308 
309   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
310   bool IsVGPR = Imm & (1 << 8);
311   if (IsVGPR) {
312     bool IsHi = Imm & (1 << 9);
313     unsigned RegIdx = Imm & 0xff;
314     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
315   }
316   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
317                                                    Imm & 0xFF, false, 16));
318 }
319 
320 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
321                                          uint64_t Addr,
322                                          const MCDisassembler *Decoder) {
323   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
324   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
325 }
326 
327 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
328                                           uint64_t Addr, const void *Decoder) {
329   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
330   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
331 }
332 
333 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
334                           const MCRegisterInfo *MRI) {
335   if (OpIdx < 0)
336     return false;
337 
338   const MCOperand &Op = Inst.getOperand(OpIdx);
339   if (!Op.isReg())
340     return false;
341 
342   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
343   auto Reg = Sub ? Sub : Op.getReg();
344   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
345 }
346 
347 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
348                                              AMDGPUDisassembler::OpWidthTy Opw,
349                                              const MCDisassembler *Decoder) {
350   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
351   if (!DAsm->isGFX90A()) {
352     Imm &= 511;
353   } else {
354     // If atomic has both vdata and vdst their register classes are tied.
355     // The bit is decoded along with the vdst, first operand. We need to
356     // change register class to AGPR if vdst was AGPR.
357     // If a DS instruction has both data0 and data1 their register classes
358     // are also tied.
359     unsigned Opc = Inst.getOpcode();
360     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
361     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
362                                                         : AMDGPU::OpName::vdata;
363     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
364     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
365     if ((int)Inst.getNumOperands() == DataIdx) {
366       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
367       if (IsAGPROperand(Inst, DstIdx, MRI))
368         Imm |= 512;
369     }
370 
371     if (TSFlags & SIInstrFlags::DS) {
372       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
373       if ((int)Inst.getNumOperands() == Data2Idx &&
374           IsAGPROperand(Inst, DataIdx, MRI))
375         Imm |= 512;
376     }
377   }
378   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
379 }
380 
381 static DecodeStatus
382 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
383                              const MCDisassembler *Decoder) {
384   return decodeOperand_AVLdSt_Any(Inst, Imm,
385                                   AMDGPUDisassembler::OPW32, Decoder);
386 }
387 
388 static DecodeStatus
389 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
390                              const MCDisassembler *Decoder) {
391   return decodeOperand_AVLdSt_Any(Inst, Imm,
392                                   AMDGPUDisassembler::OPW64, Decoder);
393 }
394 
395 static DecodeStatus
396 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
397                              const MCDisassembler *Decoder) {
398   return decodeOperand_AVLdSt_Any(Inst, Imm,
399                                   AMDGPUDisassembler::OPW96, Decoder);
400 }
401 
402 static DecodeStatus
403 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
404                               const MCDisassembler *Decoder) {
405   return decodeOperand_AVLdSt_Any(Inst, Imm,
406                                   AMDGPUDisassembler::OPW128, Decoder);
407 }
408 
409 static DecodeStatus
410 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
411                               const MCDisassembler *Decoder) {
412   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
413                                   Decoder);
414 }
415 
416 #define DECODE_SDWA(DecName) \
417 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
418 
419 DECODE_SDWA(Src32)
420 DECODE_SDWA(Src16)
421 DECODE_SDWA(VopcDst)
422 
423 #include "AMDGPUGenDisassemblerTables.inc"
424 
425 //===----------------------------------------------------------------------===//
426 //
427 //===----------------------------------------------------------------------===//
428 
429 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
430   assert(Bytes.size() >= sizeof(T));
431   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
432   Bytes = Bytes.slice(sizeof(T));
433   return Res;
434 }
435 
436 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
437   assert(Bytes.size() >= 12);
438   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
439       Bytes.data());
440   Bytes = Bytes.slice(8);
441   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
442       Bytes.data());
443   Bytes = Bytes.slice(4);
444   return DecoderUInt128(Lo, Hi);
445 }
446 
447 // The disassembler is greedy, so we need to check FI operand value to
448 // not parse a dpp if the correct literal is not set. For dpp16 the
449 // autogenerated decoder checks the dpp literal
450 static bool isValidDPP8(const MCInst &MI) {
451   using namespace llvm::AMDGPU::DPP;
452   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
453   assert(FiIdx != -1);
454   if ((unsigned)FiIdx >= MI.getNumOperands())
455     return false;
456   unsigned Fi = MI.getOperand(FiIdx).getImm();
457   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
458 }
459 
460 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
461                                                 ArrayRef<uint8_t> Bytes_,
462                                                 uint64_t Address,
463                                                 raw_ostream &CS) const {
464   bool IsSDWA = false;
465 
466   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
467   Bytes = Bytes_.slice(0, MaxInstBytesNum);
468 
469   DecodeStatus Res = MCDisassembler::Fail;
470   do {
471     // ToDo: better to switch encoding length using some bit predicate
472     // but it is unknown yet, so try all we can
473 
474     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
475     // encodings
476     if (isGFX11Plus() && Bytes.size() >= 12 ) {
477       DecoderUInt128 DecW = eat12Bytes(Bytes);
478       Res =
479           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
480                         MI, DecW, Address, CS);
481       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
482         break;
483       MI = MCInst(); // clear
484       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
485                           MI, DecW, Address, CS);
486       if (Res) {
487         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
488           convertVOP3PDPPInst(MI);
489         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
490           convertVOPCDPPInst(MI); // Special VOP3 case
491         else {
492           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
493           convertVOP3DPPInst(MI); // Regular VOP3 case
494         }
495         break;
496       }
497       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
498       if (Res)
499         break;
500     }
501     // Reinitialize Bytes
502     Bytes = Bytes_.slice(0, MaxInstBytesNum);
503 
504     if (Bytes.size() >= 8) {
505       const uint64_t QW = eatBytes<uint64_t>(Bytes);
506 
507       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
508         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
509         if (Res) {
510           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
511               == -1)
512             break;
513           if (convertDPP8Inst(MI) == MCDisassembler::Success)
514             break;
515           MI = MCInst(); // clear
516         }
517       }
518 
519       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
520       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
521         break;
522       MI = MCInst(); // clear
523 
524       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
525                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
526       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
527         break;
528       MI = MCInst(); // clear
529 
530       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
531       if (Res) break;
532 
533       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
534                           MI, QW, Address, CS);
535       if (Res) {
536         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
537           convertVOPCDPPInst(MI);
538         break;
539       }
540 
541       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
542       if (Res) { IsSDWA = true;  break; }
543 
544       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
545       if (Res) { IsSDWA = true;  break; }
546 
547       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
548       if (Res) { IsSDWA = true;  break; }
549 
550       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
551         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
552         if (Res)
553           break;
554       }
555 
556       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
557       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
558       // table first so we print the correct name.
559       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
560         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
561         if (Res)
562           break;
563       }
564     }
565 
566     // Reinitialize Bytes as DPP64 could have eaten too much
567     Bytes = Bytes_.slice(0, MaxInstBytesNum);
568 
569     // Try decode 32-bit instruction
570     if (Bytes.size() < 4) break;
571     const uint32_t DW = eatBytes<uint32_t>(Bytes);
572     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
573     if (Res) break;
574 
575     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
576     if (Res) break;
577 
578     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
579     if (Res) break;
580 
581     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
582       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
583       if (Res)
584         break;
585     }
586 
587     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
588       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
589       if (Res) break;
590     }
591 
592     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
593     if (Res) break;
594 
595     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
596                         Address, CS);
597     if (Res) break;
598 
599     if (Bytes.size() < 4) break;
600     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
601 
602     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
603       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
604       if (Res)
605         break;
606     }
607 
608     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
609       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
610       if (Res)
611         break;
612     }
613 
614     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
615     if (Res) break;
616 
617     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
618     if (Res) break;
619 
620     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
621     if (Res) break;
622 
623     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
624     if (Res) break;
625 
626     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
627                         Address, CS);
628     if (Res)
629       break;
630 
631     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
632   } while (false);
633 
634   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
635     // Insert dummy unused src2_modifiers.
636     insertNamedMCOperand(MI, MCOperand::createImm(0),
637                          AMDGPU::OpName::src2_modifiers);
638   }
639 
640   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
641           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
642     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
643                                              AMDGPU::OpName::cpol);
644     if (CPolPos != -1) {
645       unsigned CPol =
646           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
647               AMDGPU::CPol::GLC : 0;
648       if (MI.getNumOperands() <= (unsigned)CPolPos) {
649         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
650                              AMDGPU::OpName::cpol);
651       } else if (CPol) {
652         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
653       }
654     }
655   }
656 
657   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
658               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
659              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
660     // GFX90A lost TFE, its place is occupied by ACC.
661     int TFEOpIdx =
662         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
663     if (TFEOpIdx != -1) {
664       auto TFEIter = MI.begin();
665       std::advance(TFEIter, TFEOpIdx);
666       MI.insert(TFEIter, MCOperand::createImm(0));
667     }
668   }
669 
670   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
671               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
672     int SWZOpIdx =
673         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
674     if (SWZOpIdx != -1) {
675       auto SWZIter = MI.begin();
676       std::advance(SWZIter, SWZOpIdx);
677       MI.insert(SWZIter, MCOperand::createImm(0));
678     }
679   }
680 
681   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
682     int VAddr0Idx =
683         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
684     int RsrcIdx =
685         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
686     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
687     if (VAddr0Idx >= 0 && NSAArgs > 0) {
688       unsigned NSAWords = (NSAArgs + 3) / 4;
689       if (Bytes.size() < 4 * NSAWords) {
690         Res = MCDisassembler::Fail;
691       } else {
692         for (unsigned i = 0; i < NSAArgs; ++i) {
693           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
694           auto VAddrRCID =
695               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
696           MI.insert(MI.begin() + VAddrIdx,
697                     createRegOperand(VAddrRCID, Bytes[i]));
698         }
699         Bytes = Bytes.slice(4 * NSAWords);
700       }
701     }
702 
703     if (Res)
704       Res = convertMIMGInst(MI);
705   }
706 
707   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
708     Res = convertEXPInst(MI);
709 
710   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
711     Res = convertVINTERPInst(MI);
712 
713   if (Res && IsSDWA)
714     Res = convertSDWAInst(MI);
715 
716   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
717                                               AMDGPU::OpName::vdst_in);
718   if (VDstIn_Idx != -1) {
719     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
720                            MCOI::OperandConstraint::TIED_TO);
721     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
722          !MI.getOperand(VDstIn_Idx).isReg() ||
723          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
724       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
725         MI.erase(&MI.getOperand(VDstIn_Idx));
726       insertNamedMCOperand(MI,
727         MCOperand::createReg(MI.getOperand(Tied).getReg()),
728         AMDGPU::OpName::vdst_in);
729     }
730   }
731 
732   int ImmLitIdx =
733       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
734   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
735   if (Res && ImmLitIdx != -1 && !IsSOPK)
736     Res = convertFMAanyK(MI, ImmLitIdx);
737 
738   // if the opcode was not recognized we'll assume a Size of 4 bytes
739   // (unless there are fewer bytes left)
740   Size = Res ? (MaxInstBytesNum - Bytes.size())
741              : std::min((size_t)4, Bytes_.size());
742   return Res;
743 }
744 
745 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
746   if (STI.hasFeature(AMDGPU::FeatureGFX11)) {
747     // The MCInst still has these fields even though they are no longer encoded
748     // in the GFX11 instruction.
749     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
750     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
751   }
752   return MCDisassembler::Success;
753 }
754 
755 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
756   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
757       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
758       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
759       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
760     // The MCInst has this field that is not directly encoded in the
761     // instruction.
762     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
763   }
764   return MCDisassembler::Success;
765 }
766 
767 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
768   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
769       STI.hasFeature(AMDGPU::FeatureGFX10)) {
770     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
771       // VOPC - insert clamp
772       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
773   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
774     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
775     if (SDst != -1) {
776       // VOPC - insert VCC register as sdst
777       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
778                            AMDGPU::OpName::sdst);
779     } else {
780       // VOP1/2 - insert omod if present in instruction
781       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
782     }
783   }
784   return MCDisassembler::Success;
785 }
786 
787 struct VOPModifiers {
788   unsigned OpSel = 0;
789   unsigned OpSelHi = 0;
790   unsigned NegLo = 0;
791   unsigned NegHi = 0;
792 };
793 
794 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
795 // Note that these values do not affect disassembler output,
796 // so this is only necessary for consistency with src_modifiers.
797 static VOPModifiers collectVOPModifiers(const MCInst &MI,
798                                         bool IsVOP3P = false) {
799   VOPModifiers Modifiers;
800   unsigned Opc = MI.getOpcode();
801   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
802                         AMDGPU::OpName::src1_modifiers,
803                         AMDGPU::OpName::src2_modifiers};
804   for (int J = 0; J < 3; ++J) {
805     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
806     if (OpIdx == -1)
807       continue;
808 
809     unsigned Val = MI.getOperand(OpIdx).getImm();
810 
811     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
812     if (IsVOP3P) {
813       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
814       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
815       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
816     } else if (J == 0) {
817       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
818     }
819   }
820 
821   return Modifiers;
822 }
823 
824 // MAC opcodes have special old and src2 operands.
825 // src2 is tied to dst, while old is not tied (but assumed to be).
826 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
827   constexpr int DST_IDX = 0;
828   auto Opcode = MI.getOpcode();
829   const auto &Desc = MCII->get(Opcode);
830   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
831 
832   if (OldIdx != -1 && Desc.getOperandConstraint(
833                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
834     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
835     assert(Desc.getOperandConstraint(
836                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
837                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
838     (void)DST_IDX;
839     return true;
840   }
841 
842   return false;
843 }
844 
845 // Create dummy old operand and insert dummy unused src2_modifiers
846 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
847   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
848   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
849   insertNamedMCOperand(MI, MCOperand::createImm(0),
850                        AMDGPU::OpName::src2_modifiers);
851 }
852 
853 // We must check FI == literal to reject not genuine dpp8 insts, and we must
854 // first add optional MI operands to check FI
855 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
856   unsigned Opc = MI.getOpcode();
857   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
858     convertVOP3PDPPInst(MI);
859   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
860              AMDGPU::isVOPC64DPP(Opc)) {
861     convertVOPCDPPInst(MI);
862   } else {
863     if (isMacDPP(MI))
864       convertMacDPPInst(MI);
865 
866     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
867     if (MI.getNumOperands() < DescNumOps &&
868         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
869       auto Mods = collectVOPModifiers(MI);
870       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
871                            AMDGPU::OpName::op_sel);
872     } else {
873       // Insert dummy unused src modifiers.
874       if (MI.getNumOperands() < DescNumOps &&
875           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
876         insertNamedMCOperand(MI, MCOperand::createImm(0),
877                              AMDGPU::OpName::src0_modifiers);
878 
879       if (MI.getNumOperands() < DescNumOps &&
880           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
881         insertNamedMCOperand(MI, MCOperand::createImm(0),
882                              AMDGPU::OpName::src1_modifiers);
883     }
884   }
885   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
886 }
887 
888 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
889   if (isMacDPP(MI))
890     convertMacDPPInst(MI);
891 
892   unsigned Opc = MI.getOpcode();
893   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
894   if (MI.getNumOperands() < DescNumOps &&
895       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
896     auto Mods = collectVOPModifiers(MI);
897     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
898                          AMDGPU::OpName::op_sel);
899   }
900   return MCDisassembler::Success;
901 }
902 
903 // Note that before gfx10, the MIMG encoding provided no information about
904 // VADDR size. Consequently, decoded instructions always show address as if it
905 // has 1 dword, which could be not really so.
906 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
907 
908   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
909                                            AMDGPU::OpName::vdst);
910 
911   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
912                                             AMDGPU::OpName::vdata);
913   int VAddr0Idx =
914       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
915   int RsrcIdx =
916       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
917   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
918                                             AMDGPU::OpName::dmask);
919 
920   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
921                                             AMDGPU::OpName::tfe);
922   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
923                                             AMDGPU::OpName::d16);
924 
925   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
926   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
927       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
928 
929   assert(VDataIdx != -1);
930   if (BaseOpcode->BVH) {
931     // Add A16 operand for intersect_ray instructions
932     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
933     return MCDisassembler::Success;
934   }
935 
936   bool IsAtomic = (VDstIdx != -1);
937   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
938   bool IsNSA = false;
939   bool IsPartialNSA = false;
940   unsigned AddrSize = Info->VAddrDwords;
941 
942   if (isGFX10Plus()) {
943     unsigned DimIdx =
944         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
945     int A16Idx =
946         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
947     const AMDGPU::MIMGDimInfo *Dim =
948         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
949     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
950 
951     AddrSize =
952         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
953 
954     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
955             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
956     if (!IsNSA) {
957       if (AddrSize > 12)
958         AddrSize = 16;
959     } else {
960       if (AddrSize > Info->VAddrDwords) {
961         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
962           // The NSA encoding does not contain enough operands for the
963           // combination of base opcode / dimension. Should this be an error?
964           return MCDisassembler::Success;
965         }
966         IsPartialNSA = true;
967       }
968     }
969   }
970 
971   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
972   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
973 
974   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
975   if (D16 && AMDGPU::hasPackedD16(STI)) {
976     DstSize = (DstSize + 1) / 2;
977   }
978 
979   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
980     DstSize += 1;
981 
982   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
983     return MCDisassembler::Success;
984 
985   int NewOpcode =
986       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
987   if (NewOpcode == -1)
988     return MCDisassembler::Success;
989 
990   // Widen the register to the correct number of enabled channels.
991   unsigned NewVdata = AMDGPU::NoRegister;
992   if (DstSize != Info->VDataDwords) {
993     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
994 
995     // Get first subregister of VData
996     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
997     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
998     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
999 
1000     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1001                                        &MRI.getRegClass(DataRCID));
1002     if (NewVdata == AMDGPU::NoRegister) {
1003       // It's possible to encode this such that the low register + enabled
1004       // components exceeds the register count.
1005       return MCDisassembler::Success;
1006     }
1007   }
1008 
1009   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1010   // If using partial NSA on GFX11+ widen last address register.
1011   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1012   unsigned NewVAddrSA = AMDGPU::NoRegister;
1013   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1014       AddrSize != Info->VAddrDwords) {
1015     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1016     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1017     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1018 
1019     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1020     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1021                                         &MRI.getRegClass(AddrRCID));
1022     if (!NewVAddrSA)
1023       return MCDisassembler::Success;
1024   }
1025 
1026   MI.setOpcode(NewOpcode);
1027 
1028   if (NewVdata != AMDGPU::NoRegister) {
1029     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1030 
1031     if (IsAtomic) {
1032       // Atomic operations have an additional operand (a copy of data)
1033       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1034     }
1035   }
1036 
1037   if (NewVAddrSA) {
1038     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1039   } else if (IsNSA) {
1040     assert(AddrSize <= Info->VAddrDwords);
1041     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1042              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1043   }
1044 
1045   return MCDisassembler::Success;
1046 }
1047 
1048 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1049 // decoder only adds to src_modifiers, so manually add the bits to the other
1050 // operands.
1051 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1052   unsigned Opc = MI.getOpcode();
1053   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1054   auto Mods = collectVOPModifiers(MI, true);
1055 
1056   if (MI.getNumOperands() < DescNumOps &&
1057       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1058     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1059 
1060   if (MI.getNumOperands() < DescNumOps &&
1061       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1062     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1063                          AMDGPU::OpName::op_sel);
1064   if (MI.getNumOperands() < DescNumOps &&
1065       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1066     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1067                          AMDGPU::OpName::op_sel_hi);
1068   if (MI.getNumOperands() < DescNumOps &&
1069       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1070     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1071                          AMDGPU::OpName::neg_lo);
1072   if (MI.getNumOperands() < DescNumOps &&
1073       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1074     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1075                          AMDGPU::OpName::neg_hi);
1076 
1077   return MCDisassembler::Success;
1078 }
1079 
1080 // Create dummy old operand and insert optional operands
1081 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1082   unsigned Opc = MI.getOpcode();
1083   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1084 
1085   if (MI.getNumOperands() < DescNumOps &&
1086       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1087     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1088 
1089   if (MI.getNumOperands() < DescNumOps &&
1090       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1091     insertNamedMCOperand(MI, MCOperand::createImm(0),
1092                          AMDGPU::OpName::src0_modifiers);
1093 
1094   if (MI.getNumOperands() < DescNumOps &&
1095       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1096     insertNamedMCOperand(MI, MCOperand::createImm(0),
1097                          AMDGPU::OpName::src1_modifiers);
1098   return MCDisassembler::Success;
1099 }
1100 
1101 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1102                                                 int ImmLitIdx) const {
1103   assert(HasLiteral && "Should have decoded a literal");
1104   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1105   unsigned DescNumOps = Desc.getNumOperands();
1106   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1107                        AMDGPU::OpName::immDeferred);
1108   assert(DescNumOps == MI.getNumOperands());
1109   for (unsigned I = 0; I < DescNumOps; ++I) {
1110     auto &Op = MI.getOperand(I);
1111     auto OpType = Desc.operands()[I].OperandType;
1112     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1113                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1114     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1115         IsDeferredOp)
1116       Op.setImm(Literal);
1117   }
1118   return MCDisassembler::Success;
1119 }
1120 
1121 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1122   return getContext().getRegisterInfo()->
1123     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1124 }
1125 
1126 inline
1127 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1128                                          const Twine& ErrMsg) const {
1129   *CommentStream << "Error: " + ErrMsg;
1130 
1131   // ToDo: add support for error operands to MCInst.h
1132   // return MCOperand::createError(V);
1133   return MCOperand();
1134 }
1135 
1136 inline
1137 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1138   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1139 }
1140 
1141 inline
1142 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1143                                                unsigned Val) const {
1144   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1145   if (Val >= RegCl.getNumRegs())
1146     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1147                            ": unknown register " + Twine(Val));
1148   return createRegOperand(RegCl.getRegister(Val));
1149 }
1150 
1151 inline
1152 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1153                                                 unsigned Val) const {
1154   // ToDo: SI/CI have 104 SGPRs, VI - 102
1155   // Valery: here we accepting as much as we can, let assembler sort it out
1156   int shift = 0;
1157   switch (SRegClassID) {
1158   case AMDGPU::SGPR_32RegClassID:
1159   case AMDGPU::TTMP_32RegClassID:
1160     break;
1161   case AMDGPU::SGPR_64RegClassID:
1162   case AMDGPU::TTMP_64RegClassID:
1163     shift = 1;
1164     break;
1165   case AMDGPU::SGPR_128RegClassID:
1166   case AMDGPU::TTMP_128RegClassID:
1167   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1168   // this bundle?
1169   case AMDGPU::SGPR_256RegClassID:
1170   case AMDGPU::TTMP_256RegClassID:
1171     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1172   // this bundle?
1173   case AMDGPU::SGPR_288RegClassID:
1174   case AMDGPU::TTMP_288RegClassID:
1175   case AMDGPU::SGPR_320RegClassID:
1176   case AMDGPU::TTMP_320RegClassID:
1177   case AMDGPU::SGPR_352RegClassID:
1178   case AMDGPU::TTMP_352RegClassID:
1179   case AMDGPU::SGPR_384RegClassID:
1180   case AMDGPU::TTMP_384RegClassID:
1181   case AMDGPU::SGPR_512RegClassID:
1182   case AMDGPU::TTMP_512RegClassID:
1183     shift = 2;
1184     break;
1185   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1186   // this bundle?
1187   default:
1188     llvm_unreachable("unhandled register class");
1189   }
1190 
1191   if (Val % (1 << shift)) {
1192     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1193                    << ": scalar reg isn't aligned " << Val;
1194   }
1195 
1196   return createRegOperand(SRegClassID, Val >> shift);
1197 }
1198 
1199 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1200                                                   bool IsHi) const {
1201   unsigned RCID =
1202       IsHi ? AMDGPU::VGPR_HI16RegClassID : AMDGPU::VGPR_LO16RegClassID;
1203   return createRegOperand(RCID, RegIdx);
1204 }
1205 
1206 // Decode Literals for insts which always have a literal in the encoding
1207 MCOperand
1208 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1209   if (HasLiteral) {
1210     assert(
1211         AMDGPU::hasVOPD(STI) &&
1212         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1213     if (Literal != Val)
1214       return errOperand(Val, "More than one unique literal is illegal");
1215   }
1216   HasLiteral = true;
1217   Literal = Val;
1218   return MCOperand::createImm(Literal);
1219 }
1220 
1221 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1222   // For now all literal constants are supposed to be unsigned integer
1223   // ToDo: deal with signed/unsigned 64-bit integer constants
1224   // ToDo: deal with float/double constants
1225   if (!HasLiteral) {
1226     if (Bytes.size() < 4) {
1227       return errOperand(0, "cannot read literal, inst bytes left " +
1228                         Twine(Bytes.size()));
1229     }
1230     HasLiteral = true;
1231     Literal = eatBytes<uint32_t>(Bytes);
1232   }
1233   return MCOperand::createImm(Literal);
1234 }
1235 
1236 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1237   using namespace AMDGPU::EncValues;
1238 
1239   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1240   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1241     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1242     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1243       // Cast prevents negative overflow.
1244 }
1245 
1246 static int64_t getInlineImmVal32(unsigned Imm) {
1247   switch (Imm) {
1248   case 240:
1249     return llvm::bit_cast<uint32_t>(0.5f);
1250   case 241:
1251     return llvm::bit_cast<uint32_t>(-0.5f);
1252   case 242:
1253     return llvm::bit_cast<uint32_t>(1.0f);
1254   case 243:
1255     return llvm::bit_cast<uint32_t>(-1.0f);
1256   case 244:
1257     return llvm::bit_cast<uint32_t>(2.0f);
1258   case 245:
1259     return llvm::bit_cast<uint32_t>(-2.0f);
1260   case 246:
1261     return llvm::bit_cast<uint32_t>(4.0f);
1262   case 247:
1263     return llvm::bit_cast<uint32_t>(-4.0f);
1264   case 248: // 1 / (2 * PI)
1265     return 0x3e22f983;
1266   default:
1267     llvm_unreachable("invalid fp inline imm");
1268   }
1269 }
1270 
1271 static int64_t getInlineImmVal64(unsigned Imm) {
1272   switch (Imm) {
1273   case 240:
1274     return llvm::bit_cast<uint64_t>(0.5);
1275   case 241:
1276     return llvm::bit_cast<uint64_t>(-0.5);
1277   case 242:
1278     return llvm::bit_cast<uint64_t>(1.0);
1279   case 243:
1280     return llvm::bit_cast<uint64_t>(-1.0);
1281   case 244:
1282     return llvm::bit_cast<uint64_t>(2.0);
1283   case 245:
1284     return llvm::bit_cast<uint64_t>(-2.0);
1285   case 246:
1286     return llvm::bit_cast<uint64_t>(4.0);
1287   case 247:
1288     return llvm::bit_cast<uint64_t>(-4.0);
1289   case 248: // 1 / (2 * PI)
1290     return 0x3fc45f306dc9c882;
1291   default:
1292     llvm_unreachable("invalid fp inline imm");
1293   }
1294 }
1295 
1296 static int64_t getInlineImmVal16(unsigned Imm) {
1297   switch (Imm) {
1298   case 240:
1299     return 0x3800;
1300   case 241:
1301     return 0xB800;
1302   case 242:
1303     return 0x3C00;
1304   case 243:
1305     return 0xBC00;
1306   case 244:
1307     return 0x4000;
1308   case 245:
1309     return 0xC000;
1310   case 246:
1311     return 0x4400;
1312   case 247:
1313     return 0xC400;
1314   case 248: // 1 / (2 * PI)
1315     return 0x3118;
1316   default:
1317     llvm_unreachable("invalid fp inline imm");
1318   }
1319 }
1320 
1321 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1322   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1323       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1324 
1325   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1326   // ImmWidth 0 is a default case where operand should not allow immediates.
1327   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1328   // use it to print verbose error message.
1329   switch (ImmWidth) {
1330   case 0:
1331   case 32:
1332     return MCOperand::createImm(getInlineImmVal32(Imm));
1333   case 64:
1334     return MCOperand::createImm(getInlineImmVal64(Imm));
1335   case 16:
1336     return MCOperand::createImm(getInlineImmVal16(Imm));
1337   default:
1338     llvm_unreachable("implement me");
1339   }
1340 }
1341 
1342 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1343   using namespace AMDGPU;
1344 
1345   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1346   switch (Width) {
1347   default: // fall
1348   case OPW32:
1349   case OPW16:
1350   case OPWV216:
1351     return VGPR_32RegClassID;
1352   case OPW64:
1353   case OPWV232: return VReg_64RegClassID;
1354   case OPW96: return VReg_96RegClassID;
1355   case OPW128: return VReg_128RegClassID;
1356   case OPW160: return VReg_160RegClassID;
1357   case OPW256: return VReg_256RegClassID;
1358   case OPW288: return VReg_288RegClassID;
1359   case OPW320: return VReg_320RegClassID;
1360   case OPW352: return VReg_352RegClassID;
1361   case OPW384: return VReg_384RegClassID;
1362   case OPW512: return VReg_512RegClassID;
1363   case OPW1024: return VReg_1024RegClassID;
1364   }
1365 }
1366 
1367 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1368   using namespace AMDGPU;
1369 
1370   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1371   switch (Width) {
1372   default: // fall
1373   case OPW32:
1374   case OPW16:
1375   case OPWV216:
1376     return AGPR_32RegClassID;
1377   case OPW64:
1378   case OPWV232: return AReg_64RegClassID;
1379   case OPW96: return AReg_96RegClassID;
1380   case OPW128: return AReg_128RegClassID;
1381   case OPW160: return AReg_160RegClassID;
1382   case OPW256: return AReg_256RegClassID;
1383   case OPW288: return AReg_288RegClassID;
1384   case OPW320: return AReg_320RegClassID;
1385   case OPW352: return AReg_352RegClassID;
1386   case OPW384: return AReg_384RegClassID;
1387   case OPW512: return AReg_512RegClassID;
1388   case OPW1024: return AReg_1024RegClassID;
1389   }
1390 }
1391 
1392 
1393 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1394   using namespace AMDGPU;
1395 
1396   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1397   switch (Width) {
1398   default: // fall
1399   case OPW32:
1400   case OPW16:
1401   case OPWV216:
1402     return SGPR_32RegClassID;
1403   case OPW64:
1404   case OPWV232: return SGPR_64RegClassID;
1405   case OPW96: return SGPR_96RegClassID;
1406   case OPW128: return SGPR_128RegClassID;
1407   case OPW160: return SGPR_160RegClassID;
1408   case OPW256: return SGPR_256RegClassID;
1409   case OPW288: return SGPR_288RegClassID;
1410   case OPW320: return SGPR_320RegClassID;
1411   case OPW352: return SGPR_352RegClassID;
1412   case OPW384: return SGPR_384RegClassID;
1413   case OPW512: return SGPR_512RegClassID;
1414   }
1415 }
1416 
1417 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1418   using namespace AMDGPU;
1419 
1420   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1421   switch (Width) {
1422   default: // fall
1423   case OPW32:
1424   case OPW16:
1425   case OPWV216:
1426     return TTMP_32RegClassID;
1427   case OPW64:
1428   case OPWV232: return TTMP_64RegClassID;
1429   case OPW128: return TTMP_128RegClassID;
1430   case OPW256: return TTMP_256RegClassID;
1431   case OPW288: return TTMP_288RegClassID;
1432   case OPW320: return TTMP_320RegClassID;
1433   case OPW352: return TTMP_352RegClassID;
1434   case OPW384: return TTMP_384RegClassID;
1435   case OPW512: return TTMP_512RegClassID;
1436   }
1437 }
1438 
1439 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1440   using namespace AMDGPU::EncValues;
1441 
1442   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1443   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1444 
1445   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1446 }
1447 
1448 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1449                                           bool MandatoryLiteral,
1450                                           unsigned ImmWidth) const {
1451   using namespace AMDGPU::EncValues;
1452 
1453   assert(Val < 1024); // enum10
1454 
1455   bool IsAGPR = Val & 512;
1456   Val &= 511;
1457 
1458   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1459     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1460                                    : getVgprClassId(Width), Val - VGPR_MIN);
1461   }
1462   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth);
1463 }
1464 
1465 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1466                                                  unsigned Val,
1467                                                  bool MandatoryLiteral,
1468                                                  unsigned ImmWidth) const {
1469   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1470   // decoded earlier.
1471   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1472   using namespace AMDGPU::EncValues;
1473 
1474   if (Val <= SGPR_MAX) {
1475     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1476     static_assert(SGPR_MIN == 0);
1477     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1478   }
1479 
1480   int TTmpIdx = getTTmpIdx(Val);
1481   if (TTmpIdx >= 0) {
1482     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1483   }
1484 
1485   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1486     return decodeIntImmed(Val);
1487 
1488   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1489     return decodeFPImmed(ImmWidth, Val);
1490 
1491   if (Val == LITERAL_CONST) {
1492     if (MandatoryLiteral)
1493       // Keep a sentinel value for deferred setting
1494       return MCOperand::createImm(LITERAL_CONST);
1495     else
1496       return decodeLiteralConstant();
1497   }
1498 
1499   switch (Width) {
1500   case OPW32:
1501   case OPW16:
1502   case OPWV216:
1503     return decodeSpecialReg32(Val);
1504   case OPW64:
1505   case OPWV232:
1506     return decodeSpecialReg64(Val);
1507   default:
1508     llvm_unreachable("unexpected immediate type");
1509   }
1510 }
1511 
1512 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1513 // opposite of bit 0 of DstX.
1514 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1515                                                unsigned Val) const {
1516   int VDstXInd =
1517       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1518   assert(VDstXInd != -1);
1519   assert(Inst.getOperand(VDstXInd).isReg());
1520   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1521   Val |= ~XDstReg & 1;
1522   auto Width = llvm::AMDGPUDisassembler::OPW32;
1523   return createRegOperand(getVgprClassId(Width), Val);
1524 }
1525 
1526 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1527   using namespace AMDGPU;
1528 
1529   switch (Val) {
1530   // clang-format off
1531   case 102: return createRegOperand(FLAT_SCR_LO);
1532   case 103: return createRegOperand(FLAT_SCR_HI);
1533   case 104: return createRegOperand(XNACK_MASK_LO);
1534   case 105: return createRegOperand(XNACK_MASK_HI);
1535   case 106: return createRegOperand(VCC_LO);
1536   case 107: return createRegOperand(VCC_HI);
1537   case 108: return createRegOperand(TBA_LO);
1538   case 109: return createRegOperand(TBA_HI);
1539   case 110: return createRegOperand(TMA_LO);
1540   case 111: return createRegOperand(TMA_HI);
1541   case 124:
1542     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1543   case 125:
1544     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1545   case 126: return createRegOperand(EXEC_LO);
1546   case 127: return createRegOperand(EXEC_HI);
1547   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1548   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1549   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1550   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1551   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1552   case 251: return createRegOperand(SRC_VCCZ);
1553   case 252: return createRegOperand(SRC_EXECZ);
1554   case 253: return createRegOperand(SRC_SCC);
1555   case 254: return createRegOperand(LDS_DIRECT);
1556   default: break;
1557     // clang-format on
1558   }
1559   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1560 }
1561 
1562 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1563   using namespace AMDGPU;
1564 
1565   switch (Val) {
1566   case 102: return createRegOperand(FLAT_SCR);
1567   case 104: return createRegOperand(XNACK_MASK);
1568   case 106: return createRegOperand(VCC);
1569   case 108: return createRegOperand(TBA);
1570   case 110: return createRegOperand(TMA);
1571   case 124:
1572     if (isGFX11Plus())
1573       return createRegOperand(SGPR_NULL);
1574     break;
1575   case 125:
1576     if (!isGFX11Plus())
1577       return createRegOperand(SGPR_NULL);
1578     break;
1579   case 126: return createRegOperand(EXEC);
1580   case 235: return createRegOperand(SRC_SHARED_BASE);
1581   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1582   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1583   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1584   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1585   case 251: return createRegOperand(SRC_VCCZ);
1586   case 252: return createRegOperand(SRC_EXECZ);
1587   case 253: return createRegOperand(SRC_SCC);
1588   default: break;
1589   }
1590   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1591 }
1592 
1593 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1594                                             const unsigned Val,
1595                                             unsigned ImmWidth) const {
1596   using namespace AMDGPU::SDWA;
1597   using namespace AMDGPU::EncValues;
1598 
1599   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1600       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1601     // XXX: cast to int is needed to avoid stupid warning:
1602     // compare with unsigned is always true
1603     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1604         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1605       return createRegOperand(getVgprClassId(Width),
1606                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1607     }
1608     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1609         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1610                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1611       return createSRegOperand(getSgprClassId(Width),
1612                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1613     }
1614     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1615         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1616       return createSRegOperand(getTtmpClassId(Width),
1617                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1618     }
1619 
1620     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1621 
1622     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1623       return decodeIntImmed(SVal);
1624 
1625     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1626       return decodeFPImmed(ImmWidth, SVal);
1627 
1628     return decodeSpecialReg32(SVal);
1629   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1630     return createRegOperand(getVgprClassId(Width), Val);
1631   }
1632   llvm_unreachable("unsupported target");
1633 }
1634 
1635 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1636   return decodeSDWASrc(OPW16, Val, 16);
1637 }
1638 
1639 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1640   return decodeSDWASrc(OPW32, Val, 32);
1641 }
1642 
1643 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1644   using namespace AMDGPU::SDWA;
1645 
1646   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1647           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1648          "SDWAVopcDst should be present only on GFX9+");
1649 
1650   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1651 
1652   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1653     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1654 
1655     int TTmpIdx = getTTmpIdx(Val);
1656     if (TTmpIdx >= 0) {
1657       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1658       return createSRegOperand(TTmpClsId, TTmpIdx);
1659     } else if (Val > SGPR_MAX) {
1660       return IsWave64 ? decodeSpecialReg64(Val)
1661                       : decodeSpecialReg32(Val);
1662     } else {
1663       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1664     }
1665   } else {
1666     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1667   }
1668 }
1669 
1670 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1671   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1672              ? decodeSrcOp(OPW64, Val)
1673              : decodeSrcOp(OPW32, Val);
1674 }
1675 
1676 bool AMDGPUDisassembler::isVI() const {
1677   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1678 }
1679 
1680 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1681 
1682 bool AMDGPUDisassembler::isGFX90A() const {
1683   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1684 }
1685 
1686 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1687 
1688 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1689 
1690 bool AMDGPUDisassembler::isGFX10Plus() const {
1691   return AMDGPU::isGFX10Plus(STI);
1692 }
1693 
1694 bool AMDGPUDisassembler::isGFX11() const {
1695   return STI.hasFeature(AMDGPU::FeatureGFX11);
1696 }
1697 
1698 bool AMDGPUDisassembler::isGFX11Plus() const {
1699   return AMDGPU::isGFX11Plus(STI);
1700 }
1701 
1702 
1703 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1704   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1705 }
1706 
1707 bool AMDGPUDisassembler::hasKernargPreload() const {
1708   return AMDGPU::hasKernargPreload(STI);
1709 }
1710 
1711 //===----------------------------------------------------------------------===//
1712 // AMDGPU specific symbol handling
1713 //===----------------------------------------------------------------------===//
1714 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1715 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1716   do {                                                                         \
1717     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1718   } while (0)
1719 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1720   do {                                                                         \
1721     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1722              << GET_FIELD(MASK) << '\n';                                       \
1723   } while (0)
1724 
1725 // NOLINTNEXTLINE(readability-identifier-naming)
1726 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1727     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1728   using namespace amdhsa;
1729   StringRef Indent = "\t";
1730 
1731   // We cannot accurately backward compute #VGPRs used from
1732   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1733   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1734   // simply calculate the inverse of what the assembler does.
1735 
1736   uint32_t GranulatedWorkitemVGPRCount =
1737       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1738 
1739   uint32_t NextFreeVGPR =
1740       (GranulatedWorkitemVGPRCount + 1) *
1741       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1742 
1743   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1744 
1745   // We cannot backward compute values used to calculate
1746   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1747   // directives can't be computed:
1748   // .amdhsa_reserve_vcc
1749   // .amdhsa_reserve_flat_scratch
1750   // .amdhsa_reserve_xnack_mask
1751   // They take their respective default values if not specified in the assembly.
1752   //
1753   // GRANULATED_WAVEFRONT_SGPR_COUNT
1754   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1755   //
1756   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1757   // are set to 0. So while disassembling we consider that:
1758   //
1759   // GRANULATED_WAVEFRONT_SGPR_COUNT
1760   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1761   //
1762   // The disassembler cannot recover the original values of those 3 directives.
1763 
1764   uint32_t GranulatedWavefrontSGPRCount =
1765       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1766 
1767   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1768     return MCDisassembler::Fail;
1769 
1770   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1771                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1772 
1773   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1774   if (!hasArchitectedFlatScratch())
1775     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1776   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1777   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1778 
1779   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1780     return MCDisassembler::Fail;
1781 
1782   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1783                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1784   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1785                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1786   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1787                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1788   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1789                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1790 
1791   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1792     return MCDisassembler::Fail;
1793 
1794   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1795 
1796   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1797     return MCDisassembler::Fail;
1798 
1799   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1800 
1801   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1802     return MCDisassembler::Fail;
1803 
1804   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1805     return MCDisassembler::Fail;
1806 
1807   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1808 
1809   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1810     return MCDisassembler::Fail;
1811 
1812   if (isGFX10Plus()) {
1813     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1814                     COMPUTE_PGM_RSRC1_WGP_MODE);
1815     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1816     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1817   }
1818   return MCDisassembler::Success;
1819 }
1820 
1821 // NOLINTNEXTLINE(readability-identifier-naming)
1822 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1823     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1824   using namespace amdhsa;
1825   StringRef Indent = "\t";
1826   if (hasArchitectedFlatScratch())
1827     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1828                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1829   else
1830     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1831                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1832   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1833                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1834   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1835                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1836   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1837                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1838   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1839                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1840   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1841                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1842 
1843   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1844     return MCDisassembler::Fail;
1845 
1846   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1847     return MCDisassembler::Fail;
1848 
1849   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1850     return MCDisassembler::Fail;
1851 
1852   PRINT_DIRECTIVE(
1853       ".amdhsa_exception_fp_ieee_invalid_op",
1854       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1855   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1856                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1857   PRINT_DIRECTIVE(
1858       ".amdhsa_exception_fp_ieee_div_zero",
1859       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1860   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1861                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1862   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1863                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1864   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1865                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1866   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1867                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1868 
1869   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1870     return MCDisassembler::Fail;
1871 
1872   return MCDisassembler::Success;
1873 }
1874 
1875 // NOLINTNEXTLINE(readability-identifier-naming)
1876 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1877     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1878   using namespace amdhsa;
1879   StringRef Indent = "\t";
1880   if (isGFX90A()) {
1881     KdStream << Indent << ".amdhsa_accum_offset "
1882              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1883              << '\n';
1884     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1885       return MCDisassembler::Fail;
1886     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1887     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
1888       return MCDisassembler::Fail;
1889   } else if (isGFX10Plus()) {
1890     if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
1891       PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
1892                       COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1893     } else {
1894       PRINT_PSEUDO_DIRECTIVE_COMMENT(
1895           "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1896     }
1897     PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
1898                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_INST_PREF_SIZE);
1899     PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
1900                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START);
1901     PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
1902                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_END);
1903     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED0)
1904       return MCDisassembler::Fail;
1905     PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
1906                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START);
1907   } else if (FourByteBuffer) {
1908     return MCDisassembler::Fail;
1909   }
1910   return MCDisassembler::Success;
1911 }
1912 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
1913 #undef PRINT_DIRECTIVE
1914 #undef GET_FIELD
1915 
1916 MCDisassembler::DecodeStatus
1917 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1918     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1919     raw_string_ostream &KdStream) const {
1920 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1921   do {                                                                         \
1922     KdStream << Indent << DIRECTIVE " "                                        \
1923              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1924   } while (0)
1925 
1926   uint16_t TwoByteBuffer = 0;
1927   uint32_t FourByteBuffer = 0;
1928 
1929   StringRef ReservedBytes;
1930   StringRef Indent = "\t";
1931 
1932   assert(Bytes.size() == 64);
1933   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1934 
1935   switch (Cursor.tell()) {
1936   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1937     FourByteBuffer = DE.getU32(Cursor);
1938     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1939              << '\n';
1940     return MCDisassembler::Success;
1941 
1942   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1943     FourByteBuffer = DE.getU32(Cursor);
1944     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1945              << FourByteBuffer << '\n';
1946     return MCDisassembler::Success;
1947 
1948   case amdhsa::KERNARG_SIZE_OFFSET:
1949     FourByteBuffer = DE.getU32(Cursor);
1950     KdStream << Indent << ".amdhsa_kernarg_size "
1951              << FourByteBuffer << '\n';
1952     return MCDisassembler::Success;
1953 
1954   case amdhsa::RESERVED0_OFFSET:
1955     // 4 reserved bytes, must be 0.
1956     ReservedBytes = DE.getBytes(Cursor, 4);
1957     for (int I = 0; I < 4; ++I) {
1958       if (ReservedBytes[I] != 0) {
1959         return MCDisassembler::Fail;
1960       }
1961     }
1962     return MCDisassembler::Success;
1963 
1964   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1965     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1966     // So far no directive controls this for Code Object V3, so simply skip for
1967     // disassembly.
1968     DE.skip(Cursor, 8);
1969     return MCDisassembler::Success;
1970 
1971   case amdhsa::RESERVED1_OFFSET:
1972     // 20 reserved bytes, must be 0.
1973     ReservedBytes = DE.getBytes(Cursor, 20);
1974     for (int I = 0; I < 20; ++I) {
1975       if (ReservedBytes[I] != 0) {
1976         return MCDisassembler::Fail;
1977       }
1978     }
1979     return MCDisassembler::Success;
1980 
1981   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1982     FourByteBuffer = DE.getU32(Cursor);
1983     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
1984 
1985   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1986     FourByteBuffer = DE.getU32(Cursor);
1987     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
1988 
1989   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1990     FourByteBuffer = DE.getU32(Cursor);
1991     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
1992 
1993   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1994     using namespace amdhsa;
1995     TwoByteBuffer = DE.getU16(Cursor);
1996 
1997     if (!hasArchitectedFlatScratch())
1998       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1999                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2000     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2001                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2002     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2003                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2004     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2005                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2006     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2007                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2008     if (!hasArchitectedFlatScratch())
2009       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2010                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2011     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2012                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2013 
2014     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2015       return MCDisassembler::Fail;
2016 
2017     // Reserved for GFX9
2018     if (isGFX9() &&
2019         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2020       return MCDisassembler::Fail;
2021     } else if (isGFX10Plus()) {
2022       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2023                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2024     }
2025 
2026     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2027       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2028                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2029 
2030     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2031       return MCDisassembler::Fail;
2032 
2033     return MCDisassembler::Success;
2034 
2035   case amdhsa::KERNARG_PRELOAD_OFFSET:
2036     using namespace amdhsa;
2037     TwoByteBuffer = DE.getU16(Cursor);
2038     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2039       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2040                       KERNARG_PRELOAD_SPEC_LENGTH);
2041     }
2042 
2043     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2044       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2045                       KERNARG_PRELOAD_SPEC_OFFSET);
2046     }
2047     return MCDisassembler::Success;
2048 
2049   case amdhsa::RESERVED3_OFFSET:
2050     // 4 bytes from here are reserved, must be 0.
2051     ReservedBytes = DE.getBytes(Cursor, 4);
2052     for (int I = 0; I < 4; ++I) {
2053       if (ReservedBytes[I] != 0)
2054         return MCDisassembler::Fail;
2055     }
2056     return MCDisassembler::Success;
2057 
2058   default:
2059     llvm_unreachable("Unhandled index. Case statements cover everything.");
2060     return MCDisassembler::Fail;
2061   }
2062 #undef PRINT_DIRECTIVE
2063 }
2064 
2065 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2066     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2067   // CP microcode requires the kernel descriptor to be 64 aligned.
2068   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2069     return MCDisassembler::Fail;
2070 
2071   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2072   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2073   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2074   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2075   // when required.
2076   if (isGFX10Plus()) {
2077     uint16_t KernelCodeProperties =
2078         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2079                                 support::endianness::little);
2080     EnableWavefrontSize32 =
2081         AMDHSA_BITS_GET(KernelCodeProperties,
2082                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2083   }
2084 
2085   std::string Kd;
2086   raw_string_ostream KdStream(Kd);
2087   KdStream << ".amdhsa_kernel " << KdName << '\n';
2088 
2089   DataExtractor::Cursor C(0);
2090   while (C && C.tell() < Bytes.size()) {
2091     MCDisassembler::DecodeStatus Status =
2092         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2093 
2094     cantFail(C.takeError());
2095 
2096     if (Status == MCDisassembler::Fail)
2097       return MCDisassembler::Fail;
2098   }
2099   KdStream << ".end_amdhsa_kernel\n";
2100   outs() << KdStream.str();
2101   return MCDisassembler::Success;
2102 }
2103 
2104 std::optional<MCDisassembler::DecodeStatus>
2105 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2106                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2107                                   raw_ostream &CStream) const {
2108   // Right now only kernel descriptor needs to be handled.
2109   // We ignore all other symbols for target specific handling.
2110   // TODO:
2111   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2112   // Object V2 and V3 when symbols are marked protected.
2113 
2114   // amd_kernel_code_t for Code Object V2.
2115   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2116     Size = 256;
2117     return MCDisassembler::Fail;
2118   }
2119 
2120   // Code Object V3 kernel descriptors.
2121   StringRef Name = Symbol.Name;
2122   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2123     Size = 64; // Size = 64 regardless of success or failure.
2124     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2125   }
2126   return std::nullopt;
2127 }
2128 
2129 //===----------------------------------------------------------------------===//
2130 // AMDGPUSymbolizer
2131 //===----------------------------------------------------------------------===//
2132 
2133 // Try to find symbol name for specified label
2134 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2135     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2136     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2137     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2138 
2139   if (!IsBranch) {
2140     return false;
2141   }
2142 
2143   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2144   if (!Symbols)
2145     return false;
2146 
2147   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2148     return Val.Addr == static_cast<uint64_t>(Value) &&
2149            Val.Type == ELF::STT_NOTYPE;
2150   });
2151   if (Result != Symbols->end()) {
2152     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2153     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2154     Inst.addOperand(MCOperand::createExpr(Add));
2155     return true;
2156   }
2157   // Add to list of referenced addresses, so caller can synthesize a label.
2158   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2159   return false;
2160 }
2161 
2162 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2163                                                        int64_t Value,
2164                                                        uint64_t Address) {
2165   llvm_unreachable("unimplemented");
2166 }
2167 
2168 //===----------------------------------------------------------------------===//
2169 // Initialization
2170 //===----------------------------------------------------------------------===//
2171 
2172 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2173                               LLVMOpInfoCallback /*GetOpInfo*/,
2174                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2175                               void *DisInfo,
2176                               MCContext *Ctx,
2177                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2178   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2179 }
2180 
2181 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2182                                                 const MCSubtargetInfo &STI,
2183                                                 MCContext &Ctx) {
2184   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2185 }
2186 
2187 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2188   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2189                                          createAMDGPUDisassembler);
2190   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2191                                        createAMDGPUSymbolizer);
2192 }
2193