xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 7f55d7de1a7511dcfaa37c9f1665bfd8aea5f764)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
95     Offset = SignExtend64<24>(Imm);
96   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else { // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
111                                        uint64_t Addr,
112                                        const MCDisassembler *Decoder) {
113   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
114   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
115 }
116 
117 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
118   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
119                                         uint64_t /*Addr*/,                     \
120                                         const MCDisassembler *Decoder) {       \
121     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
122     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
123   }
124 
125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
126 // number of register. Used by VGPR only and AGPR only operands.
127 #define DECODE_OPERAND_REG_8(RegClass)                                         \
128   static DecodeStatus Decode##RegClass##RegisterClass(                         \
129       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
130       const MCDisassembler *Decoder) {                                         \
131     assert(Imm < (1 << 8) && "8-bit encoding");                                \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(                                                         \
134         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
135   }
136 
137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
138                      ImmWidth)                                                 \
139   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
140                            const MCDisassembler *Decoder) {                    \
141     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
142     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
143     return addOperand(Inst,                                                    \
144                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
145                                         MandatoryLiteral, ImmWidth));          \
146   }
147 
148 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
149 // get register class. Used by SGPR only operands.
150 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
151   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
152 
153 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
154 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
155 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
156 // Used by AV_ register classes (AGPR or VGPR only register operands).
157 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
158   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
159                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
160 
161 // Decoder for Src(9-bit encoding) registers only.
162 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
163   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
164 
165 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
166 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
167 // only.
168 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
169   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
170 
171 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
172 // Imm{9} is acc, registers only.
173 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
174   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
175 
176 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
177 // register from RegClass or immediate. Registers that don't belong to RegClass
178 // will be decoded and InstPrinter will report warning. Immediate will be
179 // decoded into constant of size ImmWidth, should match width of immediate used
180 // by OperandType (important for floating point types).
181 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
182   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
183                false, ImmWidth)
184 
185 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
186 // and decode using 'enum10' from decodeSrcOp.
187 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
188   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
189                Imm | 512, false, ImmWidth)
190 
191 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
192   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
193                OpWidth, Imm, true, ImmWidth)
194 
195 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
196 // when RegisterClass is used as an operand. Most often used for destination
197 // operands.
198 
199 DECODE_OPERAND_REG_8(VGPR_32)
200 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
201 DECODE_OPERAND_REG_8(VReg_64)
202 DECODE_OPERAND_REG_8(VReg_96)
203 DECODE_OPERAND_REG_8(VReg_128)
204 DECODE_OPERAND_REG_8(VReg_256)
205 DECODE_OPERAND_REG_8(VReg_288)
206 DECODE_OPERAND_REG_8(VReg_352)
207 DECODE_OPERAND_REG_8(VReg_384)
208 DECODE_OPERAND_REG_8(VReg_512)
209 DECODE_OPERAND_REG_8(VReg_1024)
210 
211 DECODE_OPERAND_REG_7(SReg_32, OPW32)
212 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
213 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
214 DECODE_OPERAND_REG_7(SReg_64, OPW64)
215 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
216 DECODE_OPERAND_REG_7(SReg_128, OPW128)
217 DECODE_OPERAND_REG_7(SReg_256, OPW256)
218 DECODE_OPERAND_REG_7(SReg_512, OPW512)
219 
220 DECODE_OPERAND_REG_8(AGPR_32)
221 DECODE_OPERAND_REG_8(AReg_64)
222 DECODE_OPERAND_REG_8(AReg_128)
223 DECODE_OPERAND_REG_8(AReg_256)
224 DECODE_OPERAND_REG_8(AReg_512)
225 DECODE_OPERAND_REG_8(AReg_1024)
226 
227 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
228 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
229 
230 // Decoders for register only source RegisterOperands that use use 9-bit Src
231 // encoding: 'decodeOperand_<RegClass>'.
232 
233 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
234 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
235 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
236 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
237 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
238 
239 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
240 
241 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
242 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
243 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
244 
245 // Decoders for register or immediate RegisterOperands that use 9-bit Src
246 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
247 
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
254 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
255 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
256 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
257 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
258 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
259 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
260 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
261 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
262 
263 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
264 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
265 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
266 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
267 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
268 
269 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
270 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
271 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
272 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
273 
274 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
275                                                uint64_t /*Addr*/,
276                                                const MCDisassembler *Decoder) {
277   assert(isUInt<10>(Imm) && "10-bit encoding expected");
278   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
279 
280   bool IsHi = Imm & (1 << 9);
281   unsigned RegIdx = Imm & 0xff;
282   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
283   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
284 }
285 
286 static DecodeStatus
287 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
288                                  const MCDisassembler *Decoder) {
289   assert(isUInt<8>(Imm) && "8-bit encoding expected");
290 
291   bool IsHi = Imm & (1 << 7);
292   unsigned RegIdx = Imm & 0x7f;
293   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
294   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
295 }
296 
297 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
298                                                 uint64_t /*Addr*/,
299                                                 const MCDisassembler *Decoder) {
300   assert(isUInt<9>(Imm) && "9-bit encoding expected");
301 
302   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
303   bool IsVGPR = Imm & (1 << 8);
304   if (IsVGPR) {
305     bool IsHi = Imm & (1 << 7);
306     unsigned RegIdx = Imm & 0x7f;
307     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
308   }
309   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
310                                                    Imm & 0xFF, false, 16));
311 }
312 
313 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
314                                           uint64_t /*Addr*/,
315                                           const MCDisassembler *Decoder) {
316   assert(isUInt<10>(Imm) && "10-bit encoding expected");
317 
318   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
319   bool IsVGPR = Imm & (1 << 8);
320   if (IsVGPR) {
321     bool IsHi = Imm & (1 << 9);
322     unsigned RegIdx = Imm & 0xff;
323     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
324   }
325   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
326                                                    Imm & 0xFF, false, 16));
327 }
328 
329 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
330                                          uint64_t Addr,
331                                          const MCDisassembler *Decoder) {
332   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
333   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
334 }
335 
336 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
337                                           uint64_t Addr, const void *Decoder) {
338   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
339   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
340 }
341 
342 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
343                           const MCRegisterInfo *MRI) {
344   if (OpIdx < 0)
345     return false;
346 
347   const MCOperand &Op = Inst.getOperand(OpIdx);
348   if (!Op.isReg())
349     return false;
350 
351   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
352   auto Reg = Sub ? Sub : Op.getReg();
353   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
354 }
355 
356 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
357                                              AMDGPUDisassembler::OpWidthTy Opw,
358                                              const MCDisassembler *Decoder) {
359   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
360   if (!DAsm->isGFX90A()) {
361     Imm &= 511;
362   } else {
363     // If atomic has both vdata and vdst their register classes are tied.
364     // The bit is decoded along with the vdst, first operand. We need to
365     // change register class to AGPR if vdst was AGPR.
366     // If a DS instruction has both data0 and data1 their register classes
367     // are also tied.
368     unsigned Opc = Inst.getOpcode();
369     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
370     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
371                                                         : AMDGPU::OpName::vdata;
372     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
373     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
374     if ((int)Inst.getNumOperands() == DataIdx) {
375       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
376       if (IsAGPROperand(Inst, DstIdx, MRI))
377         Imm |= 512;
378     }
379 
380     if (TSFlags & SIInstrFlags::DS) {
381       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
382       if ((int)Inst.getNumOperands() == Data2Idx &&
383           IsAGPROperand(Inst, DataIdx, MRI))
384         Imm |= 512;
385     }
386   }
387   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
388 }
389 
390 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
391                                            uint64_t Addr,
392                                            const MCDisassembler *Decoder) {
393   assert(Imm < (1 << 9) && "9-bit encoding");
394   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
395   return addOperand(
396       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
397 }
398 
399 static DecodeStatus
400 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
401                              const MCDisassembler *Decoder) {
402   return decodeOperand_AVLdSt_Any(Inst, Imm,
403                                   AMDGPUDisassembler::OPW32, Decoder);
404 }
405 
406 static DecodeStatus
407 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
408                              const MCDisassembler *Decoder) {
409   return decodeOperand_AVLdSt_Any(Inst, Imm,
410                                   AMDGPUDisassembler::OPW64, Decoder);
411 }
412 
413 static DecodeStatus
414 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
415                              const MCDisassembler *Decoder) {
416   return decodeOperand_AVLdSt_Any(Inst, Imm,
417                                   AMDGPUDisassembler::OPW96, Decoder);
418 }
419 
420 static DecodeStatus
421 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
422                               const MCDisassembler *Decoder) {
423   return decodeOperand_AVLdSt_Any(Inst, Imm,
424                                   AMDGPUDisassembler::OPW128, Decoder);
425 }
426 
427 static DecodeStatus
428 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
429                               const MCDisassembler *Decoder) {
430   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
431                                   Decoder);
432 }
433 
434 #define DECODE_SDWA(DecName) \
435 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
436 
437 DECODE_SDWA(Src32)
438 DECODE_SDWA(Src16)
439 DECODE_SDWA(VopcDst)
440 
441 #include "AMDGPUGenDisassemblerTables.inc"
442 
443 //===----------------------------------------------------------------------===//
444 //
445 //===----------------------------------------------------------------------===//
446 
447 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
448   assert(Bytes.size() >= sizeof(T));
449   const auto Res =
450       support::endian::read<T, llvm::endianness::little>(Bytes.data());
451   Bytes = Bytes.slice(sizeof(T));
452   return Res;
453 }
454 
455 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
456   assert(Bytes.size() >= 12);
457   uint64_t Lo =
458       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
459   Bytes = Bytes.slice(8);
460   uint64_t Hi =
461       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
462   Bytes = Bytes.slice(4);
463   return DecoderUInt128(Lo, Hi);
464 }
465 
466 // The disassembler is greedy, so we need to check FI operand value to
467 // not parse a dpp if the correct literal is not set. For dpp16 the
468 // autogenerated decoder checks the dpp literal
469 static bool isValidDPP8(const MCInst &MI) {
470   using namespace llvm::AMDGPU::DPP;
471   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
472   assert(FiIdx != -1);
473   if ((unsigned)FiIdx >= MI.getNumOperands())
474     return false;
475   unsigned Fi = MI.getOperand(FiIdx).getImm();
476   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
477 }
478 
479 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
480                                                 ArrayRef<uint8_t> Bytes_,
481                                                 uint64_t Address,
482                                                 raw_ostream &CS) const {
483   bool IsSDWA = false;
484 
485   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
486   Bytes = Bytes_.slice(0, MaxInstBytesNum);
487 
488   DecodeStatus Res = MCDisassembler::Fail;
489   do {
490     // ToDo: better to switch encoding length using some bit predicate
491     // but it is unknown yet, so try all we can
492 
493     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
494     // encodings
495     if (isGFX11Plus() && Bytes.size() >= 12 ) {
496       DecoderUInt128 DecW = eat12Bytes(Bytes);
497       Res =
498           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
499                         MI, DecW, Address, CS);
500       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
501         break;
502       MI = MCInst(); // clear
503       Res =
504           tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
505                         MI, DecW, Address, CS);
506       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
507         break;
508       MI = MCInst(); // clear
509 
510       const auto convertVOPDPP = [&]() {
511         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) {
512           convertVOP3PDPPInst(MI);
513         } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) {
514           convertVOPCDPPInst(MI); // Special VOP3 case
515         } else {
516           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
517           convertVOP3DPPInst(MI); // Regular VOP3 case
518         }
519       };
520       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
521                           MI, DecW, Address, CS);
522       if (Res) {
523         convertVOPDPP();
524         break;
525       }
526       Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
527                           MI, DecW, Address, CS);
528       if (Res) {
529         convertVOPDPP();
530         break;
531       }
532       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
533       if (Res)
534         break;
535 
536       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
537       if (Res)
538         break;
539     }
540     // Reinitialize Bytes
541     Bytes = Bytes_.slice(0, MaxInstBytesNum);
542 
543     if (Bytes.size() >= 8) {
544       const uint64_t QW = eatBytes<uint64_t>(Bytes);
545 
546       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
547         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
548         if (Res) {
549           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
550               == -1)
551             break;
552           if (convertDPP8Inst(MI) == MCDisassembler::Success)
553             break;
554           MI = MCInst(); // clear
555         }
556       }
557 
558       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
559       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
560         break;
561       MI = MCInst(); // clear
562 
563       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
564                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
565       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
566         break;
567       MI = MCInst(); // clear
568 
569       Res = tryDecodeInst(DecoderTableDPP8GFX1264,
570                           DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
571       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
572         break;
573       MI = MCInst(); // clear
574 
575       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
576       if (Res) break;
577 
578       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
579                           MI, QW, Address, CS);
580       if (Res) {
581         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
582           convertVOPCDPPInst(MI);
583         break;
584       }
585 
586       Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
587                           MI, QW, Address, CS);
588       if (Res) {
589         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
590           convertVOPCDPPInst(MI);
591         break;
592       }
593 
594       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
595       if (Res) { IsSDWA = true;  break; }
596 
597       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
598       if (Res) { IsSDWA = true;  break; }
599 
600       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
601       if (Res) { IsSDWA = true;  break; }
602 
603       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
604         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
605         if (Res)
606           break;
607       }
608 
609       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
610       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
611       // table first so we print the correct name.
612       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
613         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
614         if (Res)
615           break;
616       }
617     }
618 
619     // Reinitialize Bytes as DPP64 could have eaten too much
620     Bytes = Bytes_.slice(0, MaxInstBytesNum);
621 
622     // Try decode 32-bit instruction
623     if (Bytes.size() < 4) break;
624     const uint32_t DW = eatBytes<uint32_t>(Bytes);
625     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
626     if (Res) break;
627 
628     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
629     if (Res) break;
630 
631     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
632     if (Res) break;
633 
634     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
635       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
636       if (Res)
637         break;
638     }
639 
640     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
641       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
642       if (Res) break;
643     }
644 
645     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
646     if (Res) break;
647 
648     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
649                         Address, CS);
650     if (Res) break;
651 
652     Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
653                         Address, CS);
654     if (Res)
655       break;
656 
657     if (Bytes.size() < 4) break;
658     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
659 
660     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
661       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
662       if (Res)
663         break;
664     }
665 
666     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
667       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
668       if (Res)
669         break;
670     }
671 
672     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
673     if (Res) break;
674 
675     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
676     if (Res) break;
677 
678     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
679     if (Res) break;
680 
681     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
682     if (Res) break;
683 
684     Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
685                         Address, CS);
686     if (Res)
687       break;
688 
689     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
690                         Address, CS);
691     if (Res)
692       break;
693 
694     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
695   } while (false);
696 
697   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
698     // Insert dummy unused src2_modifiers.
699     insertNamedMCOperand(MI, MCOperand::createImm(0),
700                          AMDGPU::OpName::src2_modifiers);
701   }
702 
703   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
704           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
705     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
706                                              AMDGPU::OpName::cpol);
707     if (CPolPos != -1) {
708       unsigned CPol =
709           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
710               AMDGPU::CPol::GLC : 0;
711       if (MI.getNumOperands() <= (unsigned)CPolPos) {
712         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
713                              AMDGPU::OpName::cpol);
714       } else if (CPol) {
715         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
716       }
717     }
718   }
719 
720   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
721               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
722              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
723     // GFX90A lost TFE, its place is occupied by ACC.
724     int TFEOpIdx =
725         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
726     if (TFEOpIdx != -1) {
727       auto TFEIter = MI.begin();
728       std::advance(TFEIter, TFEOpIdx);
729       MI.insert(TFEIter, MCOperand::createImm(0));
730     }
731   }
732 
733   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
734               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
735     int SWZOpIdx =
736         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
737     if (SWZOpIdx != -1) {
738       auto SWZIter = MI.begin();
739       std::advance(SWZIter, SWZOpIdx);
740       MI.insert(SWZIter, MCOperand::createImm(0));
741     }
742   }
743 
744   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
745     int VAddr0Idx =
746         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
747     int RsrcIdx =
748         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
749     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
750     if (VAddr0Idx >= 0 && NSAArgs > 0) {
751       unsigned NSAWords = (NSAArgs + 3) / 4;
752       if (Bytes.size() < 4 * NSAWords) {
753         Res = MCDisassembler::Fail;
754       } else {
755         for (unsigned i = 0; i < NSAArgs; ++i) {
756           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
757           auto VAddrRCID =
758               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
759           MI.insert(MI.begin() + VAddrIdx,
760                     createRegOperand(VAddrRCID, Bytes[i]));
761         }
762         Bytes = Bytes.slice(4 * NSAWords);
763       }
764     }
765 
766     if (Res)
767       Res = convertMIMGInst(MI);
768   }
769 
770   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
771               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
772     Res = convertMIMGInst(MI);
773 
774   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
775     Res = convertEXPInst(MI);
776 
777   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
778     Res = convertVINTERPInst(MI);
779 
780   if (Res && IsSDWA)
781     Res = convertSDWAInst(MI);
782 
783   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
784                                               AMDGPU::OpName::vdst_in);
785   if (VDstIn_Idx != -1) {
786     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
787                            MCOI::OperandConstraint::TIED_TO);
788     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
789          !MI.getOperand(VDstIn_Idx).isReg() ||
790          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
791       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
792         MI.erase(&MI.getOperand(VDstIn_Idx));
793       insertNamedMCOperand(MI,
794         MCOperand::createReg(MI.getOperand(Tied).getReg()),
795         AMDGPU::OpName::vdst_in);
796     }
797   }
798 
799   int ImmLitIdx =
800       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
801   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
802   if (Res && ImmLitIdx != -1 && !IsSOPK)
803     Res = convertFMAanyK(MI, ImmLitIdx);
804 
805   // if the opcode was not recognized we'll assume a Size of 4 bytes
806   // (unless there are fewer bytes left)
807   Size = Res ? (MaxInstBytesNum - Bytes.size())
808              : std::min((size_t)4, Bytes_.size());
809   return Res;
810 }
811 
812 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
813   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
814     // The MCInst still has these fields even though they are no longer encoded
815     // in the GFX11 instruction.
816     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
817     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
818   }
819   return MCDisassembler::Success;
820 }
821 
822 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
823   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
824       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
825       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
826       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
827       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
828       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
829       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
830       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
831     // The MCInst has this field that is not directly encoded in the
832     // instruction.
833     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
834   }
835   return MCDisassembler::Success;
836 }
837 
838 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
839   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
840       STI.hasFeature(AMDGPU::FeatureGFX10)) {
841     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
842       // VOPC - insert clamp
843       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
844   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
845     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
846     if (SDst != -1) {
847       // VOPC - insert VCC register as sdst
848       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
849                            AMDGPU::OpName::sdst);
850     } else {
851       // VOP1/2 - insert omod if present in instruction
852       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
853     }
854   }
855   return MCDisassembler::Success;
856 }
857 
858 struct VOPModifiers {
859   unsigned OpSel = 0;
860   unsigned OpSelHi = 0;
861   unsigned NegLo = 0;
862   unsigned NegHi = 0;
863 };
864 
865 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
866 // Note that these values do not affect disassembler output,
867 // so this is only necessary for consistency with src_modifiers.
868 static VOPModifiers collectVOPModifiers(const MCInst &MI,
869                                         bool IsVOP3P = false) {
870   VOPModifiers Modifiers;
871   unsigned Opc = MI.getOpcode();
872   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
873                         AMDGPU::OpName::src1_modifiers,
874                         AMDGPU::OpName::src2_modifiers};
875   for (int J = 0; J < 3; ++J) {
876     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
877     if (OpIdx == -1)
878       continue;
879 
880     unsigned Val = MI.getOperand(OpIdx).getImm();
881 
882     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
883     if (IsVOP3P) {
884       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
885       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
886       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
887     } else if (J == 0) {
888       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
889     }
890   }
891 
892   return Modifiers;
893 }
894 
895 // MAC opcodes have special old and src2 operands.
896 // src2 is tied to dst, while old is not tied (but assumed to be).
897 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
898   constexpr int DST_IDX = 0;
899   auto Opcode = MI.getOpcode();
900   const auto &Desc = MCII->get(Opcode);
901   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
902 
903   if (OldIdx != -1 && Desc.getOperandConstraint(
904                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
905     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
906     assert(Desc.getOperandConstraint(
907                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
908                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
909     (void)DST_IDX;
910     return true;
911   }
912 
913   return false;
914 }
915 
916 // Create dummy old operand and insert dummy unused src2_modifiers
917 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
918   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
919   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
920   insertNamedMCOperand(MI, MCOperand::createImm(0),
921                        AMDGPU::OpName::src2_modifiers);
922 }
923 
924 // We must check FI == literal to reject not genuine dpp8 insts, and we must
925 // first add optional MI operands to check FI
926 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
927   unsigned Opc = MI.getOpcode();
928   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
929     convertVOP3PDPPInst(MI);
930   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
931              AMDGPU::isVOPC64DPP(Opc)) {
932     convertVOPCDPPInst(MI);
933   } else {
934     if (isMacDPP(MI))
935       convertMacDPPInst(MI);
936 
937     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
938     if (MI.getNumOperands() < DescNumOps &&
939         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
940       auto Mods = collectVOPModifiers(MI);
941       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
942                            AMDGPU::OpName::op_sel);
943     } else {
944       // Insert dummy unused src modifiers.
945       if (MI.getNumOperands() < DescNumOps &&
946           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
947         insertNamedMCOperand(MI, MCOperand::createImm(0),
948                              AMDGPU::OpName::src0_modifiers);
949 
950       if (MI.getNumOperands() < DescNumOps &&
951           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
952         insertNamedMCOperand(MI, MCOperand::createImm(0),
953                              AMDGPU::OpName::src1_modifiers);
954     }
955   }
956   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
957 }
958 
959 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
960   if (isMacDPP(MI))
961     convertMacDPPInst(MI);
962 
963   unsigned Opc = MI.getOpcode();
964   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
965   if (MI.getNumOperands() < DescNumOps &&
966       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
967     auto Mods = collectVOPModifiers(MI);
968     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
969                          AMDGPU::OpName::op_sel);
970   }
971   return MCDisassembler::Success;
972 }
973 
974 // Note that before gfx10, the MIMG encoding provided no information about
975 // VADDR size. Consequently, decoded instructions always show address as if it
976 // has 1 dword, which could be not really so.
977 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
978   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
979 
980   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
981                                            AMDGPU::OpName::vdst);
982 
983   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
984                                             AMDGPU::OpName::vdata);
985   int VAddr0Idx =
986       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
987   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
988                                                 : AMDGPU::OpName::rsrc;
989   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
990   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
991                                             AMDGPU::OpName::dmask);
992 
993   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
994                                             AMDGPU::OpName::tfe);
995   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
996                                             AMDGPU::OpName::d16);
997 
998   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
999   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1000       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
1001 
1002   assert(VDataIdx != -1);
1003   if (BaseOpcode->BVH) {
1004     // Add A16 operand for intersect_ray instructions
1005     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
1006     return MCDisassembler::Success;
1007   }
1008 
1009   bool IsAtomic = (VDstIdx != -1);
1010   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1011   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1012   bool IsNSA = false;
1013   bool IsPartialNSA = false;
1014   unsigned AddrSize = Info->VAddrDwords;
1015 
1016   if (isGFX10Plus()) {
1017     unsigned DimIdx =
1018         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1019     int A16Idx =
1020         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1021     const AMDGPU::MIMGDimInfo *Dim =
1022         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1023     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1024 
1025     AddrSize =
1026         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1027 
1028     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1029     // VIMAGE insts other than BVH never use vaddr4.
1030     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1031             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1032             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1033     if (!IsNSA) {
1034       if (!IsVSample && AddrSize > 12)
1035         AddrSize = 16;
1036     } else {
1037       if (AddrSize > Info->VAddrDwords) {
1038         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1039           // The NSA encoding does not contain enough operands for the
1040           // combination of base opcode / dimension. Should this be an error?
1041           return MCDisassembler::Success;
1042         }
1043         IsPartialNSA = true;
1044       }
1045     }
1046   }
1047 
1048   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1049   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1050 
1051   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1052   if (D16 && AMDGPU::hasPackedD16(STI)) {
1053     DstSize = (DstSize + 1) / 2;
1054   }
1055 
1056   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1057     DstSize += 1;
1058 
1059   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1060     return MCDisassembler::Success;
1061 
1062   int NewOpcode =
1063       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1064   if (NewOpcode == -1)
1065     return MCDisassembler::Success;
1066 
1067   // Widen the register to the correct number of enabled channels.
1068   unsigned NewVdata = AMDGPU::NoRegister;
1069   if (DstSize != Info->VDataDwords) {
1070     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1071 
1072     // Get first subregister of VData
1073     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1074     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1075     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1076 
1077     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1078                                        &MRI.getRegClass(DataRCID));
1079     if (NewVdata == AMDGPU::NoRegister) {
1080       // It's possible to encode this such that the low register + enabled
1081       // components exceeds the register count.
1082       return MCDisassembler::Success;
1083     }
1084   }
1085 
1086   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1087   // If using partial NSA on GFX11+ widen last address register.
1088   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1089   unsigned NewVAddrSA = AMDGPU::NoRegister;
1090   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1091       AddrSize != Info->VAddrDwords) {
1092     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1093     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1094     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1095 
1096     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1097     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1098                                         &MRI.getRegClass(AddrRCID));
1099     if (!NewVAddrSA)
1100       return MCDisassembler::Success;
1101   }
1102 
1103   MI.setOpcode(NewOpcode);
1104 
1105   if (NewVdata != AMDGPU::NoRegister) {
1106     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1107 
1108     if (IsAtomic) {
1109       // Atomic operations have an additional operand (a copy of data)
1110       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1111     }
1112   }
1113 
1114   if (NewVAddrSA) {
1115     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1116   } else if (IsNSA) {
1117     assert(AddrSize <= Info->VAddrDwords);
1118     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1119              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1120   }
1121 
1122   return MCDisassembler::Success;
1123 }
1124 
1125 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1126 // decoder only adds to src_modifiers, so manually add the bits to the other
1127 // operands.
1128 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1129   unsigned Opc = MI.getOpcode();
1130   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1131   auto Mods = collectVOPModifiers(MI, true);
1132 
1133   if (MI.getNumOperands() < DescNumOps &&
1134       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1135     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1136 
1137   if (MI.getNumOperands() < DescNumOps &&
1138       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1139     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1140                          AMDGPU::OpName::op_sel);
1141   if (MI.getNumOperands() < DescNumOps &&
1142       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1143     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1144                          AMDGPU::OpName::op_sel_hi);
1145   if (MI.getNumOperands() < DescNumOps &&
1146       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1147     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1148                          AMDGPU::OpName::neg_lo);
1149   if (MI.getNumOperands() < DescNumOps &&
1150       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1151     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1152                          AMDGPU::OpName::neg_hi);
1153 
1154   return MCDisassembler::Success;
1155 }
1156 
1157 // Create dummy old operand and insert optional operands
1158 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1159   unsigned Opc = MI.getOpcode();
1160   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1161 
1162   if (MI.getNumOperands() < DescNumOps &&
1163       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1164     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1165 
1166   if (MI.getNumOperands() < DescNumOps &&
1167       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1168     insertNamedMCOperand(MI, MCOperand::createImm(0),
1169                          AMDGPU::OpName::src0_modifiers);
1170 
1171   if (MI.getNumOperands() < DescNumOps &&
1172       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1173     insertNamedMCOperand(MI, MCOperand::createImm(0),
1174                          AMDGPU::OpName::src1_modifiers);
1175   return MCDisassembler::Success;
1176 }
1177 
1178 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1179                                                 int ImmLitIdx) const {
1180   assert(HasLiteral && "Should have decoded a literal");
1181   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1182   unsigned DescNumOps = Desc.getNumOperands();
1183   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1184                        AMDGPU::OpName::immDeferred);
1185   assert(DescNumOps == MI.getNumOperands());
1186   for (unsigned I = 0; I < DescNumOps; ++I) {
1187     auto &Op = MI.getOperand(I);
1188     auto OpType = Desc.operands()[I].OperandType;
1189     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1190                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1191     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1192         IsDeferredOp)
1193       Op.setImm(Literal);
1194   }
1195   return MCDisassembler::Success;
1196 }
1197 
1198 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1199   return getContext().getRegisterInfo()->
1200     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1201 }
1202 
1203 inline
1204 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1205                                          const Twine& ErrMsg) const {
1206   *CommentStream << "Error: " + ErrMsg;
1207 
1208   // ToDo: add support for error operands to MCInst.h
1209   // return MCOperand::createError(V);
1210   return MCOperand();
1211 }
1212 
1213 inline
1214 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1215   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1216 }
1217 
1218 inline
1219 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1220                                                unsigned Val) const {
1221   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1222   if (Val >= RegCl.getNumRegs())
1223     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1224                            ": unknown register " + Twine(Val));
1225   return createRegOperand(RegCl.getRegister(Val));
1226 }
1227 
1228 inline
1229 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1230                                                 unsigned Val) const {
1231   // ToDo: SI/CI have 104 SGPRs, VI - 102
1232   // Valery: here we accepting as much as we can, let assembler sort it out
1233   int shift = 0;
1234   switch (SRegClassID) {
1235   case AMDGPU::SGPR_32RegClassID:
1236   case AMDGPU::TTMP_32RegClassID:
1237     break;
1238   case AMDGPU::SGPR_64RegClassID:
1239   case AMDGPU::TTMP_64RegClassID:
1240     shift = 1;
1241     break;
1242   case AMDGPU::SGPR_128RegClassID:
1243   case AMDGPU::TTMP_128RegClassID:
1244   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1245   // this bundle?
1246   case AMDGPU::SGPR_256RegClassID:
1247   case AMDGPU::TTMP_256RegClassID:
1248     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1249   // this bundle?
1250   case AMDGPU::SGPR_288RegClassID:
1251   case AMDGPU::TTMP_288RegClassID:
1252   case AMDGPU::SGPR_320RegClassID:
1253   case AMDGPU::TTMP_320RegClassID:
1254   case AMDGPU::SGPR_352RegClassID:
1255   case AMDGPU::TTMP_352RegClassID:
1256   case AMDGPU::SGPR_384RegClassID:
1257   case AMDGPU::TTMP_384RegClassID:
1258   case AMDGPU::SGPR_512RegClassID:
1259   case AMDGPU::TTMP_512RegClassID:
1260     shift = 2;
1261     break;
1262   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1263   // this bundle?
1264   default:
1265     llvm_unreachable("unhandled register class");
1266   }
1267 
1268   if (Val % (1 << shift)) {
1269     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1270                    << ": scalar reg isn't aligned " << Val;
1271   }
1272 
1273   return createRegOperand(SRegClassID, Val >> shift);
1274 }
1275 
1276 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1277                                                   bool IsHi) const {
1278   unsigned RCID =
1279       IsHi ? AMDGPU::VGPR_HI16RegClassID : AMDGPU::VGPR_LO16RegClassID;
1280   return createRegOperand(RCID, RegIdx);
1281 }
1282 
1283 // Decode Literals for insts which always have a literal in the encoding
1284 MCOperand
1285 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1286   if (HasLiteral) {
1287     assert(
1288         AMDGPU::hasVOPD(STI) &&
1289         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1290     if (Literal != Val)
1291       return errOperand(Val, "More than one unique literal is illegal");
1292   }
1293   HasLiteral = true;
1294   Literal = Val;
1295   return MCOperand::createImm(Literal);
1296 }
1297 
1298 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1299   // For now all literal constants are supposed to be unsigned integer
1300   // ToDo: deal with signed/unsigned 64-bit integer constants
1301   // ToDo: deal with float/double constants
1302   if (!HasLiteral) {
1303     if (Bytes.size() < 4) {
1304       return errOperand(0, "cannot read literal, inst bytes left " +
1305                         Twine(Bytes.size()));
1306     }
1307     HasLiteral = true;
1308     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1309     if (ExtendFP64)
1310       Literal64 <<= 32;
1311   }
1312   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1313 }
1314 
1315 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1316   using namespace AMDGPU::EncValues;
1317 
1318   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1319   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1320     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1321     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1322       // Cast prevents negative overflow.
1323 }
1324 
1325 static int64_t getInlineImmVal32(unsigned Imm) {
1326   switch (Imm) {
1327   case 240:
1328     return llvm::bit_cast<uint32_t>(0.5f);
1329   case 241:
1330     return llvm::bit_cast<uint32_t>(-0.5f);
1331   case 242:
1332     return llvm::bit_cast<uint32_t>(1.0f);
1333   case 243:
1334     return llvm::bit_cast<uint32_t>(-1.0f);
1335   case 244:
1336     return llvm::bit_cast<uint32_t>(2.0f);
1337   case 245:
1338     return llvm::bit_cast<uint32_t>(-2.0f);
1339   case 246:
1340     return llvm::bit_cast<uint32_t>(4.0f);
1341   case 247:
1342     return llvm::bit_cast<uint32_t>(-4.0f);
1343   case 248: // 1 / (2 * PI)
1344     return 0x3e22f983;
1345   default:
1346     llvm_unreachable("invalid fp inline imm");
1347   }
1348 }
1349 
1350 static int64_t getInlineImmVal64(unsigned Imm) {
1351   switch (Imm) {
1352   case 240:
1353     return llvm::bit_cast<uint64_t>(0.5);
1354   case 241:
1355     return llvm::bit_cast<uint64_t>(-0.5);
1356   case 242:
1357     return llvm::bit_cast<uint64_t>(1.0);
1358   case 243:
1359     return llvm::bit_cast<uint64_t>(-1.0);
1360   case 244:
1361     return llvm::bit_cast<uint64_t>(2.0);
1362   case 245:
1363     return llvm::bit_cast<uint64_t>(-2.0);
1364   case 246:
1365     return llvm::bit_cast<uint64_t>(4.0);
1366   case 247:
1367     return llvm::bit_cast<uint64_t>(-4.0);
1368   case 248: // 1 / (2 * PI)
1369     return 0x3fc45f306dc9c882;
1370   default:
1371     llvm_unreachable("invalid fp inline imm");
1372   }
1373 }
1374 
1375 static int64_t getInlineImmVal16(unsigned Imm) {
1376   switch (Imm) {
1377   case 240:
1378     return 0x3800;
1379   case 241:
1380     return 0xB800;
1381   case 242:
1382     return 0x3C00;
1383   case 243:
1384     return 0xBC00;
1385   case 244:
1386     return 0x4000;
1387   case 245:
1388     return 0xC000;
1389   case 246:
1390     return 0x4400;
1391   case 247:
1392     return 0xC400;
1393   case 248: // 1 / (2 * PI)
1394     return 0x3118;
1395   default:
1396     llvm_unreachable("invalid fp inline imm");
1397   }
1398 }
1399 
1400 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1401   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1402       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1403 
1404   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1405   // ImmWidth 0 is a default case where operand should not allow immediates.
1406   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1407   // use it to print verbose error message.
1408   switch (ImmWidth) {
1409   case 0:
1410   case 32:
1411     return MCOperand::createImm(getInlineImmVal32(Imm));
1412   case 64:
1413     return MCOperand::createImm(getInlineImmVal64(Imm));
1414   case 16:
1415     return MCOperand::createImm(getInlineImmVal16(Imm));
1416   default:
1417     llvm_unreachable("implement me");
1418   }
1419 }
1420 
1421 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1422   using namespace AMDGPU;
1423 
1424   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1425   switch (Width) {
1426   default: // fall
1427   case OPW32:
1428   case OPW16:
1429   case OPWV216:
1430     return VGPR_32RegClassID;
1431   case OPW64:
1432   case OPWV232: return VReg_64RegClassID;
1433   case OPW96: return VReg_96RegClassID;
1434   case OPW128: return VReg_128RegClassID;
1435   case OPW160: return VReg_160RegClassID;
1436   case OPW256: return VReg_256RegClassID;
1437   case OPW288: return VReg_288RegClassID;
1438   case OPW320: return VReg_320RegClassID;
1439   case OPW352: return VReg_352RegClassID;
1440   case OPW384: return VReg_384RegClassID;
1441   case OPW512: return VReg_512RegClassID;
1442   case OPW1024: return VReg_1024RegClassID;
1443   }
1444 }
1445 
1446 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1447   using namespace AMDGPU;
1448 
1449   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1450   switch (Width) {
1451   default: // fall
1452   case OPW32:
1453   case OPW16:
1454   case OPWV216:
1455     return AGPR_32RegClassID;
1456   case OPW64:
1457   case OPWV232: return AReg_64RegClassID;
1458   case OPW96: return AReg_96RegClassID;
1459   case OPW128: return AReg_128RegClassID;
1460   case OPW160: return AReg_160RegClassID;
1461   case OPW256: return AReg_256RegClassID;
1462   case OPW288: return AReg_288RegClassID;
1463   case OPW320: return AReg_320RegClassID;
1464   case OPW352: return AReg_352RegClassID;
1465   case OPW384: return AReg_384RegClassID;
1466   case OPW512: return AReg_512RegClassID;
1467   case OPW1024: return AReg_1024RegClassID;
1468   }
1469 }
1470 
1471 
1472 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1473   using namespace AMDGPU;
1474 
1475   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1476   switch (Width) {
1477   default: // fall
1478   case OPW32:
1479   case OPW16:
1480   case OPWV216:
1481     return SGPR_32RegClassID;
1482   case OPW64:
1483   case OPWV232: return SGPR_64RegClassID;
1484   case OPW96: return SGPR_96RegClassID;
1485   case OPW128: return SGPR_128RegClassID;
1486   case OPW160: return SGPR_160RegClassID;
1487   case OPW256: return SGPR_256RegClassID;
1488   case OPW288: return SGPR_288RegClassID;
1489   case OPW320: return SGPR_320RegClassID;
1490   case OPW352: return SGPR_352RegClassID;
1491   case OPW384: return SGPR_384RegClassID;
1492   case OPW512: return SGPR_512RegClassID;
1493   }
1494 }
1495 
1496 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1497   using namespace AMDGPU;
1498 
1499   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1500   switch (Width) {
1501   default: // fall
1502   case OPW32:
1503   case OPW16:
1504   case OPWV216:
1505     return TTMP_32RegClassID;
1506   case OPW64:
1507   case OPWV232: return TTMP_64RegClassID;
1508   case OPW128: return TTMP_128RegClassID;
1509   case OPW256: return TTMP_256RegClassID;
1510   case OPW288: return TTMP_288RegClassID;
1511   case OPW320: return TTMP_320RegClassID;
1512   case OPW352: return TTMP_352RegClassID;
1513   case OPW384: return TTMP_384RegClassID;
1514   case OPW512: return TTMP_512RegClassID;
1515   }
1516 }
1517 
1518 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1519   using namespace AMDGPU::EncValues;
1520 
1521   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1522   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1523 
1524   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1525 }
1526 
1527 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1528                                           bool MandatoryLiteral,
1529                                           unsigned ImmWidth, bool IsFP) const {
1530   using namespace AMDGPU::EncValues;
1531 
1532   assert(Val < 1024); // enum10
1533 
1534   bool IsAGPR = Val & 512;
1535   Val &= 511;
1536 
1537   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1538     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1539                                    : getVgprClassId(Width), Val - VGPR_MIN);
1540   }
1541   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1542                             IsFP);
1543 }
1544 
1545 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1546                                                  unsigned Val,
1547                                                  bool MandatoryLiteral,
1548                                                  unsigned ImmWidth,
1549                                                  bool IsFP) const {
1550   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1551   // decoded earlier.
1552   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1553   using namespace AMDGPU::EncValues;
1554 
1555   if (Val <= SGPR_MAX) {
1556     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1557     static_assert(SGPR_MIN == 0);
1558     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1559   }
1560 
1561   int TTmpIdx = getTTmpIdx(Val);
1562   if (TTmpIdx >= 0) {
1563     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1564   }
1565 
1566   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1567     return decodeIntImmed(Val);
1568 
1569   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1570     return decodeFPImmed(ImmWidth, Val);
1571 
1572   if (Val == LITERAL_CONST) {
1573     if (MandatoryLiteral)
1574       // Keep a sentinel value for deferred setting
1575       return MCOperand::createImm(LITERAL_CONST);
1576     else
1577       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1578   }
1579 
1580   switch (Width) {
1581   case OPW32:
1582   case OPW16:
1583   case OPWV216:
1584     return decodeSpecialReg32(Val);
1585   case OPW64:
1586   case OPWV232:
1587     return decodeSpecialReg64(Val);
1588   default:
1589     llvm_unreachable("unexpected immediate type");
1590   }
1591 }
1592 
1593 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1594 // opposite of bit 0 of DstX.
1595 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1596                                                unsigned Val) const {
1597   int VDstXInd =
1598       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1599   assert(VDstXInd != -1);
1600   assert(Inst.getOperand(VDstXInd).isReg());
1601   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1602   Val |= ~XDstReg & 1;
1603   auto Width = llvm::AMDGPUDisassembler::OPW32;
1604   return createRegOperand(getVgprClassId(Width), Val);
1605 }
1606 
1607 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1608   using namespace AMDGPU;
1609 
1610   switch (Val) {
1611   // clang-format off
1612   case 102: return createRegOperand(FLAT_SCR_LO);
1613   case 103: return createRegOperand(FLAT_SCR_HI);
1614   case 104: return createRegOperand(XNACK_MASK_LO);
1615   case 105: return createRegOperand(XNACK_MASK_HI);
1616   case 106: return createRegOperand(VCC_LO);
1617   case 107: return createRegOperand(VCC_HI);
1618   case 108: return createRegOperand(TBA_LO);
1619   case 109: return createRegOperand(TBA_HI);
1620   case 110: return createRegOperand(TMA_LO);
1621   case 111: return createRegOperand(TMA_HI);
1622   case 124:
1623     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1624   case 125:
1625     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1626   case 126: return createRegOperand(EXEC_LO);
1627   case 127: return createRegOperand(EXEC_HI);
1628   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1629   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1630   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1631   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1632   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1633   case 251: return createRegOperand(SRC_VCCZ);
1634   case 252: return createRegOperand(SRC_EXECZ);
1635   case 253: return createRegOperand(SRC_SCC);
1636   case 254: return createRegOperand(LDS_DIRECT);
1637   default: break;
1638     // clang-format on
1639   }
1640   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1641 }
1642 
1643 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1644   using namespace AMDGPU;
1645 
1646   switch (Val) {
1647   case 102: return createRegOperand(FLAT_SCR);
1648   case 104: return createRegOperand(XNACK_MASK);
1649   case 106: return createRegOperand(VCC);
1650   case 108: return createRegOperand(TBA);
1651   case 110: return createRegOperand(TMA);
1652   case 124:
1653     if (isGFX11Plus())
1654       return createRegOperand(SGPR_NULL);
1655     break;
1656   case 125:
1657     if (!isGFX11Plus())
1658       return createRegOperand(SGPR_NULL);
1659     break;
1660   case 126: return createRegOperand(EXEC);
1661   case 235: return createRegOperand(SRC_SHARED_BASE);
1662   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1663   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1664   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1665   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1666   case 251: return createRegOperand(SRC_VCCZ);
1667   case 252: return createRegOperand(SRC_EXECZ);
1668   case 253: return createRegOperand(SRC_SCC);
1669   default: break;
1670   }
1671   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1672 }
1673 
1674 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1675                                             const unsigned Val,
1676                                             unsigned ImmWidth) const {
1677   using namespace AMDGPU::SDWA;
1678   using namespace AMDGPU::EncValues;
1679 
1680   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1681       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1682     // XXX: cast to int is needed to avoid stupid warning:
1683     // compare with unsigned is always true
1684     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1685         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1686       return createRegOperand(getVgprClassId(Width),
1687                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1688     }
1689     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1690         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1691                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1692       return createSRegOperand(getSgprClassId(Width),
1693                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1694     }
1695     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1696         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1697       return createSRegOperand(getTtmpClassId(Width),
1698                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1699     }
1700 
1701     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1702 
1703     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1704       return decodeIntImmed(SVal);
1705 
1706     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1707       return decodeFPImmed(ImmWidth, SVal);
1708 
1709     return decodeSpecialReg32(SVal);
1710   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1711     return createRegOperand(getVgprClassId(Width), Val);
1712   }
1713   llvm_unreachable("unsupported target");
1714 }
1715 
1716 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1717   return decodeSDWASrc(OPW16, Val, 16);
1718 }
1719 
1720 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1721   return decodeSDWASrc(OPW32, Val, 32);
1722 }
1723 
1724 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1725   using namespace AMDGPU::SDWA;
1726 
1727   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1728           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1729          "SDWAVopcDst should be present only on GFX9+");
1730 
1731   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1732 
1733   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1734     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1735 
1736     int TTmpIdx = getTTmpIdx(Val);
1737     if (TTmpIdx >= 0) {
1738       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1739       return createSRegOperand(TTmpClsId, TTmpIdx);
1740     } else if (Val > SGPR_MAX) {
1741       return IsWave64 ? decodeSpecialReg64(Val)
1742                       : decodeSpecialReg32(Val);
1743     } else {
1744       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1745     }
1746   } else {
1747     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1748   }
1749 }
1750 
1751 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1752   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1753              ? decodeSrcOp(OPW64, Val)
1754              : decodeSrcOp(OPW32, Val);
1755 }
1756 
1757 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1758   return decodeSrcOp(OPW32, Val);
1759 }
1760 
1761 bool AMDGPUDisassembler::isVI() const {
1762   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1763 }
1764 
1765 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1766 
1767 bool AMDGPUDisassembler::isGFX90A() const {
1768   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1769 }
1770 
1771 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1772 
1773 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1774 
1775 bool AMDGPUDisassembler::isGFX10Plus() const {
1776   return AMDGPU::isGFX10Plus(STI);
1777 }
1778 
1779 bool AMDGPUDisassembler::isGFX11() const {
1780   return STI.hasFeature(AMDGPU::FeatureGFX11);
1781 }
1782 
1783 bool AMDGPUDisassembler::isGFX11Plus() const {
1784   return AMDGPU::isGFX11Plus(STI);
1785 }
1786 
1787 bool AMDGPUDisassembler::isGFX12Plus() const {
1788   return AMDGPU::isGFX12Plus(STI);
1789 }
1790 
1791 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1792   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1793 }
1794 
1795 bool AMDGPUDisassembler::hasKernargPreload() const {
1796   return AMDGPU::hasKernargPreload(STI);
1797 }
1798 
1799 //===----------------------------------------------------------------------===//
1800 // AMDGPU specific symbol handling
1801 //===----------------------------------------------------------------------===//
1802 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1803 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1804   do {                                                                         \
1805     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1806   } while (0)
1807 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1808   do {                                                                         \
1809     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1810              << GET_FIELD(MASK) << '\n';                                       \
1811   } while (0)
1812 
1813 // NOLINTNEXTLINE(readability-identifier-naming)
1814 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1815     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1816   using namespace amdhsa;
1817   StringRef Indent = "\t";
1818 
1819   // We cannot accurately backward compute #VGPRs used from
1820   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1821   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1822   // simply calculate the inverse of what the assembler does.
1823 
1824   uint32_t GranulatedWorkitemVGPRCount =
1825       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1826 
1827   uint32_t NextFreeVGPR =
1828       (GranulatedWorkitemVGPRCount + 1) *
1829       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1830 
1831   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1832 
1833   // We cannot backward compute values used to calculate
1834   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1835   // directives can't be computed:
1836   // .amdhsa_reserve_vcc
1837   // .amdhsa_reserve_flat_scratch
1838   // .amdhsa_reserve_xnack_mask
1839   // They take their respective default values if not specified in the assembly.
1840   //
1841   // GRANULATED_WAVEFRONT_SGPR_COUNT
1842   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1843   //
1844   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1845   // are set to 0. So while disassembling we consider that:
1846   //
1847   // GRANULATED_WAVEFRONT_SGPR_COUNT
1848   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1849   //
1850   // The disassembler cannot recover the original values of those 3 directives.
1851 
1852   uint32_t GranulatedWavefrontSGPRCount =
1853       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1854 
1855   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1856     return MCDisassembler::Fail;
1857 
1858   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1859                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1860 
1861   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1862   if (!hasArchitectedFlatScratch())
1863     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1864   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1865   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1866 
1867   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1868     return MCDisassembler::Fail;
1869 
1870   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1871                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1872   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1873                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1874   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1875                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1876   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1877                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1878 
1879   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1880     return MCDisassembler::Fail;
1881 
1882   if (!isGFX12Plus())
1883     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1884                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1885 
1886   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1887     return MCDisassembler::Fail;
1888 
1889   if (!isGFX12Plus())
1890     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1891                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1892 
1893   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1894     return MCDisassembler::Fail;
1895 
1896   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1897     return MCDisassembler::Fail;
1898 
1899   if (isGFX9Plus())
1900     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1901 
1902   if (!isGFX9Plus())
1903     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1904       return MCDisassembler::Fail;
1905   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1906     return MCDisassembler::Fail;
1907   if (!isGFX10Plus())
1908     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1909       return MCDisassembler::Fail;
1910 
1911   if (isGFX10Plus()) {
1912     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1913                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1914     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1915     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1916   }
1917 
1918   if (isGFX12Plus())
1919     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1920                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1921 
1922   return MCDisassembler::Success;
1923 }
1924 
1925 // NOLINTNEXTLINE(readability-identifier-naming)
1926 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1927     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1928   using namespace amdhsa;
1929   StringRef Indent = "\t";
1930   if (hasArchitectedFlatScratch())
1931     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1932                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1933   else
1934     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1935                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1936   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1937                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1938   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1939                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1940   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1941                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1942   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1943                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1944   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1945                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1946 
1947   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1948     return MCDisassembler::Fail;
1949 
1950   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1951     return MCDisassembler::Fail;
1952 
1953   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1954     return MCDisassembler::Fail;
1955 
1956   PRINT_DIRECTIVE(
1957       ".amdhsa_exception_fp_ieee_invalid_op",
1958       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1959   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1960                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1961   PRINT_DIRECTIVE(
1962       ".amdhsa_exception_fp_ieee_div_zero",
1963       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1964   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1965                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1966   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1967                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1968   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1969                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1970   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1971                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1972 
1973   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1974     return MCDisassembler::Fail;
1975 
1976   return MCDisassembler::Success;
1977 }
1978 
1979 // NOLINTNEXTLINE(readability-identifier-naming)
1980 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1981     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1982   using namespace amdhsa;
1983   StringRef Indent = "\t";
1984   if (isGFX90A()) {
1985     KdStream << Indent << ".amdhsa_accum_offset "
1986              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1987              << '\n';
1988     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1989       return MCDisassembler::Fail;
1990     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1991     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
1992       return MCDisassembler::Fail;
1993   } else if (isGFX10Plus()) {
1994     if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
1995       PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
1996                       COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1997     } else {
1998       PRINT_PSEUDO_DIRECTIVE_COMMENT(
1999           "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
2000     }
2001 
2002     if (isGFX11Plus()) {
2003       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2004                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_INST_PREF_SIZE);
2005       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2006                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
2007       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2008                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_END);
2009     } else {
2010       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED0)
2011         return MCDisassembler::Fail;
2012     }
2013 
2014     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED1)
2015       return MCDisassembler::Fail;
2016 
2017     if (isGFX11Plus()) {
2018       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2019                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
2020     } else {
2021       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED2)
2022         return MCDisassembler::Fail;
2023     }
2024   } else if (FourByteBuffer) {
2025     return MCDisassembler::Fail;
2026   }
2027   return MCDisassembler::Success;
2028 }
2029 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2030 #undef PRINT_DIRECTIVE
2031 #undef GET_FIELD
2032 
2033 MCDisassembler::DecodeStatus
2034 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2035     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2036     raw_string_ostream &KdStream) const {
2037 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2038   do {                                                                         \
2039     KdStream << Indent << DIRECTIVE " "                                        \
2040              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2041   } while (0)
2042 
2043   uint16_t TwoByteBuffer = 0;
2044   uint32_t FourByteBuffer = 0;
2045 
2046   StringRef ReservedBytes;
2047   StringRef Indent = "\t";
2048 
2049   assert(Bytes.size() == 64);
2050   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2051 
2052   switch (Cursor.tell()) {
2053   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2054     FourByteBuffer = DE.getU32(Cursor);
2055     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2056              << '\n';
2057     return MCDisassembler::Success;
2058 
2059   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2060     FourByteBuffer = DE.getU32(Cursor);
2061     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2062              << FourByteBuffer << '\n';
2063     return MCDisassembler::Success;
2064 
2065   case amdhsa::KERNARG_SIZE_OFFSET:
2066     FourByteBuffer = DE.getU32(Cursor);
2067     KdStream << Indent << ".amdhsa_kernarg_size "
2068              << FourByteBuffer << '\n';
2069     return MCDisassembler::Success;
2070 
2071   case amdhsa::RESERVED0_OFFSET:
2072     // 4 reserved bytes, must be 0.
2073     ReservedBytes = DE.getBytes(Cursor, 4);
2074     for (int I = 0; I < 4; ++I) {
2075       if (ReservedBytes[I] != 0) {
2076         return MCDisassembler::Fail;
2077       }
2078     }
2079     return MCDisassembler::Success;
2080 
2081   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2082     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2083     // So far no directive controls this for Code Object V3, so simply skip for
2084     // disassembly.
2085     DE.skip(Cursor, 8);
2086     return MCDisassembler::Success;
2087 
2088   case amdhsa::RESERVED1_OFFSET:
2089     // 20 reserved bytes, must be 0.
2090     ReservedBytes = DE.getBytes(Cursor, 20);
2091     for (int I = 0; I < 20; ++I) {
2092       if (ReservedBytes[I] != 0) {
2093         return MCDisassembler::Fail;
2094       }
2095     }
2096     return MCDisassembler::Success;
2097 
2098   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2099     FourByteBuffer = DE.getU32(Cursor);
2100     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2101 
2102   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2103     FourByteBuffer = DE.getU32(Cursor);
2104     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2105 
2106   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2107     FourByteBuffer = DE.getU32(Cursor);
2108     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2109 
2110   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2111     using namespace amdhsa;
2112     TwoByteBuffer = DE.getU16(Cursor);
2113 
2114     if (!hasArchitectedFlatScratch())
2115       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2116                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2117     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2118                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2119     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2120                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2121     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2122                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2123     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2124                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2125     if (!hasArchitectedFlatScratch())
2126       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2127                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2128     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2129                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2130 
2131     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2132       return MCDisassembler::Fail;
2133 
2134     // Reserved for GFX9
2135     if (isGFX9() &&
2136         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2137       return MCDisassembler::Fail;
2138     } else if (isGFX10Plus()) {
2139       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2140                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2141     }
2142 
2143     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2144       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2145                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2146 
2147     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2148       return MCDisassembler::Fail;
2149 
2150     return MCDisassembler::Success;
2151 
2152   case amdhsa::KERNARG_PRELOAD_OFFSET:
2153     using namespace amdhsa;
2154     TwoByteBuffer = DE.getU16(Cursor);
2155     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2156       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2157                       KERNARG_PRELOAD_SPEC_LENGTH);
2158     }
2159 
2160     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2161       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2162                       KERNARG_PRELOAD_SPEC_OFFSET);
2163     }
2164     return MCDisassembler::Success;
2165 
2166   case amdhsa::RESERVED3_OFFSET:
2167     // 4 bytes from here are reserved, must be 0.
2168     ReservedBytes = DE.getBytes(Cursor, 4);
2169     for (int I = 0; I < 4; ++I) {
2170       if (ReservedBytes[I] != 0)
2171         return MCDisassembler::Fail;
2172     }
2173     return MCDisassembler::Success;
2174 
2175   default:
2176     llvm_unreachable("Unhandled index. Case statements cover everything.");
2177     return MCDisassembler::Fail;
2178   }
2179 #undef PRINT_DIRECTIVE
2180 }
2181 
2182 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2183     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2184   // CP microcode requires the kernel descriptor to be 64 aligned.
2185   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2186     return MCDisassembler::Fail;
2187 
2188   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2189   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2190   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2191   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2192   // when required.
2193   if (isGFX10Plus()) {
2194     uint16_t KernelCodeProperties =
2195         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2196                                 llvm::endianness::little);
2197     EnableWavefrontSize32 =
2198         AMDHSA_BITS_GET(KernelCodeProperties,
2199                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2200   }
2201 
2202   std::string Kd;
2203   raw_string_ostream KdStream(Kd);
2204   KdStream << ".amdhsa_kernel " << KdName << '\n';
2205 
2206   DataExtractor::Cursor C(0);
2207   while (C && C.tell() < Bytes.size()) {
2208     MCDisassembler::DecodeStatus Status =
2209         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2210 
2211     cantFail(C.takeError());
2212 
2213     if (Status == MCDisassembler::Fail)
2214       return MCDisassembler::Fail;
2215   }
2216   KdStream << ".end_amdhsa_kernel\n";
2217   outs() << KdStream.str();
2218   return MCDisassembler::Success;
2219 }
2220 
2221 std::optional<MCDisassembler::DecodeStatus>
2222 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2223                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2224                                   raw_ostream &CStream) const {
2225   // Right now only kernel descriptor needs to be handled.
2226   // We ignore all other symbols for target specific handling.
2227   // TODO:
2228   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2229   // Object V2 and V3 when symbols are marked protected.
2230 
2231   // amd_kernel_code_t for Code Object V2.
2232   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2233     Size = 256;
2234     return MCDisassembler::Fail;
2235   }
2236 
2237   // Code Object V3 kernel descriptors.
2238   StringRef Name = Symbol.Name;
2239   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2240     Size = 64; // Size = 64 regardless of success or failure.
2241     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2242   }
2243   return std::nullopt;
2244 }
2245 
2246 //===----------------------------------------------------------------------===//
2247 // AMDGPUSymbolizer
2248 //===----------------------------------------------------------------------===//
2249 
2250 // Try to find symbol name for specified label
2251 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2252     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2253     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2254     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2255 
2256   if (!IsBranch) {
2257     return false;
2258   }
2259 
2260   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2261   if (!Symbols)
2262     return false;
2263 
2264   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2265     return Val.Addr == static_cast<uint64_t>(Value) &&
2266            Val.Type == ELF::STT_NOTYPE;
2267   });
2268   if (Result != Symbols->end()) {
2269     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2270     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2271     Inst.addOperand(MCOperand::createExpr(Add));
2272     return true;
2273   }
2274   // Add to list of referenced addresses, so caller can synthesize a label.
2275   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2276   return false;
2277 }
2278 
2279 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2280                                                        int64_t Value,
2281                                                        uint64_t Address) {
2282   llvm_unreachable("unimplemented");
2283 }
2284 
2285 //===----------------------------------------------------------------------===//
2286 // Initialization
2287 //===----------------------------------------------------------------------===//
2288 
2289 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2290                               LLVMOpInfoCallback /*GetOpInfo*/,
2291                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2292                               void *DisInfo,
2293                               MCContext *Ctx,
2294                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2295   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2296 }
2297 
2298 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2299                                                 const MCSubtargetInfo &STI,
2300                                                 MCContext &Ctx) {
2301   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2302 }
2303 
2304 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2305   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2306                                          createAMDGPUDisassembler);
2307   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2308                                        createAMDGPUSymbolizer);
2309 }
2310