1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, 49 MCInstrInfo const *MCII) : 50 MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 51 TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) { 52 53 // ToDo: AMDGPUDisassembler supports only VI ISA. 54 if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus()) 55 report_fatal_error("Disassembly not yet supported for subtarget"); 56 } 57 58 inline static MCDisassembler::DecodeStatus 59 addOperand(MCInst &Inst, const MCOperand& Opnd) { 60 Inst.addOperand(Opnd); 61 return Opnd.isValid() ? 62 MCDisassembler::Success : 63 MCDisassembler::Fail; 64 } 65 66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 67 uint16_t NameIdx) { 68 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 69 if (OpIdx != -1) { 70 auto I = MI.begin(); 71 std::advance(I, OpIdx); 72 MI.insert(I, Op); 73 } 74 return OpIdx; 75 } 76 77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm, 78 uint64_t Addr, 79 const MCDisassembler *Decoder) { 80 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 81 82 // Our branches take a simm16, but we need two extra bits to account for the 83 // factor of 4. 84 APInt SignedOffset(18, Imm * 4, true); 85 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 86 87 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 88 return MCDisassembler::Success; 89 return addOperand(Inst, MCOperand::createImm(Imm)); 90 } 91 92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 93 const MCDisassembler *Decoder) { 94 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 95 int64_t Offset; 96 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 111 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 112 uint64_t /*Addr*/, \ 113 const MCDisassembler *Decoder) { \ 114 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 115 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 116 } 117 118 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 119 // number of register. Used by VGPR only and AGPR only operands. 120 #define DECODE_OPERAND_REG_8(RegClass) \ 121 static DecodeStatus Decode##RegClass##RegisterClass( \ 122 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 123 const MCDisassembler *Decoder) { \ 124 assert(Imm < (1 << 8) && "8-bit encoding"); \ 125 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 126 return addOperand( \ 127 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 128 } 129 130 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 131 ImmWidth) \ 132 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 133 const MCDisassembler *Decoder) { \ 134 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 135 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 136 return addOperand(Inst, \ 137 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 138 MandatoryLiteral, ImmWidth)); \ 139 } 140 141 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 142 // get register class. Used by SGPR only operands. 143 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 144 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 145 146 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 147 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 148 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 149 // Used by AV_ register classes (AGPR or VGPR only register operands). 150 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 151 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 152 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 153 154 // Decoder for Src(9-bit encoding) registers only. 155 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 156 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 157 158 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 159 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 160 // only. 161 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 162 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 163 164 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 165 // Imm{9} is acc, registers only. 166 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 167 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 168 169 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 170 // register from RegClass or immediate. Registers that don't belong to RegClass 171 // will be decoded and InstPrinter will report warning. Immediate will be 172 // decoded into constant of size ImmWidth, should match width of immediate used 173 // by OperandType (important for floating point types). 174 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 175 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 176 false, ImmWidth) 177 178 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 179 // and decode using 'enum10' from decodeSrcOp. 180 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 181 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 182 Imm | 512, false, ImmWidth) 183 184 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 185 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 186 OpWidth, Imm, true, ImmWidth) 187 188 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 189 // when RegisterClass is used as an operand. Most often used for destination 190 // operands. 191 192 DECODE_OPERAND_REG_8(VGPR_32) 193 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 194 DECODE_OPERAND_REG_8(VReg_64) 195 DECODE_OPERAND_REG_8(VReg_96) 196 DECODE_OPERAND_REG_8(VReg_128) 197 DECODE_OPERAND_REG_8(VReg_256) 198 DECODE_OPERAND_REG_8(VReg_288) 199 DECODE_OPERAND_REG_8(VReg_352) 200 DECODE_OPERAND_REG_8(VReg_384) 201 DECODE_OPERAND_REG_8(VReg_512) 202 DECODE_OPERAND_REG_8(VReg_1024) 203 204 DECODE_OPERAND_REG_7(SReg_32, OPW32) 205 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 206 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 207 DECODE_OPERAND_REG_7(SReg_64, OPW64) 208 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 209 DECODE_OPERAND_REG_7(SReg_128, OPW128) 210 DECODE_OPERAND_REG_7(SReg_256, OPW256) 211 DECODE_OPERAND_REG_7(SReg_512, OPW512) 212 213 DECODE_OPERAND_REG_8(AGPR_32) 214 DECODE_OPERAND_REG_8(AReg_64) 215 DECODE_OPERAND_REG_8(AReg_128) 216 DECODE_OPERAND_REG_8(AReg_256) 217 DECODE_OPERAND_REG_8(AReg_512) 218 DECODE_OPERAND_REG_8(AReg_1024) 219 220 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 221 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 222 223 // Decoders for register only source RegisterOperands that use use 9-bit Src 224 // encoding: 'decodeOperand_<RegClass>'. 225 226 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 227 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 228 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 229 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 230 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 231 232 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 233 234 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 235 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 236 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 237 238 // Decoders for register or immediate RegisterOperands that use 9-bit Src 239 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 240 241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 243 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) 249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 253 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 254 255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 259 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 260 261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 264 265 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm, 266 uint64_t Addr, 267 const MCDisassembler *Decoder) { 268 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 269 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 270 } 271 272 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm, 273 uint64_t Addr, 274 const MCDisassembler *Decoder) { 275 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 276 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 277 } 278 279 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 280 uint64_t Addr, const void *Decoder) { 281 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 282 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 283 } 284 285 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 286 const MCRegisterInfo *MRI) { 287 if (OpIdx < 0) 288 return false; 289 290 const MCOperand &Op = Inst.getOperand(OpIdx); 291 if (!Op.isReg()) 292 return false; 293 294 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 295 auto Reg = Sub ? Sub : Op.getReg(); 296 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 297 } 298 299 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 300 AMDGPUDisassembler::OpWidthTy Opw, 301 const MCDisassembler *Decoder) { 302 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 303 if (!DAsm->isGFX90A()) { 304 Imm &= 511; 305 } else { 306 // If atomic has both vdata and vdst their register classes are tied. 307 // The bit is decoded along with the vdst, first operand. We need to 308 // change register class to AGPR if vdst was AGPR. 309 // If a DS instruction has both data0 and data1 their register classes 310 // are also tied. 311 unsigned Opc = Inst.getOpcode(); 312 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 313 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 314 : AMDGPU::OpName::vdata; 315 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 316 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 317 if ((int)Inst.getNumOperands() == DataIdx) { 318 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 319 if (IsAGPROperand(Inst, DstIdx, MRI)) 320 Imm |= 512; 321 } 322 323 if (TSFlags & SIInstrFlags::DS) { 324 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 325 if ((int)Inst.getNumOperands() == Data2Idx && 326 IsAGPROperand(Inst, DataIdx, MRI)) 327 Imm |= 512; 328 } 329 } 330 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 331 } 332 333 static DecodeStatus 334 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 335 const MCDisassembler *Decoder) { 336 return decodeOperand_AVLdSt_Any(Inst, Imm, 337 AMDGPUDisassembler::OPW32, Decoder); 338 } 339 340 static DecodeStatus 341 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 342 const MCDisassembler *Decoder) { 343 return decodeOperand_AVLdSt_Any(Inst, Imm, 344 AMDGPUDisassembler::OPW64, Decoder); 345 } 346 347 static DecodeStatus 348 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 349 const MCDisassembler *Decoder) { 350 return decodeOperand_AVLdSt_Any(Inst, Imm, 351 AMDGPUDisassembler::OPW96, Decoder); 352 } 353 354 static DecodeStatus 355 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 356 const MCDisassembler *Decoder) { 357 return decodeOperand_AVLdSt_Any(Inst, Imm, 358 AMDGPUDisassembler::OPW128, Decoder); 359 } 360 361 static DecodeStatus 362 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 363 const MCDisassembler *Decoder) { 364 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 365 Decoder); 366 } 367 368 #define DECODE_SDWA(DecName) \ 369 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 370 371 DECODE_SDWA(Src32) 372 DECODE_SDWA(Src16) 373 DECODE_SDWA(VopcDst) 374 375 #include "AMDGPUGenDisassemblerTables.inc" 376 377 //===----------------------------------------------------------------------===// 378 // 379 //===----------------------------------------------------------------------===// 380 381 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 382 assert(Bytes.size() >= sizeof(T)); 383 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); 384 Bytes = Bytes.slice(sizeof(T)); 385 return Res; 386 } 387 388 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 389 assert(Bytes.size() >= 12); 390 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>( 391 Bytes.data()); 392 Bytes = Bytes.slice(8); 393 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>( 394 Bytes.data()); 395 Bytes = Bytes.slice(4); 396 return DecoderUInt128(Lo, Hi); 397 } 398 399 // The disassembler is greedy, so we need to check FI operand value to 400 // not parse a dpp if the correct literal is not set. For dpp16 the 401 // autogenerated decoder checks the dpp literal 402 static bool isValidDPP8(const MCInst &MI) { 403 using namespace llvm::AMDGPU::DPP; 404 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 405 assert(FiIdx != -1); 406 if ((unsigned)FiIdx >= MI.getNumOperands()) 407 return false; 408 unsigned Fi = MI.getOperand(FiIdx).getImm(); 409 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 410 } 411 412 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 413 ArrayRef<uint8_t> Bytes_, 414 uint64_t Address, 415 raw_ostream &CS) const { 416 CommentStream = &CS; 417 bool IsSDWA = false; 418 419 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 420 Bytes = Bytes_.slice(0, MaxInstBytesNum); 421 422 DecodeStatus Res = MCDisassembler::Fail; 423 do { 424 // ToDo: better to switch encoding length using some bit predicate 425 // but it is unknown yet, so try all we can 426 427 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 428 // encodings 429 if (isGFX11Plus() && Bytes.size() >= 12 ) { 430 DecoderUInt128 DecW = eat12Bytes(Bytes); 431 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, 432 Address); 433 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 434 break; 435 MI = MCInst(); // clear 436 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, 437 Address); 438 if (Res) { 439 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 440 convertVOP3PDPPInst(MI); 441 else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) 442 convertVOPCDPPInst(MI); // Special VOP3 case 443 else { 444 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 445 convertVOP3DPPInst(MI); // Regular VOP3 case 446 } 447 break; 448 } 449 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address); 450 if (Res) 451 break; 452 } 453 // Reinitialize Bytes 454 Bytes = Bytes_.slice(0, MaxInstBytesNum); 455 456 if (Bytes.size() >= 8) { 457 const uint64_t QW = eatBytes<uint64_t>(Bytes); 458 459 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 460 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address); 461 if (Res) { 462 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 463 == -1) 464 break; 465 if (convertDPP8Inst(MI) == MCDisassembler::Success) 466 break; 467 MI = MCInst(); // clear 468 } 469 } 470 471 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address); 472 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 473 break; 474 MI = MCInst(); // clear 475 476 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address); 477 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 478 break; 479 MI = MCInst(); // clear 480 481 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address); 482 if (Res) break; 483 484 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address); 485 if (Res) { 486 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 487 convertVOPCDPPInst(MI); 488 break; 489 } 490 491 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address); 492 if (Res) { IsSDWA = true; break; } 493 494 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address); 495 if (Res) { IsSDWA = true; break; } 496 497 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address); 498 if (Res) { IsSDWA = true; break; } 499 500 if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) { 501 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address); 502 if (Res) 503 break; 504 } 505 506 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 507 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 508 // table first so we print the correct name. 509 if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) { 510 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address); 511 if (Res) 512 break; 513 } 514 } 515 516 // Reinitialize Bytes as DPP64 could have eaten too much 517 Bytes = Bytes_.slice(0, MaxInstBytesNum); 518 519 // Try decode 32-bit instruction 520 if (Bytes.size() < 4) break; 521 const uint32_t DW = eatBytes<uint32_t>(Bytes); 522 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address); 523 if (Res) break; 524 525 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address); 526 if (Res) break; 527 528 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address); 529 if (Res) break; 530 531 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 532 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address); 533 if (Res) 534 break; 535 } 536 537 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 538 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address); 539 if (Res) break; 540 } 541 542 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address); 543 if (Res) break; 544 545 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address); 546 if (Res) break; 547 548 if (Bytes.size() < 4) break; 549 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 550 551 if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) { 552 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address); 553 if (Res) 554 break; 555 } 556 557 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 558 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address); 559 if (Res) 560 break; 561 } 562 563 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address); 564 if (Res) break; 565 566 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address); 567 if (Res) break; 568 569 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address); 570 if (Res) break; 571 572 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address); 573 if (Res) break; 574 575 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address); 576 if (Res) 577 break; 578 579 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address); 580 } while (false); 581 582 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 583 // Insert dummy unused src2_modifiers. 584 insertNamedMCOperand(MI, MCOperand::createImm(0), 585 AMDGPU::OpName::src2_modifiers); 586 } 587 588 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 589 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 590 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 591 AMDGPU::OpName::cpol); 592 if (CPolPos != -1) { 593 unsigned CPol = 594 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 595 AMDGPU::CPol::GLC : 0; 596 if (MI.getNumOperands() <= (unsigned)CPolPos) { 597 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 598 AMDGPU::OpName::cpol); 599 } else if (CPol) { 600 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 601 } 602 } 603 } 604 605 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 606 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 607 (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) { 608 // GFX90A lost TFE, its place is occupied by ACC. 609 int TFEOpIdx = 610 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 611 if (TFEOpIdx != -1) { 612 auto TFEIter = MI.begin(); 613 std::advance(TFEIter, TFEOpIdx); 614 MI.insert(TFEIter, MCOperand::createImm(0)); 615 } 616 } 617 618 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 619 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 620 int SWZOpIdx = 621 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 622 if (SWZOpIdx != -1) { 623 auto SWZIter = MI.begin(); 624 std::advance(SWZIter, SWZOpIdx); 625 MI.insert(SWZIter, MCOperand::createImm(0)); 626 } 627 } 628 629 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 630 int VAddr0Idx = 631 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 632 int RsrcIdx = 633 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 634 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 635 if (VAddr0Idx >= 0 && NSAArgs > 0) { 636 unsigned NSAWords = (NSAArgs + 3) / 4; 637 if (Bytes.size() < 4 * NSAWords) { 638 Res = MCDisassembler::Fail; 639 } else { 640 for (unsigned i = 0; i < NSAArgs; ++i) { 641 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 642 auto VAddrRCID = 643 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 644 MI.insert(MI.begin() + VAddrIdx, 645 createRegOperand(VAddrRCID, Bytes[i])); 646 } 647 Bytes = Bytes.slice(4 * NSAWords); 648 } 649 } 650 651 if (Res) 652 Res = convertMIMGInst(MI); 653 } 654 655 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 656 Res = convertEXPInst(MI); 657 658 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 659 Res = convertVINTERPInst(MI); 660 661 if (Res && IsSDWA) 662 Res = convertSDWAInst(MI); 663 664 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 665 AMDGPU::OpName::vdst_in); 666 if (VDstIn_Idx != -1) { 667 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 668 MCOI::OperandConstraint::TIED_TO); 669 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 670 !MI.getOperand(VDstIn_Idx).isReg() || 671 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 672 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 673 MI.erase(&MI.getOperand(VDstIn_Idx)); 674 insertNamedMCOperand(MI, 675 MCOperand::createReg(MI.getOperand(Tied).getReg()), 676 AMDGPU::OpName::vdst_in); 677 } 678 } 679 680 int ImmLitIdx = 681 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 682 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 683 if (Res && ImmLitIdx != -1 && !IsSOPK) 684 Res = convertFMAanyK(MI, ImmLitIdx); 685 686 // if the opcode was not recognized we'll assume a Size of 4 bytes 687 // (unless there are fewer bytes left) 688 Size = Res ? (MaxInstBytesNum - Bytes.size()) 689 : std::min((size_t)4, Bytes_.size()); 690 return Res; 691 } 692 693 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 694 if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) { 695 // The MCInst still has these fields even though they are no longer encoded 696 // in the GFX11 instruction. 697 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 698 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 699 } 700 return MCDisassembler::Success; 701 } 702 703 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 704 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 705 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 706 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 707 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) { 708 // The MCInst has this field that is not directly encoded in the 709 // instruction. 710 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 711 } 712 return MCDisassembler::Success; 713 } 714 715 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 716 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 717 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 718 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 719 // VOPC - insert clamp 720 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 721 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 722 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 723 if (SDst != -1) { 724 // VOPC - insert VCC register as sdst 725 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 726 AMDGPU::OpName::sdst); 727 } else { 728 // VOP1/2 - insert omod if present in instruction 729 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 730 } 731 } 732 return MCDisassembler::Success; 733 } 734 735 struct VOPModifiers { 736 unsigned OpSel = 0; 737 unsigned OpSelHi = 0; 738 unsigned NegLo = 0; 739 unsigned NegHi = 0; 740 }; 741 742 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 743 // Note that these values do not affect disassembler output, 744 // so this is only necessary for consistency with src_modifiers. 745 static VOPModifiers collectVOPModifiers(const MCInst &MI, 746 bool IsVOP3P = false) { 747 VOPModifiers Modifiers; 748 unsigned Opc = MI.getOpcode(); 749 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 750 AMDGPU::OpName::src1_modifiers, 751 AMDGPU::OpName::src2_modifiers}; 752 for (int J = 0; J < 3; ++J) { 753 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 754 if (OpIdx == -1) 755 continue; 756 757 unsigned Val = MI.getOperand(OpIdx).getImm(); 758 759 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 760 if (IsVOP3P) { 761 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 762 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 763 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 764 } else if (J == 0) { 765 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 766 } 767 } 768 769 return Modifiers; 770 } 771 772 // MAC opcodes have special old and src2 operands. 773 // src2 is tied to dst, while old is not tied (but assumed to be). 774 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 775 constexpr int DST_IDX = 0; 776 auto Opcode = MI.getOpcode(); 777 const auto &Desc = MCII->get(Opcode); 778 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 779 780 if (OldIdx != -1 && Desc.getOperandConstraint( 781 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 782 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 783 assert(Desc.getOperandConstraint( 784 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 785 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 786 (void)DST_IDX; 787 return true; 788 } 789 790 return false; 791 } 792 793 // Create dummy old operand and insert dummy unused src2_modifiers 794 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 795 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 796 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 797 insertNamedMCOperand(MI, MCOperand::createImm(0), 798 AMDGPU::OpName::src2_modifiers); 799 } 800 801 // We must check FI == literal to reject not genuine dpp8 insts, and we must 802 // first add optional MI operands to check FI 803 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 804 unsigned Opc = MI.getOpcode(); 805 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 806 convertVOP3PDPPInst(MI); 807 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 808 AMDGPU::isVOPC64DPP(Opc)) { 809 convertVOPCDPPInst(MI); 810 } else { 811 if (isMacDPP(MI)) 812 convertMacDPPInst(MI); 813 814 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 815 if (MI.getNumOperands() < DescNumOps && 816 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 817 auto Mods = collectVOPModifiers(MI); 818 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 819 AMDGPU::OpName::op_sel); 820 } else { 821 // Insert dummy unused src modifiers. 822 if (MI.getNumOperands() < DescNumOps && 823 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 824 insertNamedMCOperand(MI, MCOperand::createImm(0), 825 AMDGPU::OpName::src0_modifiers); 826 827 if (MI.getNumOperands() < DescNumOps && 828 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 829 insertNamedMCOperand(MI, MCOperand::createImm(0), 830 AMDGPU::OpName::src1_modifiers); 831 } 832 } 833 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 834 } 835 836 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 837 if (isMacDPP(MI)) 838 convertMacDPPInst(MI); 839 840 unsigned Opc = MI.getOpcode(); 841 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 842 if (MI.getNumOperands() < DescNumOps && 843 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 844 auto Mods = collectVOPModifiers(MI); 845 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 846 AMDGPU::OpName::op_sel); 847 } 848 return MCDisassembler::Success; 849 } 850 851 // Note that before gfx10, the MIMG encoding provided no information about 852 // VADDR size. Consequently, decoded instructions always show address as if it 853 // has 1 dword, which could be not really so. 854 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 855 856 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 857 AMDGPU::OpName::vdst); 858 859 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 860 AMDGPU::OpName::vdata); 861 int VAddr0Idx = 862 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 863 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 864 AMDGPU::OpName::dmask); 865 866 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 867 AMDGPU::OpName::tfe); 868 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 869 AMDGPU::OpName::d16); 870 871 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 872 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 873 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 874 875 assert(VDataIdx != -1); 876 if (BaseOpcode->BVH) { 877 // Add A16 operand for intersect_ray instructions 878 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16)) 879 addOperand(MI, MCOperand::createImm(1)); 880 return MCDisassembler::Success; 881 } 882 883 bool IsAtomic = (VDstIdx != -1); 884 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; 885 bool IsNSA = false; 886 unsigned AddrSize = Info->VAddrDwords; 887 888 if (isGFX10Plus()) { 889 unsigned DimIdx = 890 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 891 int A16Idx = 892 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 893 const AMDGPU::MIMGDimInfo *Dim = 894 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 895 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 896 897 AddrSize = 898 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 899 900 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 901 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA; 902 if (!IsNSA) { 903 if (AddrSize > 12) 904 AddrSize = 16; 905 } else { 906 if (AddrSize > Info->VAddrDwords) { 907 // The NSA encoding does not contain enough operands for the combination 908 // of base opcode / dimension. Should this be an error? 909 return MCDisassembler::Success; 910 } 911 } 912 } 913 914 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 915 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 916 917 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 918 if (D16 && AMDGPU::hasPackedD16(STI)) { 919 DstSize = (DstSize + 1) / 2; 920 } 921 922 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 923 DstSize += 1; 924 925 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 926 return MCDisassembler::Success; 927 928 int NewOpcode = 929 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 930 if (NewOpcode == -1) 931 return MCDisassembler::Success; 932 933 // Widen the register to the correct number of enabled channels. 934 unsigned NewVdata = AMDGPU::NoRegister; 935 if (DstSize != Info->VDataDwords) { 936 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 937 938 // Get first subregister of VData 939 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 940 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 941 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 942 943 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 944 &MRI.getRegClass(DataRCID)); 945 if (NewVdata == AMDGPU::NoRegister) { 946 // It's possible to encode this such that the low register + enabled 947 // components exceeds the register count. 948 return MCDisassembler::Success; 949 } 950 } 951 952 // If not using NSA on GFX10+, widen address register to correct size. 953 unsigned NewVAddr0 = AMDGPU::NoRegister; 954 if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) { 955 unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg(); 956 unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0); 957 VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0; 958 959 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddr0Idx].RegClass; 960 NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0, 961 &MRI.getRegClass(AddrRCID)); 962 if (NewVAddr0 == AMDGPU::NoRegister) 963 return MCDisassembler::Success; 964 } 965 966 MI.setOpcode(NewOpcode); 967 968 if (NewVdata != AMDGPU::NoRegister) { 969 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 970 971 if (IsAtomic) { 972 // Atomic operations have an additional operand (a copy of data) 973 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 974 } 975 } 976 977 if (NewVAddr0 != AMDGPU::NoRegister) { 978 MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0); 979 } else if (IsNSA) { 980 assert(AddrSize <= Info->VAddrDwords); 981 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 982 MI.begin() + VAddr0Idx + Info->VAddrDwords); 983 } 984 985 return MCDisassembler::Success; 986 } 987 988 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 989 // decoder only adds to src_modifiers, so manually add the bits to the other 990 // operands. 991 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 992 unsigned Opc = MI.getOpcode(); 993 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 994 auto Mods = collectVOPModifiers(MI, true); 995 996 if (MI.getNumOperands() < DescNumOps && 997 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 998 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 999 1000 if (MI.getNumOperands() < DescNumOps && 1001 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1002 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1003 AMDGPU::OpName::op_sel); 1004 if (MI.getNumOperands() < DescNumOps && 1005 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1006 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1007 AMDGPU::OpName::op_sel_hi); 1008 if (MI.getNumOperands() < DescNumOps && 1009 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1010 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1011 AMDGPU::OpName::neg_lo); 1012 if (MI.getNumOperands() < DescNumOps && 1013 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1014 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1015 AMDGPU::OpName::neg_hi); 1016 1017 return MCDisassembler::Success; 1018 } 1019 1020 // Create dummy old operand and insert optional operands 1021 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1022 unsigned Opc = MI.getOpcode(); 1023 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1024 1025 if (MI.getNumOperands() < DescNumOps && 1026 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1027 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1028 1029 if (MI.getNumOperands() < DescNumOps && 1030 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1031 insertNamedMCOperand(MI, MCOperand::createImm(0), 1032 AMDGPU::OpName::src0_modifiers); 1033 1034 if (MI.getNumOperands() < DescNumOps && 1035 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1036 insertNamedMCOperand(MI, MCOperand::createImm(0), 1037 AMDGPU::OpName::src1_modifiers); 1038 return MCDisassembler::Success; 1039 } 1040 1041 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1042 int ImmLitIdx) const { 1043 assert(HasLiteral && "Should have decoded a literal"); 1044 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1045 unsigned DescNumOps = Desc.getNumOperands(); 1046 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1047 AMDGPU::OpName::immDeferred); 1048 assert(DescNumOps == MI.getNumOperands()); 1049 for (unsigned I = 0; I < DescNumOps; ++I) { 1050 auto &Op = MI.getOperand(I); 1051 auto OpType = Desc.operands()[I].OperandType; 1052 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1053 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1054 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1055 IsDeferredOp) 1056 Op.setImm(Literal); 1057 } 1058 return MCDisassembler::Success; 1059 } 1060 1061 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1062 return getContext().getRegisterInfo()-> 1063 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1064 } 1065 1066 inline 1067 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1068 const Twine& ErrMsg) const { 1069 *CommentStream << "Error: " + ErrMsg; 1070 1071 // ToDo: add support for error operands to MCInst.h 1072 // return MCOperand::createError(V); 1073 return MCOperand(); 1074 } 1075 1076 inline 1077 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1078 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1079 } 1080 1081 inline 1082 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1083 unsigned Val) const { 1084 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1085 if (Val >= RegCl.getNumRegs()) 1086 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1087 ": unknown register " + Twine(Val)); 1088 return createRegOperand(RegCl.getRegister(Val)); 1089 } 1090 1091 inline 1092 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1093 unsigned Val) const { 1094 // ToDo: SI/CI have 104 SGPRs, VI - 102 1095 // Valery: here we accepting as much as we can, let assembler sort it out 1096 int shift = 0; 1097 switch (SRegClassID) { 1098 case AMDGPU::SGPR_32RegClassID: 1099 case AMDGPU::TTMP_32RegClassID: 1100 break; 1101 case AMDGPU::SGPR_64RegClassID: 1102 case AMDGPU::TTMP_64RegClassID: 1103 shift = 1; 1104 break; 1105 case AMDGPU::SGPR_128RegClassID: 1106 case AMDGPU::TTMP_128RegClassID: 1107 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1108 // this bundle? 1109 case AMDGPU::SGPR_256RegClassID: 1110 case AMDGPU::TTMP_256RegClassID: 1111 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1112 // this bundle? 1113 case AMDGPU::SGPR_288RegClassID: 1114 case AMDGPU::TTMP_288RegClassID: 1115 case AMDGPU::SGPR_320RegClassID: 1116 case AMDGPU::TTMP_320RegClassID: 1117 case AMDGPU::SGPR_352RegClassID: 1118 case AMDGPU::TTMP_352RegClassID: 1119 case AMDGPU::SGPR_384RegClassID: 1120 case AMDGPU::TTMP_384RegClassID: 1121 case AMDGPU::SGPR_512RegClassID: 1122 case AMDGPU::TTMP_512RegClassID: 1123 shift = 2; 1124 break; 1125 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1126 // this bundle? 1127 default: 1128 llvm_unreachable("unhandled register class"); 1129 } 1130 1131 if (Val % (1 << shift)) { 1132 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1133 << ": scalar reg isn't aligned " << Val; 1134 } 1135 1136 return createRegOperand(SRegClassID, Val >> shift); 1137 } 1138 1139 // Decode Literals for insts which always have a literal in the encoding 1140 MCOperand 1141 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1142 if (HasLiteral) { 1143 assert( 1144 AMDGPU::hasVOPD(STI) && 1145 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1146 if (Literal != Val) 1147 return errOperand(Val, "More than one unique literal is illegal"); 1148 } 1149 HasLiteral = true; 1150 Literal = Val; 1151 return MCOperand::createImm(Literal); 1152 } 1153 1154 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { 1155 // For now all literal constants are supposed to be unsigned integer 1156 // ToDo: deal with signed/unsigned 64-bit integer constants 1157 // ToDo: deal with float/double constants 1158 if (!HasLiteral) { 1159 if (Bytes.size() < 4) { 1160 return errOperand(0, "cannot read literal, inst bytes left " + 1161 Twine(Bytes.size())); 1162 } 1163 HasLiteral = true; 1164 Literal = eatBytes<uint32_t>(Bytes); 1165 } 1166 return MCOperand::createImm(Literal); 1167 } 1168 1169 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1170 using namespace AMDGPU::EncValues; 1171 1172 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1173 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1174 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1175 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1176 // Cast prevents negative overflow. 1177 } 1178 1179 static int64_t getInlineImmVal32(unsigned Imm) { 1180 switch (Imm) { 1181 case 240: 1182 return FloatToBits(0.5f); 1183 case 241: 1184 return FloatToBits(-0.5f); 1185 case 242: 1186 return FloatToBits(1.0f); 1187 case 243: 1188 return FloatToBits(-1.0f); 1189 case 244: 1190 return FloatToBits(2.0f); 1191 case 245: 1192 return FloatToBits(-2.0f); 1193 case 246: 1194 return FloatToBits(4.0f); 1195 case 247: 1196 return FloatToBits(-4.0f); 1197 case 248: // 1 / (2 * PI) 1198 return 0x3e22f983; 1199 default: 1200 llvm_unreachable("invalid fp inline imm"); 1201 } 1202 } 1203 1204 static int64_t getInlineImmVal64(unsigned Imm) { 1205 switch (Imm) { 1206 case 240: 1207 return DoubleToBits(0.5); 1208 case 241: 1209 return DoubleToBits(-0.5); 1210 case 242: 1211 return DoubleToBits(1.0); 1212 case 243: 1213 return DoubleToBits(-1.0); 1214 case 244: 1215 return DoubleToBits(2.0); 1216 case 245: 1217 return DoubleToBits(-2.0); 1218 case 246: 1219 return DoubleToBits(4.0); 1220 case 247: 1221 return DoubleToBits(-4.0); 1222 case 248: // 1 / (2 * PI) 1223 return 0x3fc45f306dc9c882; 1224 default: 1225 llvm_unreachable("invalid fp inline imm"); 1226 } 1227 } 1228 1229 static int64_t getInlineImmVal16(unsigned Imm) { 1230 switch (Imm) { 1231 case 240: 1232 return 0x3800; 1233 case 241: 1234 return 0xB800; 1235 case 242: 1236 return 0x3C00; 1237 case 243: 1238 return 0xBC00; 1239 case 244: 1240 return 0x4000; 1241 case 245: 1242 return 0xC000; 1243 case 246: 1244 return 0x4400; 1245 case 247: 1246 return 0xC400; 1247 case 248: // 1 / (2 * PI) 1248 return 0x3118; 1249 default: 1250 llvm_unreachable("invalid fp inline imm"); 1251 } 1252 } 1253 1254 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1255 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1256 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1257 1258 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1259 // ImmWidth 0 is a default case where operand should not allow immediates. 1260 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1261 // use it to print verbose error message. 1262 switch (ImmWidth) { 1263 case 0: 1264 case 32: 1265 return MCOperand::createImm(getInlineImmVal32(Imm)); 1266 case 64: 1267 return MCOperand::createImm(getInlineImmVal64(Imm)); 1268 case 16: 1269 return MCOperand::createImm(getInlineImmVal16(Imm)); 1270 default: 1271 llvm_unreachable("implement me"); 1272 } 1273 } 1274 1275 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1276 using namespace AMDGPU; 1277 1278 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1279 switch (Width) { 1280 default: // fall 1281 case OPW32: 1282 case OPW16: 1283 case OPWV216: 1284 return VGPR_32RegClassID; 1285 case OPW64: 1286 case OPWV232: return VReg_64RegClassID; 1287 case OPW96: return VReg_96RegClassID; 1288 case OPW128: return VReg_128RegClassID; 1289 case OPW160: return VReg_160RegClassID; 1290 case OPW256: return VReg_256RegClassID; 1291 case OPW288: return VReg_288RegClassID; 1292 case OPW320: return VReg_320RegClassID; 1293 case OPW352: return VReg_352RegClassID; 1294 case OPW384: return VReg_384RegClassID; 1295 case OPW512: return VReg_512RegClassID; 1296 case OPW1024: return VReg_1024RegClassID; 1297 } 1298 } 1299 1300 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1301 using namespace AMDGPU; 1302 1303 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1304 switch (Width) { 1305 default: // fall 1306 case OPW32: 1307 case OPW16: 1308 case OPWV216: 1309 return AGPR_32RegClassID; 1310 case OPW64: 1311 case OPWV232: return AReg_64RegClassID; 1312 case OPW96: return AReg_96RegClassID; 1313 case OPW128: return AReg_128RegClassID; 1314 case OPW160: return AReg_160RegClassID; 1315 case OPW256: return AReg_256RegClassID; 1316 case OPW288: return AReg_288RegClassID; 1317 case OPW320: return AReg_320RegClassID; 1318 case OPW352: return AReg_352RegClassID; 1319 case OPW384: return AReg_384RegClassID; 1320 case OPW512: return AReg_512RegClassID; 1321 case OPW1024: return AReg_1024RegClassID; 1322 } 1323 } 1324 1325 1326 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1327 using namespace AMDGPU; 1328 1329 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1330 switch (Width) { 1331 default: // fall 1332 case OPW32: 1333 case OPW16: 1334 case OPWV216: 1335 return SGPR_32RegClassID; 1336 case OPW64: 1337 case OPWV232: return SGPR_64RegClassID; 1338 case OPW96: return SGPR_96RegClassID; 1339 case OPW128: return SGPR_128RegClassID; 1340 case OPW160: return SGPR_160RegClassID; 1341 case OPW256: return SGPR_256RegClassID; 1342 case OPW288: return SGPR_288RegClassID; 1343 case OPW320: return SGPR_320RegClassID; 1344 case OPW352: return SGPR_352RegClassID; 1345 case OPW384: return SGPR_384RegClassID; 1346 case OPW512: return SGPR_512RegClassID; 1347 } 1348 } 1349 1350 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1351 using namespace AMDGPU; 1352 1353 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1354 switch (Width) { 1355 default: // fall 1356 case OPW32: 1357 case OPW16: 1358 case OPWV216: 1359 return TTMP_32RegClassID; 1360 case OPW64: 1361 case OPWV232: return TTMP_64RegClassID; 1362 case OPW128: return TTMP_128RegClassID; 1363 case OPW256: return TTMP_256RegClassID; 1364 case OPW288: return TTMP_288RegClassID; 1365 case OPW320: return TTMP_320RegClassID; 1366 case OPW352: return TTMP_352RegClassID; 1367 case OPW384: return TTMP_384RegClassID; 1368 case OPW512: return TTMP_512RegClassID; 1369 } 1370 } 1371 1372 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1373 using namespace AMDGPU::EncValues; 1374 1375 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1376 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1377 1378 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1379 } 1380 1381 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1382 bool MandatoryLiteral, 1383 unsigned ImmWidth) const { 1384 using namespace AMDGPU::EncValues; 1385 1386 assert(Val < 1024); // enum10 1387 1388 bool IsAGPR = Val & 512; 1389 Val &= 511; 1390 1391 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1392 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1393 : getVgprClassId(Width), Val - VGPR_MIN); 1394 } 1395 if (Val <= SGPR_MAX) { 1396 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1397 static_assert(SGPR_MIN == 0); 1398 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1399 } 1400 1401 int TTmpIdx = getTTmpIdx(Val); 1402 if (TTmpIdx >= 0) { 1403 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1404 } 1405 1406 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1407 return decodeIntImmed(Val); 1408 1409 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1410 return decodeFPImmed(ImmWidth, Val); 1411 1412 if (Val == LITERAL_CONST) { 1413 if (MandatoryLiteral) 1414 // Keep a sentinel value for deferred setting 1415 return MCOperand::createImm(LITERAL_CONST); 1416 else 1417 return decodeLiteralConstant(); 1418 } 1419 1420 switch (Width) { 1421 case OPW32: 1422 case OPW16: 1423 case OPWV216: 1424 return decodeSpecialReg32(Val); 1425 case OPW64: 1426 case OPWV232: 1427 return decodeSpecialReg64(Val); 1428 default: 1429 llvm_unreachable("unexpected immediate type"); 1430 } 1431 } 1432 1433 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1434 // opposite of bit 0 of DstX. 1435 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1436 unsigned Val) const { 1437 int VDstXInd = 1438 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1439 assert(VDstXInd != -1); 1440 assert(Inst.getOperand(VDstXInd).isReg()); 1441 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1442 Val |= ~XDstReg & 1; 1443 auto Width = llvm::AMDGPUDisassembler::OPW32; 1444 return createRegOperand(getVgprClassId(Width), Val); 1445 } 1446 1447 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1448 using namespace AMDGPU; 1449 1450 switch (Val) { 1451 // clang-format off 1452 case 102: return createRegOperand(FLAT_SCR_LO); 1453 case 103: return createRegOperand(FLAT_SCR_HI); 1454 case 104: return createRegOperand(XNACK_MASK_LO); 1455 case 105: return createRegOperand(XNACK_MASK_HI); 1456 case 106: return createRegOperand(VCC_LO); 1457 case 107: return createRegOperand(VCC_HI); 1458 case 108: return createRegOperand(TBA_LO); 1459 case 109: return createRegOperand(TBA_HI); 1460 case 110: return createRegOperand(TMA_LO); 1461 case 111: return createRegOperand(TMA_HI); 1462 case 124: 1463 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1464 case 125: 1465 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1466 case 126: return createRegOperand(EXEC_LO); 1467 case 127: return createRegOperand(EXEC_HI); 1468 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1469 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1470 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1471 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1472 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1473 case 251: return createRegOperand(SRC_VCCZ); 1474 case 252: return createRegOperand(SRC_EXECZ); 1475 case 253: return createRegOperand(SRC_SCC); 1476 case 254: return createRegOperand(LDS_DIRECT); 1477 default: break; 1478 // clang-format on 1479 } 1480 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1481 } 1482 1483 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1484 using namespace AMDGPU; 1485 1486 switch (Val) { 1487 case 102: return createRegOperand(FLAT_SCR); 1488 case 104: return createRegOperand(XNACK_MASK); 1489 case 106: return createRegOperand(VCC); 1490 case 108: return createRegOperand(TBA); 1491 case 110: return createRegOperand(TMA); 1492 case 124: 1493 if (isGFX11Plus()) 1494 return createRegOperand(SGPR_NULL); 1495 break; 1496 case 125: 1497 if (!isGFX11Plus()) 1498 return createRegOperand(SGPR_NULL); 1499 break; 1500 case 126: return createRegOperand(EXEC); 1501 case 235: return createRegOperand(SRC_SHARED_BASE); 1502 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1503 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1504 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1505 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1506 case 251: return createRegOperand(SRC_VCCZ); 1507 case 252: return createRegOperand(SRC_EXECZ); 1508 case 253: return createRegOperand(SRC_SCC); 1509 default: break; 1510 } 1511 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1512 } 1513 1514 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1515 const unsigned Val, 1516 unsigned ImmWidth) const { 1517 using namespace AMDGPU::SDWA; 1518 using namespace AMDGPU::EncValues; 1519 1520 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1521 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 1522 // XXX: cast to int is needed to avoid stupid warning: 1523 // compare with unsigned is always true 1524 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1525 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1526 return createRegOperand(getVgprClassId(Width), 1527 Val - SDWA9EncValues::SRC_VGPR_MIN); 1528 } 1529 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1530 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1531 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1532 return createSRegOperand(getSgprClassId(Width), 1533 Val - SDWA9EncValues::SRC_SGPR_MIN); 1534 } 1535 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1536 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1537 return createSRegOperand(getTtmpClassId(Width), 1538 Val - SDWA9EncValues::SRC_TTMP_MIN); 1539 } 1540 1541 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1542 1543 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1544 return decodeIntImmed(SVal); 1545 1546 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1547 return decodeFPImmed(ImmWidth, SVal); 1548 1549 return decodeSpecialReg32(SVal); 1550 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 1551 return createRegOperand(getVgprClassId(Width), Val); 1552 } 1553 llvm_unreachable("unsupported target"); 1554 } 1555 1556 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1557 return decodeSDWASrc(OPW16, Val, 16); 1558 } 1559 1560 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1561 return decodeSDWASrc(OPW32, Val, 32); 1562 } 1563 1564 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1565 using namespace AMDGPU::SDWA; 1566 1567 assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1568 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) && 1569 "SDWAVopcDst should be present only on GFX9+"); 1570 1571 bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64]; 1572 1573 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1574 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1575 1576 int TTmpIdx = getTTmpIdx(Val); 1577 if (TTmpIdx >= 0) { 1578 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1579 return createSRegOperand(TTmpClsId, TTmpIdx); 1580 } else if (Val > SGPR_MAX) { 1581 return IsWave64 ? decodeSpecialReg64(Val) 1582 : decodeSpecialReg32(Val); 1583 } else { 1584 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1585 } 1586 } else { 1587 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1588 } 1589 } 1590 1591 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1592 return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] 1593 ? decodeSrcOp(OPW64, Val) 1594 : decodeSrcOp(OPW32, Val); 1595 } 1596 1597 bool AMDGPUDisassembler::isVI() const { 1598 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1599 } 1600 1601 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1602 1603 bool AMDGPUDisassembler::isGFX90A() const { 1604 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; 1605 } 1606 1607 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1608 1609 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1610 1611 bool AMDGPUDisassembler::isGFX10Plus() const { 1612 return AMDGPU::isGFX10Plus(STI); 1613 } 1614 1615 bool AMDGPUDisassembler::isGFX11() const { 1616 return STI.getFeatureBits()[AMDGPU::FeatureGFX11]; 1617 } 1618 1619 bool AMDGPUDisassembler::isGFX11Plus() const { 1620 return AMDGPU::isGFX11Plus(STI); 1621 } 1622 1623 1624 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1625 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; 1626 } 1627 1628 //===----------------------------------------------------------------------===// 1629 // AMDGPU specific symbol handling 1630 //===----------------------------------------------------------------------===// 1631 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1632 do { \ 1633 KdStream << Indent << DIRECTIVE " " \ 1634 << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1635 } while (0) 1636 1637 // NOLINTNEXTLINE(readability-identifier-naming) 1638 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1639 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1640 using namespace amdhsa; 1641 StringRef Indent = "\t"; 1642 1643 // We cannot accurately backward compute #VGPRs used from 1644 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1645 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1646 // simply calculate the inverse of what the assembler does. 1647 1648 uint32_t GranulatedWorkitemVGPRCount = 1649 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >> 1650 COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT; 1651 1652 uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) * 1653 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI); 1654 1655 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1656 1657 // We cannot backward compute values used to calculate 1658 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1659 // directives can't be computed: 1660 // .amdhsa_reserve_vcc 1661 // .amdhsa_reserve_flat_scratch 1662 // .amdhsa_reserve_xnack_mask 1663 // They take their respective default values if not specified in the assembly. 1664 // 1665 // GRANULATED_WAVEFRONT_SGPR_COUNT 1666 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1667 // 1668 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1669 // are set to 0. So while disassembling we consider that: 1670 // 1671 // GRANULATED_WAVEFRONT_SGPR_COUNT 1672 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1673 // 1674 // The disassembler cannot recover the original values of those 3 directives. 1675 1676 uint32_t GranulatedWavefrontSGPRCount = 1677 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >> 1678 COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT; 1679 1680 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1681 return MCDisassembler::Fail; 1682 1683 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1684 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1685 1686 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1687 if (!hasArchitectedFlatScratch()) 1688 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1689 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1690 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1691 1692 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1693 return MCDisassembler::Fail; 1694 1695 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1696 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1697 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1698 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1699 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1700 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1701 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1702 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1703 1704 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1705 return MCDisassembler::Fail; 1706 1707 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); 1708 1709 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1710 return MCDisassembler::Fail; 1711 1712 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); 1713 1714 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1715 return MCDisassembler::Fail; 1716 1717 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1718 return MCDisassembler::Fail; 1719 1720 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); 1721 1722 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) 1723 return MCDisassembler::Fail; 1724 1725 if (isGFX10Plus()) { 1726 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1727 COMPUTE_PGM_RSRC1_WGP_MODE); 1728 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); 1729 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); 1730 } 1731 return MCDisassembler::Success; 1732 } 1733 1734 // NOLINTNEXTLINE(readability-identifier-naming) 1735 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1736 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1737 using namespace amdhsa; 1738 StringRef Indent = "\t"; 1739 if (hasArchitectedFlatScratch()) 1740 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1741 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1742 else 1743 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1744 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1745 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1746 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1747 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1748 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1749 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1750 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1751 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1752 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1753 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1754 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1755 1756 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1757 return MCDisassembler::Fail; 1758 1759 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1760 return MCDisassembler::Fail; 1761 1762 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1763 return MCDisassembler::Fail; 1764 1765 PRINT_DIRECTIVE( 1766 ".amdhsa_exception_fp_ieee_invalid_op", 1767 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1768 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1769 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1770 PRINT_DIRECTIVE( 1771 ".amdhsa_exception_fp_ieee_div_zero", 1772 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1773 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1774 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1775 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1776 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1777 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1778 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1779 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1780 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1781 1782 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1783 return MCDisassembler::Fail; 1784 1785 return MCDisassembler::Success; 1786 } 1787 1788 #undef PRINT_DIRECTIVE 1789 1790 MCDisassembler::DecodeStatus 1791 AMDGPUDisassembler::decodeKernelDescriptorDirective( 1792 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 1793 raw_string_ostream &KdStream) const { 1794 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1795 do { \ 1796 KdStream << Indent << DIRECTIVE " " \ 1797 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1798 } while (0) 1799 1800 uint16_t TwoByteBuffer = 0; 1801 uint32_t FourByteBuffer = 0; 1802 1803 StringRef ReservedBytes; 1804 StringRef Indent = "\t"; 1805 1806 assert(Bytes.size() == 64); 1807 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 1808 1809 switch (Cursor.tell()) { 1810 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 1811 FourByteBuffer = DE.getU32(Cursor); 1812 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 1813 << '\n'; 1814 return MCDisassembler::Success; 1815 1816 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 1817 FourByteBuffer = DE.getU32(Cursor); 1818 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 1819 << FourByteBuffer << '\n'; 1820 return MCDisassembler::Success; 1821 1822 case amdhsa::KERNARG_SIZE_OFFSET: 1823 FourByteBuffer = DE.getU32(Cursor); 1824 KdStream << Indent << ".amdhsa_kernarg_size " 1825 << FourByteBuffer << '\n'; 1826 return MCDisassembler::Success; 1827 1828 case amdhsa::RESERVED0_OFFSET: 1829 // 4 reserved bytes, must be 0. 1830 ReservedBytes = DE.getBytes(Cursor, 4); 1831 for (int I = 0; I < 4; ++I) { 1832 if (ReservedBytes[I] != 0) { 1833 return MCDisassembler::Fail; 1834 } 1835 } 1836 return MCDisassembler::Success; 1837 1838 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 1839 // KERNEL_CODE_ENTRY_BYTE_OFFSET 1840 // So far no directive controls this for Code Object V3, so simply skip for 1841 // disassembly. 1842 DE.skip(Cursor, 8); 1843 return MCDisassembler::Success; 1844 1845 case amdhsa::RESERVED1_OFFSET: 1846 // 20 reserved bytes, must be 0. 1847 ReservedBytes = DE.getBytes(Cursor, 20); 1848 for (int I = 0; I < 20; ++I) { 1849 if (ReservedBytes[I] != 0) { 1850 return MCDisassembler::Fail; 1851 } 1852 } 1853 return MCDisassembler::Success; 1854 1855 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 1856 // COMPUTE_PGM_RSRC3 1857 // - Only set for GFX10, GFX6-9 have this to be 0. 1858 // - Currently no directives directly control this. 1859 FourByteBuffer = DE.getU32(Cursor); 1860 if (!isGFX10Plus() && FourByteBuffer) { 1861 return MCDisassembler::Fail; 1862 } 1863 return MCDisassembler::Success; 1864 1865 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 1866 FourByteBuffer = DE.getU32(Cursor); 1867 if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) == 1868 MCDisassembler::Fail) { 1869 return MCDisassembler::Fail; 1870 } 1871 return MCDisassembler::Success; 1872 1873 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 1874 FourByteBuffer = DE.getU32(Cursor); 1875 if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) == 1876 MCDisassembler::Fail) { 1877 return MCDisassembler::Fail; 1878 } 1879 return MCDisassembler::Success; 1880 1881 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 1882 using namespace amdhsa; 1883 TwoByteBuffer = DE.getU16(Cursor); 1884 1885 if (!hasArchitectedFlatScratch()) 1886 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 1887 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 1888 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 1889 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 1890 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 1891 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 1892 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 1893 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 1894 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 1895 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 1896 if (!hasArchitectedFlatScratch()) 1897 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 1898 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 1899 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 1900 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 1901 1902 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 1903 return MCDisassembler::Fail; 1904 1905 // Reserved for GFX9 1906 if (isGFX9() && 1907 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 1908 return MCDisassembler::Fail; 1909 } else if (isGFX10Plus()) { 1910 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 1911 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1912 } 1913 1914 if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5) 1915 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 1916 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 1917 1918 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 1919 return MCDisassembler::Fail; 1920 1921 return MCDisassembler::Success; 1922 1923 case amdhsa::RESERVED2_OFFSET: 1924 // 6 bytes from here are reserved, must be 0. 1925 ReservedBytes = DE.getBytes(Cursor, 6); 1926 for (int I = 0; I < 6; ++I) { 1927 if (ReservedBytes[I] != 0) 1928 return MCDisassembler::Fail; 1929 } 1930 return MCDisassembler::Success; 1931 1932 default: 1933 llvm_unreachable("Unhandled index. Case statements cover everything."); 1934 return MCDisassembler::Fail; 1935 } 1936 #undef PRINT_DIRECTIVE 1937 } 1938 1939 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 1940 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 1941 // CP microcode requires the kernel descriptor to be 64 aligned. 1942 if (Bytes.size() != 64 || KdAddress % 64 != 0) 1943 return MCDisassembler::Fail; 1944 1945 std::string Kd; 1946 raw_string_ostream KdStream(Kd); 1947 KdStream << ".amdhsa_kernel " << KdName << '\n'; 1948 1949 DataExtractor::Cursor C(0); 1950 while (C && C.tell() < Bytes.size()) { 1951 MCDisassembler::DecodeStatus Status = 1952 decodeKernelDescriptorDirective(C, Bytes, KdStream); 1953 1954 cantFail(C.takeError()); 1955 1956 if (Status == MCDisassembler::Fail) 1957 return MCDisassembler::Fail; 1958 } 1959 KdStream << ".end_amdhsa_kernel\n"; 1960 outs() << KdStream.str(); 1961 return MCDisassembler::Success; 1962 } 1963 1964 std::optional<MCDisassembler::DecodeStatus> 1965 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 1966 ArrayRef<uint8_t> Bytes, uint64_t Address, 1967 raw_ostream &CStream) const { 1968 // Right now only kernel descriptor needs to be handled. 1969 // We ignore all other symbols for target specific handling. 1970 // TODO: 1971 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 1972 // Object V2 and V3 when symbols are marked protected. 1973 1974 // amd_kernel_code_t for Code Object V2. 1975 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 1976 Size = 256; 1977 return MCDisassembler::Fail; 1978 } 1979 1980 // Code Object V3 kernel descriptors. 1981 StringRef Name = Symbol.Name; 1982 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { 1983 Size = 64; // Size = 64 regardless of success or failure. 1984 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 1985 } 1986 return std::nullopt; 1987 } 1988 1989 //===----------------------------------------------------------------------===// 1990 // AMDGPUSymbolizer 1991 //===----------------------------------------------------------------------===// 1992 1993 // Try to find symbol name for specified label 1994 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 1995 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 1996 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 1997 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 1998 1999 if (!IsBranch) { 2000 return false; 2001 } 2002 2003 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2004 if (!Symbols) 2005 return false; 2006 2007 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2008 return Val.Addr == static_cast<uint64_t>(Value) && 2009 Val.Type == ELF::STT_NOTYPE; 2010 }); 2011 if (Result != Symbols->end()) { 2012 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2013 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2014 Inst.addOperand(MCOperand::createExpr(Add)); 2015 return true; 2016 } 2017 // Add to list of referenced addresses, so caller can synthesize a label. 2018 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2019 return false; 2020 } 2021 2022 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2023 int64_t Value, 2024 uint64_t Address) { 2025 llvm_unreachable("unimplemented"); 2026 } 2027 2028 //===----------------------------------------------------------------------===// 2029 // Initialization 2030 //===----------------------------------------------------------------------===// 2031 2032 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2033 LLVMOpInfoCallback /*GetOpInfo*/, 2034 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2035 void *DisInfo, 2036 MCContext *Ctx, 2037 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2038 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2039 } 2040 2041 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2042 const MCSubtargetInfo &STI, 2043 MCContext &Ctx) { 2044 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2045 } 2046 2047 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2048 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2049 createAMDGPUDisassembler); 2050 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2051 createAMDGPUSymbolizer); 2052 } 2053