xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 7ca3444fba7344b375f147b77252adbf71f464e0)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
119 // number of register. Used by VGPR only and AGPR only operands.
120 #define DECODE_OPERAND_REG_8(RegClass)                                         \
121   static DecodeStatus Decode##RegClass##RegisterClass(                         \
122       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
123       const MCDisassembler *Decoder) {                                         \
124     assert(Imm < (1 << 8) && "8-bit encoding");                                \
125     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
126     return addOperand(                                                         \
127         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
128   }
129 
130 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
131                      ImmWidth)                                                 \
132   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
133                            const MCDisassembler *Decoder) {                    \
134     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
135     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
136     return addOperand(Inst,                                                    \
137                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
138                                         MandatoryLiteral, ImmWidth));          \
139   }
140 
141 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
142 // get register class. Used by SGPR only operands.
143 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
144   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
145 
146 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
147 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
148 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
149 // Used by AV_ register classes (AGPR or VGPR only register operands).
150 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
151   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
152                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
153 
154 // Decoder for Src(9-bit encoding) registers only.
155 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
156   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
157 
158 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
159 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
160 // only.
161 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
162   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
163 
164 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
165 // Imm{9} is acc, registers only.
166 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
167   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
168 
169 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
170 // register from RegClass or immediate. Registers that don't belong to RegClass
171 // will be decoded and InstPrinter will report warning. Immediate will be
172 // decoded into constant of size ImmWidth, should match width of immediate used
173 // by OperandType (important for floating point types).
174 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
175   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
176                false, ImmWidth)
177 
178 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
179 // and decode using 'enum10' from decodeSrcOp.
180 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
181   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
182                Imm | 512, false, ImmWidth)
183 
184 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
185   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
186                OpWidth, Imm, true, ImmWidth)
187 
188 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
189 // when RegisterClass is used as an operand. Most often used for destination
190 // operands.
191 
192 DECODE_OPERAND_REG_8(VGPR_32)
193 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
194 DECODE_OPERAND_REG_8(VReg_64)
195 DECODE_OPERAND_REG_8(VReg_96)
196 DECODE_OPERAND_REG_8(VReg_128)
197 DECODE_OPERAND_REG_8(VReg_256)
198 DECODE_OPERAND_REG_8(VReg_288)
199 DECODE_OPERAND_REG_8(VReg_352)
200 DECODE_OPERAND_REG_8(VReg_384)
201 DECODE_OPERAND_REG_8(VReg_512)
202 DECODE_OPERAND_REG_8(VReg_1024)
203 
204 DECODE_OPERAND_REG_7(SReg_32, OPW32)
205 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
206 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
207 DECODE_OPERAND_REG_7(SReg_64, OPW64)
208 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
209 DECODE_OPERAND_REG_7(SReg_128, OPW128)
210 DECODE_OPERAND_REG_7(SReg_256, OPW256)
211 DECODE_OPERAND_REG_7(SReg_512, OPW512)
212 
213 DECODE_OPERAND_REG_8(AGPR_32)
214 DECODE_OPERAND_REG_8(AReg_64)
215 DECODE_OPERAND_REG_8(AReg_128)
216 DECODE_OPERAND_REG_8(AReg_256)
217 DECODE_OPERAND_REG_8(AReg_512)
218 DECODE_OPERAND_REG_8(AReg_1024)
219 
220 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
221 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
222 
223 // Decoders for register only source RegisterOperands that use use 9-bit Src
224 // encoding: 'decodeOperand_<RegClass>'.
225 
226 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
227 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
228 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
229 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
230 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
231 
232 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
233 
234 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
235 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
236 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
237 
238 // Decoders for register or immediate RegisterOperands that use 9-bit Src
239 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
240 
241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
243 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
254 
255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
259 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
260 
261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
264 
265 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
266                                           uint64_t Addr,
267                                           const MCDisassembler *Decoder) {
268   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
269   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
270 }
271 
272 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
273                                           uint64_t Addr,
274                                           const MCDisassembler *Decoder) {
275   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
276   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
277 }
278 
279 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
280                                           uint64_t Addr, const void *Decoder) {
281   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
282   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
283 }
284 
285 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
286                           const MCRegisterInfo *MRI) {
287   if (OpIdx < 0)
288     return false;
289 
290   const MCOperand &Op = Inst.getOperand(OpIdx);
291   if (!Op.isReg())
292     return false;
293 
294   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
295   auto Reg = Sub ? Sub : Op.getReg();
296   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
297 }
298 
299 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
300                                              AMDGPUDisassembler::OpWidthTy Opw,
301                                              const MCDisassembler *Decoder) {
302   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
303   if (!DAsm->isGFX90A()) {
304     Imm &= 511;
305   } else {
306     // If atomic has both vdata and vdst their register classes are tied.
307     // The bit is decoded along with the vdst, first operand. We need to
308     // change register class to AGPR if vdst was AGPR.
309     // If a DS instruction has both data0 and data1 their register classes
310     // are also tied.
311     unsigned Opc = Inst.getOpcode();
312     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
313     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
314                                                         : AMDGPU::OpName::vdata;
315     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
316     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
317     if ((int)Inst.getNumOperands() == DataIdx) {
318       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
319       if (IsAGPROperand(Inst, DstIdx, MRI))
320         Imm |= 512;
321     }
322 
323     if (TSFlags & SIInstrFlags::DS) {
324       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
325       if ((int)Inst.getNumOperands() == Data2Idx &&
326           IsAGPROperand(Inst, DataIdx, MRI))
327         Imm |= 512;
328     }
329   }
330   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
331 }
332 
333 static DecodeStatus
334 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
335                              const MCDisassembler *Decoder) {
336   return decodeOperand_AVLdSt_Any(Inst, Imm,
337                                   AMDGPUDisassembler::OPW32, Decoder);
338 }
339 
340 static DecodeStatus
341 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
342                              const MCDisassembler *Decoder) {
343   return decodeOperand_AVLdSt_Any(Inst, Imm,
344                                   AMDGPUDisassembler::OPW64, Decoder);
345 }
346 
347 static DecodeStatus
348 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
349                              const MCDisassembler *Decoder) {
350   return decodeOperand_AVLdSt_Any(Inst, Imm,
351                                   AMDGPUDisassembler::OPW96, Decoder);
352 }
353 
354 static DecodeStatus
355 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
356                               const MCDisassembler *Decoder) {
357   return decodeOperand_AVLdSt_Any(Inst, Imm,
358                                   AMDGPUDisassembler::OPW128, Decoder);
359 }
360 
361 static DecodeStatus
362 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
363                               const MCDisassembler *Decoder) {
364   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
365                                   Decoder);
366 }
367 
368 #define DECODE_SDWA(DecName) \
369 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
370 
371 DECODE_SDWA(Src32)
372 DECODE_SDWA(Src16)
373 DECODE_SDWA(VopcDst)
374 
375 #include "AMDGPUGenDisassemblerTables.inc"
376 
377 //===----------------------------------------------------------------------===//
378 //
379 //===----------------------------------------------------------------------===//
380 
381 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
382   assert(Bytes.size() >= sizeof(T));
383   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
384   Bytes = Bytes.slice(sizeof(T));
385   return Res;
386 }
387 
388 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
389   assert(Bytes.size() >= 12);
390   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
391       Bytes.data());
392   Bytes = Bytes.slice(8);
393   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
394       Bytes.data());
395   Bytes = Bytes.slice(4);
396   return DecoderUInt128(Lo, Hi);
397 }
398 
399 // The disassembler is greedy, so we need to check FI operand value to
400 // not parse a dpp if the correct literal is not set. For dpp16 the
401 // autogenerated decoder checks the dpp literal
402 static bool isValidDPP8(const MCInst &MI) {
403   using namespace llvm::AMDGPU::DPP;
404   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
405   assert(FiIdx != -1);
406   if ((unsigned)FiIdx >= MI.getNumOperands())
407     return false;
408   unsigned Fi = MI.getOperand(FiIdx).getImm();
409   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
410 }
411 
412 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
413                                                 ArrayRef<uint8_t> Bytes_,
414                                                 uint64_t Address,
415                                                 raw_ostream &CS) const {
416   CommentStream = &CS;
417   bool IsSDWA = false;
418 
419   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
420   Bytes = Bytes_.slice(0, MaxInstBytesNum);
421 
422   DecodeStatus Res = MCDisassembler::Fail;
423   do {
424     // ToDo: better to switch encoding length using some bit predicate
425     // but it is unknown yet, so try all we can
426 
427     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
428     // encodings
429     if (isGFX11Plus() && Bytes.size() >= 12 ) {
430       DecoderUInt128 DecW = eat12Bytes(Bytes);
431       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
432                                           Address);
433       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
434         break;
435       MI = MCInst(); // clear
436       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
437                                           Address);
438       if (Res) {
439         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
440           convertVOP3PDPPInst(MI);
441         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
442           convertVOPCDPPInst(MI); // Special VOP3 case
443         else {
444           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
445           convertVOP3DPPInst(MI); // Regular VOP3 case
446         }
447         break;
448       }
449       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
450       if (Res)
451         break;
452     }
453     // Reinitialize Bytes
454     Bytes = Bytes_.slice(0, MaxInstBytesNum);
455 
456     if (Bytes.size() >= 8) {
457       const uint64_t QW = eatBytes<uint64_t>(Bytes);
458 
459       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
460         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
461         if (Res) {
462           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
463               == -1)
464             break;
465           if (convertDPP8Inst(MI) == MCDisassembler::Success)
466             break;
467           MI = MCInst(); // clear
468         }
469       }
470 
471       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
472       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
473         break;
474       MI = MCInst(); // clear
475 
476       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
477       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
478         break;
479       MI = MCInst(); // clear
480 
481       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
482       if (Res) break;
483 
484       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
485       if (Res) {
486         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
487           convertVOPCDPPInst(MI);
488         break;
489       }
490 
491       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
492       if (Res) { IsSDWA = true;  break; }
493 
494       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
495       if (Res) { IsSDWA = true;  break; }
496 
497       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
498       if (Res) { IsSDWA = true;  break; }
499 
500       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
501         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
502         if (Res)
503           break;
504       }
505 
506       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
507       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
508       // table first so we print the correct name.
509       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
510         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
511         if (Res)
512           break;
513       }
514     }
515 
516     // Reinitialize Bytes as DPP64 could have eaten too much
517     Bytes = Bytes_.slice(0, MaxInstBytesNum);
518 
519     // Try decode 32-bit instruction
520     if (Bytes.size() < 4) break;
521     const uint32_t DW = eatBytes<uint32_t>(Bytes);
522     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
523     if (Res) break;
524 
525     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
526     if (Res) break;
527 
528     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
529     if (Res) break;
530 
531     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
532       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
533       if (Res)
534         break;
535     }
536 
537     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
538       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
539       if (Res) break;
540     }
541 
542     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
543     if (Res) break;
544 
545     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
546     if (Res) break;
547 
548     if (Bytes.size() < 4) break;
549     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
550 
551     if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) {
552       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address);
553       if (Res)
554         break;
555     }
556 
557     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
558       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
559       if (Res)
560         break;
561     }
562 
563     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
564     if (Res) break;
565 
566     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
567     if (Res) break;
568 
569     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
570     if (Res) break;
571 
572     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
573     if (Res) break;
574 
575     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
576     if (Res)
577       break;
578 
579     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
580   } while (false);
581 
582   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
583     // Insert dummy unused src2_modifiers.
584     insertNamedMCOperand(MI, MCOperand::createImm(0),
585                          AMDGPU::OpName::src2_modifiers);
586   }
587 
588   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
589           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
590     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
591                                              AMDGPU::OpName::cpol);
592     if (CPolPos != -1) {
593       unsigned CPol =
594           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
595               AMDGPU::CPol::GLC : 0;
596       if (MI.getNumOperands() <= (unsigned)CPolPos) {
597         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
598                              AMDGPU::OpName::cpol);
599       } else if (CPol) {
600         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
601       }
602     }
603   }
604 
605   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
606               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
607              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
608     // GFX90A lost TFE, its place is occupied by ACC.
609     int TFEOpIdx =
610         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
611     if (TFEOpIdx != -1) {
612       auto TFEIter = MI.begin();
613       std::advance(TFEIter, TFEOpIdx);
614       MI.insert(TFEIter, MCOperand::createImm(0));
615     }
616   }
617 
618   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
619               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
620     int SWZOpIdx =
621         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
622     if (SWZOpIdx != -1) {
623       auto SWZIter = MI.begin();
624       std::advance(SWZIter, SWZOpIdx);
625       MI.insert(SWZIter, MCOperand::createImm(0));
626     }
627   }
628 
629   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
630     int VAddr0Idx =
631         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
632     int RsrcIdx =
633         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
634     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
635     if (VAddr0Idx >= 0 && NSAArgs > 0) {
636       unsigned NSAWords = (NSAArgs + 3) / 4;
637       if (Bytes.size() < 4 * NSAWords) {
638         Res = MCDisassembler::Fail;
639       } else {
640         for (unsigned i = 0; i < NSAArgs; ++i) {
641           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
642           auto VAddrRCID =
643               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
644           MI.insert(MI.begin() + VAddrIdx,
645                     createRegOperand(VAddrRCID, Bytes[i]));
646         }
647         Bytes = Bytes.slice(4 * NSAWords);
648       }
649     }
650 
651     if (Res)
652       Res = convertMIMGInst(MI);
653   }
654 
655   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
656     Res = convertEXPInst(MI);
657 
658   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
659     Res = convertVINTERPInst(MI);
660 
661   if (Res && IsSDWA)
662     Res = convertSDWAInst(MI);
663 
664   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
665                                               AMDGPU::OpName::vdst_in);
666   if (VDstIn_Idx != -1) {
667     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
668                            MCOI::OperandConstraint::TIED_TO);
669     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
670          !MI.getOperand(VDstIn_Idx).isReg() ||
671          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
672       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
673         MI.erase(&MI.getOperand(VDstIn_Idx));
674       insertNamedMCOperand(MI,
675         MCOperand::createReg(MI.getOperand(Tied).getReg()),
676         AMDGPU::OpName::vdst_in);
677     }
678   }
679 
680   int ImmLitIdx =
681       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
682   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
683   if (Res && ImmLitIdx != -1 && !IsSOPK)
684     Res = convertFMAanyK(MI, ImmLitIdx);
685 
686   // if the opcode was not recognized we'll assume a Size of 4 bytes
687   // (unless there are fewer bytes left)
688   Size = Res ? (MaxInstBytesNum - Bytes.size())
689              : std::min((size_t)4, Bytes_.size());
690   return Res;
691 }
692 
693 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
694   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
695     // The MCInst still has these fields even though they are no longer encoded
696     // in the GFX11 instruction.
697     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
698     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
699   }
700   return MCDisassembler::Success;
701 }
702 
703 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
704   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
705       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
706       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
707       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
708     // The MCInst has this field that is not directly encoded in the
709     // instruction.
710     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
711   }
712   return MCDisassembler::Success;
713 }
714 
715 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
716   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
717       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
718     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
719       // VOPC - insert clamp
720       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
721   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
722     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
723     if (SDst != -1) {
724       // VOPC - insert VCC register as sdst
725       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
726                            AMDGPU::OpName::sdst);
727     } else {
728       // VOP1/2 - insert omod if present in instruction
729       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
730     }
731   }
732   return MCDisassembler::Success;
733 }
734 
735 struct VOPModifiers {
736   unsigned OpSel = 0;
737   unsigned OpSelHi = 0;
738   unsigned NegLo = 0;
739   unsigned NegHi = 0;
740 };
741 
742 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
743 // Note that these values do not affect disassembler output,
744 // so this is only necessary for consistency with src_modifiers.
745 static VOPModifiers collectVOPModifiers(const MCInst &MI,
746                                         bool IsVOP3P = false) {
747   VOPModifiers Modifiers;
748   unsigned Opc = MI.getOpcode();
749   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
750                         AMDGPU::OpName::src1_modifiers,
751                         AMDGPU::OpName::src2_modifiers};
752   for (int J = 0; J < 3; ++J) {
753     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
754     if (OpIdx == -1)
755       continue;
756 
757     unsigned Val = MI.getOperand(OpIdx).getImm();
758 
759     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
760     if (IsVOP3P) {
761       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
762       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
763       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
764     } else if (J == 0) {
765       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
766     }
767   }
768 
769   return Modifiers;
770 }
771 
772 // MAC opcodes have special old and src2 operands.
773 // src2 is tied to dst, while old is not tied (but assumed to be).
774 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
775   constexpr int DST_IDX = 0;
776   auto Opcode = MI.getOpcode();
777   const auto &Desc = MCII->get(Opcode);
778   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
779 
780   if (OldIdx != -1 && Desc.getOperandConstraint(
781                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
782     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
783     assert(Desc.getOperandConstraint(
784                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
785                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
786     (void)DST_IDX;
787     return true;
788   }
789 
790   return false;
791 }
792 
793 // Create dummy old operand and insert dummy unused src2_modifiers
794 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
795   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
796   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
797   insertNamedMCOperand(MI, MCOperand::createImm(0),
798                        AMDGPU::OpName::src2_modifiers);
799 }
800 
801 // We must check FI == literal to reject not genuine dpp8 insts, and we must
802 // first add optional MI operands to check FI
803 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
804   unsigned Opc = MI.getOpcode();
805   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
806     convertVOP3PDPPInst(MI);
807   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
808              AMDGPU::isVOPC64DPP(Opc)) {
809     convertVOPCDPPInst(MI);
810   } else {
811     if (isMacDPP(MI))
812       convertMacDPPInst(MI);
813 
814     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
815     if (MI.getNumOperands() < DescNumOps &&
816         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
817       auto Mods = collectVOPModifiers(MI);
818       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
819                            AMDGPU::OpName::op_sel);
820     } else {
821       // Insert dummy unused src modifiers.
822       if (MI.getNumOperands() < DescNumOps &&
823           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
824         insertNamedMCOperand(MI, MCOperand::createImm(0),
825                              AMDGPU::OpName::src0_modifiers);
826 
827       if (MI.getNumOperands() < DescNumOps &&
828           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
829         insertNamedMCOperand(MI, MCOperand::createImm(0),
830                              AMDGPU::OpName::src1_modifiers);
831     }
832   }
833   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
834 }
835 
836 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
837   if (isMacDPP(MI))
838     convertMacDPPInst(MI);
839 
840   unsigned Opc = MI.getOpcode();
841   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
842   if (MI.getNumOperands() < DescNumOps &&
843       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
844     auto Mods = collectVOPModifiers(MI);
845     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
846                          AMDGPU::OpName::op_sel);
847   }
848   return MCDisassembler::Success;
849 }
850 
851 // Note that before gfx10, the MIMG encoding provided no information about
852 // VADDR size. Consequently, decoded instructions always show address as if it
853 // has 1 dword, which could be not really so.
854 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
855 
856   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
857                                            AMDGPU::OpName::vdst);
858 
859   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
860                                             AMDGPU::OpName::vdata);
861   int VAddr0Idx =
862       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
863   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
864                                             AMDGPU::OpName::dmask);
865 
866   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
867                                             AMDGPU::OpName::tfe);
868   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
869                                             AMDGPU::OpName::d16);
870 
871   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
872   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
873       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
874 
875   assert(VDataIdx != -1);
876   if (BaseOpcode->BVH) {
877     // Add A16 operand for intersect_ray instructions
878     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16))
879       addOperand(MI, MCOperand::createImm(1));
880     return MCDisassembler::Success;
881   }
882 
883   bool IsAtomic = (VDstIdx != -1);
884   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
885   bool IsNSA = false;
886   unsigned AddrSize = Info->VAddrDwords;
887 
888   if (isGFX10Plus()) {
889     unsigned DimIdx =
890         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
891     int A16Idx =
892         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
893     const AMDGPU::MIMGDimInfo *Dim =
894         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
895     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
896 
897     AddrSize =
898         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
899 
900     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
901             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
902     if (!IsNSA) {
903       if (AddrSize > 12)
904         AddrSize = 16;
905     } else {
906       if (AddrSize > Info->VAddrDwords) {
907         // The NSA encoding does not contain enough operands for the combination
908         // of base opcode / dimension. Should this be an error?
909         return MCDisassembler::Success;
910       }
911     }
912   }
913 
914   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
915   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
916 
917   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
918   if (D16 && AMDGPU::hasPackedD16(STI)) {
919     DstSize = (DstSize + 1) / 2;
920   }
921 
922   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
923     DstSize += 1;
924 
925   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
926     return MCDisassembler::Success;
927 
928   int NewOpcode =
929       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
930   if (NewOpcode == -1)
931     return MCDisassembler::Success;
932 
933   // Widen the register to the correct number of enabled channels.
934   unsigned NewVdata = AMDGPU::NoRegister;
935   if (DstSize != Info->VDataDwords) {
936     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
937 
938     // Get first subregister of VData
939     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
940     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
941     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
942 
943     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
944                                        &MRI.getRegClass(DataRCID));
945     if (NewVdata == AMDGPU::NoRegister) {
946       // It's possible to encode this such that the low register + enabled
947       // components exceeds the register count.
948       return MCDisassembler::Success;
949     }
950   }
951 
952   // If not using NSA on GFX10+, widen address register to correct size.
953   unsigned NewVAddr0 = AMDGPU::NoRegister;
954   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
955     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
956     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
957     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
958 
959     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddr0Idx].RegClass;
960     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
961                                         &MRI.getRegClass(AddrRCID));
962     if (NewVAddr0 == AMDGPU::NoRegister)
963       return MCDisassembler::Success;
964   }
965 
966   MI.setOpcode(NewOpcode);
967 
968   if (NewVdata != AMDGPU::NoRegister) {
969     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
970 
971     if (IsAtomic) {
972       // Atomic operations have an additional operand (a copy of data)
973       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
974     }
975   }
976 
977   if (NewVAddr0 != AMDGPU::NoRegister) {
978     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
979   } else if (IsNSA) {
980     assert(AddrSize <= Info->VAddrDwords);
981     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
982              MI.begin() + VAddr0Idx + Info->VAddrDwords);
983   }
984 
985   return MCDisassembler::Success;
986 }
987 
988 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
989 // decoder only adds to src_modifiers, so manually add the bits to the other
990 // operands.
991 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
992   unsigned Opc = MI.getOpcode();
993   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
994   auto Mods = collectVOPModifiers(MI, true);
995 
996   if (MI.getNumOperands() < DescNumOps &&
997       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
998     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
999 
1000   if (MI.getNumOperands() < DescNumOps &&
1001       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1002     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1003                          AMDGPU::OpName::op_sel);
1004   if (MI.getNumOperands() < DescNumOps &&
1005       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1006     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1007                          AMDGPU::OpName::op_sel_hi);
1008   if (MI.getNumOperands() < DescNumOps &&
1009       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1010     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1011                          AMDGPU::OpName::neg_lo);
1012   if (MI.getNumOperands() < DescNumOps &&
1013       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1014     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1015                          AMDGPU::OpName::neg_hi);
1016 
1017   return MCDisassembler::Success;
1018 }
1019 
1020 // Create dummy old operand and insert optional operands
1021 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1022   unsigned Opc = MI.getOpcode();
1023   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1024 
1025   if (MI.getNumOperands() < DescNumOps &&
1026       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1027     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1028 
1029   if (MI.getNumOperands() < DescNumOps &&
1030       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1031     insertNamedMCOperand(MI, MCOperand::createImm(0),
1032                          AMDGPU::OpName::src0_modifiers);
1033 
1034   if (MI.getNumOperands() < DescNumOps &&
1035       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1036     insertNamedMCOperand(MI, MCOperand::createImm(0),
1037                          AMDGPU::OpName::src1_modifiers);
1038   return MCDisassembler::Success;
1039 }
1040 
1041 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1042                                                 int ImmLitIdx) const {
1043   assert(HasLiteral && "Should have decoded a literal");
1044   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1045   unsigned DescNumOps = Desc.getNumOperands();
1046   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1047                        AMDGPU::OpName::immDeferred);
1048   assert(DescNumOps == MI.getNumOperands());
1049   for (unsigned I = 0; I < DescNumOps; ++I) {
1050     auto &Op = MI.getOperand(I);
1051     auto OpType = Desc.operands()[I].OperandType;
1052     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1053                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1054     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1055         IsDeferredOp)
1056       Op.setImm(Literal);
1057   }
1058   return MCDisassembler::Success;
1059 }
1060 
1061 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1062   return getContext().getRegisterInfo()->
1063     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1064 }
1065 
1066 inline
1067 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1068                                          const Twine& ErrMsg) const {
1069   *CommentStream << "Error: " + ErrMsg;
1070 
1071   // ToDo: add support for error operands to MCInst.h
1072   // return MCOperand::createError(V);
1073   return MCOperand();
1074 }
1075 
1076 inline
1077 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1078   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1079 }
1080 
1081 inline
1082 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1083                                                unsigned Val) const {
1084   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1085   if (Val >= RegCl.getNumRegs())
1086     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1087                            ": unknown register " + Twine(Val));
1088   return createRegOperand(RegCl.getRegister(Val));
1089 }
1090 
1091 inline
1092 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1093                                                 unsigned Val) const {
1094   // ToDo: SI/CI have 104 SGPRs, VI - 102
1095   // Valery: here we accepting as much as we can, let assembler sort it out
1096   int shift = 0;
1097   switch (SRegClassID) {
1098   case AMDGPU::SGPR_32RegClassID:
1099   case AMDGPU::TTMP_32RegClassID:
1100     break;
1101   case AMDGPU::SGPR_64RegClassID:
1102   case AMDGPU::TTMP_64RegClassID:
1103     shift = 1;
1104     break;
1105   case AMDGPU::SGPR_128RegClassID:
1106   case AMDGPU::TTMP_128RegClassID:
1107   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1108   // this bundle?
1109   case AMDGPU::SGPR_256RegClassID:
1110   case AMDGPU::TTMP_256RegClassID:
1111     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1112   // this bundle?
1113   case AMDGPU::SGPR_288RegClassID:
1114   case AMDGPU::TTMP_288RegClassID:
1115   case AMDGPU::SGPR_320RegClassID:
1116   case AMDGPU::TTMP_320RegClassID:
1117   case AMDGPU::SGPR_352RegClassID:
1118   case AMDGPU::TTMP_352RegClassID:
1119   case AMDGPU::SGPR_384RegClassID:
1120   case AMDGPU::TTMP_384RegClassID:
1121   case AMDGPU::SGPR_512RegClassID:
1122   case AMDGPU::TTMP_512RegClassID:
1123     shift = 2;
1124     break;
1125   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1126   // this bundle?
1127   default:
1128     llvm_unreachable("unhandled register class");
1129   }
1130 
1131   if (Val % (1 << shift)) {
1132     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1133                    << ": scalar reg isn't aligned " << Val;
1134   }
1135 
1136   return createRegOperand(SRegClassID, Val >> shift);
1137 }
1138 
1139 // Decode Literals for insts which always have a literal in the encoding
1140 MCOperand
1141 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1142   if (HasLiteral) {
1143     assert(
1144         AMDGPU::hasVOPD(STI) &&
1145         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1146     if (Literal != Val)
1147       return errOperand(Val, "More than one unique literal is illegal");
1148   }
1149   HasLiteral = true;
1150   Literal = Val;
1151   return MCOperand::createImm(Literal);
1152 }
1153 
1154 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1155   // For now all literal constants are supposed to be unsigned integer
1156   // ToDo: deal with signed/unsigned 64-bit integer constants
1157   // ToDo: deal with float/double constants
1158   if (!HasLiteral) {
1159     if (Bytes.size() < 4) {
1160       return errOperand(0, "cannot read literal, inst bytes left " +
1161                         Twine(Bytes.size()));
1162     }
1163     HasLiteral = true;
1164     Literal = eatBytes<uint32_t>(Bytes);
1165   }
1166   return MCOperand::createImm(Literal);
1167 }
1168 
1169 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1170   using namespace AMDGPU::EncValues;
1171 
1172   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1173   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1174     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1175     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1176       // Cast prevents negative overflow.
1177 }
1178 
1179 static int64_t getInlineImmVal32(unsigned Imm) {
1180   switch (Imm) {
1181   case 240:
1182     return FloatToBits(0.5f);
1183   case 241:
1184     return FloatToBits(-0.5f);
1185   case 242:
1186     return FloatToBits(1.0f);
1187   case 243:
1188     return FloatToBits(-1.0f);
1189   case 244:
1190     return FloatToBits(2.0f);
1191   case 245:
1192     return FloatToBits(-2.0f);
1193   case 246:
1194     return FloatToBits(4.0f);
1195   case 247:
1196     return FloatToBits(-4.0f);
1197   case 248: // 1 / (2 * PI)
1198     return 0x3e22f983;
1199   default:
1200     llvm_unreachable("invalid fp inline imm");
1201   }
1202 }
1203 
1204 static int64_t getInlineImmVal64(unsigned Imm) {
1205   switch (Imm) {
1206   case 240:
1207     return DoubleToBits(0.5);
1208   case 241:
1209     return DoubleToBits(-0.5);
1210   case 242:
1211     return DoubleToBits(1.0);
1212   case 243:
1213     return DoubleToBits(-1.0);
1214   case 244:
1215     return DoubleToBits(2.0);
1216   case 245:
1217     return DoubleToBits(-2.0);
1218   case 246:
1219     return DoubleToBits(4.0);
1220   case 247:
1221     return DoubleToBits(-4.0);
1222   case 248: // 1 / (2 * PI)
1223     return 0x3fc45f306dc9c882;
1224   default:
1225     llvm_unreachable("invalid fp inline imm");
1226   }
1227 }
1228 
1229 static int64_t getInlineImmVal16(unsigned Imm) {
1230   switch (Imm) {
1231   case 240:
1232     return 0x3800;
1233   case 241:
1234     return 0xB800;
1235   case 242:
1236     return 0x3C00;
1237   case 243:
1238     return 0xBC00;
1239   case 244:
1240     return 0x4000;
1241   case 245:
1242     return 0xC000;
1243   case 246:
1244     return 0x4400;
1245   case 247:
1246     return 0xC400;
1247   case 248: // 1 / (2 * PI)
1248     return 0x3118;
1249   default:
1250     llvm_unreachable("invalid fp inline imm");
1251   }
1252 }
1253 
1254 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1255   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1256       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1257 
1258   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1259   // ImmWidth 0 is a default case where operand should not allow immediates.
1260   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1261   // use it to print verbose error message.
1262   switch (ImmWidth) {
1263   case 0:
1264   case 32:
1265     return MCOperand::createImm(getInlineImmVal32(Imm));
1266   case 64:
1267     return MCOperand::createImm(getInlineImmVal64(Imm));
1268   case 16:
1269     return MCOperand::createImm(getInlineImmVal16(Imm));
1270   default:
1271     llvm_unreachable("implement me");
1272   }
1273 }
1274 
1275 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1276   using namespace AMDGPU;
1277 
1278   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1279   switch (Width) {
1280   default: // fall
1281   case OPW32:
1282   case OPW16:
1283   case OPWV216:
1284     return VGPR_32RegClassID;
1285   case OPW64:
1286   case OPWV232: return VReg_64RegClassID;
1287   case OPW96: return VReg_96RegClassID;
1288   case OPW128: return VReg_128RegClassID;
1289   case OPW160: return VReg_160RegClassID;
1290   case OPW256: return VReg_256RegClassID;
1291   case OPW288: return VReg_288RegClassID;
1292   case OPW320: return VReg_320RegClassID;
1293   case OPW352: return VReg_352RegClassID;
1294   case OPW384: return VReg_384RegClassID;
1295   case OPW512: return VReg_512RegClassID;
1296   case OPW1024: return VReg_1024RegClassID;
1297   }
1298 }
1299 
1300 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1301   using namespace AMDGPU;
1302 
1303   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1304   switch (Width) {
1305   default: // fall
1306   case OPW32:
1307   case OPW16:
1308   case OPWV216:
1309     return AGPR_32RegClassID;
1310   case OPW64:
1311   case OPWV232: return AReg_64RegClassID;
1312   case OPW96: return AReg_96RegClassID;
1313   case OPW128: return AReg_128RegClassID;
1314   case OPW160: return AReg_160RegClassID;
1315   case OPW256: return AReg_256RegClassID;
1316   case OPW288: return AReg_288RegClassID;
1317   case OPW320: return AReg_320RegClassID;
1318   case OPW352: return AReg_352RegClassID;
1319   case OPW384: return AReg_384RegClassID;
1320   case OPW512: return AReg_512RegClassID;
1321   case OPW1024: return AReg_1024RegClassID;
1322   }
1323 }
1324 
1325 
1326 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1327   using namespace AMDGPU;
1328 
1329   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1330   switch (Width) {
1331   default: // fall
1332   case OPW32:
1333   case OPW16:
1334   case OPWV216:
1335     return SGPR_32RegClassID;
1336   case OPW64:
1337   case OPWV232: return SGPR_64RegClassID;
1338   case OPW96: return SGPR_96RegClassID;
1339   case OPW128: return SGPR_128RegClassID;
1340   case OPW160: return SGPR_160RegClassID;
1341   case OPW256: return SGPR_256RegClassID;
1342   case OPW288: return SGPR_288RegClassID;
1343   case OPW320: return SGPR_320RegClassID;
1344   case OPW352: return SGPR_352RegClassID;
1345   case OPW384: return SGPR_384RegClassID;
1346   case OPW512: return SGPR_512RegClassID;
1347   }
1348 }
1349 
1350 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1351   using namespace AMDGPU;
1352 
1353   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1354   switch (Width) {
1355   default: // fall
1356   case OPW32:
1357   case OPW16:
1358   case OPWV216:
1359     return TTMP_32RegClassID;
1360   case OPW64:
1361   case OPWV232: return TTMP_64RegClassID;
1362   case OPW128: return TTMP_128RegClassID;
1363   case OPW256: return TTMP_256RegClassID;
1364   case OPW288: return TTMP_288RegClassID;
1365   case OPW320: return TTMP_320RegClassID;
1366   case OPW352: return TTMP_352RegClassID;
1367   case OPW384: return TTMP_384RegClassID;
1368   case OPW512: return TTMP_512RegClassID;
1369   }
1370 }
1371 
1372 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1373   using namespace AMDGPU::EncValues;
1374 
1375   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1376   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1377 
1378   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1379 }
1380 
1381 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1382                                           bool MandatoryLiteral,
1383                                           unsigned ImmWidth) const {
1384   using namespace AMDGPU::EncValues;
1385 
1386   assert(Val < 1024); // enum10
1387 
1388   bool IsAGPR = Val & 512;
1389   Val &= 511;
1390 
1391   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1392     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1393                                    : getVgprClassId(Width), Val - VGPR_MIN);
1394   }
1395   if (Val <= SGPR_MAX) {
1396     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1397     static_assert(SGPR_MIN == 0);
1398     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1399   }
1400 
1401   int TTmpIdx = getTTmpIdx(Val);
1402   if (TTmpIdx >= 0) {
1403     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1404   }
1405 
1406   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1407     return decodeIntImmed(Val);
1408 
1409   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1410     return decodeFPImmed(ImmWidth, Val);
1411 
1412   if (Val == LITERAL_CONST) {
1413     if (MandatoryLiteral)
1414       // Keep a sentinel value for deferred setting
1415       return MCOperand::createImm(LITERAL_CONST);
1416     else
1417       return decodeLiteralConstant();
1418   }
1419 
1420   switch (Width) {
1421   case OPW32:
1422   case OPW16:
1423   case OPWV216:
1424     return decodeSpecialReg32(Val);
1425   case OPW64:
1426   case OPWV232:
1427     return decodeSpecialReg64(Val);
1428   default:
1429     llvm_unreachable("unexpected immediate type");
1430   }
1431 }
1432 
1433 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1434 // opposite of bit 0 of DstX.
1435 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1436                                                unsigned Val) const {
1437   int VDstXInd =
1438       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1439   assert(VDstXInd != -1);
1440   assert(Inst.getOperand(VDstXInd).isReg());
1441   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1442   Val |= ~XDstReg & 1;
1443   auto Width = llvm::AMDGPUDisassembler::OPW32;
1444   return createRegOperand(getVgprClassId(Width), Val);
1445 }
1446 
1447 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1448   using namespace AMDGPU;
1449 
1450   switch (Val) {
1451   // clang-format off
1452   case 102: return createRegOperand(FLAT_SCR_LO);
1453   case 103: return createRegOperand(FLAT_SCR_HI);
1454   case 104: return createRegOperand(XNACK_MASK_LO);
1455   case 105: return createRegOperand(XNACK_MASK_HI);
1456   case 106: return createRegOperand(VCC_LO);
1457   case 107: return createRegOperand(VCC_HI);
1458   case 108: return createRegOperand(TBA_LO);
1459   case 109: return createRegOperand(TBA_HI);
1460   case 110: return createRegOperand(TMA_LO);
1461   case 111: return createRegOperand(TMA_HI);
1462   case 124:
1463     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1464   case 125:
1465     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1466   case 126: return createRegOperand(EXEC_LO);
1467   case 127: return createRegOperand(EXEC_HI);
1468   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1469   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1470   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1471   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1472   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1473   case 251: return createRegOperand(SRC_VCCZ);
1474   case 252: return createRegOperand(SRC_EXECZ);
1475   case 253: return createRegOperand(SRC_SCC);
1476   case 254: return createRegOperand(LDS_DIRECT);
1477   default: break;
1478     // clang-format on
1479   }
1480   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1481 }
1482 
1483 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1484   using namespace AMDGPU;
1485 
1486   switch (Val) {
1487   case 102: return createRegOperand(FLAT_SCR);
1488   case 104: return createRegOperand(XNACK_MASK);
1489   case 106: return createRegOperand(VCC);
1490   case 108: return createRegOperand(TBA);
1491   case 110: return createRegOperand(TMA);
1492   case 124:
1493     if (isGFX11Plus())
1494       return createRegOperand(SGPR_NULL);
1495     break;
1496   case 125:
1497     if (!isGFX11Plus())
1498       return createRegOperand(SGPR_NULL);
1499     break;
1500   case 126: return createRegOperand(EXEC);
1501   case 235: return createRegOperand(SRC_SHARED_BASE);
1502   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1503   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1504   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1505   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1506   case 251: return createRegOperand(SRC_VCCZ);
1507   case 252: return createRegOperand(SRC_EXECZ);
1508   case 253: return createRegOperand(SRC_SCC);
1509   default: break;
1510   }
1511   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1512 }
1513 
1514 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1515                                             const unsigned Val,
1516                                             unsigned ImmWidth) const {
1517   using namespace AMDGPU::SDWA;
1518   using namespace AMDGPU::EncValues;
1519 
1520   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1521       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1522     // XXX: cast to int is needed to avoid stupid warning:
1523     // compare with unsigned is always true
1524     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1525         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1526       return createRegOperand(getVgprClassId(Width),
1527                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1528     }
1529     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1530         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1531                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1532       return createSRegOperand(getSgprClassId(Width),
1533                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1534     }
1535     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1536         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1537       return createSRegOperand(getTtmpClassId(Width),
1538                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1539     }
1540 
1541     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1542 
1543     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1544       return decodeIntImmed(SVal);
1545 
1546     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1547       return decodeFPImmed(ImmWidth, SVal);
1548 
1549     return decodeSpecialReg32(SVal);
1550   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1551     return createRegOperand(getVgprClassId(Width), Val);
1552   }
1553   llvm_unreachable("unsupported target");
1554 }
1555 
1556 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1557   return decodeSDWASrc(OPW16, Val, 16);
1558 }
1559 
1560 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1561   return decodeSDWASrc(OPW32, Val, 32);
1562 }
1563 
1564 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1565   using namespace AMDGPU::SDWA;
1566 
1567   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1568           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1569          "SDWAVopcDst should be present only on GFX9+");
1570 
1571   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1572 
1573   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1574     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1575 
1576     int TTmpIdx = getTTmpIdx(Val);
1577     if (TTmpIdx >= 0) {
1578       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1579       return createSRegOperand(TTmpClsId, TTmpIdx);
1580     } else if (Val > SGPR_MAX) {
1581       return IsWave64 ? decodeSpecialReg64(Val)
1582                       : decodeSpecialReg32(Val);
1583     } else {
1584       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1585     }
1586   } else {
1587     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1588   }
1589 }
1590 
1591 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1592   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64]
1593              ? decodeSrcOp(OPW64, Val)
1594              : decodeSrcOp(OPW32, Val);
1595 }
1596 
1597 bool AMDGPUDisassembler::isVI() const {
1598   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1599 }
1600 
1601 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1602 
1603 bool AMDGPUDisassembler::isGFX90A() const {
1604   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1605 }
1606 
1607 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1608 
1609 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1610 
1611 bool AMDGPUDisassembler::isGFX10Plus() const {
1612   return AMDGPU::isGFX10Plus(STI);
1613 }
1614 
1615 bool AMDGPUDisassembler::isGFX11() const {
1616   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1617 }
1618 
1619 bool AMDGPUDisassembler::isGFX11Plus() const {
1620   return AMDGPU::isGFX11Plus(STI);
1621 }
1622 
1623 
1624 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1625   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1626 }
1627 
1628 //===----------------------------------------------------------------------===//
1629 // AMDGPU specific symbol handling
1630 //===----------------------------------------------------------------------===//
1631 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1632   do {                                                                         \
1633     KdStream << Indent << DIRECTIVE " "                                        \
1634              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1635   } while (0)
1636 
1637 // NOLINTNEXTLINE(readability-identifier-naming)
1638 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1639     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1640   using namespace amdhsa;
1641   StringRef Indent = "\t";
1642 
1643   // We cannot accurately backward compute #VGPRs used from
1644   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1645   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1646   // simply calculate the inverse of what the assembler does.
1647 
1648   uint32_t GranulatedWorkitemVGPRCount =
1649       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1650       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1651 
1652   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1653                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1654 
1655   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1656 
1657   // We cannot backward compute values used to calculate
1658   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1659   // directives can't be computed:
1660   // .amdhsa_reserve_vcc
1661   // .amdhsa_reserve_flat_scratch
1662   // .amdhsa_reserve_xnack_mask
1663   // They take their respective default values if not specified in the assembly.
1664   //
1665   // GRANULATED_WAVEFRONT_SGPR_COUNT
1666   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1667   //
1668   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1669   // are set to 0. So while disassembling we consider that:
1670   //
1671   // GRANULATED_WAVEFRONT_SGPR_COUNT
1672   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1673   //
1674   // The disassembler cannot recover the original values of those 3 directives.
1675 
1676   uint32_t GranulatedWavefrontSGPRCount =
1677       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1678       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1679 
1680   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1681     return MCDisassembler::Fail;
1682 
1683   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1684                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1685 
1686   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1687   if (!hasArchitectedFlatScratch())
1688     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1689   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1690   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1691 
1692   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1693     return MCDisassembler::Fail;
1694 
1695   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1696                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1697   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1698                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1699   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1700                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1701   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1702                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1703 
1704   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1705     return MCDisassembler::Fail;
1706 
1707   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1708 
1709   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1710     return MCDisassembler::Fail;
1711 
1712   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1713 
1714   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1715     return MCDisassembler::Fail;
1716 
1717   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1718     return MCDisassembler::Fail;
1719 
1720   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1721 
1722   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1723     return MCDisassembler::Fail;
1724 
1725   if (isGFX10Plus()) {
1726     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1727                     COMPUTE_PGM_RSRC1_WGP_MODE);
1728     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1729     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1730   }
1731   return MCDisassembler::Success;
1732 }
1733 
1734 // NOLINTNEXTLINE(readability-identifier-naming)
1735 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1736     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1737   using namespace amdhsa;
1738   StringRef Indent = "\t";
1739   if (hasArchitectedFlatScratch())
1740     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1741                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1742   else
1743     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1744                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1745   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1746                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1747   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1748                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1749   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1750                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1751   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1752                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1753   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1754                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1755 
1756   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1757     return MCDisassembler::Fail;
1758 
1759   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1760     return MCDisassembler::Fail;
1761 
1762   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1763     return MCDisassembler::Fail;
1764 
1765   PRINT_DIRECTIVE(
1766       ".amdhsa_exception_fp_ieee_invalid_op",
1767       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1768   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1769                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1770   PRINT_DIRECTIVE(
1771       ".amdhsa_exception_fp_ieee_div_zero",
1772       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1773   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1774                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1775   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1776                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1777   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1778                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1779   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1780                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1781 
1782   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1783     return MCDisassembler::Fail;
1784 
1785   return MCDisassembler::Success;
1786 }
1787 
1788 #undef PRINT_DIRECTIVE
1789 
1790 MCDisassembler::DecodeStatus
1791 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1792     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1793     raw_string_ostream &KdStream) const {
1794 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1795   do {                                                                         \
1796     KdStream << Indent << DIRECTIVE " "                                        \
1797              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1798   } while (0)
1799 
1800   uint16_t TwoByteBuffer = 0;
1801   uint32_t FourByteBuffer = 0;
1802 
1803   StringRef ReservedBytes;
1804   StringRef Indent = "\t";
1805 
1806   assert(Bytes.size() == 64);
1807   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1808 
1809   switch (Cursor.tell()) {
1810   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1811     FourByteBuffer = DE.getU32(Cursor);
1812     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1813              << '\n';
1814     return MCDisassembler::Success;
1815 
1816   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1817     FourByteBuffer = DE.getU32(Cursor);
1818     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1819              << FourByteBuffer << '\n';
1820     return MCDisassembler::Success;
1821 
1822   case amdhsa::KERNARG_SIZE_OFFSET:
1823     FourByteBuffer = DE.getU32(Cursor);
1824     KdStream << Indent << ".amdhsa_kernarg_size "
1825              << FourByteBuffer << '\n';
1826     return MCDisassembler::Success;
1827 
1828   case amdhsa::RESERVED0_OFFSET:
1829     // 4 reserved bytes, must be 0.
1830     ReservedBytes = DE.getBytes(Cursor, 4);
1831     for (int I = 0; I < 4; ++I) {
1832       if (ReservedBytes[I] != 0) {
1833         return MCDisassembler::Fail;
1834       }
1835     }
1836     return MCDisassembler::Success;
1837 
1838   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1839     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1840     // So far no directive controls this for Code Object V3, so simply skip for
1841     // disassembly.
1842     DE.skip(Cursor, 8);
1843     return MCDisassembler::Success;
1844 
1845   case amdhsa::RESERVED1_OFFSET:
1846     // 20 reserved bytes, must be 0.
1847     ReservedBytes = DE.getBytes(Cursor, 20);
1848     for (int I = 0; I < 20; ++I) {
1849       if (ReservedBytes[I] != 0) {
1850         return MCDisassembler::Fail;
1851       }
1852     }
1853     return MCDisassembler::Success;
1854 
1855   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1856     // COMPUTE_PGM_RSRC3
1857     //  - Only set for GFX10, GFX6-9 have this to be 0.
1858     //  - Currently no directives directly control this.
1859     FourByteBuffer = DE.getU32(Cursor);
1860     if (!isGFX10Plus() && FourByteBuffer) {
1861       return MCDisassembler::Fail;
1862     }
1863     return MCDisassembler::Success;
1864 
1865   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1866     FourByteBuffer = DE.getU32(Cursor);
1867     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1868         MCDisassembler::Fail) {
1869       return MCDisassembler::Fail;
1870     }
1871     return MCDisassembler::Success;
1872 
1873   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1874     FourByteBuffer = DE.getU32(Cursor);
1875     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1876         MCDisassembler::Fail) {
1877       return MCDisassembler::Fail;
1878     }
1879     return MCDisassembler::Success;
1880 
1881   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1882     using namespace amdhsa;
1883     TwoByteBuffer = DE.getU16(Cursor);
1884 
1885     if (!hasArchitectedFlatScratch())
1886       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1887                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1888     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1889                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1890     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1891                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1892     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1893                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1894     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1895                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1896     if (!hasArchitectedFlatScratch())
1897       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1898                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1899     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1900                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1901 
1902     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1903       return MCDisassembler::Fail;
1904 
1905     // Reserved for GFX9
1906     if (isGFX9() &&
1907         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1908       return MCDisassembler::Fail;
1909     } else if (isGFX10Plus()) {
1910       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1911                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1912     }
1913 
1914     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
1915       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
1916                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
1917 
1918     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1919       return MCDisassembler::Fail;
1920 
1921     return MCDisassembler::Success;
1922 
1923   case amdhsa::RESERVED2_OFFSET:
1924     // 6 bytes from here are reserved, must be 0.
1925     ReservedBytes = DE.getBytes(Cursor, 6);
1926     for (int I = 0; I < 6; ++I) {
1927       if (ReservedBytes[I] != 0)
1928         return MCDisassembler::Fail;
1929     }
1930     return MCDisassembler::Success;
1931 
1932   default:
1933     llvm_unreachable("Unhandled index. Case statements cover everything.");
1934     return MCDisassembler::Fail;
1935   }
1936 #undef PRINT_DIRECTIVE
1937 }
1938 
1939 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1940     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1941   // CP microcode requires the kernel descriptor to be 64 aligned.
1942   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1943     return MCDisassembler::Fail;
1944 
1945   std::string Kd;
1946   raw_string_ostream KdStream(Kd);
1947   KdStream << ".amdhsa_kernel " << KdName << '\n';
1948 
1949   DataExtractor::Cursor C(0);
1950   while (C && C.tell() < Bytes.size()) {
1951     MCDisassembler::DecodeStatus Status =
1952         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1953 
1954     cantFail(C.takeError());
1955 
1956     if (Status == MCDisassembler::Fail)
1957       return MCDisassembler::Fail;
1958   }
1959   KdStream << ".end_amdhsa_kernel\n";
1960   outs() << KdStream.str();
1961   return MCDisassembler::Success;
1962 }
1963 
1964 std::optional<MCDisassembler::DecodeStatus>
1965 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1966                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1967                                   raw_ostream &CStream) const {
1968   // Right now only kernel descriptor needs to be handled.
1969   // We ignore all other symbols for target specific handling.
1970   // TODO:
1971   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1972   // Object V2 and V3 when symbols are marked protected.
1973 
1974   // amd_kernel_code_t for Code Object V2.
1975   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1976     Size = 256;
1977     return MCDisassembler::Fail;
1978   }
1979 
1980   // Code Object V3 kernel descriptors.
1981   StringRef Name = Symbol.Name;
1982   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1983     Size = 64; // Size = 64 regardless of success or failure.
1984     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1985   }
1986   return std::nullopt;
1987 }
1988 
1989 //===----------------------------------------------------------------------===//
1990 // AMDGPUSymbolizer
1991 //===----------------------------------------------------------------------===//
1992 
1993 // Try to find symbol name for specified label
1994 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
1995     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
1996     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
1997     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
1998 
1999   if (!IsBranch) {
2000     return false;
2001   }
2002 
2003   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2004   if (!Symbols)
2005     return false;
2006 
2007   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2008     return Val.Addr == static_cast<uint64_t>(Value) &&
2009            Val.Type == ELF::STT_NOTYPE;
2010   });
2011   if (Result != Symbols->end()) {
2012     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2013     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2014     Inst.addOperand(MCOperand::createExpr(Add));
2015     return true;
2016   }
2017   // Add to list of referenced addresses, so caller can synthesize a label.
2018   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2019   return false;
2020 }
2021 
2022 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2023                                                        int64_t Value,
2024                                                        uint64_t Address) {
2025   llvm_unreachable("unimplemented");
2026 }
2027 
2028 //===----------------------------------------------------------------------===//
2029 // Initialization
2030 //===----------------------------------------------------------------------===//
2031 
2032 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2033                               LLVMOpInfoCallback /*GetOpInfo*/,
2034                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2035                               void *DisInfo,
2036                               MCContext *Ctx,
2037                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2038   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2039 }
2040 
2041 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2042                                                 const MCSubtargetInfo &STI,
2043                                                 MCContext &Ctx) {
2044   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2045 }
2046 
2047 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2048   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2049                                          createAMDGPUDisassembler);
2050   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2051                                        createAMDGPUSymbolizer);
2052 }
2053