xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 7425077e31c9b505103a98299a728bc496bd933c)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VGPR_32_Lo128)
123 DECODE_OPERAND_REG(VRegOrLds_32)
124 DECODE_OPERAND_REG(VS_32)
125 DECODE_OPERAND_REG(VS_64)
126 DECODE_OPERAND_REG(VS_128)
127 
128 DECODE_OPERAND_REG(VReg_64)
129 DECODE_OPERAND_REG(VReg_96)
130 DECODE_OPERAND_REG(VReg_128)
131 DECODE_OPERAND_REG(VReg_256)
132 DECODE_OPERAND_REG(VReg_512)
133 DECODE_OPERAND_REG(VReg_1024)
134 
135 DECODE_OPERAND_REG(SReg_32)
136 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
137 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
138 DECODE_OPERAND_REG(SRegOrLds_32)
139 DECODE_OPERAND_REG(SReg_64)
140 DECODE_OPERAND_REG(SReg_64_XEXEC)
141 DECODE_OPERAND_REG(SReg_128)
142 DECODE_OPERAND_REG(SReg_256)
143 DECODE_OPERAND_REG(SReg_512)
144 
145 DECODE_OPERAND_REG(AGPR_32)
146 DECODE_OPERAND_REG(AReg_64)
147 DECODE_OPERAND_REG(AReg_128)
148 DECODE_OPERAND_REG(AReg_256)
149 DECODE_OPERAND_REG(AReg_512)
150 DECODE_OPERAND_REG(AReg_1024)
151 DECODE_OPERAND_REG(AV_32)
152 DECODE_OPERAND_REG(AV_64)
153 DECODE_OPERAND_REG(AV_128)
154 DECODE_OPERAND_REG(AVDst_128)
155 DECODE_OPERAND_REG(AVDst_512)
156 
157 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
158                                          uint64_t Addr,
159                                          const MCDisassembler *Decoder) {
160   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
161   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
162 }
163 
164 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
165                                            uint64_t Addr,
166                                            const MCDisassembler *Decoder) {
167   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
168   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
169 }
170 
171 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
172                                            uint64_t Addr,
173                                            const MCDisassembler *Decoder) {
174   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
175   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
176 }
177 
178 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
179                                         uint64_t Addr,
180                                         const MCDisassembler *Decoder) {
181   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
182   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
183 }
184 
185 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
186                                         uint64_t Addr,
187                                         const MCDisassembler *Decoder) {
188   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
189   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
190 }
191 
192 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
193                                           uint64_t Addr,
194                                           const MCDisassembler *Decoder) {
195   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
196   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
197 }
198 
199 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
200                                            uint64_t Addr,
201                                            const MCDisassembler *Decoder) {
202   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
203   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
204 }
205 
206 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
207                                            uint64_t Addr,
208                                            const MCDisassembler *Decoder) {
209   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
210   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
211 }
212 
213 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
214                                            uint64_t Addr,
215                                            const MCDisassembler *Decoder) {
216   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
217   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
218 }
219 
220 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
221                                             uint64_t Addr,
222                                             const MCDisassembler *Decoder) {
223   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
224   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
225 }
226 
227 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
228                                           uint64_t Addr,
229                                           const MCDisassembler *Decoder) {
230   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
231   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
232 }
233 
234 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
235                                            uint64_t Addr,
236                                            const MCDisassembler *Decoder) {
237   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
238   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
239 }
240 
241 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
242                                            uint64_t Addr,
243                                            const MCDisassembler *Decoder) {
244   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
245   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
246 }
247 
248 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
249                                            uint64_t Addr,
250                                            const MCDisassembler *Decoder) {
251   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
252   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
253 }
254 
255 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
256                                             uint64_t Addr,
257                                             const MCDisassembler *Decoder) {
258   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
259   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
260 }
261 
262 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
263                                           uint64_t Addr,
264                                           const MCDisassembler *Decoder) {
265   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
266   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
267 }
268 
269 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
270                                           uint64_t Addr,
271                                           const MCDisassembler *Decoder) {
272   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
273   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
274 }
275 
276 static DecodeStatus
277 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
278                              const MCDisassembler *Decoder) {
279   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
280   return addOperand(
281       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
282 }
283 
284 static DecodeStatus
285 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
286                              const MCDisassembler *Decoder) {
287   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
288   return addOperand(
289       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
290 }
291 
292 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
293                                           uint64_t Addr, const void *Decoder) {
294   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
295   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
296 }
297 
298 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
299                           const MCRegisterInfo *MRI) {
300   if (OpIdx < 0)
301     return false;
302 
303   const MCOperand &Op = Inst.getOperand(OpIdx);
304   if (!Op.isReg())
305     return false;
306 
307   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
308   auto Reg = Sub ? Sub : Op.getReg();
309   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
310 }
311 
312 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
313                                              AMDGPUDisassembler::OpWidthTy Opw,
314                                              const MCDisassembler *Decoder) {
315   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
316   if (!DAsm->isGFX90A()) {
317     Imm &= 511;
318   } else {
319     // If atomic has both vdata and vdst their register classes are tied.
320     // The bit is decoded along with the vdst, first operand. We need to
321     // change register class to AGPR if vdst was AGPR.
322     // If a DS instruction has both data0 and data1 their register classes
323     // are also tied.
324     unsigned Opc = Inst.getOpcode();
325     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
326     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
327                                                         : AMDGPU::OpName::vdata;
328     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
329     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
330     if ((int)Inst.getNumOperands() == DataIdx) {
331       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
332       if (IsAGPROperand(Inst, DstIdx, MRI))
333         Imm |= 512;
334     }
335 
336     if (TSFlags & SIInstrFlags::DS) {
337       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
338       if ((int)Inst.getNumOperands() == Data2Idx &&
339           IsAGPROperand(Inst, DataIdx, MRI))
340         Imm |= 512;
341     }
342   }
343   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
344 }
345 
346 static DecodeStatus
347 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
348                              const MCDisassembler *Decoder) {
349   return decodeOperand_AVLdSt_Any(Inst, Imm,
350                                   AMDGPUDisassembler::OPW32, Decoder);
351 }
352 
353 static DecodeStatus
354 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
355                              const MCDisassembler *Decoder) {
356   return decodeOperand_AVLdSt_Any(Inst, Imm,
357                                   AMDGPUDisassembler::OPW64, Decoder);
358 }
359 
360 static DecodeStatus
361 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
362                              const MCDisassembler *Decoder) {
363   return decodeOperand_AVLdSt_Any(Inst, Imm,
364                                   AMDGPUDisassembler::OPW96, Decoder);
365 }
366 
367 static DecodeStatus
368 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
369                               const MCDisassembler *Decoder) {
370   return decodeOperand_AVLdSt_Any(Inst, Imm,
371                                   AMDGPUDisassembler::OPW128, Decoder);
372 }
373 
374 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
375                                           uint64_t Addr,
376                                           const MCDisassembler *Decoder) {
377   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
378   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
379 }
380 
381 #define DECODE_SDWA(DecName) \
382 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
383 
384 DECODE_SDWA(Src32)
385 DECODE_SDWA(Src16)
386 DECODE_SDWA(VopcDst)
387 
388 #include "AMDGPUGenDisassemblerTables.inc"
389 
390 //===----------------------------------------------------------------------===//
391 //
392 //===----------------------------------------------------------------------===//
393 
394 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
395   assert(Bytes.size() >= sizeof(T));
396   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
397   Bytes = Bytes.slice(sizeof(T));
398   return Res;
399 }
400 
401 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
402   assert(Bytes.size() >= 12);
403   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
404       Bytes.data());
405   Bytes = Bytes.slice(8);
406   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
407       Bytes.data());
408   Bytes = Bytes.slice(4);
409   return DecoderUInt128(Lo, Hi);
410 }
411 
412 // The disassembler is greedy, so we need to check FI operand value to
413 // not parse a dpp if the correct literal is not set. For dpp16 the
414 // autogenerated decoder checks the dpp literal
415 static bool isValidDPP8(const MCInst &MI) {
416   using namespace llvm::AMDGPU::DPP;
417   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
418   assert(FiIdx != -1);
419   if ((unsigned)FiIdx >= MI.getNumOperands())
420     return false;
421   unsigned Fi = MI.getOperand(FiIdx).getImm();
422   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
423 }
424 
425 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
426                                                 ArrayRef<uint8_t> Bytes_,
427                                                 uint64_t Address,
428                                                 raw_ostream &CS) const {
429   CommentStream = &CS;
430   bool IsSDWA = false;
431 
432   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
433   Bytes = Bytes_.slice(0, MaxInstBytesNum);
434 
435   DecodeStatus Res = MCDisassembler::Fail;
436   do {
437     // ToDo: better to switch encoding length using some bit predicate
438     // but it is unknown yet, so try all we can
439 
440     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
441     // encodings
442     if (isGFX11Plus() && Bytes.size() >= 12 ) {
443       DecoderUInt128 DecW = eat12Bytes(Bytes);
444       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
445                                           Address);
446       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
447         break;
448       MI = MCInst(); // clear
449       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
450                                           Address);
451       if (Res) {
452         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
453           convertVOP3PDPPInst(MI);
454         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
455           convertVOPCDPPInst(MI); // Special VOP3 case
456         else {
457           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
458           convertVOP3DPPInst(MI); // Regular VOP3 case
459         }
460         break;
461       }
462       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
463       if (Res)
464         break;
465     }
466     // Reinitialize Bytes
467     Bytes = Bytes_.slice(0, MaxInstBytesNum);
468 
469     if (Bytes.size() >= 8) {
470       const uint64_t QW = eatBytes<uint64_t>(Bytes);
471 
472       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
473         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
474         if (Res) {
475           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
476               == -1)
477             break;
478           if (convertDPP8Inst(MI) == MCDisassembler::Success)
479             break;
480           MI = MCInst(); // clear
481         }
482       }
483 
484       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
485       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
486         break;
487       MI = MCInst(); // clear
488 
489       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
490       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
491         break;
492       MI = MCInst(); // clear
493 
494       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
495       if (Res) break;
496 
497       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
498       if (Res) {
499         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
500           convertVOPCDPPInst(MI);
501         break;
502       }
503 
504       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
505       if (Res) { IsSDWA = true;  break; }
506 
507       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
508       if (Res) { IsSDWA = true;  break; }
509 
510       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
511       if (Res) { IsSDWA = true;  break; }
512 
513       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
514         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
515         if (Res)
516           break;
517       }
518 
519       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
520       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
521       // table first so we print the correct name.
522       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
523         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
524         if (Res)
525           break;
526       }
527     }
528 
529     // Reinitialize Bytes as DPP64 could have eaten too much
530     Bytes = Bytes_.slice(0, MaxInstBytesNum);
531 
532     // Try decode 32-bit instruction
533     if (Bytes.size() < 4) break;
534     const uint32_t DW = eatBytes<uint32_t>(Bytes);
535     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
536     if (Res) break;
537 
538     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
539     if (Res) break;
540 
541     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
542     if (Res) break;
543 
544     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
545       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
546       if (Res)
547         break;
548     }
549 
550     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
551       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
552       if (Res) break;
553     }
554 
555     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
556     if (Res) break;
557 
558     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
559     if (Res) break;
560 
561     if (Bytes.size() < 4) break;
562     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
563 
564     if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) {
565       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address);
566       if (Res)
567         break;
568     }
569 
570     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
571       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
572       if (Res)
573         break;
574     }
575 
576     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
577     if (Res) break;
578 
579     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
580     if (Res) break;
581 
582     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
583     if (Res) break;
584 
585     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
586     if (Res) break;
587 
588     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
589     if (Res)
590       break;
591 
592     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
593   } while (false);
594 
595   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
596               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
597               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
598               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
599               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
600               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
601               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
602               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
603               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
604               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
605               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
606               MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
607               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
608               MI.getOpcode() == AMDGPU::V_FMAC_F16_t16_e64_gfx11)) {
609     // Insert dummy unused src2_modifiers.
610     insertNamedMCOperand(MI, MCOperand::createImm(0),
611                          AMDGPU::OpName::src2_modifiers);
612   }
613 
614   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
615           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
616     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
617                                              AMDGPU::OpName::cpol);
618     if (CPolPos != -1) {
619       unsigned CPol =
620           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
621               AMDGPU::CPol::GLC : 0;
622       if (MI.getNumOperands() <= (unsigned)CPolPos) {
623         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
624                              AMDGPU::OpName::cpol);
625       } else if (CPol) {
626         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
627       }
628     }
629   }
630 
631   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
632               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
633              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
634     // GFX90A lost TFE, its place is occupied by ACC.
635     int TFEOpIdx =
636         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
637     if (TFEOpIdx != -1) {
638       auto TFEIter = MI.begin();
639       std::advance(TFEIter, TFEOpIdx);
640       MI.insert(TFEIter, MCOperand::createImm(0));
641     }
642   }
643 
644   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
645               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
646     int SWZOpIdx =
647         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
648     if (SWZOpIdx != -1) {
649       auto SWZIter = MI.begin();
650       std::advance(SWZIter, SWZOpIdx);
651       MI.insert(SWZIter, MCOperand::createImm(0));
652     }
653   }
654 
655   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
656     int VAddr0Idx =
657         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
658     int RsrcIdx =
659         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
660     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
661     if (VAddr0Idx >= 0 && NSAArgs > 0) {
662       unsigned NSAWords = (NSAArgs + 3) / 4;
663       if (Bytes.size() < 4 * NSAWords) {
664         Res = MCDisassembler::Fail;
665       } else {
666         for (unsigned i = 0; i < NSAArgs; ++i) {
667           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
668           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
669           MI.insert(MI.begin() + VAddrIdx,
670                     createRegOperand(VAddrRCID, Bytes[i]));
671         }
672         Bytes = Bytes.slice(4 * NSAWords);
673       }
674     }
675 
676     if (Res)
677       Res = convertMIMGInst(MI);
678   }
679 
680   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
681     Res = convertEXPInst(MI);
682 
683   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
684     Res = convertVINTERPInst(MI);
685 
686   if (Res && IsSDWA)
687     Res = convertSDWAInst(MI);
688 
689   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
690                                               AMDGPU::OpName::vdst_in);
691   if (VDstIn_Idx != -1) {
692     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
693                            MCOI::OperandConstraint::TIED_TO);
694     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
695          !MI.getOperand(VDstIn_Idx).isReg() ||
696          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
697       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
698         MI.erase(&MI.getOperand(VDstIn_Idx));
699       insertNamedMCOperand(MI,
700         MCOperand::createReg(MI.getOperand(Tied).getReg()),
701         AMDGPU::OpName::vdst_in);
702     }
703   }
704 
705   int ImmLitIdx =
706       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
707   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
708   if (Res && ImmLitIdx != -1 && !IsSOPK)
709     Res = convertFMAanyK(MI, ImmLitIdx);
710 
711   // if the opcode was not recognized we'll assume a Size of 4 bytes
712   // (unless there are fewer bytes left)
713   Size = Res ? (MaxInstBytesNum - Bytes.size())
714              : std::min((size_t)4, Bytes_.size());
715   return Res;
716 }
717 
718 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
719   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
720     // The MCInst still has these fields even though they are no longer encoded
721     // in the GFX11 instruction.
722     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
723     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
724   }
725   return MCDisassembler::Success;
726 }
727 
728 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
729   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
730       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
731       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
732       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
733     // The MCInst has this field that is not directly encoded in the
734     // instruction.
735     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
736   }
737   return MCDisassembler::Success;
738 }
739 
740 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
741   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
742       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
743     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
744       // VOPC - insert clamp
745       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
746   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
747     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
748     if (SDst != -1) {
749       // VOPC - insert VCC register as sdst
750       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
751                            AMDGPU::OpName::sdst);
752     } else {
753       // VOP1/2 - insert omod if present in instruction
754       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
755     }
756   }
757   return MCDisassembler::Success;
758 }
759 
760 struct VOPModifiers {
761   unsigned OpSel = 0;
762   unsigned OpSelHi = 0;
763   unsigned NegLo = 0;
764   unsigned NegHi = 0;
765 };
766 
767 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
768 // Note that these values do not affect disassembler output,
769 // so this is only necessary for consistency with src_modifiers.
770 static VOPModifiers collectVOPModifiers(const MCInst &MI,
771                                         bool IsVOP3P = false) {
772   VOPModifiers Modifiers;
773   unsigned Opc = MI.getOpcode();
774   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
775                         AMDGPU::OpName::src1_modifiers,
776                         AMDGPU::OpName::src2_modifiers};
777   for (int J = 0; J < 3; ++J) {
778     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
779     if (OpIdx == -1)
780       continue;
781 
782     unsigned Val = MI.getOperand(OpIdx).getImm();
783 
784     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
785     if (IsVOP3P) {
786       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
787       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
788       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
789     } else if (J == 0) {
790       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
791     }
792   }
793 
794   return Modifiers;
795 }
796 
797 // MAC opcodes have special old and src2 operands.
798 // src2 is tied to dst, while old is not tied (but assumed to be).
799 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
800   constexpr int DST_IDX = 0;
801   auto Opcode = MI.getOpcode();
802   const auto &Desc = MCII->get(Opcode);
803   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
804 
805   if (OldIdx != -1 && Desc.getOperandConstraint(
806                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
807     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
808     assert(Desc.getOperandConstraint(
809                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
810                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
811     (void)DST_IDX;
812     return true;
813   }
814 
815   return false;
816 }
817 
818 // Create dummy old operand and insert dummy unused src2_modifiers
819 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
820   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
821   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
822   insertNamedMCOperand(MI, MCOperand::createImm(0),
823                        AMDGPU::OpName::src2_modifiers);
824 }
825 
826 // We must check FI == literal to reject not genuine dpp8 insts, and we must
827 // first add optional MI operands to check FI
828 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
829   unsigned Opc = MI.getOpcode();
830   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
831     convertVOP3PDPPInst(MI);
832   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
833              AMDGPU::isVOPC64DPP(Opc)) {
834     convertVOPCDPPInst(MI);
835   } else {
836     if (isMacDPP(MI))
837       convertMacDPPInst(MI);
838 
839     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
840     if (MI.getNumOperands() < DescNumOps &&
841         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
842       auto Mods = collectVOPModifiers(MI);
843       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
844                            AMDGPU::OpName::op_sel);
845     } else {
846       // Insert dummy unused src modifiers.
847       if (MI.getNumOperands() < DescNumOps &&
848           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
849         insertNamedMCOperand(MI, MCOperand::createImm(0),
850                              AMDGPU::OpName::src0_modifiers);
851 
852       if (MI.getNumOperands() < DescNumOps &&
853           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
854         insertNamedMCOperand(MI, MCOperand::createImm(0),
855                              AMDGPU::OpName::src1_modifiers);
856     }
857   }
858   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
859 }
860 
861 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
862   if (isMacDPP(MI))
863     convertMacDPPInst(MI);
864 
865   unsigned Opc = MI.getOpcode();
866   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
867   if (MI.getNumOperands() < DescNumOps &&
868       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
869     auto Mods = collectVOPModifiers(MI);
870     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
871                          AMDGPU::OpName::op_sel);
872   }
873   return MCDisassembler::Success;
874 }
875 
876 // Note that before gfx10, the MIMG encoding provided no information about
877 // VADDR size. Consequently, decoded instructions always show address as if it
878 // has 1 dword, which could be not really so.
879 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
880 
881   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
882                                            AMDGPU::OpName::vdst);
883 
884   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
885                                             AMDGPU::OpName::vdata);
886   int VAddr0Idx =
887       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
888   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
889                                             AMDGPU::OpName::dmask);
890 
891   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
892                                             AMDGPU::OpName::tfe);
893   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
894                                             AMDGPU::OpName::d16);
895 
896   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
897   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
898       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
899 
900   assert(VDataIdx != -1);
901   if (BaseOpcode->BVH) {
902     // Add A16 operand for intersect_ray instructions
903     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16))
904       addOperand(MI, MCOperand::createImm(1));
905     return MCDisassembler::Success;
906   }
907 
908   bool IsAtomic = (VDstIdx != -1);
909   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
910   bool IsNSA = false;
911   unsigned AddrSize = Info->VAddrDwords;
912 
913   if (isGFX10Plus()) {
914     unsigned DimIdx =
915         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
916     int A16Idx =
917         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
918     const AMDGPU::MIMGDimInfo *Dim =
919         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
920     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
921 
922     AddrSize =
923         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
924 
925     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
926             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
927     if (!IsNSA) {
928       if (AddrSize > 8)
929         AddrSize = 16;
930     } else {
931       if (AddrSize > Info->VAddrDwords) {
932         // The NSA encoding does not contain enough operands for the combination
933         // of base opcode / dimension. Should this be an error?
934         return MCDisassembler::Success;
935       }
936     }
937   }
938 
939   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
940   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
941 
942   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
943   if (D16 && AMDGPU::hasPackedD16(STI)) {
944     DstSize = (DstSize + 1) / 2;
945   }
946 
947   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
948     DstSize += 1;
949 
950   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
951     return MCDisassembler::Success;
952 
953   int NewOpcode =
954       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
955   if (NewOpcode == -1)
956     return MCDisassembler::Success;
957 
958   // Widen the register to the correct number of enabled channels.
959   unsigned NewVdata = AMDGPU::NoRegister;
960   if (DstSize != Info->VDataDwords) {
961     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
962 
963     // Get first subregister of VData
964     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
965     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
966     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
967 
968     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
969                                        &MRI.getRegClass(DataRCID));
970     if (NewVdata == AMDGPU::NoRegister) {
971       // It's possible to encode this such that the low register + enabled
972       // components exceeds the register count.
973       return MCDisassembler::Success;
974     }
975   }
976 
977   // If not using NSA on GFX10+, widen address register to correct size.
978   unsigned NewVAddr0 = AMDGPU::NoRegister;
979   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
980     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
981     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
982     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
983 
984     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
985     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
986                                         &MRI.getRegClass(AddrRCID));
987     if (NewVAddr0 == AMDGPU::NoRegister)
988       return MCDisassembler::Success;
989   }
990 
991   MI.setOpcode(NewOpcode);
992 
993   if (NewVdata != AMDGPU::NoRegister) {
994     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
995 
996     if (IsAtomic) {
997       // Atomic operations have an additional operand (a copy of data)
998       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
999     }
1000   }
1001 
1002   if (NewVAddr0 != AMDGPU::NoRegister) {
1003     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
1004   } else if (IsNSA) {
1005     assert(AddrSize <= Info->VAddrDwords);
1006     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1007              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1008   }
1009 
1010   return MCDisassembler::Success;
1011 }
1012 
1013 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1014 // decoder only adds to src_modifiers, so manually add the bits to the other
1015 // operands.
1016 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1017   unsigned Opc = MI.getOpcode();
1018   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1019   auto Mods = collectVOPModifiers(MI, true);
1020 
1021   if (MI.getNumOperands() < DescNumOps &&
1022       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1023     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1024 
1025   if (MI.getNumOperands() < DescNumOps &&
1026       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1027     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1028                          AMDGPU::OpName::op_sel);
1029   if (MI.getNumOperands() < DescNumOps &&
1030       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1031     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1032                          AMDGPU::OpName::op_sel_hi);
1033   if (MI.getNumOperands() < DescNumOps &&
1034       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1035     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1036                          AMDGPU::OpName::neg_lo);
1037   if (MI.getNumOperands() < DescNumOps &&
1038       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1039     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1040                          AMDGPU::OpName::neg_hi);
1041 
1042   return MCDisassembler::Success;
1043 }
1044 
1045 // Create dummy old operand and insert optional operands
1046 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1047   unsigned Opc = MI.getOpcode();
1048   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1049 
1050   if (MI.getNumOperands() < DescNumOps &&
1051       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1052     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1053 
1054   if (MI.getNumOperands() < DescNumOps &&
1055       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1056     insertNamedMCOperand(MI, MCOperand::createImm(0),
1057                          AMDGPU::OpName::src0_modifiers);
1058 
1059   if (MI.getNumOperands() < DescNumOps &&
1060       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1061     insertNamedMCOperand(MI, MCOperand::createImm(0),
1062                          AMDGPU::OpName::src1_modifiers);
1063   return MCDisassembler::Success;
1064 }
1065 
1066 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1067                                                 int ImmLitIdx) const {
1068   assert(HasLiteral && "Should have decoded a literal");
1069   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1070   unsigned DescNumOps = Desc.getNumOperands();
1071   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1072                        AMDGPU::OpName::immDeferred);
1073   assert(DescNumOps == MI.getNumOperands());
1074   for (unsigned I = 0; I < DescNumOps; ++I) {
1075     auto &Op = MI.getOperand(I);
1076     auto OpType = Desc.OpInfo[I].OperandType;
1077     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1078                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1079     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1080         IsDeferredOp)
1081       Op.setImm(Literal);
1082   }
1083   return MCDisassembler::Success;
1084 }
1085 
1086 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1087   return getContext().getRegisterInfo()->
1088     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1089 }
1090 
1091 inline
1092 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1093                                          const Twine& ErrMsg) const {
1094   *CommentStream << "Error: " + ErrMsg;
1095 
1096   // ToDo: add support for error operands to MCInst.h
1097   // return MCOperand::createError(V);
1098   return MCOperand();
1099 }
1100 
1101 inline
1102 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1103   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1104 }
1105 
1106 inline
1107 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1108                                                unsigned Val) const {
1109   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1110   if (Val >= RegCl.getNumRegs())
1111     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1112                            ": unknown register " + Twine(Val));
1113   return createRegOperand(RegCl.getRegister(Val));
1114 }
1115 
1116 inline
1117 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1118                                                 unsigned Val) const {
1119   // ToDo: SI/CI have 104 SGPRs, VI - 102
1120   // Valery: here we accepting as much as we can, let assembler sort it out
1121   int shift = 0;
1122   switch (SRegClassID) {
1123   case AMDGPU::SGPR_32RegClassID:
1124   case AMDGPU::TTMP_32RegClassID:
1125     break;
1126   case AMDGPU::SGPR_64RegClassID:
1127   case AMDGPU::TTMP_64RegClassID:
1128     shift = 1;
1129     break;
1130   case AMDGPU::SGPR_128RegClassID:
1131   case AMDGPU::TTMP_128RegClassID:
1132   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1133   // this bundle?
1134   case AMDGPU::SGPR_256RegClassID:
1135   case AMDGPU::TTMP_256RegClassID:
1136     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1137   // this bundle?
1138   case AMDGPU::SGPR_512RegClassID:
1139   case AMDGPU::TTMP_512RegClassID:
1140     shift = 2;
1141     break;
1142   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1143   // this bundle?
1144   default:
1145     llvm_unreachable("unhandled register class");
1146   }
1147 
1148   if (Val % (1 << shift)) {
1149     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1150                    << ": scalar reg isn't aligned " << Val;
1151   }
1152 
1153   return createRegOperand(SRegClassID, Val >> shift);
1154 }
1155 
1156 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1157   return decodeSrcOp(OPW32, Val);
1158 }
1159 
1160 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1161   return decodeSrcOp(OPW64, Val);
1162 }
1163 
1164 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1165   return decodeSrcOp(OPW128, Val);
1166 }
1167 
1168 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1169   return decodeSrcOp(OPW16, Val);
1170 }
1171 
1172 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1173   return decodeSrcOp(OPWV216, Val);
1174 }
1175 
1176 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1177   return decodeSrcOp(OPWV232, Val);
1178 }
1179 
1180 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32_Lo128(unsigned Val) const {
1181   return createRegOperand(AMDGPU::VGPR_32_Lo128RegClassID, Val);
1182 }
1183 
1184 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1185   // Some instructions have operand restrictions beyond what the encoding
1186   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1187   // high bit.
1188   Val &= 255;
1189 
1190   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1191 }
1192 
1193 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1194   return decodeSrcOp(OPW32, Val);
1195 }
1196 
1197 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1198   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1199 }
1200 
1201 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1202   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1203 }
1204 
1205 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1206   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1207 }
1208 
1209 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1210   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1211 }
1212 
1213 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1214   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1215 }
1216 
1217 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1218   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1219 }
1220 
1221 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1222   return decodeSrcOp(OPW32, Val);
1223 }
1224 
1225 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1226   return decodeSrcOp(OPW64, Val);
1227 }
1228 
1229 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1230   return decodeSrcOp(OPW128, Val);
1231 }
1232 
1233 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1234   using namespace AMDGPU::EncValues;
1235   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1236   return decodeSrcOp(OPW128, Val | IS_VGPR);
1237 }
1238 
1239 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1240   using namespace AMDGPU::EncValues;
1241   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1242   return decodeSrcOp(OPW512, Val | IS_VGPR);
1243 }
1244 
1245 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1246   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1247 }
1248 
1249 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1250   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1251 }
1252 
1253 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1254   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1255 }
1256 
1257 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1258   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1259 }
1260 
1261 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1262   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1263 }
1264 
1265 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1266   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1267 }
1268 
1269 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1270   // table-gen generated disassembler doesn't care about operand types
1271   // leaving only registry class so SSrc_32 operand turns into SReg_32
1272   // and therefore we accept immediates and literals here as well
1273   return decodeSrcOp(OPW32, Val);
1274 }
1275 
1276 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1277   unsigned Val) const {
1278   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1279   return decodeOperand_SReg_32(Val);
1280 }
1281 
1282 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1283   unsigned Val) const {
1284   // SReg_32_XM0 is SReg_32 without EXEC_HI
1285   return decodeOperand_SReg_32(Val);
1286 }
1287 
1288 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1289   // table-gen generated disassembler doesn't care about operand types
1290   // leaving only registry class so SSrc_32 operand turns into SReg_32
1291   // and therefore we accept immediates and literals here as well
1292   return decodeSrcOp(OPW32, Val);
1293 }
1294 
1295 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1296   return decodeSrcOp(OPW64, Val);
1297 }
1298 
1299 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1300   return decodeSrcOp(OPW64, Val);
1301 }
1302 
1303 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1304   return decodeSrcOp(OPW128, Val);
1305 }
1306 
1307 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1308   return decodeDstOp(OPW256, Val);
1309 }
1310 
1311 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1312   return decodeDstOp(OPW512, Val);
1313 }
1314 
1315 // Decode Literals for insts which always have a literal in the encoding
1316 MCOperand
1317 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1318   if (HasLiteral) {
1319     assert(
1320         AMDGPU::hasVOPD(STI) &&
1321         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1322     if (Literal != Val)
1323       return errOperand(Val, "More than one unique literal is illegal");
1324   }
1325   HasLiteral = true;
1326   Literal = Val;
1327   return MCOperand::createImm(Literal);
1328 }
1329 
1330 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1331   // For now all literal constants are supposed to be unsigned integer
1332   // ToDo: deal with signed/unsigned 64-bit integer constants
1333   // ToDo: deal with float/double constants
1334   if (!HasLiteral) {
1335     if (Bytes.size() < 4) {
1336       return errOperand(0, "cannot read literal, inst bytes left " +
1337                         Twine(Bytes.size()));
1338     }
1339     HasLiteral = true;
1340     Literal = eatBytes<uint32_t>(Bytes);
1341   }
1342   return MCOperand::createImm(Literal);
1343 }
1344 
1345 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1346   using namespace AMDGPU::EncValues;
1347 
1348   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1349   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1350     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1351     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1352       // Cast prevents negative overflow.
1353 }
1354 
1355 static int64_t getInlineImmVal32(unsigned Imm) {
1356   switch (Imm) {
1357   case 240:
1358     return FloatToBits(0.5f);
1359   case 241:
1360     return FloatToBits(-0.5f);
1361   case 242:
1362     return FloatToBits(1.0f);
1363   case 243:
1364     return FloatToBits(-1.0f);
1365   case 244:
1366     return FloatToBits(2.0f);
1367   case 245:
1368     return FloatToBits(-2.0f);
1369   case 246:
1370     return FloatToBits(4.0f);
1371   case 247:
1372     return FloatToBits(-4.0f);
1373   case 248: // 1 / (2 * PI)
1374     return 0x3e22f983;
1375   default:
1376     llvm_unreachable("invalid fp inline imm");
1377   }
1378 }
1379 
1380 static int64_t getInlineImmVal64(unsigned Imm) {
1381   switch (Imm) {
1382   case 240:
1383     return DoubleToBits(0.5);
1384   case 241:
1385     return DoubleToBits(-0.5);
1386   case 242:
1387     return DoubleToBits(1.0);
1388   case 243:
1389     return DoubleToBits(-1.0);
1390   case 244:
1391     return DoubleToBits(2.0);
1392   case 245:
1393     return DoubleToBits(-2.0);
1394   case 246:
1395     return DoubleToBits(4.0);
1396   case 247:
1397     return DoubleToBits(-4.0);
1398   case 248: // 1 / (2 * PI)
1399     return 0x3fc45f306dc9c882;
1400   default:
1401     llvm_unreachable("invalid fp inline imm");
1402   }
1403 }
1404 
1405 static int64_t getInlineImmVal16(unsigned Imm) {
1406   switch (Imm) {
1407   case 240:
1408     return 0x3800;
1409   case 241:
1410     return 0xB800;
1411   case 242:
1412     return 0x3C00;
1413   case 243:
1414     return 0xBC00;
1415   case 244:
1416     return 0x4000;
1417   case 245:
1418     return 0xC000;
1419   case 246:
1420     return 0x4400;
1421   case 247:
1422     return 0xC400;
1423   case 248: // 1 / (2 * PI)
1424     return 0x3118;
1425   default:
1426     llvm_unreachable("invalid fp inline imm");
1427   }
1428 }
1429 
1430 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1431   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1432       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1433 
1434   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1435   switch (Width) {
1436   case OPW32:
1437   case OPW128: // splat constants
1438   case OPW512:
1439   case OPW1024:
1440   case OPWV232:
1441     return MCOperand::createImm(getInlineImmVal32(Imm));
1442   case OPW64:
1443   case OPW256:
1444     return MCOperand::createImm(getInlineImmVal64(Imm));
1445   case OPW16:
1446   case OPWV216:
1447     return MCOperand::createImm(getInlineImmVal16(Imm));
1448   default:
1449     llvm_unreachable("implement me");
1450   }
1451 }
1452 
1453 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1454   using namespace AMDGPU;
1455 
1456   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1457   switch (Width) {
1458   default: // fall
1459   case OPW32:
1460   case OPW16:
1461   case OPWV216:
1462     return VGPR_32RegClassID;
1463   case OPW64:
1464   case OPWV232: return VReg_64RegClassID;
1465   case OPW96: return VReg_96RegClassID;
1466   case OPW128: return VReg_128RegClassID;
1467   case OPW160: return VReg_160RegClassID;
1468   case OPW256: return VReg_256RegClassID;
1469   case OPW512: return VReg_512RegClassID;
1470   case OPW1024: return VReg_1024RegClassID;
1471   }
1472 }
1473 
1474 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1475   using namespace AMDGPU;
1476 
1477   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1478   switch (Width) {
1479   default: // fall
1480   case OPW32:
1481   case OPW16:
1482   case OPWV216:
1483     return AGPR_32RegClassID;
1484   case OPW64:
1485   case OPWV232: return AReg_64RegClassID;
1486   case OPW96: return AReg_96RegClassID;
1487   case OPW128: return AReg_128RegClassID;
1488   case OPW160: return AReg_160RegClassID;
1489   case OPW256: return AReg_256RegClassID;
1490   case OPW512: return AReg_512RegClassID;
1491   case OPW1024: return AReg_1024RegClassID;
1492   }
1493 }
1494 
1495 
1496 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1497   using namespace AMDGPU;
1498 
1499   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1500   switch (Width) {
1501   default: // fall
1502   case OPW32:
1503   case OPW16:
1504   case OPWV216:
1505     return SGPR_32RegClassID;
1506   case OPW64:
1507   case OPWV232: return SGPR_64RegClassID;
1508   case OPW96: return SGPR_96RegClassID;
1509   case OPW128: return SGPR_128RegClassID;
1510   case OPW160: return SGPR_160RegClassID;
1511   case OPW256: return SGPR_256RegClassID;
1512   case OPW512: return SGPR_512RegClassID;
1513   }
1514 }
1515 
1516 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1517   using namespace AMDGPU;
1518 
1519   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1520   switch (Width) {
1521   default: // fall
1522   case OPW32:
1523   case OPW16:
1524   case OPWV216:
1525     return TTMP_32RegClassID;
1526   case OPW64:
1527   case OPWV232: return TTMP_64RegClassID;
1528   case OPW128: return TTMP_128RegClassID;
1529   case OPW256: return TTMP_256RegClassID;
1530   case OPW512: return TTMP_512RegClassID;
1531   }
1532 }
1533 
1534 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1535   using namespace AMDGPU::EncValues;
1536 
1537   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1538   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1539 
1540   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1541 }
1542 
1543 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1544                                           bool MandatoryLiteral) const {
1545   using namespace AMDGPU::EncValues;
1546 
1547   assert(Val < 1024); // enum10
1548 
1549   bool IsAGPR = Val & 512;
1550   Val &= 511;
1551 
1552   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1553     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1554                                    : getVgprClassId(Width), Val - VGPR_MIN);
1555   }
1556   if (Val <= SGPR_MAX) {
1557     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1558     static_assert(SGPR_MIN == 0);
1559     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1560   }
1561 
1562   int TTmpIdx = getTTmpIdx(Val);
1563   if (TTmpIdx >= 0) {
1564     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1565   }
1566 
1567   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1568     return decodeIntImmed(Val);
1569 
1570   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1571     return decodeFPImmed(Width, Val);
1572 
1573   if (Val == LITERAL_CONST) {
1574     if (MandatoryLiteral)
1575       // Keep a sentinel value for deferred setting
1576       return MCOperand::createImm(LITERAL_CONST);
1577     else
1578       return decodeLiteralConstant();
1579   }
1580 
1581   switch (Width) {
1582   case OPW32:
1583   case OPW16:
1584   case OPWV216:
1585     return decodeSpecialReg32(Val);
1586   case OPW64:
1587   case OPWV232:
1588     return decodeSpecialReg64(Val);
1589   default:
1590     llvm_unreachable("unexpected immediate type");
1591   }
1592 }
1593 
1594 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1595   using namespace AMDGPU::EncValues;
1596 
1597   assert(Val < 128);
1598   assert(Width == OPW256 || Width == OPW512);
1599 
1600   if (Val <= SGPR_MAX) {
1601     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1602     static_assert(SGPR_MIN == 0);
1603     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1604   }
1605 
1606   int TTmpIdx = getTTmpIdx(Val);
1607   if (TTmpIdx >= 0) {
1608     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1609   }
1610 
1611   llvm_unreachable("unknown dst register");
1612 }
1613 
1614 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1615 // opposite of bit 0 of DstX.
1616 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1617                                                unsigned Val) const {
1618   int VDstXInd =
1619       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1620   assert(VDstXInd != -1);
1621   assert(Inst.getOperand(VDstXInd).isReg());
1622   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1623   Val |= ~XDstReg & 1;
1624   auto Width = llvm::AMDGPUDisassembler::OPW32;
1625   return createRegOperand(getVgprClassId(Width), Val);
1626 }
1627 
1628 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1629   using namespace AMDGPU;
1630 
1631   switch (Val) {
1632   case 102: return createRegOperand(FLAT_SCR_LO);
1633   case 103: return createRegOperand(FLAT_SCR_HI);
1634   case 104: return createRegOperand(XNACK_MASK_LO);
1635   case 105: return createRegOperand(XNACK_MASK_HI);
1636   case 106: return createRegOperand(VCC_LO);
1637   case 107: return createRegOperand(VCC_HI);
1638   case 108: return createRegOperand(TBA_LO);
1639   case 109: return createRegOperand(TBA_HI);
1640   case 110: return createRegOperand(TMA_LO);
1641   case 111: return createRegOperand(TMA_HI);
1642   case 124:
1643     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1644   case 125:
1645     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1646   case 126: return createRegOperand(EXEC_LO);
1647   case 127: return createRegOperand(EXEC_HI);
1648   case 235: return createRegOperand(SRC_SHARED_BASE);
1649   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1650   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1651   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1652   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1653   case 251: return createRegOperand(SRC_VCCZ);
1654   case 252: return createRegOperand(SRC_EXECZ);
1655   case 253: return createRegOperand(SRC_SCC);
1656   case 254: return createRegOperand(LDS_DIRECT);
1657   default: break;
1658   }
1659   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1660 }
1661 
1662 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1663   using namespace AMDGPU;
1664 
1665   switch (Val) {
1666   case 102: return createRegOperand(FLAT_SCR);
1667   case 104: return createRegOperand(XNACK_MASK);
1668   case 106: return createRegOperand(VCC);
1669   case 108: return createRegOperand(TBA);
1670   case 110: return createRegOperand(TMA);
1671   case 124:
1672     if (isGFX11Plus())
1673       return createRegOperand(SGPR_NULL);
1674     break;
1675   case 125:
1676     if (!isGFX11Plus())
1677       return createRegOperand(SGPR_NULL);
1678     break;
1679   case 126: return createRegOperand(EXEC);
1680   case 235: return createRegOperand(SRC_SHARED_BASE);
1681   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1682   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1683   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1684   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1685   case 251: return createRegOperand(SRC_VCCZ);
1686   case 252: return createRegOperand(SRC_EXECZ);
1687   case 253: return createRegOperand(SRC_SCC);
1688   default: break;
1689   }
1690   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1691 }
1692 
1693 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1694                                             const unsigned Val) const {
1695   using namespace AMDGPU::SDWA;
1696   using namespace AMDGPU::EncValues;
1697 
1698   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1699       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1700     // XXX: cast to int is needed to avoid stupid warning:
1701     // compare with unsigned is always true
1702     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1703         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1704       return createRegOperand(getVgprClassId(Width),
1705                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1706     }
1707     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1708         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1709                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1710       return createSRegOperand(getSgprClassId(Width),
1711                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1712     }
1713     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1714         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1715       return createSRegOperand(getTtmpClassId(Width),
1716                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1717     }
1718 
1719     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1720 
1721     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1722       return decodeIntImmed(SVal);
1723 
1724     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1725       return decodeFPImmed(Width, SVal);
1726 
1727     return decodeSpecialReg32(SVal);
1728   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1729     return createRegOperand(getVgprClassId(Width), Val);
1730   }
1731   llvm_unreachable("unsupported target");
1732 }
1733 
1734 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1735   return decodeSDWASrc(OPW16, Val);
1736 }
1737 
1738 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1739   return decodeSDWASrc(OPW32, Val);
1740 }
1741 
1742 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1743   using namespace AMDGPU::SDWA;
1744 
1745   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1746           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1747          "SDWAVopcDst should be present only on GFX9+");
1748 
1749   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1750 
1751   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1752     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1753 
1754     int TTmpIdx = getTTmpIdx(Val);
1755     if (TTmpIdx >= 0) {
1756       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1757       return createSRegOperand(TTmpClsId, TTmpIdx);
1758     } else if (Val > SGPR_MAX) {
1759       return IsWave64 ? decodeSpecialReg64(Val)
1760                       : decodeSpecialReg32(Val);
1761     } else {
1762       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1763     }
1764   } else {
1765     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1766   }
1767 }
1768 
1769 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1770   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1771     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1772 }
1773 
1774 bool AMDGPUDisassembler::isVI() const {
1775   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1776 }
1777 
1778 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1779 
1780 bool AMDGPUDisassembler::isGFX90A() const {
1781   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1782 }
1783 
1784 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1785 
1786 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1787 
1788 bool AMDGPUDisassembler::isGFX10Plus() const {
1789   return AMDGPU::isGFX10Plus(STI);
1790 }
1791 
1792 bool AMDGPUDisassembler::isGFX11() const {
1793   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1794 }
1795 
1796 bool AMDGPUDisassembler::isGFX11Plus() const {
1797   return AMDGPU::isGFX11Plus(STI);
1798 }
1799 
1800 
1801 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1802   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1803 }
1804 
1805 //===----------------------------------------------------------------------===//
1806 // AMDGPU specific symbol handling
1807 //===----------------------------------------------------------------------===//
1808 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1809   do {                                                                         \
1810     KdStream << Indent << DIRECTIVE " "                                        \
1811              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1812   } while (0)
1813 
1814 // NOLINTNEXTLINE(readability-identifier-naming)
1815 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1816     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1817   using namespace amdhsa;
1818   StringRef Indent = "\t";
1819 
1820   // We cannot accurately backward compute #VGPRs used from
1821   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1822   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1823   // simply calculate the inverse of what the assembler does.
1824 
1825   uint32_t GranulatedWorkitemVGPRCount =
1826       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1827       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1828 
1829   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1830                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1831 
1832   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1833 
1834   // We cannot backward compute values used to calculate
1835   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1836   // directives can't be computed:
1837   // .amdhsa_reserve_vcc
1838   // .amdhsa_reserve_flat_scratch
1839   // .amdhsa_reserve_xnack_mask
1840   // They take their respective default values if not specified in the assembly.
1841   //
1842   // GRANULATED_WAVEFRONT_SGPR_COUNT
1843   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1844   //
1845   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1846   // are set to 0. So while disassembling we consider that:
1847   //
1848   // GRANULATED_WAVEFRONT_SGPR_COUNT
1849   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1850   //
1851   // The disassembler cannot recover the original values of those 3 directives.
1852 
1853   uint32_t GranulatedWavefrontSGPRCount =
1854       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1855       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1856 
1857   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1858     return MCDisassembler::Fail;
1859 
1860   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1861                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1862 
1863   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1864   if (!hasArchitectedFlatScratch())
1865     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1866   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1867   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1868 
1869   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1870     return MCDisassembler::Fail;
1871 
1872   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1873                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1874   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1875                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1876   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1877                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1878   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1879                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1880 
1881   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1882     return MCDisassembler::Fail;
1883 
1884   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1885 
1886   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1887     return MCDisassembler::Fail;
1888 
1889   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1890 
1891   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1892     return MCDisassembler::Fail;
1893 
1894   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1895     return MCDisassembler::Fail;
1896 
1897   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1898 
1899   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1900     return MCDisassembler::Fail;
1901 
1902   if (isGFX10Plus()) {
1903     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1904                     COMPUTE_PGM_RSRC1_WGP_MODE);
1905     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1906     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1907   }
1908   return MCDisassembler::Success;
1909 }
1910 
1911 // NOLINTNEXTLINE(readability-identifier-naming)
1912 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1913     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1914   using namespace amdhsa;
1915   StringRef Indent = "\t";
1916   if (hasArchitectedFlatScratch())
1917     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1918                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1919   else
1920     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1921                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1922   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1923                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1924   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1925                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1926   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1927                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1928   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1929                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1930   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1931                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1932 
1933   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1934     return MCDisassembler::Fail;
1935 
1936   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1937     return MCDisassembler::Fail;
1938 
1939   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1940     return MCDisassembler::Fail;
1941 
1942   PRINT_DIRECTIVE(
1943       ".amdhsa_exception_fp_ieee_invalid_op",
1944       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1945   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1946                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1947   PRINT_DIRECTIVE(
1948       ".amdhsa_exception_fp_ieee_div_zero",
1949       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1950   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1951                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1952   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1953                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1954   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1955                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1956   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1957                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1958 
1959   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1960     return MCDisassembler::Fail;
1961 
1962   return MCDisassembler::Success;
1963 }
1964 
1965 #undef PRINT_DIRECTIVE
1966 
1967 MCDisassembler::DecodeStatus
1968 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1969     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1970     raw_string_ostream &KdStream) const {
1971 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1972   do {                                                                         \
1973     KdStream << Indent << DIRECTIVE " "                                        \
1974              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1975   } while (0)
1976 
1977   uint16_t TwoByteBuffer = 0;
1978   uint32_t FourByteBuffer = 0;
1979 
1980   StringRef ReservedBytes;
1981   StringRef Indent = "\t";
1982 
1983   assert(Bytes.size() == 64);
1984   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1985 
1986   switch (Cursor.tell()) {
1987   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1988     FourByteBuffer = DE.getU32(Cursor);
1989     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1990              << '\n';
1991     return MCDisassembler::Success;
1992 
1993   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1994     FourByteBuffer = DE.getU32(Cursor);
1995     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1996              << FourByteBuffer << '\n';
1997     return MCDisassembler::Success;
1998 
1999   case amdhsa::KERNARG_SIZE_OFFSET:
2000     FourByteBuffer = DE.getU32(Cursor);
2001     KdStream << Indent << ".amdhsa_kernarg_size "
2002              << FourByteBuffer << '\n';
2003     return MCDisassembler::Success;
2004 
2005   case amdhsa::RESERVED0_OFFSET:
2006     // 4 reserved bytes, must be 0.
2007     ReservedBytes = DE.getBytes(Cursor, 4);
2008     for (int I = 0; I < 4; ++I) {
2009       if (ReservedBytes[I] != 0) {
2010         return MCDisassembler::Fail;
2011       }
2012     }
2013     return MCDisassembler::Success;
2014 
2015   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2016     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2017     // So far no directive controls this for Code Object V3, so simply skip for
2018     // disassembly.
2019     DE.skip(Cursor, 8);
2020     return MCDisassembler::Success;
2021 
2022   case amdhsa::RESERVED1_OFFSET:
2023     // 20 reserved bytes, must be 0.
2024     ReservedBytes = DE.getBytes(Cursor, 20);
2025     for (int I = 0; I < 20; ++I) {
2026       if (ReservedBytes[I] != 0) {
2027         return MCDisassembler::Fail;
2028       }
2029     }
2030     return MCDisassembler::Success;
2031 
2032   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2033     // COMPUTE_PGM_RSRC3
2034     //  - Only set for GFX10, GFX6-9 have this to be 0.
2035     //  - Currently no directives directly control this.
2036     FourByteBuffer = DE.getU32(Cursor);
2037     if (!isGFX10Plus() && FourByteBuffer) {
2038       return MCDisassembler::Fail;
2039     }
2040     return MCDisassembler::Success;
2041 
2042   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2043     FourByteBuffer = DE.getU32(Cursor);
2044     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
2045         MCDisassembler::Fail) {
2046       return MCDisassembler::Fail;
2047     }
2048     return MCDisassembler::Success;
2049 
2050   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2051     FourByteBuffer = DE.getU32(Cursor);
2052     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
2053         MCDisassembler::Fail) {
2054       return MCDisassembler::Fail;
2055     }
2056     return MCDisassembler::Success;
2057 
2058   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2059     using namespace amdhsa;
2060     TwoByteBuffer = DE.getU16(Cursor);
2061 
2062     if (!hasArchitectedFlatScratch())
2063       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2064                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2065     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2066                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2067     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2068                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2069     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2070                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2071     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2072                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2073     if (!hasArchitectedFlatScratch())
2074       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2075                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2076     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2077                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2078 
2079     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2080       return MCDisassembler::Fail;
2081 
2082     // Reserved for GFX9
2083     if (isGFX9() &&
2084         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2085       return MCDisassembler::Fail;
2086     } else if (isGFX10Plus()) {
2087       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2088                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2089     }
2090 
2091     if (AMDGPU::getAmdhsaCodeObjectVersion() >= 5)
2092       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2093                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2094 
2095     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2096       return MCDisassembler::Fail;
2097 
2098     return MCDisassembler::Success;
2099 
2100   case amdhsa::RESERVED2_OFFSET:
2101     // 6 bytes from here are reserved, must be 0.
2102     ReservedBytes = DE.getBytes(Cursor, 6);
2103     for (int I = 0; I < 6; ++I) {
2104       if (ReservedBytes[I] != 0)
2105         return MCDisassembler::Fail;
2106     }
2107     return MCDisassembler::Success;
2108 
2109   default:
2110     llvm_unreachable("Unhandled index. Case statements cover everything.");
2111     return MCDisassembler::Fail;
2112   }
2113 #undef PRINT_DIRECTIVE
2114 }
2115 
2116 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2117     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2118   // CP microcode requires the kernel descriptor to be 64 aligned.
2119   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2120     return MCDisassembler::Fail;
2121 
2122   std::string Kd;
2123   raw_string_ostream KdStream(Kd);
2124   KdStream << ".amdhsa_kernel " << KdName << '\n';
2125 
2126   DataExtractor::Cursor C(0);
2127   while (C && C.tell() < Bytes.size()) {
2128     MCDisassembler::DecodeStatus Status =
2129         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2130 
2131     cantFail(C.takeError());
2132 
2133     if (Status == MCDisassembler::Fail)
2134       return MCDisassembler::Fail;
2135   }
2136   KdStream << ".end_amdhsa_kernel\n";
2137   outs() << KdStream.str();
2138   return MCDisassembler::Success;
2139 }
2140 
2141 Optional<MCDisassembler::DecodeStatus>
2142 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2143                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2144                                   raw_ostream &CStream) const {
2145   // Right now only kernel descriptor needs to be handled.
2146   // We ignore all other symbols for target specific handling.
2147   // TODO:
2148   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2149   // Object V2 and V3 when symbols are marked protected.
2150 
2151   // amd_kernel_code_t for Code Object V2.
2152   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2153     Size = 256;
2154     return MCDisassembler::Fail;
2155   }
2156 
2157   // Code Object V3 kernel descriptors.
2158   StringRef Name = Symbol.Name;
2159   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2160     Size = 64; // Size = 64 regardless of success or failure.
2161     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2162   }
2163   return None;
2164 }
2165 
2166 //===----------------------------------------------------------------------===//
2167 // AMDGPUSymbolizer
2168 //===----------------------------------------------------------------------===//
2169 
2170 // Try to find symbol name for specified label
2171 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2172     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2173     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2174     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2175 
2176   if (!IsBranch) {
2177     return false;
2178   }
2179 
2180   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2181   if (!Symbols)
2182     return false;
2183 
2184   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2185     return Val.Addr == static_cast<uint64_t>(Value) &&
2186            Val.Type == ELF::STT_NOTYPE;
2187   });
2188   if (Result != Symbols->end()) {
2189     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2190     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2191     Inst.addOperand(MCOperand::createExpr(Add));
2192     return true;
2193   }
2194   // Add to list of referenced addresses, so caller can synthesize a label.
2195   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2196   return false;
2197 }
2198 
2199 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2200                                                        int64_t Value,
2201                                                        uint64_t Address) {
2202   llvm_unreachable("unimplemented");
2203 }
2204 
2205 //===----------------------------------------------------------------------===//
2206 // Initialization
2207 //===----------------------------------------------------------------------===//
2208 
2209 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2210                               LLVMOpInfoCallback /*GetOpInfo*/,
2211                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2212                               void *DisInfo,
2213                               MCContext *Ctx,
2214                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2215   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2216 }
2217 
2218 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2219                                                 const MCSubtargetInfo &STI,
2220                                                 MCContext &Ctx) {
2221   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2222 }
2223 
2224 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2225   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2226                                          createAMDGPUDisassembler);
2227   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2228                                        createAMDGPUSymbolizer);
2229 }
2230