xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 70fbcdb41d50ee23a36501aee733be33eecfb7da)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
95     Offset = SignExtend64<24>(Imm);
96   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else { // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
111                                        uint64_t Addr,
112                                        const MCDisassembler *Decoder) {
113   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
114   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
115 }
116 
117 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
118   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
119                                         uint64_t /*Addr*/,                     \
120                                         const MCDisassembler *Decoder) {       \
121     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
122     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
123   }
124 
125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
126 // number of register. Used by VGPR only and AGPR only operands.
127 #define DECODE_OPERAND_REG_8(RegClass)                                         \
128   static DecodeStatus Decode##RegClass##RegisterClass(                         \
129       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
130       const MCDisassembler *Decoder) {                                         \
131     assert(Imm < (1 << 8) && "8-bit encoding");                                \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(                                                         \
134         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
135   }
136 
137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
138                      ImmWidth)                                                 \
139   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
140                            const MCDisassembler *Decoder) {                    \
141     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
142     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
143     return addOperand(Inst,                                                    \
144                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
145                                         MandatoryLiteral, ImmWidth));          \
146   }
147 
148 static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize,
149                                 AMDGPUDisassembler::OpWidthTy OpWidth,
150                                 unsigned Imm, unsigned EncImm,
151                                 bool MandatoryLiteral, unsigned ImmWidth,
152                                 const MCDisassembler *Decoder) {
153   assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!");
154   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
155   return addOperand(
156       Inst, DAsm->decodeSrcOp(OpWidth, EncImm, MandatoryLiteral, ImmWidth));
157 }
158 
159 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
160 // get register class. Used by SGPR only operands.
161 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
162   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
163 
164 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
165 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
166 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
167 // Used by AV_ register classes (AGPR or VGPR only register operands).
168 template <AMDGPUDisassembler::OpWidthTy OpWidth>
169 static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
170                                const MCDisassembler *Decoder) {
171   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm | AMDGPU::EncValues::IS_VGPR,
172                      false, 0, Decoder);
173 }
174 
175 // Decoder for Src(9-bit encoding) registers only.
176 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
177   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
178 
179 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
180 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
181 // only.
182 template <AMDGPUDisassembler::OpWidthTy OpWidth>
183 static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
184                                 const MCDisassembler *Decoder) {
185   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, 0, Decoder);
186 }
187 
188 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
189 // Imm{9} is acc, registers only.
190 template <AMDGPUDisassembler::OpWidthTy OpWidth>
191 static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm,
192                                   uint64_t /* Addr */,
193                                   const MCDisassembler *Decoder) {
194   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm, false, 0, Decoder);
195 }
196 
197 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
198 // register from RegClass or immediate. Registers that don't belong to RegClass
199 // will be decoded and InstPrinter will report warning. Immediate will be
200 // decoded into constant of size ImmWidth, should match width of immediate used
201 // by OperandType (important for floating point types).
202 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
203   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
204                false, ImmWidth)
205 
206 #define DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(Name, OpWidth, ImmWidth)         \
207   DECODE_SrcOp(decodeOperand_##Name, 9, OpWidth, Imm, false, ImmWidth)
208 
209 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
210 // and decode using 'enum10' from decodeSrcOp.
211 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
212   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
213                Imm | 512, false, ImmWidth)
214 
215 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
216   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
217                OpWidth, Imm, true, ImmWidth)
218 
219 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
220 // when RegisterClass is used as an operand. Most often used for destination
221 // operands.
222 
223 DECODE_OPERAND_REG_8(VGPR_32)
224 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
225 DECODE_OPERAND_REG_8(VReg_64)
226 DECODE_OPERAND_REG_8(VReg_96)
227 DECODE_OPERAND_REG_8(VReg_128)
228 DECODE_OPERAND_REG_8(VReg_256)
229 DECODE_OPERAND_REG_8(VReg_288)
230 DECODE_OPERAND_REG_8(VReg_352)
231 DECODE_OPERAND_REG_8(VReg_384)
232 DECODE_OPERAND_REG_8(VReg_512)
233 DECODE_OPERAND_REG_8(VReg_1024)
234 
235 DECODE_OPERAND_REG_7(SReg_32, OPW32)
236 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
237 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
238 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
239 DECODE_OPERAND_REG_7(SReg_64, OPW64)
240 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
241 DECODE_OPERAND_REG_7(SReg_96, OPW96)
242 DECODE_OPERAND_REG_7(SReg_128, OPW128)
243 DECODE_OPERAND_REG_7(SReg_256, OPW256)
244 DECODE_OPERAND_REG_7(SReg_512, OPW512)
245 
246 DECODE_OPERAND_REG_8(AGPR_32)
247 DECODE_OPERAND_REG_8(AReg_64)
248 DECODE_OPERAND_REG_8(AReg_128)
249 DECODE_OPERAND_REG_8(AReg_256)
250 DECODE_OPERAND_REG_8(AReg_512)
251 DECODE_OPERAND_REG_8(AReg_1024)
252 
253 // Decoders for register only source RegisterOperands that use use 9-bit Src
254 // encoding: 'decodeOperand_<RegClass>'.
255 
256 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
257 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
258 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
259 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
260 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
261 
262 // Decoders for register or immediate RegisterOperands that use 9-bit Src
263 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
264 
265 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
266 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
267 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
268 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
269 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
270 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
271 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
272 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
273 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
274 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
275 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 32)
276 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 16)
277 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
278 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 16)
279 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
280 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 32)
281 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
282 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
283 
284 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2I16, OPW32, 32)
285 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2F16, OPW32, 16)
286 
287 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
288 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
289 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
290 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
291 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
292 
293 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
294 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
295 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
296 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
297 
298 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
299                                                uint64_t /*Addr*/,
300                                                const MCDisassembler *Decoder) {
301   assert(isUInt<10>(Imm) && "10-bit encoding expected");
302   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
303 
304   bool IsHi = Imm & (1 << 9);
305   unsigned RegIdx = Imm & 0xff;
306   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
307   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
308 }
309 
310 static DecodeStatus
311 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
312                                  const MCDisassembler *Decoder) {
313   assert(isUInt<8>(Imm) && "8-bit encoding expected");
314 
315   bool IsHi = Imm & (1 << 7);
316   unsigned RegIdx = Imm & 0x7f;
317   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
318   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
319 }
320 
321 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
322                                                 uint64_t /*Addr*/,
323                                                 const MCDisassembler *Decoder) {
324   assert(isUInt<9>(Imm) && "9-bit encoding expected");
325 
326   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
327   bool IsVGPR = Imm & (1 << 8);
328   if (IsVGPR) {
329     bool IsHi = Imm & (1 << 7);
330     unsigned RegIdx = Imm & 0x7f;
331     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
332   }
333   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
334                                                    Imm & 0xFF, false, 16));
335 }
336 
337 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
338                                           uint64_t /*Addr*/,
339                                           const MCDisassembler *Decoder) {
340   assert(isUInt<10>(Imm) && "10-bit encoding expected");
341 
342   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
343   bool IsVGPR = Imm & (1 << 8);
344   if (IsVGPR) {
345     bool IsHi = Imm & (1 << 9);
346     unsigned RegIdx = Imm & 0xff;
347     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
348   }
349   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
350                                                    Imm & 0xFF, false, 16));
351 }
352 
353 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
354                                          uint64_t Addr,
355                                          const MCDisassembler *Decoder) {
356   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
357   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
358 }
359 
360 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
361                                           uint64_t Addr, const void *Decoder) {
362   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
363   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
364 }
365 
366 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
367                           const MCRegisterInfo *MRI) {
368   if (OpIdx < 0)
369     return false;
370 
371   const MCOperand &Op = Inst.getOperand(OpIdx);
372   if (!Op.isReg())
373     return false;
374 
375   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
376   auto Reg = Sub ? Sub : Op.getReg();
377   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
378 }
379 
380 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
381                                  AMDGPUDisassembler::OpWidthTy Opw,
382                                  const MCDisassembler *Decoder) {
383   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
384   if (!DAsm->isGFX90A()) {
385     Imm &= 511;
386   } else {
387     // If atomic has both vdata and vdst their register classes are tied.
388     // The bit is decoded along with the vdst, first operand. We need to
389     // change register class to AGPR if vdst was AGPR.
390     // If a DS instruction has both data0 and data1 their register classes
391     // are also tied.
392     unsigned Opc = Inst.getOpcode();
393     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
394     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
395                                                         : AMDGPU::OpName::vdata;
396     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
397     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
398     if ((int)Inst.getNumOperands() == DataIdx) {
399       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
400       if (IsAGPROperand(Inst, DstIdx, MRI))
401         Imm |= 512;
402     }
403 
404     if (TSFlags & SIInstrFlags::DS) {
405       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
406       if ((int)Inst.getNumOperands() == Data2Idx &&
407           IsAGPROperand(Inst, DataIdx, MRI))
408         Imm |= 512;
409     }
410   }
411   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
412 }
413 
414 template <AMDGPUDisassembler::OpWidthTy Opw>
415 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
416                                  uint64_t /* Addr */,
417                                  const MCDisassembler *Decoder) {
418   return decodeAVLdSt(Inst, Imm, Opw, Decoder);
419 }
420 
421 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
422                                            uint64_t Addr,
423                                            const MCDisassembler *Decoder) {
424   assert(Imm < (1 << 9) && "9-bit encoding");
425   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
426   return addOperand(
427       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
428 }
429 
430 #define DECODE_SDWA(DecName) \
431 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
432 
433 DECODE_SDWA(Src32)
434 DECODE_SDWA(Src16)
435 DECODE_SDWA(VopcDst)
436 
437 #include "AMDGPUGenDisassemblerTables.inc"
438 
439 //===----------------------------------------------------------------------===//
440 //
441 //===----------------------------------------------------------------------===//
442 
443 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
444   assert(Bytes.size() >= sizeof(T));
445   const auto Res =
446       support::endian::read<T, llvm::endianness::little>(Bytes.data());
447   Bytes = Bytes.slice(sizeof(T));
448   return Res;
449 }
450 
451 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
452   assert(Bytes.size() >= 12);
453   uint64_t Lo =
454       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
455   Bytes = Bytes.slice(8);
456   uint64_t Hi =
457       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
458   Bytes = Bytes.slice(4);
459   return DecoderUInt128(Lo, Hi);
460 }
461 
462 // The disassembler is greedy, so we need to check FI operand value to
463 // not parse a dpp if the correct literal is not set. For dpp16 the
464 // autogenerated decoder checks the dpp literal
465 static bool isValidDPP8(const MCInst &MI) {
466   using namespace llvm::AMDGPU::DPP;
467   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
468   assert(FiIdx != -1);
469   if ((unsigned)FiIdx >= MI.getNumOperands())
470     return false;
471   unsigned Fi = MI.getOperand(FiIdx).getImm();
472   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
473 }
474 
475 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
476                                                 ArrayRef<uint8_t> Bytes_,
477                                                 uint64_t Address,
478                                                 raw_ostream &CS) const {
479   bool IsSDWA = false;
480 
481   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
482   Bytes = Bytes_.slice(0, MaxInstBytesNum);
483 
484   DecodeStatus Res = MCDisassembler::Fail;
485   do {
486     // ToDo: better to switch encoding length using some bit predicate
487     // but it is unknown yet, so try all we can
488 
489     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
490     // encodings
491     if (isGFX11Plus() && Bytes.size() >= 12 ) {
492       DecoderUInt128 DecW = eat12Bytes(Bytes);
493       Res =
494           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
495                         MI, DecW, Address, CS);
496       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
497         break;
498       MI = MCInst(); // clear
499       Res =
500           tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
501                         MI, DecW, Address, CS);
502       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
503         break;
504       MI = MCInst(); // clear
505 
506       const auto convertVOPDPP = [&]() {
507         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) {
508           convertVOP3PDPPInst(MI);
509         } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) {
510           convertVOPCDPPInst(MI); // Special VOP3 case
511         } else {
512           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
513           convertVOP3DPPInst(MI); // Regular VOP3 case
514         }
515       };
516       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
517                           MI, DecW, Address, CS);
518       if (Res) {
519         convertVOPDPP();
520         break;
521       }
522       Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
523                           MI, DecW, Address, CS);
524       if (Res) {
525         convertVOPDPP();
526         break;
527       }
528       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
529       if (Res)
530         break;
531 
532       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
533       if (Res)
534         break;
535 
536       Res = tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS);
537       if (Res)
538         break;
539     }
540     // Reinitialize Bytes
541     Bytes = Bytes_.slice(0, MaxInstBytesNum);
542 
543     if (Bytes.size() >= 8) {
544       const uint64_t QW = eatBytes<uint64_t>(Bytes);
545 
546       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
547         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
548         if (Res) {
549           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
550               == -1)
551             break;
552           if (convertDPP8Inst(MI) == MCDisassembler::Success)
553             break;
554           MI = MCInst(); // clear
555         }
556       }
557 
558       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
559       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
560         break;
561       MI = MCInst(); // clear
562 
563       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
564                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
565       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
566         break;
567       MI = MCInst(); // clear
568 
569       Res = tryDecodeInst(DecoderTableDPP8GFX1264,
570                           DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
571       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
572         break;
573       MI = MCInst(); // clear
574 
575       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
576       if (Res) break;
577 
578       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
579                           MI, QW, Address, CS);
580       if (Res) {
581         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
582           convertVOPCDPPInst(MI);
583         break;
584       }
585 
586       Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
587                           MI, QW, Address, CS);
588       if (Res) {
589         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
590           convertVOPCDPPInst(MI);
591         break;
592       }
593 
594       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
595       if (Res) { IsSDWA = true;  break; }
596 
597       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
598       if (Res) { IsSDWA = true;  break; }
599 
600       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
601       if (Res) { IsSDWA = true;  break; }
602 
603       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
604         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
605         if (Res)
606           break;
607       }
608 
609       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
610       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
611       // table first so we print the correct name.
612       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
613         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
614         if (Res)
615           break;
616       }
617     }
618 
619     // Reinitialize Bytes as DPP64 could have eaten too much
620     Bytes = Bytes_.slice(0, MaxInstBytesNum);
621 
622     // Try decode 32-bit instruction
623     if (Bytes.size() < 4) break;
624     const uint32_t DW = eatBytes<uint32_t>(Bytes);
625     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
626     if (Res) break;
627 
628     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
629     if (Res) break;
630 
631     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
632     if (Res) break;
633 
634     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
635       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
636       if (Res)
637         break;
638     }
639 
640     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
641       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
642       if (Res) break;
643     }
644 
645     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
646     if (Res) break;
647 
648     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
649                         Address, CS);
650     if (Res) break;
651 
652     Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
653                         Address, CS);
654     if (Res)
655       break;
656 
657     if (Bytes.size() < 4) break;
658     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
659 
660     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
661       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
662       if (Res)
663         break;
664     }
665 
666     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
667       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
668       if (Res)
669         break;
670     }
671 
672     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
673     if (Res) break;
674 
675     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
676     if (Res) break;
677 
678     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
679     if (Res) break;
680 
681     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
682     if (Res) break;
683 
684     Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
685                         Address, CS);
686     if (Res)
687       break;
688 
689     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
690                         Address, CS);
691     if (Res)
692       break;
693 
694     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
695     if (Res)
696       break;
697 
698     Res = tryDecodeInst(DecoderTableWMMAGFX1264, MI, QW, Address, CS);
699   } while (false);
700 
701   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
702     // Insert dummy unused src2_modifiers.
703     insertNamedMCOperand(MI, MCOperand::createImm(0),
704                          AMDGPU::OpName::src2_modifiers);
705   }
706 
707   if (Res && (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
708               MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp)) {
709     // Insert dummy unused src2_modifiers.
710     insertNamedMCOperand(MI, MCOperand::createImm(0),
711                          AMDGPU::OpName::src2_modifiers);
712   }
713 
714   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
715       !AMDGPU::hasGDS(STI)) {
716     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
717   }
718 
719   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
720           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
721     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
722                                              AMDGPU::OpName::cpol);
723     if (CPolPos != -1) {
724       unsigned CPol =
725           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
726               AMDGPU::CPol::GLC : 0;
727       if (MI.getNumOperands() <= (unsigned)CPolPos) {
728         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
729                              AMDGPU::OpName::cpol);
730       } else if (CPol) {
731         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
732       }
733     }
734   }
735 
736   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
737               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
738              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
739     // GFX90A lost TFE, its place is occupied by ACC.
740     int TFEOpIdx =
741         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
742     if (TFEOpIdx != -1) {
743       auto TFEIter = MI.begin();
744       std::advance(TFEIter, TFEOpIdx);
745       MI.insert(TFEIter, MCOperand::createImm(0));
746     }
747   }
748 
749   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
750               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
751     int SWZOpIdx =
752         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
753     if (SWZOpIdx != -1) {
754       auto SWZIter = MI.begin();
755       std::advance(SWZIter, SWZOpIdx);
756       MI.insert(SWZIter, MCOperand::createImm(0));
757     }
758   }
759 
760   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
761     int VAddr0Idx =
762         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
763     int RsrcIdx =
764         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
765     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
766     if (VAddr0Idx >= 0 && NSAArgs > 0) {
767       unsigned NSAWords = (NSAArgs + 3) / 4;
768       if (Bytes.size() < 4 * NSAWords) {
769         Res = MCDisassembler::Fail;
770       } else {
771         for (unsigned i = 0; i < NSAArgs; ++i) {
772           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
773           auto VAddrRCID =
774               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
775           MI.insert(MI.begin() + VAddrIdx,
776                     createRegOperand(VAddrRCID, Bytes[i]));
777         }
778         Bytes = Bytes.slice(4 * NSAWords);
779       }
780     }
781 
782     if (Res)
783       Res = convertMIMGInst(MI);
784   }
785 
786   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
787               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
788     Res = convertMIMGInst(MI);
789 
790   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
791     Res = convertEXPInst(MI);
792 
793   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
794     Res = convertVINTERPInst(MI);
795 
796   if (Res && IsSDWA)
797     Res = convertSDWAInst(MI);
798 
799   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
800                                               AMDGPU::OpName::vdst_in);
801   if (VDstIn_Idx != -1) {
802     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
803                            MCOI::OperandConstraint::TIED_TO);
804     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
805          !MI.getOperand(VDstIn_Idx).isReg() ||
806          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
807       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
808         MI.erase(&MI.getOperand(VDstIn_Idx));
809       insertNamedMCOperand(MI,
810         MCOperand::createReg(MI.getOperand(Tied).getReg()),
811         AMDGPU::OpName::vdst_in);
812     }
813   }
814 
815   int ImmLitIdx =
816       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
817   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
818   if (Res && ImmLitIdx != -1 && !IsSOPK)
819     Res = convertFMAanyK(MI, ImmLitIdx);
820 
821   // if the opcode was not recognized we'll assume a Size of 4 bytes
822   // (unless there are fewer bytes left)
823   Size = Res ? (MaxInstBytesNum - Bytes.size())
824              : std::min((size_t)4, Bytes_.size());
825   return Res;
826 }
827 
828 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
829   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
830     // The MCInst still has these fields even though they are no longer encoded
831     // in the GFX11 instruction.
832     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
833     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
834   }
835   return MCDisassembler::Success;
836 }
837 
838 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
839   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
840       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
841       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
842       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
843       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
844       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
845       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
846       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
847     // The MCInst has this field that is not directly encoded in the
848     // instruction.
849     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
850   }
851   return MCDisassembler::Success;
852 }
853 
854 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
855   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
856       STI.hasFeature(AMDGPU::FeatureGFX10)) {
857     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
858       // VOPC - insert clamp
859       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
860   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
861     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
862     if (SDst != -1) {
863       // VOPC - insert VCC register as sdst
864       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
865                            AMDGPU::OpName::sdst);
866     } else {
867       // VOP1/2 - insert omod if present in instruction
868       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
869     }
870   }
871   return MCDisassembler::Success;
872 }
873 
874 struct VOPModifiers {
875   unsigned OpSel = 0;
876   unsigned OpSelHi = 0;
877   unsigned NegLo = 0;
878   unsigned NegHi = 0;
879 };
880 
881 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
882 // Note that these values do not affect disassembler output,
883 // so this is only necessary for consistency with src_modifiers.
884 static VOPModifiers collectVOPModifiers(const MCInst &MI,
885                                         bool IsVOP3P = false) {
886   VOPModifiers Modifiers;
887   unsigned Opc = MI.getOpcode();
888   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
889                         AMDGPU::OpName::src1_modifiers,
890                         AMDGPU::OpName::src2_modifiers};
891   for (int J = 0; J < 3; ++J) {
892     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
893     if (OpIdx == -1)
894       continue;
895 
896     unsigned Val = MI.getOperand(OpIdx).getImm();
897 
898     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
899     if (IsVOP3P) {
900       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
901       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
902       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
903     } else if (J == 0) {
904       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
905     }
906   }
907 
908   return Modifiers;
909 }
910 
911 // MAC opcodes have special old and src2 operands.
912 // src2 is tied to dst, while old is not tied (but assumed to be).
913 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
914   constexpr int DST_IDX = 0;
915   auto Opcode = MI.getOpcode();
916   const auto &Desc = MCII->get(Opcode);
917   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
918 
919   if (OldIdx != -1 && Desc.getOperandConstraint(
920                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
921     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
922     assert(Desc.getOperandConstraint(
923                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
924                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
925     (void)DST_IDX;
926     return true;
927   }
928 
929   return false;
930 }
931 
932 // Create dummy old operand and insert dummy unused src2_modifiers
933 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
934   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
935   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
936   insertNamedMCOperand(MI, MCOperand::createImm(0),
937                        AMDGPU::OpName::src2_modifiers);
938 }
939 
940 // We must check FI == literal to reject not genuine dpp8 insts, and we must
941 // first add optional MI operands to check FI
942 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
943   unsigned Opc = MI.getOpcode();
944 
945   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
946     convertVOP3PDPPInst(MI);
947   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
948              AMDGPU::isVOPC64DPP(Opc)) {
949     convertVOPCDPPInst(MI);
950   } else {
951     if (isMacDPP(MI))
952       convertMacDPPInst(MI);
953 
954     int VDstInIdx =
955         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
956     if (VDstInIdx != -1)
957       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
958 
959     if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp8_gfx12 ||
960         MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp8_gfx12)
961       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
962 
963     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
964     if (MI.getNumOperands() < DescNumOps &&
965         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
966       auto Mods = collectVOPModifiers(MI);
967       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
968                            AMDGPU::OpName::op_sel);
969     } else {
970       // Insert dummy unused src modifiers.
971       if (MI.getNumOperands() < DescNumOps &&
972           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
973         insertNamedMCOperand(MI, MCOperand::createImm(0),
974                              AMDGPU::OpName::src0_modifiers);
975 
976       if (MI.getNumOperands() < DescNumOps &&
977           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
978         insertNamedMCOperand(MI, MCOperand::createImm(0),
979                              AMDGPU::OpName::src1_modifiers);
980     }
981   }
982   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
983 }
984 
985 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
986   if (isMacDPP(MI))
987     convertMacDPPInst(MI);
988 
989   int VDstInIdx =
990       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
991   if (VDstInIdx != -1)
992     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
993 
994   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp_gfx12 ||
995       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp_gfx12)
996     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
997 
998   unsigned Opc = MI.getOpcode();
999   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1000   if (MI.getNumOperands() < DescNumOps &&
1001       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
1002     auto Mods = collectVOPModifiers(MI);
1003     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1004                          AMDGPU::OpName::op_sel);
1005   }
1006   return MCDisassembler::Success;
1007 }
1008 
1009 // Note that before gfx10, the MIMG encoding provided no information about
1010 // VADDR size. Consequently, decoded instructions always show address as if it
1011 // has 1 dword, which could be not really so.
1012 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
1013   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
1014 
1015   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1016                                            AMDGPU::OpName::vdst);
1017 
1018   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1019                                             AMDGPU::OpName::vdata);
1020   int VAddr0Idx =
1021       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
1022   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
1023                                                 : AMDGPU::OpName::rsrc;
1024   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
1025   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1026                                             AMDGPU::OpName::dmask);
1027 
1028   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1029                                             AMDGPU::OpName::tfe);
1030   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1031                                             AMDGPU::OpName::d16);
1032 
1033   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
1034   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1035       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
1036 
1037   assert(VDataIdx != -1);
1038   if (BaseOpcode->BVH) {
1039     // Add A16 operand for intersect_ray instructions
1040     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
1041     return MCDisassembler::Success;
1042   }
1043 
1044   bool IsAtomic = (VDstIdx != -1);
1045   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1046   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1047   bool IsNSA = false;
1048   bool IsPartialNSA = false;
1049   unsigned AddrSize = Info->VAddrDwords;
1050 
1051   if (isGFX10Plus()) {
1052     unsigned DimIdx =
1053         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1054     int A16Idx =
1055         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1056     const AMDGPU::MIMGDimInfo *Dim =
1057         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1058     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1059 
1060     AddrSize =
1061         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1062 
1063     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1064     // VIMAGE insts other than BVH never use vaddr4.
1065     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1066             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1067             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1068     if (!IsNSA) {
1069       if (!IsVSample && AddrSize > 12)
1070         AddrSize = 16;
1071     } else {
1072       if (AddrSize > Info->VAddrDwords) {
1073         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1074           // The NSA encoding does not contain enough operands for the
1075           // combination of base opcode / dimension. Should this be an error?
1076           return MCDisassembler::Success;
1077         }
1078         IsPartialNSA = true;
1079       }
1080     }
1081   }
1082 
1083   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1084   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1085 
1086   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1087   if (D16 && AMDGPU::hasPackedD16(STI)) {
1088     DstSize = (DstSize + 1) / 2;
1089   }
1090 
1091   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1092     DstSize += 1;
1093 
1094   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1095     return MCDisassembler::Success;
1096 
1097   int NewOpcode =
1098       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1099   if (NewOpcode == -1)
1100     return MCDisassembler::Success;
1101 
1102   // Widen the register to the correct number of enabled channels.
1103   unsigned NewVdata = AMDGPU::NoRegister;
1104   if (DstSize != Info->VDataDwords) {
1105     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1106 
1107     // Get first subregister of VData
1108     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1109     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1110     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1111 
1112     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1113                                        &MRI.getRegClass(DataRCID));
1114     if (NewVdata == AMDGPU::NoRegister) {
1115       // It's possible to encode this such that the low register + enabled
1116       // components exceeds the register count.
1117       return MCDisassembler::Success;
1118     }
1119   }
1120 
1121   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1122   // If using partial NSA on GFX11+ widen last address register.
1123   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1124   unsigned NewVAddrSA = AMDGPU::NoRegister;
1125   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1126       AddrSize != Info->VAddrDwords) {
1127     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1128     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1129     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1130 
1131     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1132     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1133                                         &MRI.getRegClass(AddrRCID));
1134     if (!NewVAddrSA)
1135       return MCDisassembler::Success;
1136   }
1137 
1138   MI.setOpcode(NewOpcode);
1139 
1140   if (NewVdata != AMDGPU::NoRegister) {
1141     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1142 
1143     if (IsAtomic) {
1144       // Atomic operations have an additional operand (a copy of data)
1145       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1146     }
1147   }
1148 
1149   if (NewVAddrSA) {
1150     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1151   } else if (IsNSA) {
1152     assert(AddrSize <= Info->VAddrDwords);
1153     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1154              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1155   }
1156 
1157   return MCDisassembler::Success;
1158 }
1159 
1160 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1161 // decoder only adds to src_modifiers, so manually add the bits to the other
1162 // operands.
1163 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1164   unsigned Opc = MI.getOpcode();
1165   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1166   auto Mods = collectVOPModifiers(MI, true);
1167 
1168   if (MI.getNumOperands() < DescNumOps &&
1169       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1170     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1171 
1172   if (MI.getNumOperands() < DescNumOps &&
1173       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1174     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1175                          AMDGPU::OpName::op_sel);
1176   if (MI.getNumOperands() < DescNumOps &&
1177       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1178     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1179                          AMDGPU::OpName::op_sel_hi);
1180   if (MI.getNumOperands() < DescNumOps &&
1181       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1182     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1183                          AMDGPU::OpName::neg_lo);
1184   if (MI.getNumOperands() < DescNumOps &&
1185       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1186     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1187                          AMDGPU::OpName::neg_hi);
1188 
1189   return MCDisassembler::Success;
1190 }
1191 
1192 // Create dummy old operand and insert optional operands
1193 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1194   unsigned Opc = MI.getOpcode();
1195   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1196 
1197   if (MI.getNumOperands() < DescNumOps &&
1198       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1199     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1200 
1201   if (MI.getNumOperands() < DescNumOps &&
1202       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1203     insertNamedMCOperand(MI, MCOperand::createImm(0),
1204                          AMDGPU::OpName::src0_modifiers);
1205 
1206   if (MI.getNumOperands() < DescNumOps &&
1207       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1208     insertNamedMCOperand(MI, MCOperand::createImm(0),
1209                          AMDGPU::OpName::src1_modifiers);
1210   return MCDisassembler::Success;
1211 }
1212 
1213 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1214                                                 int ImmLitIdx) const {
1215   assert(HasLiteral && "Should have decoded a literal");
1216   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1217   unsigned DescNumOps = Desc.getNumOperands();
1218   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1219                        AMDGPU::OpName::immDeferred);
1220   assert(DescNumOps == MI.getNumOperands());
1221   for (unsigned I = 0; I < DescNumOps; ++I) {
1222     auto &Op = MI.getOperand(I);
1223     auto OpType = Desc.operands()[I].OperandType;
1224     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1225                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1226     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1227         IsDeferredOp)
1228       Op.setImm(Literal);
1229   }
1230   return MCDisassembler::Success;
1231 }
1232 
1233 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1234   return getContext().getRegisterInfo()->
1235     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1236 }
1237 
1238 inline
1239 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1240                                          const Twine& ErrMsg) const {
1241   *CommentStream << "Error: " + ErrMsg;
1242 
1243   // ToDo: add support for error operands to MCInst.h
1244   // return MCOperand::createError(V);
1245   return MCOperand();
1246 }
1247 
1248 inline
1249 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1250   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1251 }
1252 
1253 inline
1254 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1255                                                unsigned Val) const {
1256   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1257   if (Val >= RegCl.getNumRegs())
1258     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1259                            ": unknown register " + Twine(Val));
1260   return createRegOperand(RegCl.getRegister(Val));
1261 }
1262 
1263 inline
1264 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1265                                                 unsigned Val) const {
1266   // ToDo: SI/CI have 104 SGPRs, VI - 102
1267   // Valery: here we accepting as much as we can, let assembler sort it out
1268   int shift = 0;
1269   switch (SRegClassID) {
1270   case AMDGPU::SGPR_32RegClassID:
1271   case AMDGPU::TTMP_32RegClassID:
1272     break;
1273   case AMDGPU::SGPR_64RegClassID:
1274   case AMDGPU::TTMP_64RegClassID:
1275     shift = 1;
1276     break;
1277   case AMDGPU::SGPR_96RegClassID:
1278   case AMDGPU::TTMP_96RegClassID:
1279   case AMDGPU::SGPR_128RegClassID:
1280   case AMDGPU::TTMP_128RegClassID:
1281   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1282   // this bundle?
1283   case AMDGPU::SGPR_256RegClassID:
1284   case AMDGPU::TTMP_256RegClassID:
1285     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1286   // this bundle?
1287   case AMDGPU::SGPR_288RegClassID:
1288   case AMDGPU::TTMP_288RegClassID:
1289   case AMDGPU::SGPR_320RegClassID:
1290   case AMDGPU::TTMP_320RegClassID:
1291   case AMDGPU::SGPR_352RegClassID:
1292   case AMDGPU::TTMP_352RegClassID:
1293   case AMDGPU::SGPR_384RegClassID:
1294   case AMDGPU::TTMP_384RegClassID:
1295   case AMDGPU::SGPR_512RegClassID:
1296   case AMDGPU::TTMP_512RegClassID:
1297     shift = 2;
1298     break;
1299   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1300   // this bundle?
1301   default:
1302     llvm_unreachable("unhandled register class");
1303   }
1304 
1305   if (Val % (1 << shift)) {
1306     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1307                    << ": scalar reg isn't aligned " << Val;
1308   }
1309 
1310   return createRegOperand(SRegClassID, Val >> shift);
1311 }
1312 
1313 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1314                                                   bool IsHi) const {
1315   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1316   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1317 }
1318 
1319 // Decode Literals for insts which always have a literal in the encoding
1320 MCOperand
1321 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1322   if (HasLiteral) {
1323     assert(
1324         AMDGPU::hasVOPD(STI) &&
1325         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1326     if (Literal != Val)
1327       return errOperand(Val, "More than one unique literal is illegal");
1328   }
1329   HasLiteral = true;
1330   Literal = Val;
1331   return MCOperand::createImm(Literal);
1332 }
1333 
1334 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1335   // For now all literal constants are supposed to be unsigned integer
1336   // ToDo: deal with signed/unsigned 64-bit integer constants
1337   // ToDo: deal with float/double constants
1338   if (!HasLiteral) {
1339     if (Bytes.size() < 4) {
1340       return errOperand(0, "cannot read literal, inst bytes left " +
1341                         Twine(Bytes.size()));
1342     }
1343     HasLiteral = true;
1344     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1345     if (ExtendFP64)
1346       Literal64 <<= 32;
1347   }
1348   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1349 }
1350 
1351 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1352   using namespace AMDGPU::EncValues;
1353 
1354   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1355   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1356     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1357     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1358       // Cast prevents negative overflow.
1359 }
1360 
1361 static int64_t getInlineImmVal32(unsigned Imm) {
1362   switch (Imm) {
1363   case 240:
1364     return llvm::bit_cast<uint32_t>(0.5f);
1365   case 241:
1366     return llvm::bit_cast<uint32_t>(-0.5f);
1367   case 242:
1368     return llvm::bit_cast<uint32_t>(1.0f);
1369   case 243:
1370     return llvm::bit_cast<uint32_t>(-1.0f);
1371   case 244:
1372     return llvm::bit_cast<uint32_t>(2.0f);
1373   case 245:
1374     return llvm::bit_cast<uint32_t>(-2.0f);
1375   case 246:
1376     return llvm::bit_cast<uint32_t>(4.0f);
1377   case 247:
1378     return llvm::bit_cast<uint32_t>(-4.0f);
1379   case 248: // 1 / (2 * PI)
1380     return 0x3e22f983;
1381   default:
1382     llvm_unreachable("invalid fp inline imm");
1383   }
1384 }
1385 
1386 static int64_t getInlineImmVal64(unsigned Imm) {
1387   switch (Imm) {
1388   case 240:
1389     return llvm::bit_cast<uint64_t>(0.5);
1390   case 241:
1391     return llvm::bit_cast<uint64_t>(-0.5);
1392   case 242:
1393     return llvm::bit_cast<uint64_t>(1.0);
1394   case 243:
1395     return llvm::bit_cast<uint64_t>(-1.0);
1396   case 244:
1397     return llvm::bit_cast<uint64_t>(2.0);
1398   case 245:
1399     return llvm::bit_cast<uint64_t>(-2.0);
1400   case 246:
1401     return llvm::bit_cast<uint64_t>(4.0);
1402   case 247:
1403     return llvm::bit_cast<uint64_t>(-4.0);
1404   case 248: // 1 / (2 * PI)
1405     return 0x3fc45f306dc9c882;
1406   default:
1407     llvm_unreachable("invalid fp inline imm");
1408   }
1409 }
1410 
1411 static int64_t getInlineImmVal16(unsigned Imm) {
1412   switch (Imm) {
1413   case 240:
1414     return 0x3800;
1415   case 241:
1416     return 0xB800;
1417   case 242:
1418     return 0x3C00;
1419   case 243:
1420     return 0xBC00;
1421   case 244:
1422     return 0x4000;
1423   case 245:
1424     return 0xC000;
1425   case 246:
1426     return 0x4400;
1427   case 247:
1428     return 0xC400;
1429   case 248: // 1 / (2 * PI)
1430     return 0x3118;
1431   default:
1432     llvm_unreachable("invalid fp inline imm");
1433   }
1434 }
1435 
1436 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1437   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1438       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1439 
1440   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1441   // ImmWidth 0 is a default case where operand should not allow immediates.
1442   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1443   // use it to print verbose error message.
1444   switch (ImmWidth) {
1445   case 0:
1446   case 32:
1447     return MCOperand::createImm(getInlineImmVal32(Imm));
1448   case 64:
1449     return MCOperand::createImm(getInlineImmVal64(Imm));
1450   case 16:
1451     return MCOperand::createImm(getInlineImmVal16(Imm));
1452   default:
1453     llvm_unreachable("implement me");
1454   }
1455 }
1456 
1457 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1458   using namespace AMDGPU;
1459 
1460   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1461   switch (Width) {
1462   default: // fall
1463   case OPW32:
1464   case OPW16:
1465   case OPWV216:
1466     return VGPR_32RegClassID;
1467   case OPW64:
1468   case OPWV232: return VReg_64RegClassID;
1469   case OPW96: return VReg_96RegClassID;
1470   case OPW128: return VReg_128RegClassID;
1471   case OPW160: return VReg_160RegClassID;
1472   case OPW256: return VReg_256RegClassID;
1473   case OPW288: return VReg_288RegClassID;
1474   case OPW320: return VReg_320RegClassID;
1475   case OPW352: return VReg_352RegClassID;
1476   case OPW384: return VReg_384RegClassID;
1477   case OPW512: return VReg_512RegClassID;
1478   case OPW1024: return VReg_1024RegClassID;
1479   }
1480 }
1481 
1482 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1483   using namespace AMDGPU;
1484 
1485   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1486   switch (Width) {
1487   default: // fall
1488   case OPW32:
1489   case OPW16:
1490   case OPWV216:
1491     return AGPR_32RegClassID;
1492   case OPW64:
1493   case OPWV232: return AReg_64RegClassID;
1494   case OPW96: return AReg_96RegClassID;
1495   case OPW128: return AReg_128RegClassID;
1496   case OPW160: return AReg_160RegClassID;
1497   case OPW256: return AReg_256RegClassID;
1498   case OPW288: return AReg_288RegClassID;
1499   case OPW320: return AReg_320RegClassID;
1500   case OPW352: return AReg_352RegClassID;
1501   case OPW384: return AReg_384RegClassID;
1502   case OPW512: return AReg_512RegClassID;
1503   case OPW1024: return AReg_1024RegClassID;
1504   }
1505 }
1506 
1507 
1508 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1509   using namespace AMDGPU;
1510 
1511   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1512   switch (Width) {
1513   default: // fall
1514   case OPW32:
1515   case OPW16:
1516   case OPWV216:
1517     return SGPR_32RegClassID;
1518   case OPW64:
1519   case OPWV232: return SGPR_64RegClassID;
1520   case OPW96: return SGPR_96RegClassID;
1521   case OPW128: return SGPR_128RegClassID;
1522   case OPW160: return SGPR_160RegClassID;
1523   case OPW256: return SGPR_256RegClassID;
1524   case OPW288: return SGPR_288RegClassID;
1525   case OPW320: return SGPR_320RegClassID;
1526   case OPW352: return SGPR_352RegClassID;
1527   case OPW384: return SGPR_384RegClassID;
1528   case OPW512: return SGPR_512RegClassID;
1529   }
1530 }
1531 
1532 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1533   using namespace AMDGPU;
1534 
1535   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1536   switch (Width) {
1537   default: // fall
1538   case OPW32:
1539   case OPW16:
1540   case OPWV216:
1541     return TTMP_32RegClassID;
1542   case OPW64:
1543   case OPWV232: return TTMP_64RegClassID;
1544   case OPW128: return TTMP_128RegClassID;
1545   case OPW256: return TTMP_256RegClassID;
1546   case OPW288: return TTMP_288RegClassID;
1547   case OPW320: return TTMP_320RegClassID;
1548   case OPW352: return TTMP_352RegClassID;
1549   case OPW384: return TTMP_384RegClassID;
1550   case OPW512: return TTMP_512RegClassID;
1551   }
1552 }
1553 
1554 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1555   using namespace AMDGPU::EncValues;
1556 
1557   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1558   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1559 
1560   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1561 }
1562 
1563 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1564                                           bool MandatoryLiteral,
1565                                           unsigned ImmWidth, bool IsFP) const {
1566   using namespace AMDGPU::EncValues;
1567 
1568   assert(Val < 1024); // enum10
1569 
1570   bool IsAGPR = Val & 512;
1571   Val &= 511;
1572 
1573   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1574     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1575                                    : getVgprClassId(Width), Val - VGPR_MIN);
1576   }
1577   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1578                             IsFP);
1579 }
1580 
1581 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1582                                                  unsigned Val,
1583                                                  bool MandatoryLiteral,
1584                                                  unsigned ImmWidth,
1585                                                  bool IsFP) const {
1586   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1587   // decoded earlier.
1588   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1589   using namespace AMDGPU::EncValues;
1590 
1591   if (Val <= SGPR_MAX) {
1592     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1593     static_assert(SGPR_MIN == 0);
1594     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1595   }
1596 
1597   int TTmpIdx = getTTmpIdx(Val);
1598   if (TTmpIdx >= 0) {
1599     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1600   }
1601 
1602   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1603     return decodeIntImmed(Val);
1604 
1605   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1606     return decodeFPImmed(ImmWidth, Val);
1607 
1608   if (Val == LITERAL_CONST) {
1609     if (MandatoryLiteral)
1610       // Keep a sentinel value for deferred setting
1611       return MCOperand::createImm(LITERAL_CONST);
1612     else
1613       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1614   }
1615 
1616   switch (Width) {
1617   case OPW32:
1618   case OPW16:
1619   case OPWV216:
1620     return decodeSpecialReg32(Val);
1621   case OPW64:
1622   case OPWV232:
1623     return decodeSpecialReg64(Val);
1624   default:
1625     llvm_unreachable("unexpected immediate type");
1626   }
1627 }
1628 
1629 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1630 // opposite of bit 0 of DstX.
1631 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1632                                                unsigned Val) const {
1633   int VDstXInd =
1634       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1635   assert(VDstXInd != -1);
1636   assert(Inst.getOperand(VDstXInd).isReg());
1637   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1638   Val |= ~XDstReg & 1;
1639   auto Width = llvm::AMDGPUDisassembler::OPW32;
1640   return createRegOperand(getVgprClassId(Width), Val);
1641 }
1642 
1643 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1644   using namespace AMDGPU;
1645 
1646   switch (Val) {
1647   // clang-format off
1648   case 102: return createRegOperand(FLAT_SCR_LO);
1649   case 103: return createRegOperand(FLAT_SCR_HI);
1650   case 104: return createRegOperand(XNACK_MASK_LO);
1651   case 105: return createRegOperand(XNACK_MASK_HI);
1652   case 106: return createRegOperand(VCC_LO);
1653   case 107: return createRegOperand(VCC_HI);
1654   case 108: return createRegOperand(TBA_LO);
1655   case 109: return createRegOperand(TBA_HI);
1656   case 110: return createRegOperand(TMA_LO);
1657   case 111: return createRegOperand(TMA_HI);
1658   case 124:
1659     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1660   case 125:
1661     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1662   case 126: return createRegOperand(EXEC_LO);
1663   case 127: return createRegOperand(EXEC_HI);
1664   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1665   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1666   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1667   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1668   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1669   case 251: return createRegOperand(SRC_VCCZ);
1670   case 252: return createRegOperand(SRC_EXECZ);
1671   case 253: return createRegOperand(SRC_SCC);
1672   case 254: return createRegOperand(LDS_DIRECT);
1673   default: break;
1674     // clang-format on
1675   }
1676   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1677 }
1678 
1679 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1680   using namespace AMDGPU;
1681 
1682   switch (Val) {
1683   case 102: return createRegOperand(FLAT_SCR);
1684   case 104: return createRegOperand(XNACK_MASK);
1685   case 106: return createRegOperand(VCC);
1686   case 108: return createRegOperand(TBA);
1687   case 110: return createRegOperand(TMA);
1688   case 124:
1689     if (isGFX11Plus())
1690       return createRegOperand(SGPR_NULL);
1691     break;
1692   case 125:
1693     if (!isGFX11Plus())
1694       return createRegOperand(SGPR_NULL);
1695     break;
1696   case 126: return createRegOperand(EXEC);
1697   case 235: return createRegOperand(SRC_SHARED_BASE);
1698   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1699   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1700   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1701   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1702   case 251: return createRegOperand(SRC_VCCZ);
1703   case 252: return createRegOperand(SRC_EXECZ);
1704   case 253: return createRegOperand(SRC_SCC);
1705   default: break;
1706   }
1707   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1708 }
1709 
1710 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1711                                             const unsigned Val,
1712                                             unsigned ImmWidth) const {
1713   using namespace AMDGPU::SDWA;
1714   using namespace AMDGPU::EncValues;
1715 
1716   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1717       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1718     // XXX: cast to int is needed to avoid stupid warning:
1719     // compare with unsigned is always true
1720     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1721         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1722       return createRegOperand(getVgprClassId(Width),
1723                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1724     }
1725     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1726         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1727                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1728       return createSRegOperand(getSgprClassId(Width),
1729                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1730     }
1731     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1732         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1733       return createSRegOperand(getTtmpClassId(Width),
1734                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1735     }
1736 
1737     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1738 
1739     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1740       return decodeIntImmed(SVal);
1741 
1742     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1743       return decodeFPImmed(ImmWidth, SVal);
1744 
1745     return decodeSpecialReg32(SVal);
1746   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1747     return createRegOperand(getVgprClassId(Width), Val);
1748   }
1749   llvm_unreachable("unsupported target");
1750 }
1751 
1752 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1753   return decodeSDWASrc(OPW16, Val, 16);
1754 }
1755 
1756 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1757   return decodeSDWASrc(OPW32, Val, 32);
1758 }
1759 
1760 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1761   using namespace AMDGPU::SDWA;
1762 
1763   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1764           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1765          "SDWAVopcDst should be present only on GFX9+");
1766 
1767   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1768 
1769   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1770     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1771 
1772     int TTmpIdx = getTTmpIdx(Val);
1773     if (TTmpIdx >= 0) {
1774       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1775       return createSRegOperand(TTmpClsId, TTmpIdx);
1776     } else if (Val > SGPR_MAX) {
1777       return IsWave64 ? decodeSpecialReg64(Val)
1778                       : decodeSpecialReg32(Val);
1779     } else {
1780       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1781     }
1782   } else {
1783     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1784   }
1785 }
1786 
1787 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1788   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1789              ? decodeSrcOp(OPW64, Val)
1790              : decodeSrcOp(OPW32, Val);
1791 }
1792 
1793 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1794   return decodeSrcOp(OPW32, Val);
1795 }
1796 
1797 bool AMDGPUDisassembler::isVI() const {
1798   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1799 }
1800 
1801 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1802 
1803 bool AMDGPUDisassembler::isGFX90A() const {
1804   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1805 }
1806 
1807 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1808 
1809 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1810 
1811 bool AMDGPUDisassembler::isGFX10Plus() const {
1812   return AMDGPU::isGFX10Plus(STI);
1813 }
1814 
1815 bool AMDGPUDisassembler::isGFX11() const {
1816   return STI.hasFeature(AMDGPU::FeatureGFX11);
1817 }
1818 
1819 bool AMDGPUDisassembler::isGFX11Plus() const {
1820   return AMDGPU::isGFX11Plus(STI);
1821 }
1822 
1823 bool AMDGPUDisassembler::isGFX12Plus() const {
1824   return AMDGPU::isGFX12Plus(STI);
1825 }
1826 
1827 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1828   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1829 }
1830 
1831 bool AMDGPUDisassembler::hasKernargPreload() const {
1832   return AMDGPU::hasKernargPreload(STI);
1833 }
1834 
1835 //===----------------------------------------------------------------------===//
1836 // AMDGPU specific symbol handling
1837 //===----------------------------------------------------------------------===//
1838 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1839 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1840   do {                                                                         \
1841     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1842   } while (0)
1843 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1844   do {                                                                         \
1845     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1846              << GET_FIELD(MASK) << '\n';                                       \
1847   } while (0)
1848 
1849 // NOLINTNEXTLINE(readability-identifier-naming)
1850 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1851     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1852   using namespace amdhsa;
1853   StringRef Indent = "\t";
1854 
1855   // We cannot accurately backward compute #VGPRs used from
1856   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1857   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1858   // simply calculate the inverse of what the assembler does.
1859 
1860   uint32_t GranulatedWorkitemVGPRCount =
1861       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1862 
1863   uint32_t NextFreeVGPR =
1864       (GranulatedWorkitemVGPRCount + 1) *
1865       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1866 
1867   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1868 
1869   // We cannot backward compute values used to calculate
1870   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1871   // directives can't be computed:
1872   // .amdhsa_reserve_vcc
1873   // .amdhsa_reserve_flat_scratch
1874   // .amdhsa_reserve_xnack_mask
1875   // They take their respective default values if not specified in the assembly.
1876   //
1877   // GRANULATED_WAVEFRONT_SGPR_COUNT
1878   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1879   //
1880   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1881   // are set to 0. So while disassembling we consider that:
1882   //
1883   // GRANULATED_WAVEFRONT_SGPR_COUNT
1884   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1885   //
1886   // The disassembler cannot recover the original values of those 3 directives.
1887 
1888   uint32_t GranulatedWavefrontSGPRCount =
1889       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1890 
1891   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1892     return MCDisassembler::Fail;
1893 
1894   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1895                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1896 
1897   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1898   if (!hasArchitectedFlatScratch())
1899     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1900   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1901   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1902 
1903   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1904     return MCDisassembler::Fail;
1905 
1906   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1907                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1908   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1909                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1910   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1911                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1912   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1913                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1914 
1915   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1916     return MCDisassembler::Fail;
1917 
1918   if (!isGFX12Plus())
1919     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1920                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1921 
1922   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1923     return MCDisassembler::Fail;
1924 
1925   if (!isGFX12Plus())
1926     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1927                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1928 
1929   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1930     return MCDisassembler::Fail;
1931 
1932   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1933     return MCDisassembler::Fail;
1934 
1935   if (isGFX9Plus())
1936     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1937 
1938   if (!isGFX9Plus())
1939     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1940       return MCDisassembler::Fail;
1941   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1942     return MCDisassembler::Fail;
1943   if (!isGFX10Plus())
1944     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1945       return MCDisassembler::Fail;
1946 
1947   if (isGFX10Plus()) {
1948     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1949                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1950     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1951     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1952   }
1953 
1954   if (isGFX12Plus())
1955     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1956                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1957 
1958   return MCDisassembler::Success;
1959 }
1960 
1961 // NOLINTNEXTLINE(readability-identifier-naming)
1962 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1963     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1964   using namespace amdhsa;
1965   StringRef Indent = "\t";
1966   if (hasArchitectedFlatScratch())
1967     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1968                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1969   else
1970     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1971                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1972   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1973                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1974   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1975                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1976   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1977                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1978   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1979                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1980   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1981                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1982 
1983   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1984     return MCDisassembler::Fail;
1985 
1986   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1987     return MCDisassembler::Fail;
1988 
1989   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1990     return MCDisassembler::Fail;
1991 
1992   PRINT_DIRECTIVE(
1993       ".amdhsa_exception_fp_ieee_invalid_op",
1994       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1995   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1996                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1997   PRINT_DIRECTIVE(
1998       ".amdhsa_exception_fp_ieee_div_zero",
1999       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
2000   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
2001                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
2002   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
2003                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
2004   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
2005                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
2006   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
2007                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
2008 
2009   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
2010     return MCDisassembler::Fail;
2011 
2012   return MCDisassembler::Success;
2013 }
2014 
2015 // NOLINTNEXTLINE(readability-identifier-naming)
2016 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
2017     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2018   using namespace amdhsa;
2019   StringRef Indent = "\t";
2020   if (isGFX90A()) {
2021     KdStream << Indent << ".amdhsa_accum_offset "
2022              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
2023              << '\n';
2024     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
2025       return MCDisassembler::Fail;
2026     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
2027     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
2028       return MCDisassembler::Fail;
2029   } else if (isGFX10Plus()) {
2030     // Bits [0-3].
2031     if (!isGFX12Plus()) {
2032       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2033         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2034                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2035       } else {
2036         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2037             "SHARED_VGPR_COUNT",
2038             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2039       }
2040     } else {
2041       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0)
2042         return MCDisassembler::Fail;
2043     }
2044 
2045     // Bits [4-11].
2046     if (isGFX11()) {
2047       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2048                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2049       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2050                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2051       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2052                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2053     } else if (isGFX12Plus()) {
2054       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2055           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2056     } else {
2057       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1)
2058         return MCDisassembler::Fail;
2059     }
2060 
2061     // Bits [12].
2062     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2)
2063       return MCDisassembler::Fail;
2064 
2065     // Bits [13].
2066     if (isGFX12Plus()) {
2067       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2068                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2069     } else {
2070       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3)
2071         return MCDisassembler::Fail;
2072     }
2073 
2074     // Bits [14-30].
2075     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4)
2076       return MCDisassembler::Fail;
2077 
2078     // Bits [31].
2079     if (isGFX11Plus()) {
2080       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2081                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2082     } else {
2083       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5)
2084         return MCDisassembler::Fail;
2085     }
2086   } else if (FourByteBuffer) {
2087     return MCDisassembler::Fail;
2088   }
2089   return MCDisassembler::Success;
2090 }
2091 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2092 #undef PRINT_DIRECTIVE
2093 #undef GET_FIELD
2094 
2095 MCDisassembler::DecodeStatus
2096 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2097     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2098     raw_string_ostream &KdStream) const {
2099 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2100   do {                                                                         \
2101     KdStream << Indent << DIRECTIVE " "                                        \
2102              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2103   } while (0)
2104 
2105   uint16_t TwoByteBuffer = 0;
2106   uint32_t FourByteBuffer = 0;
2107 
2108   StringRef ReservedBytes;
2109   StringRef Indent = "\t";
2110 
2111   assert(Bytes.size() == 64);
2112   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2113 
2114   switch (Cursor.tell()) {
2115   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2116     FourByteBuffer = DE.getU32(Cursor);
2117     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2118              << '\n';
2119     return MCDisassembler::Success;
2120 
2121   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2122     FourByteBuffer = DE.getU32(Cursor);
2123     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2124              << FourByteBuffer << '\n';
2125     return MCDisassembler::Success;
2126 
2127   case amdhsa::KERNARG_SIZE_OFFSET:
2128     FourByteBuffer = DE.getU32(Cursor);
2129     KdStream << Indent << ".amdhsa_kernarg_size "
2130              << FourByteBuffer << '\n';
2131     return MCDisassembler::Success;
2132 
2133   case amdhsa::RESERVED0_OFFSET:
2134     // 4 reserved bytes, must be 0.
2135     ReservedBytes = DE.getBytes(Cursor, 4);
2136     for (int I = 0; I < 4; ++I) {
2137       if (ReservedBytes[I] != 0) {
2138         return MCDisassembler::Fail;
2139       }
2140     }
2141     return MCDisassembler::Success;
2142 
2143   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2144     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2145     // So far no directive controls this for Code Object V3, so simply skip for
2146     // disassembly.
2147     DE.skip(Cursor, 8);
2148     return MCDisassembler::Success;
2149 
2150   case amdhsa::RESERVED1_OFFSET:
2151     // 20 reserved bytes, must be 0.
2152     ReservedBytes = DE.getBytes(Cursor, 20);
2153     for (int I = 0; I < 20; ++I) {
2154       if (ReservedBytes[I] != 0) {
2155         return MCDisassembler::Fail;
2156       }
2157     }
2158     return MCDisassembler::Success;
2159 
2160   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2161     FourByteBuffer = DE.getU32(Cursor);
2162     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2163 
2164   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2165     FourByteBuffer = DE.getU32(Cursor);
2166     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2167 
2168   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2169     FourByteBuffer = DE.getU32(Cursor);
2170     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2171 
2172   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2173     using namespace amdhsa;
2174     TwoByteBuffer = DE.getU16(Cursor);
2175 
2176     if (!hasArchitectedFlatScratch())
2177       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2178                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2179     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2180                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2181     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2182                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2183     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2184                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2185     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2186                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2187     if (!hasArchitectedFlatScratch())
2188       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2189                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2190     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2191                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2192 
2193     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2194       return MCDisassembler::Fail;
2195 
2196     // Reserved for GFX9
2197     if (isGFX9() &&
2198         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2199       return MCDisassembler::Fail;
2200     } else if (isGFX10Plus()) {
2201       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2202                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2203     }
2204 
2205     // FIXME: We should be looking at the ELF header ABI version for this.
2206     if (AMDGPU::getDefaultAMDHSACodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2207       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2208                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2209 
2210     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2211       return MCDisassembler::Fail;
2212 
2213     return MCDisassembler::Success;
2214 
2215   case amdhsa::KERNARG_PRELOAD_OFFSET:
2216     using namespace amdhsa;
2217     TwoByteBuffer = DE.getU16(Cursor);
2218     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2219       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2220                       KERNARG_PRELOAD_SPEC_LENGTH);
2221     }
2222 
2223     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2224       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2225                       KERNARG_PRELOAD_SPEC_OFFSET);
2226     }
2227     return MCDisassembler::Success;
2228 
2229   case amdhsa::RESERVED3_OFFSET:
2230     // 4 bytes from here are reserved, must be 0.
2231     ReservedBytes = DE.getBytes(Cursor, 4);
2232     for (int I = 0; I < 4; ++I) {
2233       if (ReservedBytes[I] != 0)
2234         return MCDisassembler::Fail;
2235     }
2236     return MCDisassembler::Success;
2237 
2238   default:
2239     llvm_unreachable("Unhandled index. Case statements cover everything.");
2240     return MCDisassembler::Fail;
2241   }
2242 #undef PRINT_DIRECTIVE
2243 }
2244 
2245 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2246     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2247   // CP microcode requires the kernel descriptor to be 64 aligned.
2248   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2249     return MCDisassembler::Fail;
2250 
2251   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2252   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2253   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2254   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2255   // when required.
2256   if (isGFX10Plus()) {
2257     uint16_t KernelCodeProperties =
2258         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2259                                 llvm::endianness::little);
2260     EnableWavefrontSize32 =
2261         AMDHSA_BITS_GET(KernelCodeProperties,
2262                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2263   }
2264 
2265   std::string Kd;
2266   raw_string_ostream KdStream(Kd);
2267   KdStream << ".amdhsa_kernel " << KdName << '\n';
2268 
2269   DataExtractor::Cursor C(0);
2270   while (C && C.tell() < Bytes.size()) {
2271     MCDisassembler::DecodeStatus Status =
2272         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2273 
2274     cantFail(C.takeError());
2275 
2276     if (Status == MCDisassembler::Fail)
2277       return MCDisassembler::Fail;
2278   }
2279   KdStream << ".end_amdhsa_kernel\n";
2280   outs() << KdStream.str();
2281   return MCDisassembler::Success;
2282 }
2283 
2284 std::optional<MCDisassembler::DecodeStatus>
2285 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2286                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2287                                   raw_ostream &CStream) const {
2288   // Right now only kernel descriptor needs to be handled.
2289   // We ignore all other symbols for target specific handling.
2290   // TODO:
2291   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2292   // Object V2 and V3 when symbols are marked protected.
2293 
2294   // amd_kernel_code_t for Code Object V2.
2295   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2296     Size = 256;
2297     return MCDisassembler::Fail;
2298   }
2299 
2300   // Code Object V3 kernel descriptors.
2301   StringRef Name = Symbol.Name;
2302   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2303     Size = 64; // Size = 64 regardless of success or failure.
2304     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2305   }
2306   return std::nullopt;
2307 }
2308 
2309 //===----------------------------------------------------------------------===//
2310 // AMDGPUSymbolizer
2311 //===----------------------------------------------------------------------===//
2312 
2313 // Try to find symbol name for specified label
2314 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2315     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2316     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2317     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2318 
2319   if (!IsBranch) {
2320     return false;
2321   }
2322 
2323   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2324   if (!Symbols)
2325     return false;
2326 
2327   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2328     return Val.Addr == static_cast<uint64_t>(Value) &&
2329            Val.Type == ELF::STT_NOTYPE;
2330   });
2331   if (Result != Symbols->end()) {
2332     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2333     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2334     Inst.addOperand(MCOperand::createExpr(Add));
2335     return true;
2336   }
2337   // Add to list of referenced addresses, so caller can synthesize a label.
2338   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2339   return false;
2340 }
2341 
2342 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2343                                                        int64_t Value,
2344                                                        uint64_t Address) {
2345   llvm_unreachable("unimplemented");
2346 }
2347 
2348 //===----------------------------------------------------------------------===//
2349 // Initialization
2350 //===----------------------------------------------------------------------===//
2351 
2352 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2353                               LLVMOpInfoCallback /*GetOpInfo*/,
2354                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2355                               void *DisInfo,
2356                               MCContext *Ctx,
2357                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2358   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2359 }
2360 
2361 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2362                                                 const MCSubtargetInfo &STI,
2363                                                 MCContext &Ctx) {
2364   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2365 }
2366 
2367 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2368   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2369                                          createAMDGPUDisassembler);
2370   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2371                                        createAMDGPUSymbolizer);
2372 }
2373