xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 6e3e14f600afa1fa64a699df97c8bbac6d0f8b5a)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixedLenDisassembler.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/TargetRegistry.h"
33 #include "llvm/Support/AMDHSAKernelDescriptor.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "amdgpu-disassembler"
38 
39 #define SGPR_MAX                                                               \
40   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
41                  : AMDGPU::EncValues::SGPR_MAX_SI)
42 
43 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
44 
45 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
46                                        MCContext &Ctx,
47                                        MCInstrInfo const *MCII) :
48   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
49   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
50 
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr, const void *Decoder) {
77   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
78 
79   // Our branches take a simm16, but we need two extra bits to account for the
80   // factor of 4.
81   APInt SignedOffset(18, Imm * 4, true);
82   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
83 
84   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
85     return MCDisassembler::Success;
86   return addOperand(Inst, MCOperand::createImm(Imm));
87 }
88 
89 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm,
90                                      uint64_t Addr, const void *Decoder) {
91   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
92   int64_t Offset;
93   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
94     Offset = Imm & 0xFFFFF;
95   } else {                    // GFX9+ supports 21-bit signed offsets.
96     Offset = SignExtend64<21>(Imm);
97   }
98   return addOperand(Inst, MCOperand::createImm(Offset));
99 }
100 
101 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val,
102                                   uint64_t Addr, const void *Decoder) {
103   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
104   return addOperand(Inst, DAsm->decodeBoolReg(Val));
105 }
106 
107 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \
108 static DecodeStatus StaticDecoderName(MCInst &Inst, \
109                                        unsigned Imm, \
110                                        uint64_t /*Addr*/, \
111                                        const void *Decoder) { \
112   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
113   return addOperand(Inst, DAsm->DecoderName(Imm)); \
114 }
115 
116 #define DECODE_OPERAND_REG(RegClass) \
117 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
118 
119 DECODE_OPERAND_REG(VGPR_32)
120 DECODE_OPERAND_REG(VRegOrLds_32)
121 DECODE_OPERAND_REG(VS_32)
122 DECODE_OPERAND_REG(VS_64)
123 DECODE_OPERAND_REG(VS_128)
124 
125 DECODE_OPERAND_REG(VReg_64)
126 DECODE_OPERAND_REG(VReg_96)
127 DECODE_OPERAND_REG(VReg_128)
128 DECODE_OPERAND_REG(VReg_256)
129 DECODE_OPERAND_REG(VReg_512)
130 DECODE_OPERAND_REG(VReg_1024)
131 
132 DECODE_OPERAND_REG(SReg_32)
133 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
134 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
135 DECODE_OPERAND_REG(SRegOrLds_32)
136 DECODE_OPERAND_REG(SReg_64)
137 DECODE_OPERAND_REG(SReg_64_XEXEC)
138 DECODE_OPERAND_REG(SReg_128)
139 DECODE_OPERAND_REG(SReg_256)
140 DECODE_OPERAND_REG(SReg_512)
141 
142 DECODE_OPERAND_REG(AGPR_32)
143 DECODE_OPERAND_REG(AReg_64)
144 DECODE_OPERAND_REG(AReg_128)
145 DECODE_OPERAND_REG(AReg_256)
146 DECODE_OPERAND_REG(AReg_512)
147 DECODE_OPERAND_REG(AReg_1024)
148 DECODE_OPERAND_REG(AV_32)
149 DECODE_OPERAND_REG(AV_64)
150 DECODE_OPERAND_REG(AV_128)
151 DECODE_OPERAND_REG(AV_512)
152 
153 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
154                                          unsigned Imm,
155                                          uint64_t Addr,
156                                          const void *Decoder) {
157   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
158   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
159 }
160 
161 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
162                                          unsigned Imm,
163                                          uint64_t Addr,
164                                          const void *Decoder) {
165   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
166   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
167 }
168 
169 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst,
170                                            unsigned Imm,
171                                            uint64_t Addr,
172                                            const void *Decoder) {
173   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
175 }
176 
177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst,
178                                         unsigned Imm,
179                                         uint64_t Addr,
180                                         const void *Decoder) {
181   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
182   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
183 }
184 
185 static DecodeStatus decodeOperand_VS_32(MCInst &Inst,
186                                         unsigned Imm,
187                                         uint64_t Addr,
188                                         const void *Decoder) {
189   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
190   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
191 }
192 
193 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst,
194                                           unsigned Imm,
195                                           uint64_t Addr,
196                                           const void *Decoder) {
197   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
198   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
199 }
200 
201 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst,
202                                            unsigned Imm,
203                                            uint64_t Addr,
204                                            const void *Decoder) {
205   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
206   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
207 }
208 
209 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst,
210                                            unsigned Imm,
211                                            uint64_t Addr,
212                                            const void *Decoder) {
213   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
214   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
215 }
216 
217 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst,
218                                            unsigned Imm,
219                                            uint64_t Addr,
220                                            const void *Decoder) {
221   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
222   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
223 }
224 
225 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst,
226                                             unsigned Imm,
227                                             uint64_t Addr,
228                                             const void *Decoder) {
229   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
231 }
232 
233 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst,
234                                           unsigned Imm,
235                                           uint64_t Addr,
236                                           const void *Decoder) {
237   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
238   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
239 }
240 
241 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst,
242                                            unsigned Imm,
243                                            uint64_t Addr,
244                                            const void *Decoder) {
245   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
246   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
247 }
248 
249 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst,
250                                            unsigned Imm,
251                                            uint64_t Addr,
252                                            const void *Decoder) {
253   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
254   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
255 }
256 
257 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst,
258                                            unsigned Imm,
259                                            uint64_t Addr,
260                                            const void *Decoder) {
261   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
262   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
263 }
264 
265 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst,
266                                             unsigned Imm,
267                                             uint64_t Addr,
268                                             const void *Decoder) {
269   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
270   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
271 }
272 
273 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
274                                           uint64_t Addr, const void *Decoder) {
275   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
276   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
277 }
278 
279 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
280                                           uint64_t Addr, const void *Decoder) {
281   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
282   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
283 }
284 
285 static DecodeStatus decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm,
286                                                  uint64_t Addr,
287                                                  const void *Decoder) {
288   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
289   return addOperand(
290       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
291 }
292 
293 static DecodeStatus decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm,
294                                                  uint64_t Addr,
295                                                  const void *Decoder) {
296   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
297   return addOperand(
298       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
299 }
300 
301 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
302                           const MCRegisterInfo *MRI) {
303   if (OpIdx < 0)
304     return false;
305 
306   const MCOperand &Op = Inst.getOperand(OpIdx);
307   if (!Op.isReg())
308     return false;
309 
310   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
311   auto Reg = Sub ? Sub : Op.getReg();
312   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
313 }
314 
315 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst,
316                                              unsigned Imm,
317                                              AMDGPUDisassembler::OpWidthTy Opw,
318                                              const void *Decoder) {
319   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
320   if (!DAsm->isGFX90A()) {
321     Imm &= 511;
322   } else {
323     // If atomic has both vdata and vdst their register classes are tied.
324     // The bit is decoded along with the vdst, first operand. We need to
325     // change register class to AGPR if vdst was AGPR.
326     // If a DS instruction has both data0 and data1 their register classes
327     // are also tied.
328     unsigned Opc = Inst.getOpcode();
329     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
330     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
331                                                         : AMDGPU::OpName::vdata;
332     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
333     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
334     if ((int)Inst.getNumOperands() == DataIdx) {
335       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
336       if (IsAGPROperand(Inst, DstIdx, MRI))
337         Imm |= 512;
338     }
339 
340     if (TSFlags & SIInstrFlags::DS) {
341       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
342       if ((int)Inst.getNumOperands() == Data2Idx &&
343           IsAGPROperand(Inst, DataIdx, MRI))
344         Imm |= 512;
345     }
346   }
347   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
348 }
349 
350 static DecodeStatus DecodeAVLdSt_32RegisterClass(MCInst &Inst,
351                                                  unsigned Imm,
352                                                  uint64_t Addr,
353                                                  const void *Decoder) {
354   return decodeOperand_AVLdSt_Any(Inst, Imm,
355                                   AMDGPUDisassembler::OPW32, Decoder);
356 }
357 
358 static DecodeStatus DecodeAVLdSt_64RegisterClass(MCInst &Inst,
359                                                  unsigned Imm,
360                                                  uint64_t Addr,
361                                                  const void *Decoder) {
362   return decodeOperand_AVLdSt_Any(Inst, Imm,
363                                   AMDGPUDisassembler::OPW64, Decoder);
364 }
365 
366 static DecodeStatus DecodeAVLdSt_96RegisterClass(MCInst &Inst,
367                                                  unsigned Imm,
368                                                  uint64_t Addr,
369                                                  const void *Decoder) {
370   return decodeOperand_AVLdSt_Any(Inst, Imm,
371                                   AMDGPUDisassembler::OPW96, Decoder);
372 }
373 
374 static DecodeStatus DecodeAVLdSt_128RegisterClass(MCInst &Inst,
375                                                   unsigned Imm,
376                                                   uint64_t Addr,
377                                                   const void *Decoder) {
378   return decodeOperand_AVLdSt_Any(Inst, Imm,
379                                   AMDGPUDisassembler::OPW128, Decoder);
380 }
381 
382 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst,
383                                           unsigned Imm,
384                                           uint64_t Addr,
385                                           const void *Decoder) {
386   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
387   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
388 }
389 
390 #define DECODE_SDWA(DecName) \
391 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
392 
393 DECODE_SDWA(Src32)
394 DECODE_SDWA(Src16)
395 DECODE_SDWA(VopcDst)
396 
397 #include "AMDGPUGenDisassemblerTables.inc"
398 
399 //===----------------------------------------------------------------------===//
400 //
401 //===----------------------------------------------------------------------===//
402 
403 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
404   assert(Bytes.size() >= sizeof(T));
405   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
406   Bytes = Bytes.slice(sizeof(T));
407   return Res;
408 }
409 
410 DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
411                                                MCInst &MI,
412                                                uint64_t Inst,
413                                                uint64_t Address) const {
414   assert(MI.getOpcode() == 0);
415   assert(MI.getNumOperands() == 0);
416   MCInst TmpInst;
417   HasLiteral = false;
418   const auto SavedBytes = Bytes;
419   if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
420     MI = TmpInst;
421     return MCDisassembler::Success;
422   }
423   Bytes = SavedBytes;
424   return MCDisassembler::Fail;
425 }
426 
427 // The disassembler is greedy, so we need to check FI operand value to
428 // not parse a dpp if the correct literal is not set. For dpp16 the
429 // autogenerated decoder checks the dpp literal
430 static bool isValidDPP8(const MCInst &MI) {
431   using namespace llvm::AMDGPU::DPP;
432   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
433   assert(FiIdx != -1);
434   if ((unsigned)FiIdx >= MI.getNumOperands())
435     return false;
436   unsigned Fi = MI.getOperand(FiIdx).getImm();
437   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
438 }
439 
440 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
441                                                 ArrayRef<uint8_t> Bytes_,
442                                                 uint64_t Address,
443                                                 raw_ostream &CS) const {
444   CommentStream = &CS;
445   bool IsSDWA = false;
446 
447   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
448   Bytes = Bytes_.slice(0, MaxInstBytesNum);
449 
450   DecodeStatus Res = MCDisassembler::Fail;
451   do {
452     // ToDo: better to switch encoding length using some bit predicate
453     // but it is unknown yet, so try all we can
454 
455     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
456     // encodings
457     if (Bytes.size() >= 8) {
458       const uint64_t QW = eatBytes<uint64_t>(Bytes);
459 
460       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
461         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
462         if (Res) {
463           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
464               == -1)
465             break;
466           if (convertDPP8Inst(MI) == MCDisassembler::Success)
467             break;
468           MI = MCInst(); // clear
469         }
470       }
471 
472       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
473       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
474         break;
475 
476       MI = MCInst(); // clear
477 
478       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
479       if (Res) break;
480 
481       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
482       if (Res) { IsSDWA = true;  break; }
483 
484       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
485       if (Res) { IsSDWA = true;  break; }
486 
487       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
488       if (Res) { IsSDWA = true;  break; }
489 
490       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
491         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
492         if (Res)
493           break;
494       }
495 
496       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
497       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
498       // table first so we print the correct name.
499       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
500         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
501         if (Res)
502           break;
503       }
504     }
505 
506     // Reinitialize Bytes as DPP64 could have eaten too much
507     Bytes = Bytes_.slice(0, MaxInstBytesNum);
508 
509     // Try decode 32-bit instruction
510     if (Bytes.size() < 4) break;
511     const uint32_t DW = eatBytes<uint32_t>(Bytes);
512     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
513     if (Res) break;
514 
515     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
516     if (Res) break;
517 
518     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
519     if (Res) break;
520 
521     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
522       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
523       if (Res)
524         break;
525     }
526 
527     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
528       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
529       if (Res) break;
530     }
531 
532     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
533     if (Res) break;
534 
535     if (Bytes.size() < 4) break;
536     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
537 
538     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
539       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
540       if (Res)
541         break;
542     }
543 
544     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
545     if (Res) break;
546 
547     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
548     if (Res) break;
549 
550     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
551     if (Res) break;
552 
553     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
554   } while (false);
555 
556   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
557               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
558               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
559               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
560               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
561               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
562               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
563               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
564               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
565               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
566               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
567     // Insert dummy unused src2_modifiers.
568     insertNamedMCOperand(MI, MCOperand::createImm(0),
569                          AMDGPU::OpName::src2_modifiers);
570   }
571 
572   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
573           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
574     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
575                                              AMDGPU::OpName::cpol);
576     if (CPolPos != -1) {
577       unsigned CPol =
578           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
579               AMDGPU::CPol::GLC : 0;
580       if (MI.getNumOperands() <= (unsigned)CPolPos) {
581         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
582                              AMDGPU::OpName::cpol);
583       } else if (CPol) {
584         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
585       }
586     }
587   }
588 
589   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
590               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
591              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
592     // GFX90A lost TFE, its place is occupied by ACC.
593     int TFEOpIdx =
594         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
595     if (TFEOpIdx != -1) {
596       auto TFEIter = MI.begin();
597       std::advance(TFEIter, TFEOpIdx);
598       MI.insert(TFEIter, MCOperand::createImm(0));
599     }
600   }
601 
602   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
603               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
604     int SWZOpIdx =
605         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
606     if (SWZOpIdx != -1) {
607       auto SWZIter = MI.begin();
608       std::advance(SWZIter, SWZOpIdx);
609       MI.insert(SWZIter, MCOperand::createImm(0));
610     }
611   }
612 
613   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
614     int VAddr0Idx =
615         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
616     int RsrcIdx =
617         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
618     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
619     if (VAddr0Idx >= 0 && NSAArgs > 0) {
620       unsigned NSAWords = (NSAArgs + 3) / 4;
621       if (Bytes.size() < 4 * NSAWords) {
622         Res = MCDisassembler::Fail;
623       } else {
624         for (unsigned i = 0; i < NSAArgs; ++i) {
625           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
626                     decodeOperand_VGPR_32(Bytes[i]));
627         }
628         Bytes = Bytes.slice(4 * NSAWords);
629       }
630     }
631 
632     if (Res)
633       Res = convertMIMGInst(MI);
634   }
635 
636   if (Res && IsSDWA)
637     Res = convertSDWAInst(MI);
638 
639   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
640                                               AMDGPU::OpName::vdst_in);
641   if (VDstIn_Idx != -1) {
642     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
643                            MCOI::OperandConstraint::TIED_TO);
644     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
645          !MI.getOperand(VDstIn_Idx).isReg() ||
646          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
647       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
648         MI.erase(&MI.getOperand(VDstIn_Idx));
649       insertNamedMCOperand(MI,
650         MCOperand::createReg(MI.getOperand(Tied).getReg()),
651         AMDGPU::OpName::vdst_in);
652     }
653   }
654 
655   int ImmLitIdx =
656       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
657   if (Res && ImmLitIdx != -1)
658     Res = convertFMAanyK(MI, ImmLitIdx);
659 
660   // if the opcode was not recognized we'll assume a Size of 4 bytes
661   // (unless there are fewer bytes left)
662   Size = Res ? (MaxInstBytesNum - Bytes.size())
663              : std::min((size_t)4, Bytes_.size());
664   return Res;
665 }
666 
667 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
668   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
669       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
670     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
671       // VOPC - insert clamp
672       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
673   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
674     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
675     if (SDst != -1) {
676       // VOPC - insert VCC register as sdst
677       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
678                            AMDGPU::OpName::sdst);
679     } else {
680       // VOP1/2 - insert omod if present in instruction
681       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
682     }
683   }
684   return MCDisassembler::Success;
685 }
686 
687 // We must check FI == literal to reject not genuine dpp8 insts, and we must
688 // first add optional MI operands to check FI
689 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
690   unsigned Opc = MI.getOpcode();
691   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
692 
693   // Insert dummy unused src modifiers.
694   if (MI.getNumOperands() < DescNumOps &&
695       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
696     insertNamedMCOperand(MI, MCOperand::createImm(0),
697                          AMDGPU::OpName::src0_modifiers);
698 
699   if (MI.getNumOperands() < DescNumOps &&
700       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
701     insertNamedMCOperand(MI, MCOperand::createImm(0),
702                          AMDGPU::OpName::src1_modifiers);
703 
704   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
705 }
706 
707 // Note that before gfx10, the MIMG encoding provided no information about
708 // VADDR size. Consequently, decoded instructions always show address as if it
709 // has 1 dword, which could be not really so.
710 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
711 
712   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
713                                            AMDGPU::OpName::vdst);
714 
715   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
716                                             AMDGPU::OpName::vdata);
717   int VAddr0Idx =
718       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
719   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
720                                             AMDGPU::OpName::dmask);
721 
722   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
723                                             AMDGPU::OpName::tfe);
724   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
725                                             AMDGPU::OpName::d16);
726 
727   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
728   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
729       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
730 
731   assert(VDataIdx != -1);
732   if (BaseOpcode->BVH) {
733     // Add A16 operand for intersect_ray instructions
734     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
735       addOperand(MI, MCOperand::createImm(1));
736     }
737     return MCDisassembler::Success;
738   }
739 
740   bool IsAtomic = (VDstIdx != -1);
741   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
742   bool IsNSA = false;
743   unsigned AddrSize = Info->VAddrDwords;
744 
745   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
746     unsigned DimIdx =
747         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
748     int A16Idx =
749         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
750     const AMDGPU::MIMGDimInfo *Dim =
751         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
752     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
753 
754     AddrSize =
755         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
756 
757     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
758     if (!IsNSA) {
759       if (AddrSize > 8)
760         AddrSize = 16;
761     } else {
762       if (AddrSize > Info->VAddrDwords) {
763         // The NSA encoding does not contain enough operands for the combination
764         // of base opcode / dimension. Should this be an error?
765         return MCDisassembler::Success;
766       }
767     }
768   }
769 
770   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
771   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
772 
773   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
774   if (D16 && AMDGPU::hasPackedD16(STI)) {
775     DstSize = (DstSize + 1) / 2;
776   }
777 
778   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
779     DstSize += 1;
780 
781   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
782     return MCDisassembler::Success;
783 
784   int NewOpcode =
785       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
786   if (NewOpcode == -1)
787     return MCDisassembler::Success;
788 
789   // Widen the register to the correct number of enabled channels.
790   unsigned NewVdata = AMDGPU::NoRegister;
791   if (DstSize != Info->VDataDwords) {
792     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
793 
794     // Get first subregister of VData
795     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
796     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
797     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
798 
799     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
800                                        &MRI.getRegClass(DataRCID));
801     if (NewVdata == AMDGPU::NoRegister) {
802       // It's possible to encode this such that the low register + enabled
803       // components exceeds the register count.
804       return MCDisassembler::Success;
805     }
806   }
807 
808   unsigned NewVAddr0 = AMDGPU::NoRegister;
809   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
810       AddrSize != Info->VAddrDwords) {
811     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
812     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
813     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
814 
815     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
816     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
817                                         &MRI.getRegClass(AddrRCID));
818     if (NewVAddr0 == AMDGPU::NoRegister)
819       return MCDisassembler::Success;
820   }
821 
822   MI.setOpcode(NewOpcode);
823 
824   if (NewVdata != AMDGPU::NoRegister) {
825     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
826 
827     if (IsAtomic) {
828       // Atomic operations have an additional operand (a copy of data)
829       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
830     }
831   }
832 
833   if (NewVAddr0 != AMDGPU::NoRegister) {
834     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
835   } else if (IsNSA) {
836     assert(AddrSize <= Info->VAddrDwords);
837     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
838              MI.begin() + VAddr0Idx + Info->VAddrDwords);
839   }
840 
841   return MCDisassembler::Success;
842 }
843 
844 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
845                                                 int ImmLitIdx) const {
846   assert(HasLiteral && "Should have decoded a literal");
847   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
848   unsigned DescNumOps = Desc.getNumOperands();
849   assert(DescNumOps == MI.getNumOperands());
850   for (unsigned I = 0; I < DescNumOps; ++I) {
851     auto &Op = MI.getOperand(I);
852     auto OpType = Desc.OpInfo[I].OperandType;
853     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
854                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
855     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
856         IsDeferredOp)
857       Op.setImm(Literal);
858   }
859   return MCDisassembler::Success;
860 }
861 
862 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
863   return getContext().getRegisterInfo()->
864     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
865 }
866 
867 inline
868 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
869                                          const Twine& ErrMsg) const {
870   *CommentStream << "Error: " + ErrMsg;
871 
872   // ToDo: add support for error operands to MCInst.h
873   // return MCOperand::createError(V);
874   return MCOperand();
875 }
876 
877 inline
878 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
879   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
880 }
881 
882 inline
883 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
884                                                unsigned Val) const {
885   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
886   if (Val >= RegCl.getNumRegs())
887     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
888                            ": unknown register " + Twine(Val));
889   return createRegOperand(RegCl.getRegister(Val));
890 }
891 
892 inline
893 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
894                                                 unsigned Val) const {
895   // ToDo: SI/CI have 104 SGPRs, VI - 102
896   // Valery: here we accepting as much as we can, let assembler sort it out
897   int shift = 0;
898   switch (SRegClassID) {
899   case AMDGPU::SGPR_32RegClassID:
900   case AMDGPU::TTMP_32RegClassID:
901     break;
902   case AMDGPU::SGPR_64RegClassID:
903   case AMDGPU::TTMP_64RegClassID:
904     shift = 1;
905     break;
906   case AMDGPU::SGPR_128RegClassID:
907   case AMDGPU::TTMP_128RegClassID:
908   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
909   // this bundle?
910   case AMDGPU::SGPR_256RegClassID:
911   case AMDGPU::TTMP_256RegClassID:
912     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
913   // this bundle?
914   case AMDGPU::SGPR_512RegClassID:
915   case AMDGPU::TTMP_512RegClassID:
916     shift = 2;
917     break;
918   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
919   // this bundle?
920   default:
921     llvm_unreachable("unhandled register class");
922   }
923 
924   if (Val % (1 << shift)) {
925     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
926                    << ": scalar reg isn't aligned " << Val;
927   }
928 
929   return createRegOperand(SRegClassID, Val >> shift);
930 }
931 
932 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
933   return decodeSrcOp(OPW32, Val);
934 }
935 
936 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
937   return decodeSrcOp(OPW64, Val);
938 }
939 
940 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
941   return decodeSrcOp(OPW128, Val);
942 }
943 
944 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
945   return decodeSrcOp(OPW16, Val);
946 }
947 
948 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
949   return decodeSrcOp(OPWV216, Val);
950 }
951 
952 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
953   return decodeSrcOp(OPWV232, Val);
954 }
955 
956 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
957   // Some instructions have operand restrictions beyond what the encoding
958   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
959   // high bit.
960   Val &= 255;
961 
962   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
963 }
964 
965 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
966   return decodeSrcOp(OPW32, Val);
967 }
968 
969 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
970   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
971 }
972 
973 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
974   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
975 }
976 
977 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
978   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
979 }
980 
981 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
982   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
983 }
984 
985 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
986   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
987 }
988 
989 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
990   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
991 }
992 
993 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
994   return decodeSrcOp(OPW32, Val);
995 }
996 
997 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
998   return decodeSrcOp(OPW64, Val);
999 }
1000 
1001 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1002   return decodeSrcOp(OPW128, Val);
1003 }
1004 
1005 MCOperand AMDGPUDisassembler::decodeOperand_AV_512(unsigned Val) const {
1006   return decodeSrcOp(OPW512, Val);
1007 }
1008 
1009 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1010   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1011 }
1012 
1013 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1014   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1015 }
1016 
1017 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1018   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1019 }
1020 
1021 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1022   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1023 }
1024 
1025 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1026   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1027 }
1028 
1029 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1030   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1031 }
1032 
1033 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1034   // table-gen generated disassembler doesn't care about operand types
1035   // leaving only registry class so SSrc_32 operand turns into SReg_32
1036   // and therefore we accept immediates and literals here as well
1037   return decodeSrcOp(OPW32, Val);
1038 }
1039 
1040 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1041   unsigned Val) const {
1042   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1043   return decodeOperand_SReg_32(Val);
1044 }
1045 
1046 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1047   unsigned Val) const {
1048   // SReg_32_XM0 is SReg_32 without EXEC_HI
1049   return decodeOperand_SReg_32(Val);
1050 }
1051 
1052 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1053   // table-gen generated disassembler doesn't care about operand types
1054   // leaving only registry class so SSrc_32 operand turns into SReg_32
1055   // and therefore we accept immediates and literals here as well
1056   return decodeSrcOp(OPW32, Val);
1057 }
1058 
1059 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1060   return decodeSrcOp(OPW64, Val);
1061 }
1062 
1063 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1064   return decodeSrcOp(OPW64, Val);
1065 }
1066 
1067 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1068   return decodeSrcOp(OPW128, Val);
1069 }
1070 
1071 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1072   return decodeDstOp(OPW256, Val);
1073 }
1074 
1075 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1076   return decodeDstOp(OPW512, Val);
1077 }
1078 
1079 // Decode Literals for insts which always have a literal in the encoding
1080 MCOperand
1081 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1082   if (HasLiteral) {
1083     if (Literal != Val)
1084       return errOperand(Val, "More than one unique literal is illegal");
1085   }
1086   HasLiteral = true;
1087   Literal = Val;
1088   return MCOperand::createImm(Literal);
1089 }
1090 
1091 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1092   // For now all literal constants are supposed to be unsigned integer
1093   // ToDo: deal with signed/unsigned 64-bit integer constants
1094   // ToDo: deal with float/double constants
1095   if (!HasLiteral) {
1096     if (Bytes.size() < 4) {
1097       return errOperand(0, "cannot read literal, inst bytes left " +
1098                         Twine(Bytes.size()));
1099     }
1100     HasLiteral = true;
1101     Literal = eatBytes<uint32_t>(Bytes);
1102   }
1103   return MCOperand::createImm(Literal);
1104 }
1105 
1106 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1107   using namespace AMDGPU::EncValues;
1108 
1109   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1110   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1111     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1112     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1113       // Cast prevents negative overflow.
1114 }
1115 
1116 static int64_t getInlineImmVal32(unsigned Imm) {
1117   switch (Imm) {
1118   case 240:
1119     return FloatToBits(0.5f);
1120   case 241:
1121     return FloatToBits(-0.5f);
1122   case 242:
1123     return FloatToBits(1.0f);
1124   case 243:
1125     return FloatToBits(-1.0f);
1126   case 244:
1127     return FloatToBits(2.0f);
1128   case 245:
1129     return FloatToBits(-2.0f);
1130   case 246:
1131     return FloatToBits(4.0f);
1132   case 247:
1133     return FloatToBits(-4.0f);
1134   case 248: // 1 / (2 * PI)
1135     return 0x3e22f983;
1136   default:
1137     llvm_unreachable("invalid fp inline imm");
1138   }
1139 }
1140 
1141 static int64_t getInlineImmVal64(unsigned Imm) {
1142   switch (Imm) {
1143   case 240:
1144     return DoubleToBits(0.5);
1145   case 241:
1146     return DoubleToBits(-0.5);
1147   case 242:
1148     return DoubleToBits(1.0);
1149   case 243:
1150     return DoubleToBits(-1.0);
1151   case 244:
1152     return DoubleToBits(2.0);
1153   case 245:
1154     return DoubleToBits(-2.0);
1155   case 246:
1156     return DoubleToBits(4.0);
1157   case 247:
1158     return DoubleToBits(-4.0);
1159   case 248: // 1 / (2 * PI)
1160     return 0x3fc45f306dc9c882;
1161   default:
1162     llvm_unreachable("invalid fp inline imm");
1163   }
1164 }
1165 
1166 static int64_t getInlineImmVal16(unsigned Imm) {
1167   switch (Imm) {
1168   case 240:
1169     return 0x3800;
1170   case 241:
1171     return 0xB800;
1172   case 242:
1173     return 0x3C00;
1174   case 243:
1175     return 0xBC00;
1176   case 244:
1177     return 0x4000;
1178   case 245:
1179     return 0xC000;
1180   case 246:
1181     return 0x4400;
1182   case 247:
1183     return 0xC400;
1184   case 248: // 1 / (2 * PI)
1185     return 0x3118;
1186   default:
1187     llvm_unreachable("invalid fp inline imm");
1188   }
1189 }
1190 
1191 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1192   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1193       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1194 
1195   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1196   switch (Width) {
1197   case OPW32:
1198   case OPW128: // splat constants
1199   case OPW512:
1200   case OPW1024:
1201   case OPWV232:
1202     return MCOperand::createImm(getInlineImmVal32(Imm));
1203   case OPW64:
1204   case OPW256:
1205     return MCOperand::createImm(getInlineImmVal64(Imm));
1206   case OPW16:
1207   case OPWV216:
1208     return MCOperand::createImm(getInlineImmVal16(Imm));
1209   default:
1210     llvm_unreachable("implement me");
1211   }
1212 }
1213 
1214 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1215   using namespace AMDGPU;
1216 
1217   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1218   switch (Width) {
1219   default: // fall
1220   case OPW32:
1221   case OPW16:
1222   case OPWV216:
1223     return VGPR_32RegClassID;
1224   case OPW64:
1225   case OPWV232: return VReg_64RegClassID;
1226   case OPW96: return VReg_96RegClassID;
1227   case OPW128: return VReg_128RegClassID;
1228   case OPW160: return VReg_160RegClassID;
1229   case OPW256: return VReg_256RegClassID;
1230   case OPW512: return VReg_512RegClassID;
1231   case OPW1024: return VReg_1024RegClassID;
1232   }
1233 }
1234 
1235 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1236   using namespace AMDGPU;
1237 
1238   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1239   switch (Width) {
1240   default: // fall
1241   case OPW32:
1242   case OPW16:
1243   case OPWV216:
1244     return AGPR_32RegClassID;
1245   case OPW64:
1246   case OPWV232: return AReg_64RegClassID;
1247   case OPW96: return AReg_96RegClassID;
1248   case OPW128: return AReg_128RegClassID;
1249   case OPW160: return AReg_160RegClassID;
1250   case OPW256: return AReg_256RegClassID;
1251   case OPW512: return AReg_512RegClassID;
1252   case OPW1024: return AReg_1024RegClassID;
1253   }
1254 }
1255 
1256 
1257 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1258   using namespace AMDGPU;
1259 
1260   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1261   switch (Width) {
1262   default: // fall
1263   case OPW32:
1264   case OPW16:
1265   case OPWV216:
1266     return SGPR_32RegClassID;
1267   case OPW64:
1268   case OPWV232: return SGPR_64RegClassID;
1269   case OPW96: return SGPR_96RegClassID;
1270   case OPW128: return SGPR_128RegClassID;
1271   case OPW160: return SGPR_160RegClassID;
1272   case OPW256: return SGPR_256RegClassID;
1273   case OPW512: return SGPR_512RegClassID;
1274   }
1275 }
1276 
1277 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1278   using namespace AMDGPU;
1279 
1280   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1281   switch (Width) {
1282   default: // fall
1283   case OPW32:
1284   case OPW16:
1285   case OPWV216:
1286     return TTMP_32RegClassID;
1287   case OPW64:
1288   case OPWV232: return TTMP_64RegClassID;
1289   case OPW128: return TTMP_128RegClassID;
1290   case OPW256: return TTMP_256RegClassID;
1291   case OPW512: return TTMP_512RegClassID;
1292   }
1293 }
1294 
1295 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1296   using namespace AMDGPU::EncValues;
1297 
1298   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1299   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1300 
1301   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1302 }
1303 
1304 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1305                                           bool MandatoryLiteral) const {
1306   using namespace AMDGPU::EncValues;
1307 
1308   assert(Val < 1024); // enum10
1309 
1310   bool IsAGPR = Val & 512;
1311   Val &= 511;
1312 
1313   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1314     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1315                                    : getVgprClassId(Width), Val - VGPR_MIN);
1316   }
1317   if (Val <= SGPR_MAX) {
1318     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1319     static_assert(SGPR_MIN == 0, "");
1320     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1321   }
1322 
1323   int TTmpIdx = getTTmpIdx(Val);
1324   if (TTmpIdx >= 0) {
1325     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1326   }
1327 
1328   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1329     return decodeIntImmed(Val);
1330 
1331   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1332     return decodeFPImmed(Width, Val);
1333 
1334   if (Val == LITERAL_CONST) {
1335     if (MandatoryLiteral)
1336       // Keep a sentinel value for deferred setting
1337       return MCOperand::createImm(LITERAL_CONST);
1338     else
1339       return decodeLiteralConstant();
1340   }
1341 
1342   switch (Width) {
1343   case OPW32:
1344   case OPW16:
1345   case OPWV216:
1346     return decodeSpecialReg32(Val);
1347   case OPW64:
1348   case OPWV232:
1349     return decodeSpecialReg64(Val);
1350   default:
1351     llvm_unreachable("unexpected immediate type");
1352   }
1353 }
1354 
1355 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1356   using namespace AMDGPU::EncValues;
1357 
1358   assert(Val < 128);
1359   assert(Width == OPW256 || Width == OPW512);
1360 
1361   if (Val <= SGPR_MAX) {
1362     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1363     static_assert(SGPR_MIN == 0, "");
1364     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1365   }
1366 
1367   int TTmpIdx = getTTmpIdx(Val);
1368   if (TTmpIdx >= 0) {
1369     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1370   }
1371 
1372   llvm_unreachable("unknown dst register");
1373 }
1374 
1375 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1376   using namespace AMDGPU;
1377 
1378   switch (Val) {
1379   case 102: return createRegOperand(FLAT_SCR_LO);
1380   case 103: return createRegOperand(FLAT_SCR_HI);
1381   case 104: return createRegOperand(XNACK_MASK_LO);
1382   case 105: return createRegOperand(XNACK_MASK_HI);
1383   case 106: return createRegOperand(VCC_LO);
1384   case 107: return createRegOperand(VCC_HI);
1385   case 108: return createRegOperand(TBA_LO);
1386   case 109: return createRegOperand(TBA_HI);
1387   case 110: return createRegOperand(TMA_LO);
1388   case 111: return createRegOperand(TMA_HI);
1389   case 124: return createRegOperand(M0);
1390   case 125: return createRegOperand(SGPR_NULL);
1391   case 126: return createRegOperand(EXEC_LO);
1392   case 127: return createRegOperand(EXEC_HI);
1393   case 235: return createRegOperand(SRC_SHARED_BASE);
1394   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1395   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1396   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1397   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1398   case 251: return createRegOperand(SRC_VCCZ);
1399   case 252: return createRegOperand(SRC_EXECZ);
1400   case 253: return createRegOperand(SRC_SCC);
1401   case 254: return createRegOperand(LDS_DIRECT);
1402   default: break;
1403   }
1404   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1405 }
1406 
1407 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1408   using namespace AMDGPU;
1409 
1410   switch (Val) {
1411   case 102: return createRegOperand(FLAT_SCR);
1412   case 104: return createRegOperand(XNACK_MASK);
1413   case 106: return createRegOperand(VCC);
1414   case 108: return createRegOperand(TBA);
1415   case 110: return createRegOperand(TMA);
1416   case 125: return createRegOperand(SGPR_NULL);
1417   case 126: return createRegOperand(EXEC);
1418   case 235: return createRegOperand(SRC_SHARED_BASE);
1419   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1420   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1421   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1422   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1423   case 251: return createRegOperand(SRC_VCCZ);
1424   case 252: return createRegOperand(SRC_EXECZ);
1425   case 253: return createRegOperand(SRC_SCC);
1426   default: break;
1427   }
1428   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1429 }
1430 
1431 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1432                                             const unsigned Val) const {
1433   using namespace AMDGPU::SDWA;
1434   using namespace AMDGPU::EncValues;
1435 
1436   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1437       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1438     // XXX: cast to int is needed to avoid stupid warning:
1439     // compare with unsigned is always true
1440     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1441         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1442       return createRegOperand(getVgprClassId(Width),
1443                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1444     }
1445     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1446         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1447                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1448       return createSRegOperand(getSgprClassId(Width),
1449                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1450     }
1451     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1452         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1453       return createSRegOperand(getTtmpClassId(Width),
1454                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1455     }
1456 
1457     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1458 
1459     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1460       return decodeIntImmed(SVal);
1461 
1462     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1463       return decodeFPImmed(Width, SVal);
1464 
1465     return decodeSpecialReg32(SVal);
1466   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1467     return createRegOperand(getVgprClassId(Width), Val);
1468   }
1469   llvm_unreachable("unsupported target");
1470 }
1471 
1472 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1473   return decodeSDWASrc(OPW16, Val);
1474 }
1475 
1476 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1477   return decodeSDWASrc(OPW32, Val);
1478 }
1479 
1480 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1481   using namespace AMDGPU::SDWA;
1482 
1483   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1484           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1485          "SDWAVopcDst should be present only on GFX9+");
1486 
1487   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1488 
1489   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1490     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1491 
1492     int TTmpIdx = getTTmpIdx(Val);
1493     if (TTmpIdx >= 0) {
1494       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1495       return createSRegOperand(TTmpClsId, TTmpIdx);
1496     } else if (Val > SGPR_MAX) {
1497       return IsWave64 ? decodeSpecialReg64(Val)
1498                       : decodeSpecialReg32(Val);
1499     } else {
1500       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1501     }
1502   } else {
1503     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1504   }
1505 }
1506 
1507 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1508   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1509     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1510 }
1511 
1512 bool AMDGPUDisassembler::isVI() const {
1513   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1514 }
1515 
1516 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1517 
1518 bool AMDGPUDisassembler::isGFX90A() const {
1519   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1520 }
1521 
1522 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1523 
1524 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1525 
1526 bool AMDGPUDisassembler::isGFX10Plus() const {
1527   return AMDGPU::isGFX10Plus(STI);
1528 }
1529 
1530 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1531   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1532 }
1533 
1534 //===----------------------------------------------------------------------===//
1535 // AMDGPU specific symbol handling
1536 //===----------------------------------------------------------------------===//
1537 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1538   do {                                                                         \
1539     KdStream << Indent << DIRECTIVE " "                                        \
1540              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1541   } while (0)
1542 
1543 // NOLINTNEXTLINE(readability-identifier-naming)
1544 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1545     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1546   using namespace amdhsa;
1547   StringRef Indent = "\t";
1548 
1549   // We cannot accurately backward compute #VGPRs used from
1550   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1551   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1552   // simply calculate the inverse of what the assembler does.
1553 
1554   uint32_t GranulatedWorkitemVGPRCount =
1555       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1556       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1557 
1558   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1559                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1560 
1561   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1562 
1563   // We cannot backward compute values used to calculate
1564   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1565   // directives can't be computed:
1566   // .amdhsa_reserve_vcc
1567   // .amdhsa_reserve_flat_scratch
1568   // .amdhsa_reserve_xnack_mask
1569   // They take their respective default values if not specified in the assembly.
1570   //
1571   // GRANULATED_WAVEFRONT_SGPR_COUNT
1572   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1573   //
1574   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1575   // are set to 0. So while disassembling we consider that:
1576   //
1577   // GRANULATED_WAVEFRONT_SGPR_COUNT
1578   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1579   //
1580   // The disassembler cannot recover the original values of those 3 directives.
1581 
1582   uint32_t GranulatedWavefrontSGPRCount =
1583       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1584       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1585 
1586   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1587     return MCDisassembler::Fail;
1588 
1589   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1590                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1591 
1592   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1593   if (!hasArchitectedFlatScratch())
1594     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1595   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1596   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1597 
1598   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1599     return MCDisassembler::Fail;
1600 
1601   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1602                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1603   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1604                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1605   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1606                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1607   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1608                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1609 
1610   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1611     return MCDisassembler::Fail;
1612 
1613   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1614 
1615   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1616     return MCDisassembler::Fail;
1617 
1618   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1619 
1620   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1621     return MCDisassembler::Fail;
1622 
1623   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1624     return MCDisassembler::Fail;
1625 
1626   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1627 
1628   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1629     return MCDisassembler::Fail;
1630 
1631   if (isGFX10Plus()) {
1632     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1633                     COMPUTE_PGM_RSRC1_WGP_MODE);
1634     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1635     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1636   }
1637   return MCDisassembler::Success;
1638 }
1639 
1640 // NOLINTNEXTLINE(readability-identifier-naming)
1641 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1642     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1643   using namespace amdhsa;
1644   StringRef Indent = "\t";
1645   if (hasArchitectedFlatScratch())
1646     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1647                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1648   else
1649     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1650                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1651   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1652                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1653   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1654                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1655   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1656                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1657   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1658                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1659   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1660                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1661 
1662   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1663     return MCDisassembler::Fail;
1664 
1665   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1666     return MCDisassembler::Fail;
1667 
1668   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1669     return MCDisassembler::Fail;
1670 
1671   PRINT_DIRECTIVE(
1672       ".amdhsa_exception_fp_ieee_invalid_op",
1673       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1674   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1675                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1676   PRINT_DIRECTIVE(
1677       ".amdhsa_exception_fp_ieee_div_zero",
1678       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1679   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1680                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1681   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1682                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1683   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1684                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1685   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1686                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1687 
1688   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1689     return MCDisassembler::Fail;
1690 
1691   return MCDisassembler::Success;
1692 }
1693 
1694 #undef PRINT_DIRECTIVE
1695 
1696 MCDisassembler::DecodeStatus
1697 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1698     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1699     raw_string_ostream &KdStream) const {
1700 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1701   do {                                                                         \
1702     KdStream << Indent << DIRECTIVE " "                                        \
1703              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1704   } while (0)
1705 
1706   uint16_t TwoByteBuffer = 0;
1707   uint32_t FourByteBuffer = 0;
1708 
1709   StringRef ReservedBytes;
1710   StringRef Indent = "\t";
1711 
1712   assert(Bytes.size() == 64);
1713   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1714 
1715   switch (Cursor.tell()) {
1716   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1717     FourByteBuffer = DE.getU32(Cursor);
1718     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1719              << '\n';
1720     return MCDisassembler::Success;
1721 
1722   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1723     FourByteBuffer = DE.getU32(Cursor);
1724     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1725              << FourByteBuffer << '\n';
1726     return MCDisassembler::Success;
1727 
1728   case amdhsa::KERNARG_SIZE_OFFSET:
1729     FourByteBuffer = DE.getU32(Cursor);
1730     KdStream << Indent << ".amdhsa_kernarg_size "
1731              << FourByteBuffer << '\n';
1732     return MCDisassembler::Success;
1733 
1734   case amdhsa::RESERVED0_OFFSET:
1735     // 4 reserved bytes, must be 0.
1736     ReservedBytes = DE.getBytes(Cursor, 4);
1737     for (int I = 0; I < 4; ++I) {
1738       if (ReservedBytes[I] != 0) {
1739         return MCDisassembler::Fail;
1740       }
1741     }
1742     return MCDisassembler::Success;
1743 
1744   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1745     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1746     // So far no directive controls this for Code Object V3, so simply skip for
1747     // disassembly.
1748     DE.skip(Cursor, 8);
1749     return MCDisassembler::Success;
1750 
1751   case amdhsa::RESERVED1_OFFSET:
1752     // 20 reserved bytes, must be 0.
1753     ReservedBytes = DE.getBytes(Cursor, 20);
1754     for (int I = 0; I < 20; ++I) {
1755       if (ReservedBytes[I] != 0) {
1756         return MCDisassembler::Fail;
1757       }
1758     }
1759     return MCDisassembler::Success;
1760 
1761   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1762     // COMPUTE_PGM_RSRC3
1763     //  - Only set for GFX10, GFX6-9 have this to be 0.
1764     //  - Currently no directives directly control this.
1765     FourByteBuffer = DE.getU32(Cursor);
1766     if (!isGFX10Plus() && FourByteBuffer) {
1767       return MCDisassembler::Fail;
1768     }
1769     return MCDisassembler::Success;
1770 
1771   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1772     FourByteBuffer = DE.getU32(Cursor);
1773     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1774         MCDisassembler::Fail) {
1775       return MCDisassembler::Fail;
1776     }
1777     return MCDisassembler::Success;
1778 
1779   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1780     FourByteBuffer = DE.getU32(Cursor);
1781     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1782         MCDisassembler::Fail) {
1783       return MCDisassembler::Fail;
1784     }
1785     return MCDisassembler::Success;
1786 
1787   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1788     using namespace amdhsa;
1789     TwoByteBuffer = DE.getU16(Cursor);
1790 
1791     if (!hasArchitectedFlatScratch())
1792       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1793                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1794     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1795                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1796     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1797                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1798     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1799                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1800     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1801                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1802     if (!hasArchitectedFlatScratch())
1803       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1804                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1805     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1806                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1807 
1808     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1809       return MCDisassembler::Fail;
1810 
1811     // Reserved for GFX9
1812     if (isGFX9() &&
1813         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1814       return MCDisassembler::Fail;
1815     } else if (isGFX10Plus()) {
1816       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1817                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1818     }
1819 
1820     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1821       return MCDisassembler::Fail;
1822 
1823     return MCDisassembler::Success;
1824 
1825   case amdhsa::RESERVED2_OFFSET:
1826     // 6 bytes from here are reserved, must be 0.
1827     ReservedBytes = DE.getBytes(Cursor, 6);
1828     for (int I = 0; I < 6; ++I) {
1829       if (ReservedBytes[I] != 0)
1830         return MCDisassembler::Fail;
1831     }
1832     return MCDisassembler::Success;
1833 
1834   default:
1835     llvm_unreachable("Unhandled index. Case statements cover everything.");
1836     return MCDisassembler::Fail;
1837   }
1838 #undef PRINT_DIRECTIVE
1839 }
1840 
1841 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1842     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1843   // CP microcode requires the kernel descriptor to be 64 aligned.
1844   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1845     return MCDisassembler::Fail;
1846 
1847   std::string Kd;
1848   raw_string_ostream KdStream(Kd);
1849   KdStream << ".amdhsa_kernel " << KdName << '\n';
1850 
1851   DataExtractor::Cursor C(0);
1852   while (C && C.tell() < Bytes.size()) {
1853     MCDisassembler::DecodeStatus Status =
1854         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1855 
1856     cantFail(C.takeError());
1857 
1858     if (Status == MCDisassembler::Fail)
1859       return MCDisassembler::Fail;
1860   }
1861   KdStream << ".end_amdhsa_kernel\n";
1862   outs() << KdStream.str();
1863   return MCDisassembler::Success;
1864 }
1865 
1866 Optional<MCDisassembler::DecodeStatus>
1867 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1868                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1869                                   raw_ostream &CStream) const {
1870   // Right now only kernel descriptor needs to be handled.
1871   // We ignore all other symbols for target specific handling.
1872   // TODO:
1873   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1874   // Object V2 and V3 when symbols are marked protected.
1875 
1876   // amd_kernel_code_t for Code Object V2.
1877   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1878     Size = 256;
1879     return MCDisassembler::Fail;
1880   }
1881 
1882   // Code Object V3 kernel descriptors.
1883   StringRef Name = Symbol.Name;
1884   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1885     Size = 64; // Size = 64 regardless of success or failure.
1886     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1887   }
1888   return None;
1889 }
1890 
1891 //===----------------------------------------------------------------------===//
1892 // AMDGPUSymbolizer
1893 //===----------------------------------------------------------------------===//
1894 
1895 // Try to find symbol name for specified label
1896 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1897                                 raw_ostream &/*cStream*/, int64_t Value,
1898                                 uint64_t /*Address*/, bool IsBranch,
1899                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1900 
1901   if (!IsBranch) {
1902     return false;
1903   }
1904 
1905   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1906   if (!Symbols)
1907     return false;
1908 
1909   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1910     return Val.Addr == static_cast<uint64_t>(Value) &&
1911            Val.Type == ELF::STT_NOTYPE;
1912   });
1913   if (Result != Symbols->end()) {
1914     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1915     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1916     Inst.addOperand(MCOperand::createExpr(Add));
1917     return true;
1918   }
1919   // Add to list of referenced addresses, so caller can synthesize a label.
1920   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1921   return false;
1922 }
1923 
1924 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1925                                                        int64_t Value,
1926                                                        uint64_t Address) {
1927   llvm_unreachable("unimplemented");
1928 }
1929 
1930 //===----------------------------------------------------------------------===//
1931 // Initialization
1932 //===----------------------------------------------------------------------===//
1933 
1934 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1935                               LLVMOpInfoCallback /*GetOpInfo*/,
1936                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1937                               void *DisInfo,
1938                               MCContext *Ctx,
1939                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1940   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1941 }
1942 
1943 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1944                                                 const MCSubtargetInfo &STI,
1945                                                 MCContext &Ctx) {
1946   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1947 }
1948 
1949 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1950   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1951                                          createAMDGPUDisassembler);
1952   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1953                                        createAMDGPUSymbolizer);
1954 }
1955