1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, MCInstrInfo const *MCII) 49 : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 50 MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) { 51 // ToDo: AMDGPUDisassembler supports only VI ISA. 52 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 53 report_fatal_error("Disassembly not yet supported for subtarget"); 54 } 55 56 inline static MCDisassembler::DecodeStatus 57 addOperand(MCInst &Inst, const MCOperand& Opnd) { 58 Inst.addOperand(Opnd); 59 return Opnd.isValid() ? 60 MCDisassembler::Success : 61 MCDisassembler::Fail; 62 } 63 64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 65 uint16_t NameIdx) { 66 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 67 if (OpIdx != -1) { 68 auto I = MI.begin(); 69 std::advance(I, OpIdx); 70 MI.insert(I, Op); 71 } 72 return OpIdx; 73 } 74 75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, 76 uint64_t Addr, 77 const MCDisassembler *Decoder) { 78 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 79 80 // Our branches take a simm16, but we need two extra bits to account for the 81 // factor of 4. 82 APInt SignedOffset(18, Imm * 4, true); 83 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 84 85 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 86 return MCDisassembler::Success; 87 return addOperand(Inst, MCOperand::createImm(Imm)); 88 } 89 90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 91 const MCDisassembler *Decoder) { 92 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 93 int64_t Offset; 94 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 95 Offset = Imm & 0xFFFFF; 96 } else { // GFX9+ supports 21-bit signed offsets. 97 Offset = SignExtend64<21>(Imm); 98 } 99 return addOperand(Inst, MCOperand::createImm(Offset)); 100 } 101 102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 103 const MCDisassembler *Decoder) { 104 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 105 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 106 } 107 108 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 109 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 110 uint64_t /*Addr*/, \ 111 const MCDisassembler *Decoder) { \ 112 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 113 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 114 } 115 116 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 117 // number of register. Used by VGPR only and AGPR only operands. 118 #define DECODE_OPERAND_REG_8(RegClass) \ 119 static DecodeStatus Decode##RegClass##RegisterClass( \ 120 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 121 const MCDisassembler *Decoder) { \ 122 assert(Imm < (1 << 8) && "8-bit encoding"); \ 123 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 124 return addOperand( \ 125 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 126 } 127 128 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 129 ImmWidth) \ 130 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 131 const MCDisassembler *Decoder) { \ 132 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 133 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 134 return addOperand(Inst, \ 135 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 136 MandatoryLiteral, ImmWidth)); \ 137 } 138 139 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 140 // get register class. Used by SGPR only operands. 141 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 142 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 143 144 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 145 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 146 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 147 // Used by AV_ register classes (AGPR or VGPR only register operands). 148 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 149 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 150 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 151 152 // Decoder for Src(9-bit encoding) registers only. 153 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 154 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 155 156 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 157 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 158 // only. 159 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 160 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 161 162 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 163 // Imm{9} is acc, registers only. 164 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 165 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 166 167 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 168 // register from RegClass or immediate. Registers that don't belong to RegClass 169 // will be decoded and InstPrinter will report warning. Immediate will be 170 // decoded into constant of size ImmWidth, should match width of immediate used 171 // by OperandType (important for floating point types). 172 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 173 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 174 false, ImmWidth) 175 176 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 177 // and decode using 'enum10' from decodeSrcOp. 178 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 179 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 180 Imm | 512, false, ImmWidth) 181 182 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 183 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 184 OpWidth, Imm, true, ImmWidth) 185 186 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 187 // when RegisterClass is used as an operand. Most often used for destination 188 // operands. 189 190 DECODE_OPERAND_REG_8(VGPR_32) 191 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 192 DECODE_OPERAND_REG_8(VReg_64) 193 DECODE_OPERAND_REG_8(VReg_96) 194 DECODE_OPERAND_REG_8(VReg_128) 195 DECODE_OPERAND_REG_8(VReg_256) 196 DECODE_OPERAND_REG_8(VReg_288) 197 DECODE_OPERAND_REG_8(VReg_352) 198 DECODE_OPERAND_REG_8(VReg_384) 199 DECODE_OPERAND_REG_8(VReg_512) 200 DECODE_OPERAND_REG_8(VReg_1024) 201 202 DECODE_OPERAND_REG_7(SReg_32, OPW32) 203 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 204 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 205 DECODE_OPERAND_REG_7(SReg_64, OPW64) 206 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 207 DECODE_OPERAND_REG_7(SReg_128, OPW128) 208 DECODE_OPERAND_REG_7(SReg_256, OPW256) 209 DECODE_OPERAND_REG_7(SReg_512, OPW512) 210 211 DECODE_OPERAND_REG_8(AGPR_32) 212 DECODE_OPERAND_REG_8(AReg_64) 213 DECODE_OPERAND_REG_8(AReg_128) 214 DECODE_OPERAND_REG_8(AReg_256) 215 DECODE_OPERAND_REG_8(AReg_512) 216 DECODE_OPERAND_REG_8(AReg_1024) 217 218 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 219 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 220 221 // Decoders for register only source RegisterOperands that use use 9-bit Src 222 // encoding: 'decodeOperand_<RegClass>'. 223 224 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 225 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 226 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 227 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 228 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 229 230 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 231 232 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 233 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 234 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 235 236 // Decoders for register or immediate RegisterOperands that use 9-bit Src 237 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 238 239 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 240 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16) 242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 243 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) 248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 253 254 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 259 260 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32) 264 265 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, 266 uint64_t Addr, 267 const MCDisassembler *Decoder) { 268 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 269 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 270 } 271 272 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 273 uint64_t Addr, const void *Decoder) { 274 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 275 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 276 } 277 278 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 279 const MCRegisterInfo *MRI) { 280 if (OpIdx < 0) 281 return false; 282 283 const MCOperand &Op = Inst.getOperand(OpIdx); 284 if (!Op.isReg()) 285 return false; 286 287 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 288 auto Reg = Sub ? Sub : Op.getReg(); 289 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 290 } 291 292 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 293 AMDGPUDisassembler::OpWidthTy Opw, 294 const MCDisassembler *Decoder) { 295 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 296 if (!DAsm->isGFX90A()) { 297 Imm &= 511; 298 } else { 299 // If atomic has both vdata and vdst their register classes are tied. 300 // The bit is decoded along with the vdst, first operand. We need to 301 // change register class to AGPR if vdst was AGPR. 302 // If a DS instruction has both data0 and data1 their register classes 303 // are also tied. 304 unsigned Opc = Inst.getOpcode(); 305 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 306 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 307 : AMDGPU::OpName::vdata; 308 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 309 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 310 if ((int)Inst.getNumOperands() == DataIdx) { 311 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 312 if (IsAGPROperand(Inst, DstIdx, MRI)) 313 Imm |= 512; 314 } 315 316 if (TSFlags & SIInstrFlags::DS) { 317 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 318 if ((int)Inst.getNumOperands() == Data2Idx && 319 IsAGPROperand(Inst, DataIdx, MRI)) 320 Imm |= 512; 321 } 322 } 323 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 324 } 325 326 static DecodeStatus 327 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 328 const MCDisassembler *Decoder) { 329 return decodeOperand_AVLdSt_Any(Inst, Imm, 330 AMDGPUDisassembler::OPW32, Decoder); 331 } 332 333 static DecodeStatus 334 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 335 const MCDisassembler *Decoder) { 336 return decodeOperand_AVLdSt_Any(Inst, Imm, 337 AMDGPUDisassembler::OPW64, Decoder); 338 } 339 340 static DecodeStatus 341 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 342 const MCDisassembler *Decoder) { 343 return decodeOperand_AVLdSt_Any(Inst, Imm, 344 AMDGPUDisassembler::OPW96, Decoder); 345 } 346 347 static DecodeStatus 348 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 349 const MCDisassembler *Decoder) { 350 return decodeOperand_AVLdSt_Any(Inst, Imm, 351 AMDGPUDisassembler::OPW128, Decoder); 352 } 353 354 static DecodeStatus 355 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 356 const MCDisassembler *Decoder) { 357 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 358 Decoder); 359 } 360 361 #define DECODE_SDWA(DecName) \ 362 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 363 364 DECODE_SDWA(Src32) 365 DECODE_SDWA(Src16) 366 DECODE_SDWA(VopcDst) 367 368 #include "AMDGPUGenDisassemblerTables.inc" 369 370 //===----------------------------------------------------------------------===// 371 // 372 //===----------------------------------------------------------------------===// 373 374 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 375 assert(Bytes.size() >= sizeof(T)); 376 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); 377 Bytes = Bytes.slice(sizeof(T)); 378 return Res; 379 } 380 381 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 382 assert(Bytes.size() >= 12); 383 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>( 384 Bytes.data()); 385 Bytes = Bytes.slice(8); 386 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>( 387 Bytes.data()); 388 Bytes = Bytes.slice(4); 389 return DecoderUInt128(Lo, Hi); 390 } 391 392 // The disassembler is greedy, so we need to check FI operand value to 393 // not parse a dpp if the correct literal is not set. For dpp16 the 394 // autogenerated decoder checks the dpp literal 395 static bool isValidDPP8(const MCInst &MI) { 396 using namespace llvm::AMDGPU::DPP; 397 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 398 assert(FiIdx != -1); 399 if ((unsigned)FiIdx >= MI.getNumOperands()) 400 return false; 401 unsigned Fi = MI.getOperand(FiIdx).getImm(); 402 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 403 } 404 405 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 406 ArrayRef<uint8_t> Bytes_, 407 uint64_t Address, 408 raw_ostream &CS) const { 409 bool IsSDWA = false; 410 411 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 412 Bytes = Bytes_.slice(0, MaxInstBytesNum); 413 414 DecodeStatus Res = MCDisassembler::Fail; 415 do { 416 // ToDo: better to switch encoding length using some bit predicate 417 // but it is unknown yet, so try all we can 418 419 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 420 // encodings 421 if (isGFX11Plus() && Bytes.size() >= 12 ) { 422 DecoderUInt128 DecW = eat12Bytes(Bytes); 423 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, Address, CS); 424 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 425 break; 426 MI = MCInst(); // clear 427 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, Address, CS); 428 if (Res) { 429 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 430 convertVOP3PDPPInst(MI); 431 else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) 432 convertVOPCDPPInst(MI); // Special VOP3 case 433 else { 434 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 435 convertVOP3DPPInst(MI); // Regular VOP3 case 436 } 437 break; 438 } 439 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS); 440 if (Res) 441 break; 442 } 443 // Reinitialize Bytes 444 Bytes = Bytes_.slice(0, MaxInstBytesNum); 445 446 if (Bytes.size() >= 8) { 447 const uint64_t QW = eatBytes<uint64_t>(Bytes); 448 449 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 450 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS); 451 if (Res) { 452 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 453 == -1) 454 break; 455 if (convertDPP8Inst(MI) == MCDisassembler::Success) 456 break; 457 MI = MCInst(); // clear 458 } 459 } 460 461 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS); 462 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 463 break; 464 MI = MCInst(); // clear 465 466 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address, CS); 467 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 468 break; 469 MI = MCInst(); // clear 470 471 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS); 472 if (Res) break; 473 474 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address, CS); 475 if (Res) { 476 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 477 convertVOPCDPPInst(MI); 478 break; 479 } 480 481 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS); 482 if (Res) { IsSDWA = true; break; } 483 484 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS); 485 if (Res) { IsSDWA = true; break; } 486 487 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS); 488 if (Res) { IsSDWA = true; break; } 489 490 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) { 491 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS); 492 if (Res) 493 break; 494 } 495 496 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 497 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 498 // table first so we print the correct name. 499 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) { 500 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS); 501 if (Res) 502 break; 503 } 504 } 505 506 // Reinitialize Bytes as DPP64 could have eaten too much 507 Bytes = Bytes_.slice(0, MaxInstBytesNum); 508 509 // Try decode 32-bit instruction 510 if (Bytes.size() < 4) break; 511 const uint32_t DW = eatBytes<uint32_t>(Bytes); 512 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS); 513 if (Res) break; 514 515 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS); 516 if (Res) break; 517 518 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS); 519 if (Res) break; 520 521 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 522 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS); 523 if (Res) 524 break; 525 } 526 527 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 528 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS); 529 if (Res) break; 530 } 531 532 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS); 533 if (Res) break; 534 535 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address, CS); 536 if (Res) break; 537 538 if (Bytes.size() < 4) break; 539 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 540 541 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) { 542 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS); 543 if (Res) 544 break; 545 } 546 547 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 548 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS); 549 if (Res) 550 break; 551 } 552 553 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS); 554 if (Res) break; 555 556 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS); 557 if (Res) break; 558 559 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS); 560 if (Res) break; 561 562 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS); 563 if (Res) break; 564 565 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address, CS); 566 if (Res) 567 break; 568 569 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS); 570 } while (false); 571 572 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 573 // Insert dummy unused src2_modifiers. 574 insertNamedMCOperand(MI, MCOperand::createImm(0), 575 AMDGPU::OpName::src2_modifiers); 576 } 577 578 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 579 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 580 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 581 AMDGPU::OpName::cpol); 582 if (CPolPos != -1) { 583 unsigned CPol = 584 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 585 AMDGPU::CPol::GLC : 0; 586 if (MI.getNumOperands() <= (unsigned)CPolPos) { 587 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 588 AMDGPU::OpName::cpol); 589 } else if (CPol) { 590 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 591 } 592 } 593 } 594 595 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 596 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 597 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 598 // GFX90A lost TFE, its place is occupied by ACC. 599 int TFEOpIdx = 600 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 601 if (TFEOpIdx != -1) { 602 auto TFEIter = MI.begin(); 603 std::advance(TFEIter, TFEOpIdx); 604 MI.insert(TFEIter, MCOperand::createImm(0)); 605 } 606 } 607 608 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 609 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 610 int SWZOpIdx = 611 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 612 if (SWZOpIdx != -1) { 613 auto SWZIter = MI.begin(); 614 std::advance(SWZIter, SWZOpIdx); 615 MI.insert(SWZIter, MCOperand::createImm(0)); 616 } 617 } 618 619 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 620 int VAddr0Idx = 621 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 622 int RsrcIdx = 623 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 624 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 625 if (VAddr0Idx >= 0 && NSAArgs > 0) { 626 unsigned NSAWords = (NSAArgs + 3) / 4; 627 if (Bytes.size() < 4 * NSAWords) { 628 Res = MCDisassembler::Fail; 629 } else { 630 for (unsigned i = 0; i < NSAArgs; ++i) { 631 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 632 auto VAddrRCID = 633 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 634 MI.insert(MI.begin() + VAddrIdx, 635 createRegOperand(VAddrRCID, Bytes[i])); 636 } 637 Bytes = Bytes.slice(4 * NSAWords); 638 } 639 } 640 641 if (Res) 642 Res = convertMIMGInst(MI); 643 } 644 645 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 646 Res = convertEXPInst(MI); 647 648 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 649 Res = convertVINTERPInst(MI); 650 651 if (Res && IsSDWA) 652 Res = convertSDWAInst(MI); 653 654 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 655 AMDGPU::OpName::vdst_in); 656 if (VDstIn_Idx != -1) { 657 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 658 MCOI::OperandConstraint::TIED_TO); 659 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 660 !MI.getOperand(VDstIn_Idx).isReg() || 661 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 662 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 663 MI.erase(&MI.getOperand(VDstIn_Idx)); 664 insertNamedMCOperand(MI, 665 MCOperand::createReg(MI.getOperand(Tied).getReg()), 666 AMDGPU::OpName::vdst_in); 667 } 668 } 669 670 int ImmLitIdx = 671 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 672 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 673 if (Res && ImmLitIdx != -1 && !IsSOPK) 674 Res = convertFMAanyK(MI, ImmLitIdx); 675 676 // if the opcode was not recognized we'll assume a Size of 4 bytes 677 // (unless there are fewer bytes left) 678 Size = Res ? (MaxInstBytesNum - Bytes.size()) 679 : std::min((size_t)4, Bytes_.size()); 680 return Res; 681 } 682 683 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 684 if (STI.hasFeature(AMDGPU::FeatureGFX11)) { 685 // The MCInst still has these fields even though they are no longer encoded 686 // in the GFX11 instruction. 687 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 688 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 689 } 690 return MCDisassembler::Success; 691 } 692 693 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 694 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 695 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 696 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 697 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) { 698 // The MCInst has this field that is not directly encoded in the 699 // instruction. 700 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 701 } 702 return MCDisassembler::Success; 703 } 704 705 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 706 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 707 STI.hasFeature(AMDGPU::FeatureGFX10)) { 708 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 709 // VOPC - insert clamp 710 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 711 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 712 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 713 if (SDst != -1) { 714 // VOPC - insert VCC register as sdst 715 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 716 AMDGPU::OpName::sdst); 717 } else { 718 // VOP1/2 - insert omod if present in instruction 719 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 720 } 721 } 722 return MCDisassembler::Success; 723 } 724 725 struct VOPModifiers { 726 unsigned OpSel = 0; 727 unsigned OpSelHi = 0; 728 unsigned NegLo = 0; 729 unsigned NegHi = 0; 730 }; 731 732 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 733 // Note that these values do not affect disassembler output, 734 // so this is only necessary for consistency with src_modifiers. 735 static VOPModifiers collectVOPModifiers(const MCInst &MI, 736 bool IsVOP3P = false) { 737 VOPModifiers Modifiers; 738 unsigned Opc = MI.getOpcode(); 739 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 740 AMDGPU::OpName::src1_modifiers, 741 AMDGPU::OpName::src2_modifiers}; 742 for (int J = 0; J < 3; ++J) { 743 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 744 if (OpIdx == -1) 745 continue; 746 747 unsigned Val = MI.getOperand(OpIdx).getImm(); 748 749 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 750 if (IsVOP3P) { 751 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 752 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 753 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 754 } else if (J == 0) { 755 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 756 } 757 } 758 759 return Modifiers; 760 } 761 762 // MAC opcodes have special old and src2 operands. 763 // src2 is tied to dst, while old is not tied (but assumed to be). 764 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 765 constexpr int DST_IDX = 0; 766 auto Opcode = MI.getOpcode(); 767 const auto &Desc = MCII->get(Opcode); 768 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 769 770 if (OldIdx != -1 && Desc.getOperandConstraint( 771 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 772 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 773 assert(Desc.getOperandConstraint( 774 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 775 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 776 (void)DST_IDX; 777 return true; 778 } 779 780 return false; 781 } 782 783 // Create dummy old operand and insert dummy unused src2_modifiers 784 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 785 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 786 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 787 insertNamedMCOperand(MI, MCOperand::createImm(0), 788 AMDGPU::OpName::src2_modifiers); 789 } 790 791 // We must check FI == literal to reject not genuine dpp8 insts, and we must 792 // first add optional MI operands to check FI 793 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 794 unsigned Opc = MI.getOpcode(); 795 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 796 convertVOP3PDPPInst(MI); 797 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 798 AMDGPU::isVOPC64DPP(Opc)) { 799 convertVOPCDPPInst(MI); 800 } else { 801 if (isMacDPP(MI)) 802 convertMacDPPInst(MI); 803 804 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 805 if (MI.getNumOperands() < DescNumOps && 806 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 807 auto Mods = collectVOPModifiers(MI); 808 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 809 AMDGPU::OpName::op_sel); 810 } else { 811 // Insert dummy unused src modifiers. 812 if (MI.getNumOperands() < DescNumOps && 813 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 814 insertNamedMCOperand(MI, MCOperand::createImm(0), 815 AMDGPU::OpName::src0_modifiers); 816 817 if (MI.getNumOperands() < DescNumOps && 818 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 819 insertNamedMCOperand(MI, MCOperand::createImm(0), 820 AMDGPU::OpName::src1_modifiers); 821 } 822 } 823 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 824 } 825 826 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 827 if (isMacDPP(MI)) 828 convertMacDPPInst(MI); 829 830 unsigned Opc = MI.getOpcode(); 831 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 832 if (MI.getNumOperands() < DescNumOps && 833 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 834 auto Mods = collectVOPModifiers(MI); 835 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 836 AMDGPU::OpName::op_sel); 837 } 838 return MCDisassembler::Success; 839 } 840 841 // Note that before gfx10, the MIMG encoding provided no information about 842 // VADDR size. Consequently, decoded instructions always show address as if it 843 // has 1 dword, which could be not really so. 844 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 845 846 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 847 AMDGPU::OpName::vdst); 848 849 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 850 AMDGPU::OpName::vdata); 851 int VAddr0Idx = 852 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 853 int RsrcIdx = 854 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 855 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 856 AMDGPU::OpName::dmask); 857 858 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 859 AMDGPU::OpName::tfe); 860 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 861 AMDGPU::OpName::d16); 862 863 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 864 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 865 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 866 867 assert(VDataIdx != -1); 868 if (BaseOpcode->BVH) { 869 // Add A16 operand for intersect_ray instructions 870 addOperand(MI, MCOperand::createImm(BaseOpcode->A16)); 871 return MCDisassembler::Success; 872 } 873 874 bool IsAtomic = (VDstIdx != -1); 875 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; 876 bool IsNSA = false; 877 bool IsPartialNSA = false; 878 unsigned AddrSize = Info->VAddrDwords; 879 880 if (isGFX10Plus()) { 881 unsigned DimIdx = 882 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 883 int A16Idx = 884 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 885 const AMDGPU::MIMGDimInfo *Dim = 886 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 887 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 888 889 AddrSize = 890 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 891 892 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 893 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA; 894 if (!IsNSA) { 895 if (AddrSize > 12) 896 AddrSize = 16; 897 } else { 898 if (AddrSize > Info->VAddrDwords) { 899 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 900 // The NSA encoding does not contain enough operands for the 901 // combination of base opcode / dimension. Should this be an error? 902 return MCDisassembler::Success; 903 } 904 IsPartialNSA = true; 905 } 906 } 907 } 908 909 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 910 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 911 912 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 913 if (D16 && AMDGPU::hasPackedD16(STI)) { 914 DstSize = (DstSize + 1) / 2; 915 } 916 917 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 918 DstSize += 1; 919 920 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 921 return MCDisassembler::Success; 922 923 int NewOpcode = 924 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 925 if (NewOpcode == -1) 926 return MCDisassembler::Success; 927 928 // Widen the register to the correct number of enabled channels. 929 unsigned NewVdata = AMDGPU::NoRegister; 930 if (DstSize != Info->VDataDwords) { 931 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 932 933 // Get first subregister of VData 934 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 935 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 936 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 937 938 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 939 &MRI.getRegClass(DataRCID)); 940 if (NewVdata == AMDGPU::NoRegister) { 941 // It's possible to encode this such that the low register + enabled 942 // components exceeds the register count. 943 return MCDisassembler::Success; 944 } 945 } 946 947 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 948 // If using partial NSA on GFX11+ widen last address register. 949 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 950 unsigned NewVAddrSA = AMDGPU::NoRegister; 951 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 952 AddrSize != Info->VAddrDwords) { 953 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 954 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 955 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 956 957 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 958 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 959 &MRI.getRegClass(AddrRCID)); 960 if (!NewVAddrSA) 961 return MCDisassembler::Success; 962 } 963 964 MI.setOpcode(NewOpcode); 965 966 if (NewVdata != AMDGPU::NoRegister) { 967 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 968 969 if (IsAtomic) { 970 // Atomic operations have an additional operand (a copy of data) 971 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 972 } 973 } 974 975 if (NewVAddrSA) { 976 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 977 } else if (IsNSA) { 978 assert(AddrSize <= Info->VAddrDwords); 979 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 980 MI.begin() + VAddr0Idx + Info->VAddrDwords); 981 } 982 983 return MCDisassembler::Success; 984 } 985 986 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 987 // decoder only adds to src_modifiers, so manually add the bits to the other 988 // operands. 989 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 990 unsigned Opc = MI.getOpcode(); 991 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 992 auto Mods = collectVOPModifiers(MI, true); 993 994 if (MI.getNumOperands() < DescNumOps && 995 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 996 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 997 998 if (MI.getNumOperands() < DescNumOps && 999 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1000 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1001 AMDGPU::OpName::op_sel); 1002 if (MI.getNumOperands() < DescNumOps && 1003 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1004 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1005 AMDGPU::OpName::op_sel_hi); 1006 if (MI.getNumOperands() < DescNumOps && 1007 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1008 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1009 AMDGPU::OpName::neg_lo); 1010 if (MI.getNumOperands() < DescNumOps && 1011 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1012 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1013 AMDGPU::OpName::neg_hi); 1014 1015 return MCDisassembler::Success; 1016 } 1017 1018 // Create dummy old operand and insert optional operands 1019 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1020 unsigned Opc = MI.getOpcode(); 1021 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1022 1023 if (MI.getNumOperands() < DescNumOps && 1024 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1025 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1026 1027 if (MI.getNumOperands() < DescNumOps && 1028 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1029 insertNamedMCOperand(MI, MCOperand::createImm(0), 1030 AMDGPU::OpName::src0_modifiers); 1031 1032 if (MI.getNumOperands() < DescNumOps && 1033 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1034 insertNamedMCOperand(MI, MCOperand::createImm(0), 1035 AMDGPU::OpName::src1_modifiers); 1036 return MCDisassembler::Success; 1037 } 1038 1039 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1040 int ImmLitIdx) const { 1041 assert(HasLiteral && "Should have decoded a literal"); 1042 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1043 unsigned DescNumOps = Desc.getNumOperands(); 1044 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1045 AMDGPU::OpName::immDeferred); 1046 assert(DescNumOps == MI.getNumOperands()); 1047 for (unsigned I = 0; I < DescNumOps; ++I) { 1048 auto &Op = MI.getOperand(I); 1049 auto OpType = Desc.operands()[I].OperandType; 1050 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1051 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1052 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1053 IsDeferredOp) 1054 Op.setImm(Literal); 1055 } 1056 return MCDisassembler::Success; 1057 } 1058 1059 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1060 return getContext().getRegisterInfo()-> 1061 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1062 } 1063 1064 inline 1065 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1066 const Twine& ErrMsg) const { 1067 *CommentStream << "Error: " + ErrMsg; 1068 1069 // ToDo: add support for error operands to MCInst.h 1070 // return MCOperand::createError(V); 1071 return MCOperand(); 1072 } 1073 1074 inline 1075 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1076 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1077 } 1078 1079 inline 1080 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1081 unsigned Val) const { 1082 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1083 if (Val >= RegCl.getNumRegs()) 1084 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1085 ": unknown register " + Twine(Val)); 1086 return createRegOperand(RegCl.getRegister(Val)); 1087 } 1088 1089 inline 1090 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1091 unsigned Val) const { 1092 // ToDo: SI/CI have 104 SGPRs, VI - 102 1093 // Valery: here we accepting as much as we can, let assembler sort it out 1094 int shift = 0; 1095 switch (SRegClassID) { 1096 case AMDGPU::SGPR_32RegClassID: 1097 case AMDGPU::TTMP_32RegClassID: 1098 break; 1099 case AMDGPU::SGPR_64RegClassID: 1100 case AMDGPU::TTMP_64RegClassID: 1101 shift = 1; 1102 break; 1103 case AMDGPU::SGPR_128RegClassID: 1104 case AMDGPU::TTMP_128RegClassID: 1105 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1106 // this bundle? 1107 case AMDGPU::SGPR_256RegClassID: 1108 case AMDGPU::TTMP_256RegClassID: 1109 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1110 // this bundle? 1111 case AMDGPU::SGPR_288RegClassID: 1112 case AMDGPU::TTMP_288RegClassID: 1113 case AMDGPU::SGPR_320RegClassID: 1114 case AMDGPU::TTMP_320RegClassID: 1115 case AMDGPU::SGPR_352RegClassID: 1116 case AMDGPU::TTMP_352RegClassID: 1117 case AMDGPU::SGPR_384RegClassID: 1118 case AMDGPU::TTMP_384RegClassID: 1119 case AMDGPU::SGPR_512RegClassID: 1120 case AMDGPU::TTMP_512RegClassID: 1121 shift = 2; 1122 break; 1123 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1124 // this bundle? 1125 default: 1126 llvm_unreachable("unhandled register class"); 1127 } 1128 1129 if (Val % (1 << shift)) { 1130 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1131 << ": scalar reg isn't aligned " << Val; 1132 } 1133 1134 return createRegOperand(SRegClassID, Val >> shift); 1135 } 1136 1137 // Decode Literals for insts which always have a literal in the encoding 1138 MCOperand 1139 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1140 if (HasLiteral) { 1141 assert( 1142 AMDGPU::hasVOPD(STI) && 1143 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1144 if (Literal != Val) 1145 return errOperand(Val, "More than one unique literal is illegal"); 1146 } 1147 HasLiteral = true; 1148 Literal = Val; 1149 return MCOperand::createImm(Literal); 1150 } 1151 1152 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { 1153 // For now all literal constants are supposed to be unsigned integer 1154 // ToDo: deal with signed/unsigned 64-bit integer constants 1155 // ToDo: deal with float/double constants 1156 if (!HasLiteral) { 1157 if (Bytes.size() < 4) { 1158 return errOperand(0, "cannot read literal, inst bytes left " + 1159 Twine(Bytes.size())); 1160 } 1161 HasLiteral = true; 1162 Literal = eatBytes<uint32_t>(Bytes); 1163 } 1164 return MCOperand::createImm(Literal); 1165 } 1166 1167 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1168 using namespace AMDGPU::EncValues; 1169 1170 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1171 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1172 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1173 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1174 // Cast prevents negative overflow. 1175 } 1176 1177 static int64_t getInlineImmVal32(unsigned Imm) { 1178 switch (Imm) { 1179 case 240: 1180 return llvm::bit_cast<uint32_t>(0.5f); 1181 case 241: 1182 return llvm::bit_cast<uint32_t>(-0.5f); 1183 case 242: 1184 return llvm::bit_cast<uint32_t>(1.0f); 1185 case 243: 1186 return llvm::bit_cast<uint32_t>(-1.0f); 1187 case 244: 1188 return llvm::bit_cast<uint32_t>(2.0f); 1189 case 245: 1190 return llvm::bit_cast<uint32_t>(-2.0f); 1191 case 246: 1192 return llvm::bit_cast<uint32_t>(4.0f); 1193 case 247: 1194 return llvm::bit_cast<uint32_t>(-4.0f); 1195 case 248: // 1 / (2 * PI) 1196 return 0x3e22f983; 1197 default: 1198 llvm_unreachable("invalid fp inline imm"); 1199 } 1200 } 1201 1202 static int64_t getInlineImmVal64(unsigned Imm) { 1203 switch (Imm) { 1204 case 240: 1205 return llvm::bit_cast<uint64_t>(0.5); 1206 case 241: 1207 return llvm::bit_cast<uint64_t>(-0.5); 1208 case 242: 1209 return llvm::bit_cast<uint64_t>(1.0); 1210 case 243: 1211 return llvm::bit_cast<uint64_t>(-1.0); 1212 case 244: 1213 return llvm::bit_cast<uint64_t>(2.0); 1214 case 245: 1215 return llvm::bit_cast<uint64_t>(-2.0); 1216 case 246: 1217 return llvm::bit_cast<uint64_t>(4.0); 1218 case 247: 1219 return llvm::bit_cast<uint64_t>(-4.0); 1220 case 248: // 1 / (2 * PI) 1221 return 0x3fc45f306dc9c882; 1222 default: 1223 llvm_unreachable("invalid fp inline imm"); 1224 } 1225 } 1226 1227 static int64_t getInlineImmVal16(unsigned Imm) { 1228 switch (Imm) { 1229 case 240: 1230 return 0x3800; 1231 case 241: 1232 return 0xB800; 1233 case 242: 1234 return 0x3C00; 1235 case 243: 1236 return 0xBC00; 1237 case 244: 1238 return 0x4000; 1239 case 245: 1240 return 0xC000; 1241 case 246: 1242 return 0x4400; 1243 case 247: 1244 return 0xC400; 1245 case 248: // 1 / (2 * PI) 1246 return 0x3118; 1247 default: 1248 llvm_unreachable("invalid fp inline imm"); 1249 } 1250 } 1251 1252 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1253 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1254 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1255 1256 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1257 // ImmWidth 0 is a default case where operand should not allow immediates. 1258 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1259 // use it to print verbose error message. 1260 switch (ImmWidth) { 1261 case 0: 1262 case 32: 1263 return MCOperand::createImm(getInlineImmVal32(Imm)); 1264 case 64: 1265 return MCOperand::createImm(getInlineImmVal64(Imm)); 1266 case 16: 1267 return MCOperand::createImm(getInlineImmVal16(Imm)); 1268 default: 1269 llvm_unreachable("implement me"); 1270 } 1271 } 1272 1273 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1274 using namespace AMDGPU; 1275 1276 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1277 switch (Width) { 1278 default: // fall 1279 case OPW32: 1280 case OPW16: 1281 case OPWV216: 1282 return VGPR_32RegClassID; 1283 case OPW64: 1284 case OPWV232: return VReg_64RegClassID; 1285 case OPW96: return VReg_96RegClassID; 1286 case OPW128: return VReg_128RegClassID; 1287 case OPW160: return VReg_160RegClassID; 1288 case OPW256: return VReg_256RegClassID; 1289 case OPW288: return VReg_288RegClassID; 1290 case OPW320: return VReg_320RegClassID; 1291 case OPW352: return VReg_352RegClassID; 1292 case OPW384: return VReg_384RegClassID; 1293 case OPW512: return VReg_512RegClassID; 1294 case OPW1024: return VReg_1024RegClassID; 1295 } 1296 } 1297 1298 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1299 using namespace AMDGPU; 1300 1301 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1302 switch (Width) { 1303 default: // fall 1304 case OPW32: 1305 case OPW16: 1306 case OPWV216: 1307 return AGPR_32RegClassID; 1308 case OPW64: 1309 case OPWV232: return AReg_64RegClassID; 1310 case OPW96: return AReg_96RegClassID; 1311 case OPW128: return AReg_128RegClassID; 1312 case OPW160: return AReg_160RegClassID; 1313 case OPW256: return AReg_256RegClassID; 1314 case OPW288: return AReg_288RegClassID; 1315 case OPW320: return AReg_320RegClassID; 1316 case OPW352: return AReg_352RegClassID; 1317 case OPW384: return AReg_384RegClassID; 1318 case OPW512: return AReg_512RegClassID; 1319 case OPW1024: return AReg_1024RegClassID; 1320 } 1321 } 1322 1323 1324 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1325 using namespace AMDGPU; 1326 1327 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1328 switch (Width) { 1329 default: // fall 1330 case OPW32: 1331 case OPW16: 1332 case OPWV216: 1333 return SGPR_32RegClassID; 1334 case OPW64: 1335 case OPWV232: return SGPR_64RegClassID; 1336 case OPW96: return SGPR_96RegClassID; 1337 case OPW128: return SGPR_128RegClassID; 1338 case OPW160: return SGPR_160RegClassID; 1339 case OPW256: return SGPR_256RegClassID; 1340 case OPW288: return SGPR_288RegClassID; 1341 case OPW320: return SGPR_320RegClassID; 1342 case OPW352: return SGPR_352RegClassID; 1343 case OPW384: return SGPR_384RegClassID; 1344 case OPW512: return SGPR_512RegClassID; 1345 } 1346 } 1347 1348 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1349 using namespace AMDGPU; 1350 1351 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1352 switch (Width) { 1353 default: // fall 1354 case OPW32: 1355 case OPW16: 1356 case OPWV216: 1357 return TTMP_32RegClassID; 1358 case OPW64: 1359 case OPWV232: return TTMP_64RegClassID; 1360 case OPW128: return TTMP_128RegClassID; 1361 case OPW256: return TTMP_256RegClassID; 1362 case OPW288: return TTMP_288RegClassID; 1363 case OPW320: return TTMP_320RegClassID; 1364 case OPW352: return TTMP_352RegClassID; 1365 case OPW384: return TTMP_384RegClassID; 1366 case OPW512: return TTMP_512RegClassID; 1367 } 1368 } 1369 1370 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1371 using namespace AMDGPU::EncValues; 1372 1373 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1374 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1375 1376 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1377 } 1378 1379 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1380 bool MandatoryLiteral, 1381 unsigned ImmWidth) const { 1382 using namespace AMDGPU::EncValues; 1383 1384 assert(Val < 1024); // enum10 1385 1386 bool IsAGPR = Val & 512; 1387 Val &= 511; 1388 1389 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1390 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1391 : getVgprClassId(Width), Val - VGPR_MIN); 1392 } 1393 if (Val <= SGPR_MAX) { 1394 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1395 static_assert(SGPR_MIN == 0); 1396 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1397 } 1398 1399 int TTmpIdx = getTTmpIdx(Val); 1400 if (TTmpIdx >= 0) { 1401 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1402 } 1403 1404 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1405 return decodeIntImmed(Val); 1406 1407 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1408 return decodeFPImmed(ImmWidth, Val); 1409 1410 if (Val == LITERAL_CONST) { 1411 if (MandatoryLiteral) 1412 // Keep a sentinel value for deferred setting 1413 return MCOperand::createImm(LITERAL_CONST); 1414 else 1415 return decodeLiteralConstant(); 1416 } 1417 1418 switch (Width) { 1419 case OPW32: 1420 case OPW16: 1421 case OPWV216: 1422 return decodeSpecialReg32(Val); 1423 case OPW64: 1424 case OPWV232: 1425 return decodeSpecialReg64(Val); 1426 default: 1427 llvm_unreachable("unexpected immediate type"); 1428 } 1429 } 1430 1431 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1432 // opposite of bit 0 of DstX. 1433 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1434 unsigned Val) const { 1435 int VDstXInd = 1436 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1437 assert(VDstXInd != -1); 1438 assert(Inst.getOperand(VDstXInd).isReg()); 1439 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1440 Val |= ~XDstReg & 1; 1441 auto Width = llvm::AMDGPUDisassembler::OPW32; 1442 return createRegOperand(getVgprClassId(Width), Val); 1443 } 1444 1445 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1446 using namespace AMDGPU; 1447 1448 switch (Val) { 1449 // clang-format off 1450 case 102: return createRegOperand(FLAT_SCR_LO); 1451 case 103: return createRegOperand(FLAT_SCR_HI); 1452 case 104: return createRegOperand(XNACK_MASK_LO); 1453 case 105: return createRegOperand(XNACK_MASK_HI); 1454 case 106: return createRegOperand(VCC_LO); 1455 case 107: return createRegOperand(VCC_HI); 1456 case 108: return createRegOperand(TBA_LO); 1457 case 109: return createRegOperand(TBA_HI); 1458 case 110: return createRegOperand(TMA_LO); 1459 case 111: return createRegOperand(TMA_HI); 1460 case 124: 1461 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1462 case 125: 1463 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1464 case 126: return createRegOperand(EXEC_LO); 1465 case 127: return createRegOperand(EXEC_HI); 1466 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1467 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1468 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1469 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1470 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1471 case 251: return createRegOperand(SRC_VCCZ); 1472 case 252: return createRegOperand(SRC_EXECZ); 1473 case 253: return createRegOperand(SRC_SCC); 1474 case 254: return createRegOperand(LDS_DIRECT); 1475 default: break; 1476 // clang-format on 1477 } 1478 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1479 } 1480 1481 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1482 using namespace AMDGPU; 1483 1484 switch (Val) { 1485 case 102: return createRegOperand(FLAT_SCR); 1486 case 104: return createRegOperand(XNACK_MASK); 1487 case 106: return createRegOperand(VCC); 1488 case 108: return createRegOperand(TBA); 1489 case 110: return createRegOperand(TMA); 1490 case 124: 1491 if (isGFX11Plus()) 1492 return createRegOperand(SGPR_NULL); 1493 break; 1494 case 125: 1495 if (!isGFX11Plus()) 1496 return createRegOperand(SGPR_NULL); 1497 break; 1498 case 126: return createRegOperand(EXEC); 1499 case 235: return createRegOperand(SRC_SHARED_BASE); 1500 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1501 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1502 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1503 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1504 case 251: return createRegOperand(SRC_VCCZ); 1505 case 252: return createRegOperand(SRC_EXECZ); 1506 case 253: return createRegOperand(SRC_SCC); 1507 default: break; 1508 } 1509 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1510 } 1511 1512 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1513 const unsigned Val, 1514 unsigned ImmWidth) const { 1515 using namespace AMDGPU::SDWA; 1516 using namespace AMDGPU::EncValues; 1517 1518 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1519 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1520 // XXX: cast to int is needed to avoid stupid warning: 1521 // compare with unsigned is always true 1522 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1523 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1524 return createRegOperand(getVgprClassId(Width), 1525 Val - SDWA9EncValues::SRC_VGPR_MIN); 1526 } 1527 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1528 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1529 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1530 return createSRegOperand(getSgprClassId(Width), 1531 Val - SDWA9EncValues::SRC_SGPR_MIN); 1532 } 1533 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1534 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1535 return createSRegOperand(getTtmpClassId(Width), 1536 Val - SDWA9EncValues::SRC_TTMP_MIN); 1537 } 1538 1539 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1540 1541 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1542 return decodeIntImmed(SVal); 1543 1544 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1545 return decodeFPImmed(ImmWidth, SVal); 1546 1547 return decodeSpecialReg32(SVal); 1548 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 1549 return createRegOperand(getVgprClassId(Width), Val); 1550 } 1551 llvm_unreachable("unsupported target"); 1552 } 1553 1554 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1555 return decodeSDWASrc(OPW16, Val, 16); 1556 } 1557 1558 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1559 return decodeSDWASrc(OPW32, Val, 32); 1560 } 1561 1562 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1563 using namespace AMDGPU::SDWA; 1564 1565 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1566 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1567 "SDWAVopcDst should be present only on GFX9+"); 1568 1569 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1570 1571 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1572 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1573 1574 int TTmpIdx = getTTmpIdx(Val); 1575 if (TTmpIdx >= 0) { 1576 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1577 return createSRegOperand(TTmpClsId, TTmpIdx); 1578 } else if (Val > SGPR_MAX) { 1579 return IsWave64 ? decodeSpecialReg64(Val) 1580 : decodeSpecialReg32(Val); 1581 } else { 1582 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1583 } 1584 } else { 1585 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1586 } 1587 } 1588 1589 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1590 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1591 ? decodeSrcOp(OPW64, Val) 1592 : decodeSrcOp(OPW32, Val); 1593 } 1594 1595 bool AMDGPUDisassembler::isVI() const { 1596 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1597 } 1598 1599 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1600 1601 bool AMDGPUDisassembler::isGFX90A() const { 1602 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1603 } 1604 1605 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1606 1607 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1608 1609 bool AMDGPUDisassembler::isGFX10Plus() const { 1610 return AMDGPU::isGFX10Plus(STI); 1611 } 1612 1613 bool AMDGPUDisassembler::isGFX11() const { 1614 return STI.hasFeature(AMDGPU::FeatureGFX11); 1615 } 1616 1617 bool AMDGPUDisassembler::isGFX11Plus() const { 1618 return AMDGPU::isGFX11Plus(STI); 1619 } 1620 1621 1622 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1623 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1624 } 1625 1626 bool AMDGPUDisassembler::hasKernargPreload() const { 1627 return AMDGPU::hasKernargPreload(STI); 1628 } 1629 1630 //===----------------------------------------------------------------------===// 1631 // AMDGPU specific symbol handling 1632 //===----------------------------------------------------------------------===// 1633 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1634 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1635 do { \ 1636 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1637 } while (0) 1638 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ 1639 do { \ 1640 KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ 1641 << GET_FIELD(MASK) << '\n'; \ 1642 } while (0) 1643 1644 // NOLINTNEXTLINE(readability-identifier-naming) 1645 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1646 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1647 using namespace amdhsa; 1648 StringRef Indent = "\t"; 1649 1650 // We cannot accurately backward compute #VGPRs used from 1651 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1652 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1653 // simply calculate the inverse of what the assembler does. 1654 1655 uint32_t GranulatedWorkitemVGPRCount = 1656 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1657 1658 uint32_t NextFreeVGPR = 1659 (GranulatedWorkitemVGPRCount + 1) * 1660 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); 1661 1662 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1663 1664 // We cannot backward compute values used to calculate 1665 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1666 // directives can't be computed: 1667 // .amdhsa_reserve_vcc 1668 // .amdhsa_reserve_flat_scratch 1669 // .amdhsa_reserve_xnack_mask 1670 // They take their respective default values if not specified in the assembly. 1671 // 1672 // GRANULATED_WAVEFRONT_SGPR_COUNT 1673 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1674 // 1675 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1676 // are set to 0. So while disassembling we consider that: 1677 // 1678 // GRANULATED_WAVEFRONT_SGPR_COUNT 1679 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1680 // 1681 // The disassembler cannot recover the original values of those 3 directives. 1682 1683 uint32_t GranulatedWavefrontSGPRCount = 1684 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1685 1686 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1687 return MCDisassembler::Fail; 1688 1689 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1690 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1691 1692 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1693 if (!hasArchitectedFlatScratch()) 1694 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1695 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1696 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1697 1698 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1699 return MCDisassembler::Fail; 1700 1701 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1702 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1703 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1704 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1705 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1706 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1707 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1708 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1709 1710 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1711 return MCDisassembler::Fail; 1712 1713 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); 1714 1715 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1716 return MCDisassembler::Fail; 1717 1718 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); 1719 1720 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1721 return MCDisassembler::Fail; 1722 1723 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1724 return MCDisassembler::Fail; 1725 1726 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); 1727 1728 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) 1729 return MCDisassembler::Fail; 1730 1731 if (isGFX10Plus()) { 1732 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1733 COMPUTE_PGM_RSRC1_WGP_MODE); 1734 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); 1735 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); 1736 } 1737 return MCDisassembler::Success; 1738 } 1739 1740 // NOLINTNEXTLINE(readability-identifier-naming) 1741 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1742 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1743 using namespace amdhsa; 1744 StringRef Indent = "\t"; 1745 if (hasArchitectedFlatScratch()) 1746 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1747 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1748 else 1749 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1750 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1751 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1752 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1753 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1754 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1755 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1756 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1757 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1758 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1759 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1760 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1761 1762 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1763 return MCDisassembler::Fail; 1764 1765 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1766 return MCDisassembler::Fail; 1767 1768 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1769 return MCDisassembler::Fail; 1770 1771 PRINT_DIRECTIVE( 1772 ".amdhsa_exception_fp_ieee_invalid_op", 1773 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1774 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1775 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1776 PRINT_DIRECTIVE( 1777 ".amdhsa_exception_fp_ieee_div_zero", 1778 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1779 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1780 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1781 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1782 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1783 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1784 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1785 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1786 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1787 1788 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1789 return MCDisassembler::Fail; 1790 1791 return MCDisassembler::Success; 1792 } 1793 1794 // NOLINTNEXTLINE(readability-identifier-naming) 1795 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 1796 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1797 using namespace amdhsa; 1798 StringRef Indent = "\t"; 1799 if (isGFX90A()) { 1800 KdStream << Indent << ".amdhsa_accum_offset " 1801 << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 1802 << '\n'; 1803 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0) 1804 return MCDisassembler::Fail; 1805 PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); 1806 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1) 1807 return MCDisassembler::Fail; 1808 } else if (isGFX10Plus()) { 1809 if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { 1810 PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", 1811 COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 1812 } else { 1813 PRINT_PSEUDO_DIRECTIVE_COMMENT( 1814 "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 1815 } 1816 PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", 1817 COMPUTE_PGM_RSRC3_GFX10_PLUS_INST_PREF_SIZE); 1818 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", 1819 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START); 1820 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", 1821 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_END); 1822 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED0) 1823 return MCDisassembler::Fail; 1824 PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", 1825 COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START); 1826 } else if (FourByteBuffer) { 1827 return MCDisassembler::Fail; 1828 } 1829 return MCDisassembler::Success; 1830 } 1831 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT 1832 #undef PRINT_DIRECTIVE 1833 #undef GET_FIELD 1834 1835 MCDisassembler::DecodeStatus 1836 AMDGPUDisassembler::decodeKernelDescriptorDirective( 1837 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 1838 raw_string_ostream &KdStream) const { 1839 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1840 do { \ 1841 KdStream << Indent << DIRECTIVE " " \ 1842 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1843 } while (0) 1844 1845 uint16_t TwoByteBuffer = 0; 1846 uint32_t FourByteBuffer = 0; 1847 1848 StringRef ReservedBytes; 1849 StringRef Indent = "\t"; 1850 1851 assert(Bytes.size() == 64); 1852 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 1853 1854 switch (Cursor.tell()) { 1855 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 1856 FourByteBuffer = DE.getU32(Cursor); 1857 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 1858 << '\n'; 1859 return MCDisassembler::Success; 1860 1861 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 1862 FourByteBuffer = DE.getU32(Cursor); 1863 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 1864 << FourByteBuffer << '\n'; 1865 return MCDisassembler::Success; 1866 1867 case amdhsa::KERNARG_SIZE_OFFSET: 1868 FourByteBuffer = DE.getU32(Cursor); 1869 KdStream << Indent << ".amdhsa_kernarg_size " 1870 << FourByteBuffer << '\n'; 1871 return MCDisassembler::Success; 1872 1873 case amdhsa::RESERVED0_OFFSET: 1874 // 4 reserved bytes, must be 0. 1875 ReservedBytes = DE.getBytes(Cursor, 4); 1876 for (int I = 0; I < 4; ++I) { 1877 if (ReservedBytes[I] != 0) { 1878 return MCDisassembler::Fail; 1879 } 1880 } 1881 return MCDisassembler::Success; 1882 1883 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 1884 // KERNEL_CODE_ENTRY_BYTE_OFFSET 1885 // So far no directive controls this for Code Object V3, so simply skip for 1886 // disassembly. 1887 DE.skip(Cursor, 8); 1888 return MCDisassembler::Success; 1889 1890 case amdhsa::RESERVED1_OFFSET: 1891 // 20 reserved bytes, must be 0. 1892 ReservedBytes = DE.getBytes(Cursor, 20); 1893 for (int I = 0; I < 20; ++I) { 1894 if (ReservedBytes[I] != 0) { 1895 return MCDisassembler::Fail; 1896 } 1897 } 1898 return MCDisassembler::Success; 1899 1900 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 1901 FourByteBuffer = DE.getU32(Cursor); 1902 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 1903 1904 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 1905 FourByteBuffer = DE.getU32(Cursor); 1906 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 1907 1908 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 1909 FourByteBuffer = DE.getU32(Cursor); 1910 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 1911 1912 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 1913 using namespace amdhsa; 1914 TwoByteBuffer = DE.getU16(Cursor); 1915 1916 if (!hasArchitectedFlatScratch()) 1917 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 1918 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 1919 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 1920 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 1921 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 1922 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 1923 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 1924 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 1925 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 1926 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 1927 if (!hasArchitectedFlatScratch()) 1928 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 1929 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 1930 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 1931 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 1932 1933 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 1934 return MCDisassembler::Fail; 1935 1936 // Reserved for GFX9 1937 if (isGFX9() && 1938 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 1939 return MCDisassembler::Fail; 1940 } else if (isGFX10Plus()) { 1941 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 1942 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1943 } 1944 1945 if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5) 1946 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 1947 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 1948 1949 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 1950 return MCDisassembler::Fail; 1951 1952 return MCDisassembler::Success; 1953 1954 case amdhsa::KERNARG_PRELOAD_OFFSET: 1955 using namespace amdhsa; 1956 TwoByteBuffer = DE.getU16(Cursor); 1957 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) { 1958 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length", 1959 KERNARG_PRELOAD_SPEC_LENGTH); 1960 } 1961 1962 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) { 1963 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset", 1964 KERNARG_PRELOAD_SPEC_OFFSET); 1965 } 1966 return MCDisassembler::Success; 1967 1968 case amdhsa::RESERVED3_OFFSET: 1969 // 4 bytes from here are reserved, must be 0. 1970 ReservedBytes = DE.getBytes(Cursor, 4); 1971 for (int I = 0; I < 4; ++I) { 1972 if (ReservedBytes[I] != 0) 1973 return MCDisassembler::Fail; 1974 } 1975 return MCDisassembler::Success; 1976 1977 default: 1978 llvm_unreachable("Unhandled index. Case statements cover everything."); 1979 return MCDisassembler::Fail; 1980 } 1981 #undef PRINT_DIRECTIVE 1982 } 1983 1984 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 1985 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 1986 // CP microcode requires the kernel descriptor to be 64 aligned. 1987 if (Bytes.size() != 64 || KdAddress % 64 != 0) 1988 return MCDisassembler::Fail; 1989 1990 // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 1991 // requires us to know the setting of .amdhsa_wavefront_size32 in order to 1992 // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong 1993 // order. Workaround this by first looking up .amdhsa_wavefront_size32 here 1994 // when required. 1995 if (isGFX10Plus()) { 1996 uint16_t KernelCodeProperties = 1997 support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], 1998 support::endianness::little); 1999 EnableWavefrontSize32 = 2000 AMDHSA_BITS_GET(KernelCodeProperties, 2001 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2002 } 2003 2004 std::string Kd; 2005 raw_string_ostream KdStream(Kd); 2006 KdStream << ".amdhsa_kernel " << KdName << '\n'; 2007 2008 DataExtractor::Cursor C(0); 2009 while (C && C.tell() < Bytes.size()) { 2010 MCDisassembler::DecodeStatus Status = 2011 decodeKernelDescriptorDirective(C, Bytes, KdStream); 2012 2013 cantFail(C.takeError()); 2014 2015 if (Status == MCDisassembler::Fail) 2016 return MCDisassembler::Fail; 2017 } 2018 KdStream << ".end_amdhsa_kernel\n"; 2019 outs() << KdStream.str(); 2020 return MCDisassembler::Success; 2021 } 2022 2023 std::optional<MCDisassembler::DecodeStatus> 2024 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2025 ArrayRef<uint8_t> Bytes, uint64_t Address, 2026 raw_ostream &CStream) const { 2027 // Right now only kernel descriptor needs to be handled. 2028 // We ignore all other symbols for target specific handling. 2029 // TODO: 2030 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2031 // Object V2 and V3 when symbols are marked protected. 2032 2033 // amd_kernel_code_t for Code Object V2. 2034 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2035 Size = 256; 2036 return MCDisassembler::Fail; 2037 } 2038 2039 // Code Object V3 kernel descriptors. 2040 StringRef Name = Symbol.Name; 2041 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { 2042 Size = 64; // Size = 64 regardless of success or failure. 2043 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2044 } 2045 return std::nullopt; 2046 } 2047 2048 //===----------------------------------------------------------------------===// 2049 // AMDGPUSymbolizer 2050 //===----------------------------------------------------------------------===// 2051 2052 // Try to find symbol name for specified label 2053 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2054 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2055 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2056 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2057 2058 if (!IsBranch) { 2059 return false; 2060 } 2061 2062 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2063 if (!Symbols) 2064 return false; 2065 2066 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2067 return Val.Addr == static_cast<uint64_t>(Value) && 2068 Val.Type == ELF::STT_NOTYPE; 2069 }); 2070 if (Result != Symbols->end()) { 2071 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2072 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2073 Inst.addOperand(MCOperand::createExpr(Add)); 2074 return true; 2075 } 2076 // Add to list of referenced addresses, so caller can synthesize a label. 2077 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2078 return false; 2079 } 2080 2081 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2082 int64_t Value, 2083 uint64_t Address) { 2084 llvm_unreachable("unimplemented"); 2085 } 2086 2087 //===----------------------------------------------------------------------===// 2088 // Initialization 2089 //===----------------------------------------------------------------------===// 2090 2091 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2092 LLVMOpInfoCallback /*GetOpInfo*/, 2093 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2094 void *DisInfo, 2095 MCContext *Ctx, 2096 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2097 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2098 } 2099 2100 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2101 const MCSubtargetInfo &STI, 2102 MCContext &Ctx) { 2103 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2104 } 2105 2106 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2107 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2108 createAMDGPUDisassembler); 2109 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2110 createAMDGPUSymbolizer); 2111 } 2112