1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, MCInstrInfo const *MCII) 49 : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 50 MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)), 51 CodeObjectVersion(AMDGPU::getDefaultAMDHSACodeObjectVersion()) { 52 // ToDo: AMDGPUDisassembler supports only VI ISA. 53 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 54 report_fatal_error("Disassembly not yet supported for subtarget"); 55 } 56 57 void AMDGPUDisassembler::setABIVersion(unsigned Version) { 58 CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(Version); 59 } 60 61 inline static MCDisassembler::DecodeStatus 62 addOperand(MCInst &Inst, const MCOperand& Opnd) { 63 Inst.addOperand(Opnd); 64 return Opnd.isValid() ? 65 MCDisassembler::Success : 66 MCDisassembler::Fail; 67 } 68 69 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 70 uint16_t NameIdx) { 71 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 72 if (OpIdx != -1) { 73 auto I = MI.begin(); 74 std::advance(I, OpIdx); 75 MI.insert(I, Op); 76 } 77 return OpIdx; 78 } 79 80 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, 81 uint64_t Addr, 82 const MCDisassembler *Decoder) { 83 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 84 85 // Our branches take a simm16, but we need two extra bits to account for the 86 // factor of 4. 87 APInt SignedOffset(18, Imm * 4, true); 88 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 89 90 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 91 return MCDisassembler::Success; 92 return addOperand(Inst, MCOperand::createImm(Imm)); 93 } 94 95 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 96 const MCDisassembler *Decoder) { 97 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 98 int64_t Offset; 99 if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets. 100 Offset = SignExtend64<24>(Imm); 101 } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 102 Offset = Imm & 0xFFFFF; 103 } else { // GFX9+ supports 21-bit signed offsets. 104 Offset = SignExtend64<21>(Imm); 105 } 106 return addOperand(Inst, MCOperand::createImm(Offset)); 107 } 108 109 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 110 const MCDisassembler *Decoder) { 111 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 112 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 113 } 114 115 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val, 116 uint64_t Addr, 117 const MCDisassembler *Decoder) { 118 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 119 return addOperand(Inst, DAsm->decodeSplitBarrier(Val)); 120 } 121 122 static DecodeStatus decodeDpp8FI(MCInst &Inst, unsigned Val, uint64_t Addr, 123 const MCDisassembler *Decoder) { 124 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 125 return addOperand(Inst, DAsm->decodeDpp8FI(Val)); 126 } 127 128 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 129 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 130 uint64_t /*Addr*/, \ 131 const MCDisassembler *Decoder) { \ 132 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 133 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 134 } 135 136 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 137 // number of register. Used by VGPR only and AGPR only operands. 138 #define DECODE_OPERAND_REG_8(RegClass) \ 139 static DecodeStatus Decode##RegClass##RegisterClass( \ 140 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 141 const MCDisassembler *Decoder) { \ 142 assert(Imm < (1 << 8) && "8-bit encoding"); \ 143 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 144 return addOperand( \ 145 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 146 } 147 148 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 149 ImmWidth) \ 150 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 151 const MCDisassembler *Decoder) { \ 152 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 153 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 154 return addOperand(Inst, \ 155 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 156 MandatoryLiteral, ImmWidth)); \ 157 } 158 159 static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize, 160 AMDGPUDisassembler::OpWidthTy OpWidth, 161 unsigned Imm, unsigned EncImm, 162 bool MandatoryLiteral, unsigned ImmWidth, 163 AMDGPU::OperandSemantics Sema, 164 const MCDisassembler *Decoder) { 165 assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!"); 166 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 167 return addOperand(Inst, DAsm->decodeSrcOp(OpWidth, EncImm, MandatoryLiteral, 168 ImmWidth, Sema)); 169 } 170 171 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 172 // get register class. Used by SGPR only operands. 173 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 174 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 175 176 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 177 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 178 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 179 // Used by AV_ register classes (AGPR or VGPR only register operands). 180 template <AMDGPUDisassembler::OpWidthTy OpWidth> 181 static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */, 182 const MCDisassembler *Decoder) { 183 return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm | AMDGPU::EncValues::IS_VGPR, 184 false, 0, AMDGPU::OperandSemantics::INT, Decoder); 185 } 186 187 // Decoder for Src(9-bit encoding) registers only. 188 template <AMDGPUDisassembler::OpWidthTy OpWidth> 189 static DecodeStatus decodeSrcReg9(MCInst &Inst, unsigned Imm, 190 uint64_t /* Addr */, 191 const MCDisassembler *Decoder) { 192 return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, 0, 193 AMDGPU::OperandSemantics::INT, Decoder); 194 } 195 196 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 197 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 198 // only. 199 template <AMDGPUDisassembler::OpWidthTy OpWidth> 200 static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */, 201 const MCDisassembler *Decoder) { 202 return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, 0, 203 AMDGPU::OperandSemantics::INT, Decoder); 204 } 205 206 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 207 // Imm{9} is acc, registers only. 208 template <AMDGPUDisassembler::OpWidthTy OpWidth> 209 static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm, 210 uint64_t /* Addr */, 211 const MCDisassembler *Decoder) { 212 return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm, false, 0, 213 AMDGPU::OperandSemantics::INT, Decoder); 214 } 215 216 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 217 // register from RegClass or immediate. Registers that don't belong to RegClass 218 // will be decoded and InstPrinter will report warning. Immediate will be 219 // decoded into constant of size ImmWidth, should match width of immediate used 220 // by OperandType (important for floating point types). 221 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth, 222 unsigned OperandSemantics> 223 static DecodeStatus decodeSrcRegOrImm9(MCInst &Inst, unsigned Imm, 224 uint64_t /* Addr */, 225 const MCDisassembler *Decoder) { 226 return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, ImmWidth, 227 (AMDGPU::OperandSemantics)OperandSemantics, Decoder); 228 } 229 230 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 231 // and decode using 'enum10' from decodeSrcOp. 232 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth, 233 unsigned OperandSemantics> 234 static DecodeStatus decodeSrcRegOrImmA9(MCInst &Inst, unsigned Imm, 235 uint64_t /* Addr */, 236 const MCDisassembler *Decoder) { 237 return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, ImmWidth, 238 (AMDGPU::OperandSemantics)OperandSemantics, Decoder); 239 } 240 241 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth, 242 unsigned OperandSemantics> 243 static DecodeStatus decodeSrcRegOrImmDeferred9(MCInst &Inst, unsigned Imm, 244 uint64_t /* Addr */, 245 const MCDisassembler *Decoder) { 246 return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, true, ImmWidth, 247 (AMDGPU::OperandSemantics)OperandSemantics, Decoder); 248 } 249 250 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 251 // when RegisterClass is used as an operand. Most often used for destination 252 // operands. 253 254 DECODE_OPERAND_REG_8(VGPR_32) 255 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 256 DECODE_OPERAND_REG_8(VReg_64) 257 DECODE_OPERAND_REG_8(VReg_96) 258 DECODE_OPERAND_REG_8(VReg_128) 259 DECODE_OPERAND_REG_8(VReg_256) 260 DECODE_OPERAND_REG_8(VReg_288) 261 DECODE_OPERAND_REG_8(VReg_352) 262 DECODE_OPERAND_REG_8(VReg_384) 263 DECODE_OPERAND_REG_8(VReg_512) 264 DECODE_OPERAND_REG_8(VReg_1024) 265 266 DECODE_OPERAND_REG_7(SReg_32, OPW32) 267 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32) 268 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 269 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 270 DECODE_OPERAND_REG_7(SReg_64, OPW64) 271 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 272 DECODE_OPERAND_REG_7(SReg_96, OPW96) 273 DECODE_OPERAND_REG_7(SReg_128, OPW128) 274 DECODE_OPERAND_REG_7(SReg_256, OPW256) 275 DECODE_OPERAND_REG_7(SReg_512, OPW512) 276 277 DECODE_OPERAND_REG_8(AGPR_32) 278 DECODE_OPERAND_REG_8(AReg_64) 279 DECODE_OPERAND_REG_8(AReg_128) 280 DECODE_OPERAND_REG_8(AReg_256) 281 DECODE_OPERAND_REG_8(AReg_512) 282 DECODE_OPERAND_REG_8(AReg_1024) 283 284 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm, 285 uint64_t /*Addr*/, 286 const MCDisassembler *Decoder) { 287 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 288 assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used"); 289 290 bool IsHi = Imm & (1 << 9); 291 unsigned RegIdx = Imm & 0xff; 292 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 293 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 294 } 295 296 static DecodeStatus 297 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, 298 const MCDisassembler *Decoder) { 299 assert(isUInt<8>(Imm) && "8-bit encoding expected"); 300 301 bool IsHi = Imm & (1 << 7); 302 unsigned RegIdx = Imm & 0x7f; 303 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 304 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 305 } 306 307 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm, 308 uint64_t /*Addr*/, 309 const MCDisassembler *Decoder) { 310 assert(isUInt<9>(Imm) && "9-bit encoding expected"); 311 312 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 313 bool IsVGPR = Imm & (1 << 8); 314 if (IsVGPR) { 315 bool IsHi = Imm & (1 << 7); 316 unsigned RegIdx = Imm & 0x7f; 317 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 318 } 319 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 320 Imm & 0xFF, false, 16)); 321 } 322 323 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm, 324 uint64_t /*Addr*/, 325 const MCDisassembler *Decoder) { 326 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 327 328 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 329 bool IsVGPR = Imm & (1 << 8); 330 if (IsVGPR) { 331 bool IsHi = Imm & (1 << 9); 332 unsigned RegIdx = Imm & 0xff; 333 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 334 } 335 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 336 Imm & 0xFF, false, 16)); 337 } 338 339 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, 340 uint64_t Addr, 341 const MCDisassembler *Decoder) { 342 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 343 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 344 } 345 346 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 347 uint64_t Addr, const void *Decoder) { 348 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 349 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 350 } 351 352 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 353 const MCRegisterInfo *MRI) { 354 if (OpIdx < 0) 355 return false; 356 357 const MCOperand &Op = Inst.getOperand(OpIdx); 358 if (!Op.isReg()) 359 return false; 360 361 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 362 auto Reg = Sub ? Sub : Op.getReg(); 363 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 364 } 365 366 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm, 367 AMDGPUDisassembler::OpWidthTy Opw, 368 const MCDisassembler *Decoder) { 369 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 370 if (!DAsm->isGFX90A()) { 371 Imm &= 511; 372 } else { 373 // If atomic has both vdata and vdst their register classes are tied. 374 // The bit is decoded along with the vdst, first operand. We need to 375 // change register class to AGPR if vdst was AGPR. 376 // If a DS instruction has both data0 and data1 their register classes 377 // are also tied. 378 unsigned Opc = Inst.getOpcode(); 379 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 380 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 381 : AMDGPU::OpName::vdata; 382 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 383 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 384 if ((int)Inst.getNumOperands() == DataIdx) { 385 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 386 if (IsAGPROperand(Inst, DstIdx, MRI)) 387 Imm |= 512; 388 } 389 390 if (TSFlags & SIInstrFlags::DS) { 391 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 392 if ((int)Inst.getNumOperands() == Data2Idx && 393 IsAGPROperand(Inst, DataIdx, MRI)) 394 Imm |= 512; 395 } 396 } 397 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 398 } 399 400 template <AMDGPUDisassembler::OpWidthTy Opw> 401 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm, 402 uint64_t /* Addr */, 403 const MCDisassembler *Decoder) { 404 return decodeAVLdSt(Inst, Imm, Opw, Decoder); 405 } 406 407 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm, 408 uint64_t Addr, 409 const MCDisassembler *Decoder) { 410 assert(Imm < (1 << 9) && "9-bit encoding"); 411 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 412 return addOperand(Inst, 413 DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, 414 AMDGPU::OperandSemantics::FP64)); 415 } 416 417 #define DECODE_SDWA(DecName) \ 418 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 419 420 DECODE_SDWA(Src32) 421 DECODE_SDWA(Src16) 422 DECODE_SDWA(VopcDst) 423 424 #include "AMDGPUGenDisassemblerTables.inc" 425 426 //===----------------------------------------------------------------------===// 427 // 428 //===----------------------------------------------------------------------===// 429 430 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 431 assert(Bytes.size() >= sizeof(T)); 432 const auto Res = 433 support::endian::read<T, llvm::endianness::little>(Bytes.data()); 434 Bytes = Bytes.slice(sizeof(T)); 435 return Res; 436 } 437 438 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 439 assert(Bytes.size() >= 12); 440 uint64_t Lo = 441 support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data()); 442 Bytes = Bytes.slice(8); 443 uint64_t Hi = 444 support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data()); 445 Bytes = Bytes.slice(4); 446 return DecoderUInt128(Lo, Hi); 447 } 448 449 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 450 ArrayRef<uint8_t> Bytes_, 451 uint64_t Address, 452 raw_ostream &CS) const { 453 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 454 Bytes = Bytes_.slice(0, MaxInstBytesNum); 455 456 // In case the opcode is not recognized we'll assume a Size of 4 bytes (unless 457 // there are fewer bytes left). This will be overridden on success. 458 Size = std::min((size_t)4, Bytes_.size()); 459 460 do { 461 // ToDo: better to switch encoding length using some bit predicate 462 // but it is unknown yet, so try all we can 463 464 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 465 // encodings 466 if (isGFX11Plus() && Bytes.size() >= 12 ) { 467 DecoderUInt128 DecW = eat12Bytes(Bytes); 468 469 if (isGFX11() && 470 tryDecodeInst(DecoderTableGFX1196, DecoderTableGFX11_FAKE1696, MI, 471 DecW, Address, CS)) 472 break; 473 474 if (isGFX12() && 475 tryDecodeInst(DecoderTableGFX1296, DecoderTableGFX12_FAKE1696, MI, 476 DecW, Address, CS)) 477 break; 478 479 if (isGFX12() && 480 tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS)) 481 break; 482 } 483 484 // Reinitialize Bytes 485 Bytes = Bytes_.slice(0, MaxInstBytesNum); 486 487 if (Bytes.size() >= 8) { 488 const uint64_t QW = eatBytes<uint64_t>(Bytes); 489 490 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) && 491 tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS)) 492 break; 493 494 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) && 495 tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS)) 496 break; 497 498 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 499 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 500 // table first so we print the correct name. 501 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts) && 502 tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS)) 503 break; 504 505 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts) && 506 tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS)) 507 break; 508 509 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) && 510 tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS)) 511 break; 512 513 if ((isVI() || isGFX9()) && 514 tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS)) 515 break; 516 517 if (isGFX9() && tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS)) 518 break; 519 520 if (isGFX10() && tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS)) 521 break; 522 523 if (isGFX12() && 524 tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW, 525 Address, CS)) 526 break; 527 528 if (isGFX11() && 529 tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW, 530 Address, CS)) 531 break; 532 533 if (isGFX11() && 534 tryDecodeInst(DecoderTableGFX11W6464, MI, QW, Address, CS)) 535 break; 536 537 if (isGFX12() && 538 tryDecodeInst(DecoderTableGFX12W6464, MI, QW, Address, CS)) 539 break; 540 } 541 542 // Reinitialize Bytes 543 Bytes = Bytes_.slice(0, MaxInstBytesNum); 544 545 // Try decode 32-bit instruction 546 if (Bytes.size() >= 4) { 547 const uint32_t DW = eatBytes<uint32_t>(Bytes); 548 549 if ((isVI() || isGFX9()) && 550 tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS)) 551 break; 552 553 if (tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS)) 554 break; 555 556 if (isGFX9() && tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS)) 557 break; 558 559 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) && 560 tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS)) 561 break; 562 563 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) && 564 tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS)) 565 break; 566 567 if (isGFX10() && tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS)) 568 break; 569 570 if (isGFX11() && 571 tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW, 572 Address, CS)) 573 break; 574 575 if (isGFX12() && 576 tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW, 577 Address, CS)) 578 break; 579 } 580 581 return MCDisassembler::Fail; 582 } while (false); 583 584 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DPP) { 585 if (isMacDPP(MI)) 586 convertMacDPPInst(MI); 587 588 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 589 convertVOP3PDPPInst(MI); 590 else if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) || 591 AMDGPU::isVOPC64DPP(MI.getOpcode())) 592 convertVOPCDPPInst(MI); // Special VOP3 case 593 else if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) != 594 -1) 595 convertDPP8Inst(MI); 596 else if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3) 597 convertVOP3DPPInst(MI); // Regular VOP3 case 598 } 599 600 if (AMDGPU::isMAC(MI.getOpcode())) { 601 // Insert dummy unused src2_modifiers. 602 insertNamedMCOperand(MI, MCOperand::createImm(0), 603 AMDGPU::OpName::src2_modifiers); 604 } 605 606 if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp || 607 MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp) { 608 // Insert dummy unused src2_modifiers. 609 insertNamedMCOperand(MI, MCOperand::createImm(0), 610 AMDGPU::OpName::src2_modifiers); 611 } 612 613 if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) && 614 !AMDGPU::hasGDS(STI)) { 615 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds); 616 } 617 618 if (MCII->get(MI.getOpcode()).TSFlags & 619 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD)) { 620 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 621 AMDGPU::OpName::cpol); 622 if (CPolPos != -1) { 623 unsigned CPol = 624 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 625 AMDGPU::CPol::GLC : 0; 626 if (MI.getNumOperands() <= (unsigned)CPolPos) { 627 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 628 AMDGPU::OpName::cpol); 629 } else if (CPol) { 630 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 631 } 632 } 633 } 634 635 if ((MCII->get(MI.getOpcode()).TSFlags & 636 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 637 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 638 // GFX90A lost TFE, its place is occupied by ACC. 639 int TFEOpIdx = 640 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 641 if (TFEOpIdx != -1) { 642 auto TFEIter = MI.begin(); 643 std::advance(TFEIter, TFEOpIdx); 644 MI.insert(TFEIter, MCOperand::createImm(0)); 645 } 646 } 647 648 if (MCII->get(MI.getOpcode()).TSFlags & 649 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) { 650 int SWZOpIdx = 651 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 652 if (SWZOpIdx != -1) { 653 auto SWZIter = MI.begin(); 654 std::advance(SWZIter, SWZOpIdx); 655 MI.insert(SWZIter, MCOperand::createImm(0)); 656 } 657 } 658 659 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG) { 660 int VAddr0Idx = 661 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 662 int RsrcIdx = 663 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 664 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 665 if (VAddr0Idx >= 0 && NSAArgs > 0) { 666 unsigned NSAWords = (NSAArgs + 3) / 4; 667 if (Bytes.size() < 4 * NSAWords) 668 return MCDisassembler::Fail; 669 for (unsigned i = 0; i < NSAArgs; ++i) { 670 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 671 auto VAddrRCID = 672 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 673 MI.insert(MI.begin() + VAddrIdx, createRegOperand(VAddrRCID, Bytes[i])); 674 } 675 Bytes = Bytes.slice(4 * NSAWords); 676 } 677 678 convertMIMGInst(MI); 679 } 680 681 if (MCII->get(MI.getOpcode()).TSFlags & 682 (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)) 683 convertMIMGInst(MI); 684 685 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP) 686 convertEXPInst(MI); 687 688 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP) 689 convertVINTERPInst(MI); 690 691 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SDWA) 692 convertSDWAInst(MI); 693 694 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 695 AMDGPU::OpName::vdst_in); 696 if (VDstIn_Idx != -1) { 697 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 698 MCOI::OperandConstraint::TIED_TO); 699 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 700 !MI.getOperand(VDstIn_Idx).isReg() || 701 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 702 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 703 MI.erase(&MI.getOperand(VDstIn_Idx)); 704 insertNamedMCOperand(MI, 705 MCOperand::createReg(MI.getOperand(Tied).getReg()), 706 AMDGPU::OpName::vdst_in); 707 } 708 } 709 710 int ImmLitIdx = 711 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 712 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 713 if (ImmLitIdx != -1 && !IsSOPK) 714 convertFMAanyK(MI, ImmLitIdx); 715 716 Size = MaxInstBytesNum - Bytes.size(); 717 return MCDisassembler::Success; 718 } 719 720 void AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 721 if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) { 722 // The MCInst still has these fields even though they are no longer encoded 723 // in the GFX11 instruction. 724 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 725 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 726 } 727 } 728 729 void AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 730 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 731 MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 || 732 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 733 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 || 734 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 735 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 || 736 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 || 737 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) { 738 // The MCInst has this field that is not directly encoded in the 739 // instruction. 740 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 741 } 742 } 743 744 void AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 745 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 746 STI.hasFeature(AMDGPU::FeatureGFX10)) { 747 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 748 // VOPC - insert clamp 749 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 750 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 751 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 752 if (SDst != -1) { 753 // VOPC - insert VCC register as sdst 754 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 755 AMDGPU::OpName::sdst); 756 } else { 757 // VOP1/2 - insert omod if present in instruction 758 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 759 } 760 } 761 } 762 763 struct VOPModifiers { 764 unsigned OpSel = 0; 765 unsigned OpSelHi = 0; 766 unsigned NegLo = 0; 767 unsigned NegHi = 0; 768 }; 769 770 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 771 // Note that these values do not affect disassembler output, 772 // so this is only necessary for consistency with src_modifiers. 773 static VOPModifiers collectVOPModifiers(const MCInst &MI, 774 bool IsVOP3P = false) { 775 VOPModifiers Modifiers; 776 unsigned Opc = MI.getOpcode(); 777 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 778 AMDGPU::OpName::src1_modifiers, 779 AMDGPU::OpName::src2_modifiers}; 780 for (int J = 0; J < 3; ++J) { 781 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 782 if (OpIdx == -1) 783 continue; 784 785 unsigned Val = MI.getOperand(OpIdx).getImm(); 786 787 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 788 if (IsVOP3P) { 789 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 790 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 791 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 792 } else if (J == 0) { 793 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 794 } 795 } 796 797 return Modifiers; 798 } 799 800 // Instructions decode the op_sel/suffix bits into the src_modifier 801 // operands. Copy those bits into the src operands for true16 VGPRs. 802 void AMDGPUDisassembler::convertTrue16OpSel(MCInst &MI) const { 803 const unsigned Opc = MI.getOpcode(); 804 const MCRegisterClass &ConversionRC = 805 MRI.getRegClass(AMDGPU::VGPR_16RegClassID); 806 constexpr std::array<std::tuple<int, int, unsigned>, 4> OpAndOpMods = { 807 {{AMDGPU::OpName::src0, AMDGPU::OpName::src0_modifiers, 808 SISrcMods::OP_SEL_0}, 809 {AMDGPU::OpName::src1, AMDGPU::OpName::src1_modifiers, 810 SISrcMods::OP_SEL_0}, 811 {AMDGPU::OpName::src2, AMDGPU::OpName::src2_modifiers, 812 SISrcMods::OP_SEL_0}, 813 {AMDGPU::OpName::vdst, AMDGPU::OpName::src0_modifiers, 814 SISrcMods::DST_OP_SEL}}}; 815 for (const auto &[OpName, OpModsName, OpSelMask] : OpAndOpMods) { 816 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, OpName); 817 int OpModsIdx = AMDGPU::getNamedOperandIdx(Opc, OpModsName); 818 if (OpIdx == -1 || OpModsIdx == -1) 819 continue; 820 MCOperand &Op = MI.getOperand(OpIdx); 821 if (!Op.isReg()) 822 continue; 823 if (!ConversionRC.contains(Op.getReg())) 824 continue; 825 unsigned OpEnc = MRI.getEncodingValue(Op.getReg()); 826 const MCOperand &OpMods = MI.getOperand(OpModsIdx); 827 unsigned ModVal = OpMods.getImm(); 828 if (ModVal & OpSelMask) { // isHi 829 unsigned RegIdx = OpEnc & AMDGPU::HWEncoding::REG_IDX_MASK; 830 Op.setReg(ConversionRC.getRegister(RegIdx * 2 + 1)); 831 } 832 } 833 } 834 835 // MAC opcodes have special old and src2 operands. 836 // src2 is tied to dst, while old is not tied (but assumed to be). 837 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 838 constexpr int DST_IDX = 0; 839 auto Opcode = MI.getOpcode(); 840 const auto &Desc = MCII->get(Opcode); 841 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 842 843 if (OldIdx != -1 && Desc.getOperandConstraint( 844 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 845 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 846 assert(Desc.getOperandConstraint( 847 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 848 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 849 (void)DST_IDX; 850 return true; 851 } 852 853 return false; 854 } 855 856 // Create dummy old operand and insert dummy unused src2_modifiers 857 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 858 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 859 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 860 insertNamedMCOperand(MI, MCOperand::createImm(0), 861 AMDGPU::OpName::src2_modifiers); 862 } 863 864 void AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 865 unsigned Opc = MI.getOpcode(); 866 867 int VDstInIdx = 868 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in); 869 if (VDstInIdx != -1) 870 insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in); 871 872 if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp8_gfx12 || 873 MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp8_gfx12) 874 insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2); 875 876 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 877 if (MI.getNumOperands() < DescNumOps && 878 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 879 convertTrue16OpSel(MI); 880 auto Mods = collectVOPModifiers(MI); 881 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 882 AMDGPU::OpName::op_sel); 883 } else { 884 // Insert dummy unused src modifiers. 885 if (MI.getNumOperands() < DescNumOps && 886 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 887 insertNamedMCOperand(MI, MCOperand::createImm(0), 888 AMDGPU::OpName::src0_modifiers); 889 890 if (MI.getNumOperands() < DescNumOps && 891 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 892 insertNamedMCOperand(MI, MCOperand::createImm(0), 893 AMDGPU::OpName::src1_modifiers); 894 } 895 } 896 897 void AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 898 convertTrue16OpSel(MI); 899 900 int VDstInIdx = 901 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in); 902 if (VDstInIdx != -1) 903 insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in); 904 905 if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp_gfx12 || 906 MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp_gfx12) 907 insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2); 908 909 unsigned Opc = MI.getOpcode(); 910 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 911 if (MI.getNumOperands() < DescNumOps && 912 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 913 auto Mods = collectVOPModifiers(MI); 914 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 915 AMDGPU::OpName::op_sel); 916 } 917 } 918 919 // Note that before gfx10, the MIMG encoding provided no information about 920 // VADDR size. Consequently, decoded instructions always show address as if it 921 // has 1 dword, which could be not really so. 922 void AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 923 auto TSFlags = MCII->get(MI.getOpcode()).TSFlags; 924 925 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 926 AMDGPU::OpName::vdst); 927 928 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 929 AMDGPU::OpName::vdata); 930 int VAddr0Idx = 931 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 932 int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc 933 : AMDGPU::OpName::rsrc; 934 int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName); 935 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 936 AMDGPU::OpName::dmask); 937 938 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 939 AMDGPU::OpName::tfe); 940 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 941 AMDGPU::OpName::d16); 942 943 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 944 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 945 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 946 947 assert(VDataIdx != -1); 948 if (BaseOpcode->BVH) { 949 // Add A16 operand for intersect_ray instructions 950 addOperand(MI, MCOperand::createImm(BaseOpcode->A16)); 951 return; 952 } 953 954 bool IsAtomic = (VDstIdx != -1); 955 bool IsGather4 = TSFlags & SIInstrFlags::Gather4; 956 bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE; 957 bool IsNSA = false; 958 bool IsPartialNSA = false; 959 unsigned AddrSize = Info->VAddrDwords; 960 961 if (isGFX10Plus()) { 962 unsigned DimIdx = 963 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 964 int A16Idx = 965 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 966 const AMDGPU::MIMGDimInfo *Dim = 967 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 968 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 969 970 AddrSize = 971 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 972 973 // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms. 974 // VIMAGE insts other than BVH never use vaddr4. 975 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 976 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA || 977 Info->MIMGEncoding == AMDGPU::MIMGEncGfx12; 978 if (!IsNSA) { 979 if (!IsVSample && AddrSize > 12) 980 AddrSize = 16; 981 } else { 982 if (AddrSize > Info->VAddrDwords) { 983 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 984 // The NSA encoding does not contain enough operands for the 985 // combination of base opcode / dimension. Should this be an error? 986 return; 987 } 988 IsPartialNSA = true; 989 } 990 } 991 } 992 993 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 994 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 995 996 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 997 if (D16 && AMDGPU::hasPackedD16(STI)) { 998 DstSize = (DstSize + 1) / 2; 999 } 1000 1001 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 1002 DstSize += 1; 1003 1004 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 1005 return; 1006 1007 int NewOpcode = 1008 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 1009 if (NewOpcode == -1) 1010 return; 1011 1012 // Widen the register to the correct number of enabled channels. 1013 unsigned NewVdata = AMDGPU::NoRegister; 1014 if (DstSize != Info->VDataDwords) { 1015 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 1016 1017 // Get first subregister of VData 1018 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 1019 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 1020 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 1021 1022 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 1023 &MRI.getRegClass(DataRCID)); 1024 if (NewVdata == AMDGPU::NoRegister) { 1025 // It's possible to encode this such that the low register + enabled 1026 // components exceeds the register count. 1027 return; 1028 } 1029 } 1030 1031 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 1032 // If using partial NSA on GFX11+ widen last address register. 1033 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 1034 unsigned NewVAddrSA = AMDGPU::NoRegister; 1035 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 1036 AddrSize != Info->VAddrDwords) { 1037 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 1038 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 1039 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 1040 1041 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 1042 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 1043 &MRI.getRegClass(AddrRCID)); 1044 if (!NewVAddrSA) 1045 return; 1046 } 1047 1048 MI.setOpcode(NewOpcode); 1049 1050 if (NewVdata != AMDGPU::NoRegister) { 1051 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 1052 1053 if (IsAtomic) { 1054 // Atomic operations have an additional operand (a copy of data) 1055 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 1056 } 1057 } 1058 1059 if (NewVAddrSA) { 1060 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 1061 } else if (IsNSA) { 1062 assert(AddrSize <= Info->VAddrDwords); 1063 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 1064 MI.begin() + VAddr0Idx + Info->VAddrDwords); 1065 } 1066 } 1067 1068 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 1069 // decoder only adds to src_modifiers, so manually add the bits to the other 1070 // operands. 1071 void AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 1072 unsigned Opc = MI.getOpcode(); 1073 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1074 auto Mods = collectVOPModifiers(MI, true); 1075 1076 if (MI.getNumOperands() < DescNumOps && 1077 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 1078 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 1079 1080 if (MI.getNumOperands() < DescNumOps && 1081 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1082 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1083 AMDGPU::OpName::op_sel); 1084 if (MI.getNumOperands() < DescNumOps && 1085 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1086 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1087 AMDGPU::OpName::op_sel_hi); 1088 if (MI.getNumOperands() < DescNumOps && 1089 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1090 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1091 AMDGPU::OpName::neg_lo); 1092 if (MI.getNumOperands() < DescNumOps && 1093 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1094 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1095 AMDGPU::OpName::neg_hi); 1096 } 1097 1098 // Create dummy old operand and insert optional operands 1099 void AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1100 unsigned Opc = MI.getOpcode(); 1101 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1102 1103 if (MI.getNumOperands() < DescNumOps && 1104 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1105 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1106 1107 if (MI.getNumOperands() < DescNumOps && 1108 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1109 insertNamedMCOperand(MI, MCOperand::createImm(0), 1110 AMDGPU::OpName::src0_modifiers); 1111 1112 if (MI.getNumOperands() < DescNumOps && 1113 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1114 insertNamedMCOperand(MI, MCOperand::createImm(0), 1115 AMDGPU::OpName::src1_modifiers); 1116 } 1117 1118 void AMDGPUDisassembler::convertFMAanyK(MCInst &MI, int ImmLitIdx) const { 1119 assert(HasLiteral && "Should have decoded a literal"); 1120 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1121 unsigned DescNumOps = Desc.getNumOperands(); 1122 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1123 AMDGPU::OpName::immDeferred); 1124 assert(DescNumOps == MI.getNumOperands()); 1125 for (unsigned I = 0; I < DescNumOps; ++I) { 1126 auto &Op = MI.getOperand(I); 1127 auto OpType = Desc.operands()[I].OperandType; 1128 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1129 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1130 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1131 IsDeferredOp) 1132 Op.setImm(Literal); 1133 } 1134 } 1135 1136 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1137 return getContext().getRegisterInfo()-> 1138 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1139 } 1140 1141 inline 1142 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1143 const Twine& ErrMsg) const { 1144 *CommentStream << "Error: " + ErrMsg; 1145 1146 // ToDo: add support for error operands to MCInst.h 1147 // return MCOperand::createError(V); 1148 return MCOperand(); 1149 } 1150 1151 inline 1152 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1153 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1154 } 1155 1156 inline 1157 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1158 unsigned Val) const { 1159 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1160 if (Val >= RegCl.getNumRegs()) 1161 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1162 ": unknown register " + Twine(Val)); 1163 return createRegOperand(RegCl.getRegister(Val)); 1164 } 1165 1166 inline 1167 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1168 unsigned Val) const { 1169 // ToDo: SI/CI have 104 SGPRs, VI - 102 1170 // Valery: here we accepting as much as we can, let assembler sort it out 1171 int shift = 0; 1172 switch (SRegClassID) { 1173 case AMDGPU::SGPR_32RegClassID: 1174 case AMDGPU::TTMP_32RegClassID: 1175 break; 1176 case AMDGPU::SGPR_64RegClassID: 1177 case AMDGPU::TTMP_64RegClassID: 1178 shift = 1; 1179 break; 1180 case AMDGPU::SGPR_96RegClassID: 1181 case AMDGPU::TTMP_96RegClassID: 1182 case AMDGPU::SGPR_128RegClassID: 1183 case AMDGPU::TTMP_128RegClassID: 1184 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1185 // this bundle? 1186 case AMDGPU::SGPR_256RegClassID: 1187 case AMDGPU::TTMP_256RegClassID: 1188 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1189 // this bundle? 1190 case AMDGPU::SGPR_288RegClassID: 1191 case AMDGPU::TTMP_288RegClassID: 1192 case AMDGPU::SGPR_320RegClassID: 1193 case AMDGPU::TTMP_320RegClassID: 1194 case AMDGPU::SGPR_352RegClassID: 1195 case AMDGPU::TTMP_352RegClassID: 1196 case AMDGPU::SGPR_384RegClassID: 1197 case AMDGPU::TTMP_384RegClassID: 1198 case AMDGPU::SGPR_512RegClassID: 1199 case AMDGPU::TTMP_512RegClassID: 1200 shift = 2; 1201 break; 1202 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1203 // this bundle? 1204 default: 1205 llvm_unreachable("unhandled register class"); 1206 } 1207 1208 if (Val % (1 << shift)) { 1209 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1210 << ": scalar reg isn't aligned " << Val; 1211 } 1212 1213 return createRegOperand(SRegClassID, Val >> shift); 1214 } 1215 1216 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx, 1217 bool IsHi) const { 1218 unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0); 1219 return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16); 1220 } 1221 1222 // Decode Literals for insts which always have a literal in the encoding 1223 MCOperand 1224 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1225 if (HasLiteral) { 1226 assert( 1227 AMDGPU::hasVOPD(STI) && 1228 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1229 if (Literal != Val) 1230 return errOperand(Val, "More than one unique literal is illegal"); 1231 } 1232 HasLiteral = true; 1233 Literal = Val; 1234 return MCOperand::createImm(Literal); 1235 } 1236 1237 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const { 1238 // For now all literal constants are supposed to be unsigned integer 1239 // ToDo: deal with signed/unsigned 64-bit integer constants 1240 // ToDo: deal with float/double constants 1241 if (!HasLiteral) { 1242 if (Bytes.size() < 4) { 1243 return errOperand(0, "cannot read literal, inst bytes left " + 1244 Twine(Bytes.size())); 1245 } 1246 HasLiteral = true; 1247 Literal = Literal64 = eatBytes<uint32_t>(Bytes); 1248 if (ExtendFP64) 1249 Literal64 <<= 32; 1250 } 1251 return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal); 1252 } 1253 1254 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1255 using namespace AMDGPU::EncValues; 1256 1257 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1258 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1259 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1260 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1261 // Cast prevents negative overflow. 1262 } 1263 1264 static int64_t getInlineImmVal32(unsigned Imm) { 1265 switch (Imm) { 1266 case 240: 1267 return llvm::bit_cast<uint32_t>(0.5f); 1268 case 241: 1269 return llvm::bit_cast<uint32_t>(-0.5f); 1270 case 242: 1271 return llvm::bit_cast<uint32_t>(1.0f); 1272 case 243: 1273 return llvm::bit_cast<uint32_t>(-1.0f); 1274 case 244: 1275 return llvm::bit_cast<uint32_t>(2.0f); 1276 case 245: 1277 return llvm::bit_cast<uint32_t>(-2.0f); 1278 case 246: 1279 return llvm::bit_cast<uint32_t>(4.0f); 1280 case 247: 1281 return llvm::bit_cast<uint32_t>(-4.0f); 1282 case 248: // 1 / (2 * PI) 1283 return 0x3e22f983; 1284 default: 1285 llvm_unreachable("invalid fp inline imm"); 1286 } 1287 } 1288 1289 static int64_t getInlineImmVal64(unsigned Imm) { 1290 switch (Imm) { 1291 case 240: 1292 return llvm::bit_cast<uint64_t>(0.5); 1293 case 241: 1294 return llvm::bit_cast<uint64_t>(-0.5); 1295 case 242: 1296 return llvm::bit_cast<uint64_t>(1.0); 1297 case 243: 1298 return llvm::bit_cast<uint64_t>(-1.0); 1299 case 244: 1300 return llvm::bit_cast<uint64_t>(2.0); 1301 case 245: 1302 return llvm::bit_cast<uint64_t>(-2.0); 1303 case 246: 1304 return llvm::bit_cast<uint64_t>(4.0); 1305 case 247: 1306 return llvm::bit_cast<uint64_t>(-4.0); 1307 case 248: // 1 / (2 * PI) 1308 return 0x3fc45f306dc9c882; 1309 default: 1310 llvm_unreachable("invalid fp inline imm"); 1311 } 1312 } 1313 1314 static int64_t getInlineImmValF16(unsigned Imm) { 1315 switch (Imm) { 1316 case 240: 1317 return 0x3800; 1318 case 241: 1319 return 0xB800; 1320 case 242: 1321 return 0x3C00; 1322 case 243: 1323 return 0xBC00; 1324 case 244: 1325 return 0x4000; 1326 case 245: 1327 return 0xC000; 1328 case 246: 1329 return 0x4400; 1330 case 247: 1331 return 0xC400; 1332 case 248: // 1 / (2 * PI) 1333 return 0x3118; 1334 default: 1335 llvm_unreachable("invalid fp inline imm"); 1336 } 1337 } 1338 1339 static int64_t getInlineImmValBF16(unsigned Imm) { 1340 switch (Imm) { 1341 case 240: 1342 return 0x3F00; 1343 case 241: 1344 return 0xBF00; 1345 case 242: 1346 return 0x3F80; 1347 case 243: 1348 return 0xBF80; 1349 case 244: 1350 return 0x4000; 1351 case 245: 1352 return 0xC000; 1353 case 246: 1354 return 0x4080; 1355 case 247: 1356 return 0xC080; 1357 case 248: // 1 / (2 * PI) 1358 return 0x3E22; 1359 default: 1360 llvm_unreachable("invalid fp inline imm"); 1361 } 1362 } 1363 1364 static int64_t getInlineImmVal16(unsigned Imm, AMDGPU::OperandSemantics Sema) { 1365 return (Sema == AMDGPU::OperandSemantics::BF16) ? getInlineImmValBF16(Imm) 1366 : getInlineImmValF16(Imm); 1367 } 1368 1369 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm, 1370 AMDGPU::OperandSemantics Sema) { 1371 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN && 1372 Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1373 1374 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1375 // ImmWidth 0 is a default case where operand should not allow immediates. 1376 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1377 // use it to print verbose error message. 1378 switch (ImmWidth) { 1379 case 0: 1380 case 32: 1381 return MCOperand::createImm(getInlineImmVal32(Imm)); 1382 case 64: 1383 return MCOperand::createImm(getInlineImmVal64(Imm)); 1384 case 16: 1385 return MCOperand::createImm(getInlineImmVal16(Imm, Sema)); 1386 default: 1387 llvm_unreachable("implement me"); 1388 } 1389 } 1390 1391 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1392 using namespace AMDGPU; 1393 1394 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1395 switch (Width) { 1396 default: // fall 1397 case OPW32: 1398 case OPW16: 1399 case OPWV216: 1400 return VGPR_32RegClassID; 1401 case OPW64: 1402 case OPWV232: return VReg_64RegClassID; 1403 case OPW96: return VReg_96RegClassID; 1404 case OPW128: return VReg_128RegClassID; 1405 case OPW160: return VReg_160RegClassID; 1406 case OPW256: return VReg_256RegClassID; 1407 case OPW288: return VReg_288RegClassID; 1408 case OPW320: return VReg_320RegClassID; 1409 case OPW352: return VReg_352RegClassID; 1410 case OPW384: return VReg_384RegClassID; 1411 case OPW512: return VReg_512RegClassID; 1412 case OPW1024: return VReg_1024RegClassID; 1413 } 1414 } 1415 1416 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1417 using namespace AMDGPU; 1418 1419 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1420 switch (Width) { 1421 default: // fall 1422 case OPW32: 1423 case OPW16: 1424 case OPWV216: 1425 return AGPR_32RegClassID; 1426 case OPW64: 1427 case OPWV232: return AReg_64RegClassID; 1428 case OPW96: return AReg_96RegClassID; 1429 case OPW128: return AReg_128RegClassID; 1430 case OPW160: return AReg_160RegClassID; 1431 case OPW256: return AReg_256RegClassID; 1432 case OPW288: return AReg_288RegClassID; 1433 case OPW320: return AReg_320RegClassID; 1434 case OPW352: return AReg_352RegClassID; 1435 case OPW384: return AReg_384RegClassID; 1436 case OPW512: return AReg_512RegClassID; 1437 case OPW1024: return AReg_1024RegClassID; 1438 } 1439 } 1440 1441 1442 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1443 using namespace AMDGPU; 1444 1445 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1446 switch (Width) { 1447 default: // fall 1448 case OPW32: 1449 case OPW16: 1450 case OPWV216: 1451 return SGPR_32RegClassID; 1452 case OPW64: 1453 case OPWV232: return SGPR_64RegClassID; 1454 case OPW96: return SGPR_96RegClassID; 1455 case OPW128: return SGPR_128RegClassID; 1456 case OPW160: return SGPR_160RegClassID; 1457 case OPW256: return SGPR_256RegClassID; 1458 case OPW288: return SGPR_288RegClassID; 1459 case OPW320: return SGPR_320RegClassID; 1460 case OPW352: return SGPR_352RegClassID; 1461 case OPW384: return SGPR_384RegClassID; 1462 case OPW512: return SGPR_512RegClassID; 1463 } 1464 } 1465 1466 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1467 using namespace AMDGPU; 1468 1469 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1470 switch (Width) { 1471 default: // fall 1472 case OPW32: 1473 case OPW16: 1474 case OPWV216: 1475 return TTMP_32RegClassID; 1476 case OPW64: 1477 case OPWV232: return TTMP_64RegClassID; 1478 case OPW128: return TTMP_128RegClassID; 1479 case OPW256: return TTMP_256RegClassID; 1480 case OPW288: return TTMP_288RegClassID; 1481 case OPW320: return TTMP_320RegClassID; 1482 case OPW352: return TTMP_352RegClassID; 1483 case OPW384: return TTMP_384RegClassID; 1484 case OPW512: return TTMP_512RegClassID; 1485 } 1486 } 1487 1488 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1489 using namespace AMDGPU::EncValues; 1490 1491 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1492 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1493 1494 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1495 } 1496 1497 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1498 bool MandatoryLiteral, 1499 unsigned ImmWidth, 1500 AMDGPU::OperandSemantics Sema) const { 1501 using namespace AMDGPU::EncValues; 1502 1503 assert(Val < 1024); // enum10 1504 1505 bool IsAGPR = Val & 512; 1506 Val &= 511; 1507 1508 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1509 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1510 : getVgprClassId(Width), Val - VGPR_MIN); 1511 } 1512 return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth, 1513 Sema); 1514 } 1515 1516 MCOperand 1517 AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, unsigned Val, 1518 bool MandatoryLiteral, unsigned ImmWidth, 1519 AMDGPU::OperandSemantics Sema) const { 1520 // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been 1521 // decoded earlier. 1522 assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0"); 1523 using namespace AMDGPU::EncValues; 1524 1525 if (Val <= SGPR_MAX) { 1526 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1527 static_assert(SGPR_MIN == 0); 1528 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1529 } 1530 1531 int TTmpIdx = getTTmpIdx(Val); 1532 if (TTmpIdx >= 0) { 1533 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1534 } 1535 1536 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1537 return decodeIntImmed(Val); 1538 1539 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1540 return decodeFPImmed(ImmWidth, Val, Sema); 1541 1542 if (Val == LITERAL_CONST) { 1543 if (MandatoryLiteral) 1544 // Keep a sentinel value for deferred setting 1545 return MCOperand::createImm(LITERAL_CONST); 1546 else 1547 return decodeLiteralConstant(Sema == AMDGPU::OperandSemantics::FP64); 1548 } 1549 1550 switch (Width) { 1551 case OPW32: 1552 case OPW16: 1553 case OPWV216: 1554 return decodeSpecialReg32(Val); 1555 case OPW64: 1556 case OPWV232: 1557 return decodeSpecialReg64(Val); 1558 default: 1559 llvm_unreachable("unexpected immediate type"); 1560 } 1561 } 1562 1563 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1564 // opposite of bit 0 of DstX. 1565 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1566 unsigned Val) const { 1567 int VDstXInd = 1568 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1569 assert(VDstXInd != -1); 1570 assert(Inst.getOperand(VDstXInd).isReg()); 1571 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1572 Val |= ~XDstReg & 1; 1573 auto Width = llvm::AMDGPUDisassembler::OPW32; 1574 return createRegOperand(getVgprClassId(Width), Val); 1575 } 1576 1577 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1578 using namespace AMDGPU; 1579 1580 switch (Val) { 1581 // clang-format off 1582 case 102: return createRegOperand(FLAT_SCR_LO); 1583 case 103: return createRegOperand(FLAT_SCR_HI); 1584 case 104: return createRegOperand(XNACK_MASK_LO); 1585 case 105: return createRegOperand(XNACK_MASK_HI); 1586 case 106: return createRegOperand(VCC_LO); 1587 case 107: return createRegOperand(VCC_HI); 1588 case 108: return createRegOperand(TBA_LO); 1589 case 109: return createRegOperand(TBA_HI); 1590 case 110: return createRegOperand(TMA_LO); 1591 case 111: return createRegOperand(TMA_HI); 1592 case 124: 1593 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1594 case 125: 1595 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1596 case 126: return createRegOperand(EXEC_LO); 1597 case 127: return createRegOperand(EXEC_HI); 1598 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1599 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1600 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1601 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1602 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1603 case 251: return createRegOperand(SRC_VCCZ); 1604 case 252: return createRegOperand(SRC_EXECZ); 1605 case 253: return createRegOperand(SRC_SCC); 1606 case 254: return createRegOperand(LDS_DIRECT); 1607 default: break; 1608 // clang-format on 1609 } 1610 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1611 } 1612 1613 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1614 using namespace AMDGPU; 1615 1616 switch (Val) { 1617 case 102: return createRegOperand(FLAT_SCR); 1618 case 104: return createRegOperand(XNACK_MASK); 1619 case 106: return createRegOperand(VCC); 1620 case 108: return createRegOperand(TBA); 1621 case 110: return createRegOperand(TMA); 1622 case 124: 1623 if (isGFX11Plus()) 1624 return createRegOperand(SGPR_NULL); 1625 break; 1626 case 125: 1627 if (!isGFX11Plus()) 1628 return createRegOperand(SGPR_NULL); 1629 break; 1630 case 126: return createRegOperand(EXEC); 1631 case 235: return createRegOperand(SRC_SHARED_BASE); 1632 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1633 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1634 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1635 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1636 case 251: return createRegOperand(SRC_VCCZ); 1637 case 252: return createRegOperand(SRC_EXECZ); 1638 case 253: return createRegOperand(SRC_SCC); 1639 default: break; 1640 } 1641 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1642 } 1643 1644 MCOperand 1645 AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, const unsigned Val, 1646 unsigned ImmWidth, 1647 AMDGPU::OperandSemantics Sema) const { 1648 using namespace AMDGPU::SDWA; 1649 using namespace AMDGPU::EncValues; 1650 1651 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1652 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1653 // XXX: cast to int is needed to avoid stupid warning: 1654 // compare with unsigned is always true 1655 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1656 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1657 return createRegOperand(getVgprClassId(Width), 1658 Val - SDWA9EncValues::SRC_VGPR_MIN); 1659 } 1660 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1661 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1662 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1663 return createSRegOperand(getSgprClassId(Width), 1664 Val - SDWA9EncValues::SRC_SGPR_MIN); 1665 } 1666 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1667 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1668 return createSRegOperand(getTtmpClassId(Width), 1669 Val - SDWA9EncValues::SRC_TTMP_MIN); 1670 } 1671 1672 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1673 1674 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1675 return decodeIntImmed(SVal); 1676 1677 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1678 return decodeFPImmed(ImmWidth, SVal, Sema); 1679 1680 return decodeSpecialReg32(SVal); 1681 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 1682 return createRegOperand(getVgprClassId(Width), Val); 1683 } 1684 llvm_unreachable("unsupported target"); 1685 } 1686 1687 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1688 return decodeSDWASrc(OPW16, Val, 16, AMDGPU::OperandSemantics::FP16); 1689 } 1690 1691 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1692 return decodeSDWASrc(OPW32, Val, 32, AMDGPU::OperandSemantics::FP32); 1693 } 1694 1695 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1696 using namespace AMDGPU::SDWA; 1697 1698 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1699 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1700 "SDWAVopcDst should be present only on GFX9+"); 1701 1702 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1703 1704 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1705 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1706 1707 int TTmpIdx = getTTmpIdx(Val); 1708 if (TTmpIdx >= 0) { 1709 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1710 return createSRegOperand(TTmpClsId, TTmpIdx); 1711 } else if (Val > SGPR_MAX) { 1712 return IsWave64 ? decodeSpecialReg64(Val) 1713 : decodeSpecialReg32(Val); 1714 } else { 1715 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1716 } 1717 } else { 1718 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1719 } 1720 } 1721 1722 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1723 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1724 ? decodeSrcOp(OPW64, Val) 1725 : decodeSrcOp(OPW32, Val); 1726 } 1727 1728 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const { 1729 return decodeSrcOp(OPW32, Val); 1730 } 1731 1732 MCOperand AMDGPUDisassembler::decodeDpp8FI(unsigned Val) const { 1733 if (Val != AMDGPU::DPP::DPP8_FI_0 && Val != AMDGPU::DPP::DPP8_FI_1) 1734 return MCOperand(); 1735 return MCOperand::createImm(Val); 1736 } 1737 1738 bool AMDGPUDisassembler::isVI() const { 1739 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1740 } 1741 1742 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1743 1744 bool AMDGPUDisassembler::isGFX90A() const { 1745 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1746 } 1747 1748 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1749 1750 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1751 1752 bool AMDGPUDisassembler::isGFX10Plus() const { 1753 return AMDGPU::isGFX10Plus(STI); 1754 } 1755 1756 bool AMDGPUDisassembler::isGFX11() const { 1757 return STI.hasFeature(AMDGPU::FeatureGFX11); 1758 } 1759 1760 bool AMDGPUDisassembler::isGFX11Plus() const { 1761 return AMDGPU::isGFX11Plus(STI); 1762 } 1763 1764 bool AMDGPUDisassembler::isGFX12() const { 1765 return STI.hasFeature(AMDGPU::FeatureGFX12); 1766 } 1767 1768 bool AMDGPUDisassembler::isGFX12Plus() const { 1769 return AMDGPU::isGFX12Plus(STI); 1770 } 1771 1772 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1773 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1774 } 1775 1776 bool AMDGPUDisassembler::hasKernargPreload() const { 1777 return AMDGPU::hasKernargPreload(STI); 1778 } 1779 1780 //===----------------------------------------------------------------------===// 1781 // AMDGPU specific symbol handling 1782 //===----------------------------------------------------------------------===// 1783 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1784 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1785 do { \ 1786 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1787 } while (0) 1788 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ 1789 do { \ 1790 KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ 1791 << GET_FIELD(MASK) << '\n'; \ 1792 } while (0) 1793 1794 // NOLINTNEXTLINE(readability-identifier-naming) 1795 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1796 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1797 using namespace amdhsa; 1798 StringRef Indent = "\t"; 1799 1800 // We cannot accurately backward compute #VGPRs used from 1801 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1802 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1803 // simply calculate the inverse of what the assembler does. 1804 1805 uint32_t GranulatedWorkitemVGPRCount = 1806 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1807 1808 uint32_t NextFreeVGPR = 1809 (GranulatedWorkitemVGPRCount + 1) * 1810 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); 1811 1812 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1813 1814 // We cannot backward compute values used to calculate 1815 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1816 // directives can't be computed: 1817 // .amdhsa_reserve_vcc 1818 // .amdhsa_reserve_flat_scratch 1819 // .amdhsa_reserve_xnack_mask 1820 // They take their respective default values if not specified in the assembly. 1821 // 1822 // GRANULATED_WAVEFRONT_SGPR_COUNT 1823 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1824 // 1825 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1826 // are set to 0. So while disassembling we consider that: 1827 // 1828 // GRANULATED_WAVEFRONT_SGPR_COUNT 1829 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1830 // 1831 // The disassembler cannot recover the original values of those 3 directives. 1832 1833 uint32_t GranulatedWavefrontSGPRCount = 1834 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1835 1836 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1837 return MCDisassembler::Fail; 1838 1839 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1840 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1841 1842 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1843 if (!hasArchitectedFlatScratch()) 1844 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1845 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1846 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1847 1848 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1849 return MCDisassembler::Fail; 1850 1851 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1852 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1853 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1854 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1855 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1856 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1857 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1858 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1859 1860 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1861 return MCDisassembler::Fail; 1862 1863 if (!isGFX12Plus()) 1864 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", 1865 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP); 1866 1867 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1868 return MCDisassembler::Fail; 1869 1870 if (!isGFX12Plus()) 1871 PRINT_DIRECTIVE(".amdhsa_ieee_mode", 1872 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE); 1873 1874 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1875 return MCDisassembler::Fail; 1876 1877 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1878 return MCDisassembler::Fail; 1879 1880 if (isGFX9Plus()) 1881 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL); 1882 1883 if (!isGFX9Plus()) 1884 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0) 1885 return MCDisassembler::Fail; 1886 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1) 1887 return MCDisassembler::Fail; 1888 if (!isGFX10Plus()) 1889 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2) 1890 return MCDisassembler::Fail; 1891 1892 if (isGFX10Plus()) { 1893 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1894 COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE); 1895 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED); 1896 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS); 1897 } 1898 1899 if (isGFX12Plus()) 1900 PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling", 1901 COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN); 1902 1903 return MCDisassembler::Success; 1904 } 1905 1906 // NOLINTNEXTLINE(readability-identifier-naming) 1907 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1908 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1909 using namespace amdhsa; 1910 StringRef Indent = "\t"; 1911 if (hasArchitectedFlatScratch()) 1912 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1913 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1914 else 1915 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1916 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1917 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1918 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1919 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1920 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1921 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1922 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1923 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1924 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1925 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1926 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1927 1928 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1929 return MCDisassembler::Fail; 1930 1931 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1932 return MCDisassembler::Fail; 1933 1934 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1935 return MCDisassembler::Fail; 1936 1937 PRINT_DIRECTIVE( 1938 ".amdhsa_exception_fp_ieee_invalid_op", 1939 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1940 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1941 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1942 PRINT_DIRECTIVE( 1943 ".amdhsa_exception_fp_ieee_div_zero", 1944 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1945 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1946 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1947 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1948 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1949 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1950 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1951 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1952 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1953 1954 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1955 return MCDisassembler::Fail; 1956 1957 return MCDisassembler::Success; 1958 } 1959 1960 // NOLINTNEXTLINE(readability-identifier-naming) 1961 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 1962 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1963 using namespace amdhsa; 1964 StringRef Indent = "\t"; 1965 if (isGFX90A()) { 1966 KdStream << Indent << ".amdhsa_accum_offset " 1967 << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 1968 << '\n'; 1969 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0) 1970 return MCDisassembler::Fail; 1971 PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); 1972 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1) 1973 return MCDisassembler::Fail; 1974 } else if (isGFX10Plus()) { 1975 // Bits [0-3]. 1976 if (!isGFX12Plus()) { 1977 if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { 1978 PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", 1979 COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); 1980 } else { 1981 PRINT_PSEUDO_DIRECTIVE_COMMENT( 1982 "SHARED_VGPR_COUNT", 1983 COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); 1984 } 1985 } else { 1986 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0) 1987 return MCDisassembler::Fail; 1988 } 1989 1990 // Bits [4-11]. 1991 if (isGFX11()) { 1992 PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", 1993 COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE); 1994 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", 1995 COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START); 1996 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", 1997 COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END); 1998 } else if (isGFX12Plus()) { 1999 PRINT_PSEUDO_DIRECTIVE_COMMENT( 2000 "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE); 2001 } else { 2002 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1) 2003 return MCDisassembler::Fail; 2004 } 2005 2006 // Bits [12]. 2007 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2) 2008 return MCDisassembler::Fail; 2009 2010 // Bits [13]. 2011 if (isGFX12Plus()) { 2012 PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN", 2013 COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN); 2014 } else { 2015 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3) 2016 return MCDisassembler::Fail; 2017 } 2018 2019 // Bits [14-30]. 2020 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4) 2021 return MCDisassembler::Fail; 2022 2023 // Bits [31]. 2024 if (isGFX11Plus()) { 2025 PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", 2026 COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP); 2027 } else { 2028 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5) 2029 return MCDisassembler::Fail; 2030 } 2031 } else if (FourByteBuffer) { 2032 return MCDisassembler::Fail; 2033 } 2034 return MCDisassembler::Success; 2035 } 2036 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT 2037 #undef PRINT_DIRECTIVE 2038 #undef GET_FIELD 2039 2040 MCDisassembler::DecodeStatus 2041 AMDGPUDisassembler::decodeKernelDescriptorDirective( 2042 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 2043 raw_string_ostream &KdStream) const { 2044 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 2045 do { \ 2046 KdStream << Indent << DIRECTIVE " " \ 2047 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 2048 } while (0) 2049 2050 uint16_t TwoByteBuffer = 0; 2051 uint32_t FourByteBuffer = 0; 2052 2053 StringRef ReservedBytes; 2054 StringRef Indent = "\t"; 2055 2056 assert(Bytes.size() == 64); 2057 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 2058 2059 switch (Cursor.tell()) { 2060 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 2061 FourByteBuffer = DE.getU32(Cursor); 2062 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 2063 << '\n'; 2064 return MCDisassembler::Success; 2065 2066 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 2067 FourByteBuffer = DE.getU32(Cursor); 2068 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 2069 << FourByteBuffer << '\n'; 2070 return MCDisassembler::Success; 2071 2072 case amdhsa::KERNARG_SIZE_OFFSET: 2073 FourByteBuffer = DE.getU32(Cursor); 2074 KdStream << Indent << ".amdhsa_kernarg_size " 2075 << FourByteBuffer << '\n'; 2076 return MCDisassembler::Success; 2077 2078 case amdhsa::RESERVED0_OFFSET: 2079 // 4 reserved bytes, must be 0. 2080 ReservedBytes = DE.getBytes(Cursor, 4); 2081 for (int I = 0; I < 4; ++I) { 2082 if (ReservedBytes[I] != 0) { 2083 return MCDisassembler::Fail; 2084 } 2085 } 2086 return MCDisassembler::Success; 2087 2088 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 2089 // KERNEL_CODE_ENTRY_BYTE_OFFSET 2090 // So far no directive controls this for Code Object V3, so simply skip for 2091 // disassembly. 2092 DE.skip(Cursor, 8); 2093 return MCDisassembler::Success; 2094 2095 case amdhsa::RESERVED1_OFFSET: 2096 // 20 reserved bytes, must be 0. 2097 ReservedBytes = DE.getBytes(Cursor, 20); 2098 for (int I = 0; I < 20; ++I) { 2099 if (ReservedBytes[I] != 0) { 2100 return MCDisassembler::Fail; 2101 } 2102 } 2103 return MCDisassembler::Success; 2104 2105 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 2106 FourByteBuffer = DE.getU32(Cursor); 2107 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 2108 2109 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 2110 FourByteBuffer = DE.getU32(Cursor); 2111 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 2112 2113 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 2114 FourByteBuffer = DE.getU32(Cursor); 2115 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 2116 2117 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 2118 using namespace amdhsa; 2119 TwoByteBuffer = DE.getU16(Cursor); 2120 2121 if (!hasArchitectedFlatScratch()) 2122 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 2123 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 2124 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 2125 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 2126 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 2127 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 2128 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 2129 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 2130 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 2131 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 2132 if (!hasArchitectedFlatScratch()) 2133 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 2134 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 2135 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 2136 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 2137 2138 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 2139 return MCDisassembler::Fail; 2140 2141 // Reserved for GFX9 2142 if (isGFX9() && 2143 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 2144 return MCDisassembler::Fail; 2145 } else if (isGFX10Plus()) { 2146 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 2147 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2148 } 2149 2150 if (CodeObjectVersion >= AMDGPU::AMDHSA_COV5) 2151 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 2152 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 2153 2154 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 2155 return MCDisassembler::Fail; 2156 2157 return MCDisassembler::Success; 2158 2159 case amdhsa::KERNARG_PRELOAD_OFFSET: 2160 using namespace amdhsa; 2161 TwoByteBuffer = DE.getU16(Cursor); 2162 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) { 2163 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length", 2164 KERNARG_PRELOAD_SPEC_LENGTH); 2165 } 2166 2167 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) { 2168 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset", 2169 KERNARG_PRELOAD_SPEC_OFFSET); 2170 } 2171 return MCDisassembler::Success; 2172 2173 case amdhsa::RESERVED3_OFFSET: 2174 // 4 bytes from here are reserved, must be 0. 2175 ReservedBytes = DE.getBytes(Cursor, 4); 2176 for (int I = 0; I < 4; ++I) { 2177 if (ReservedBytes[I] != 0) 2178 return MCDisassembler::Fail; 2179 } 2180 return MCDisassembler::Success; 2181 2182 default: 2183 llvm_unreachable("Unhandled index. Case statements cover everything."); 2184 return MCDisassembler::Fail; 2185 } 2186 #undef PRINT_DIRECTIVE 2187 } 2188 2189 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 2190 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 2191 // CP microcode requires the kernel descriptor to be 64 aligned. 2192 if (Bytes.size() != 64 || KdAddress % 64 != 0) 2193 return MCDisassembler::Fail; 2194 2195 // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 2196 // requires us to know the setting of .amdhsa_wavefront_size32 in order to 2197 // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong 2198 // order. Workaround this by first looking up .amdhsa_wavefront_size32 here 2199 // when required. 2200 if (isGFX10Plus()) { 2201 uint16_t KernelCodeProperties = 2202 support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], 2203 llvm::endianness::little); 2204 EnableWavefrontSize32 = 2205 AMDHSA_BITS_GET(KernelCodeProperties, 2206 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2207 } 2208 2209 std::string Kd; 2210 raw_string_ostream KdStream(Kd); 2211 KdStream << ".amdhsa_kernel " << KdName << '\n'; 2212 2213 DataExtractor::Cursor C(0); 2214 while (C && C.tell() < Bytes.size()) { 2215 MCDisassembler::DecodeStatus Status = 2216 decodeKernelDescriptorDirective(C, Bytes, KdStream); 2217 2218 cantFail(C.takeError()); 2219 2220 if (Status == MCDisassembler::Fail) 2221 return MCDisassembler::Fail; 2222 } 2223 KdStream << ".end_amdhsa_kernel\n"; 2224 outs() << KdStream.str(); 2225 return MCDisassembler::Success; 2226 } 2227 2228 std::optional<MCDisassembler::DecodeStatus> 2229 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2230 ArrayRef<uint8_t> Bytes, uint64_t Address, 2231 raw_ostream &CStream) const { 2232 // Right now only kernel descriptor needs to be handled. 2233 // We ignore all other symbols for target specific handling. 2234 // TODO: 2235 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2236 // Object V2 and V3 when symbols are marked protected. 2237 2238 // amd_kernel_code_t for Code Object V2. 2239 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2240 Size = 256; 2241 return MCDisassembler::Fail; 2242 } 2243 2244 // Code Object V3 kernel descriptors. 2245 StringRef Name = Symbol.Name; 2246 if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) { 2247 Size = 64; // Size = 64 regardless of success or failure. 2248 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2249 } 2250 return std::nullopt; 2251 } 2252 2253 //===----------------------------------------------------------------------===// 2254 // AMDGPUSymbolizer 2255 //===----------------------------------------------------------------------===// 2256 2257 // Try to find symbol name for specified label 2258 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2259 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2260 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2261 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2262 2263 if (!IsBranch) { 2264 return false; 2265 } 2266 2267 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2268 if (!Symbols) 2269 return false; 2270 2271 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2272 return Val.Addr == static_cast<uint64_t>(Value) && 2273 Val.Type == ELF::STT_NOTYPE; 2274 }); 2275 if (Result != Symbols->end()) { 2276 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2277 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2278 Inst.addOperand(MCOperand::createExpr(Add)); 2279 return true; 2280 } 2281 // Add to list of referenced addresses, so caller can synthesize a label. 2282 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2283 return false; 2284 } 2285 2286 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2287 int64_t Value, 2288 uint64_t Address) { 2289 llvm_unreachable("unimplemented"); 2290 } 2291 2292 //===----------------------------------------------------------------------===// 2293 // Initialization 2294 //===----------------------------------------------------------------------===// 2295 2296 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2297 LLVMOpInfoCallback /*GetOpInfo*/, 2298 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2299 void *DisInfo, 2300 MCContext *Ctx, 2301 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2302 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2303 } 2304 2305 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2306 const MCSubtargetInfo &STI, 2307 MCContext &Ctx) { 2308 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2309 } 2310 2311 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2312 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2313 createAMDGPUDisassembler); 2314 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2315 createAMDGPUSymbolizer); 2316 } 2317