xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 60e7ae3f30e99423cf779c9d05513d2ae18df5aa)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)),
51       CodeObjectVersion(AMDGPU::getDefaultAMDHSACodeObjectVersion()) {
52   // ToDo: AMDGPUDisassembler supports only VI ISA.
53   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
54     report_fatal_error("Disassembly not yet supported for subtarget");
55 }
56 
57 void AMDGPUDisassembler::setABIVersion(unsigned Version) {
58   CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(Version);
59 }
60 
61 inline static MCDisassembler::DecodeStatus
62 addOperand(MCInst &Inst, const MCOperand& Opnd) {
63   Inst.addOperand(Opnd);
64   return Opnd.isValid() ?
65     MCDisassembler::Success :
66     MCDisassembler::Fail;
67 }
68 
69 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
70                                 uint16_t NameIdx) {
71   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
72   if (OpIdx != -1) {
73     auto I = MI.begin();
74     std::advance(I, OpIdx);
75     MI.insert(I, Op);
76   }
77   return OpIdx;
78 }
79 
80 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
81                                        uint64_t Addr,
82                                        const MCDisassembler *Decoder) {
83   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
84 
85   // Our branches take a simm16, but we need two extra bits to account for the
86   // factor of 4.
87   APInt SignedOffset(18, Imm * 4, true);
88   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
89 
90   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
91     return MCDisassembler::Success;
92   return addOperand(Inst, MCOperand::createImm(Imm));
93 }
94 
95 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
96                                      const MCDisassembler *Decoder) {
97   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
98   int64_t Offset;
99   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
100     Offset = SignExtend64<24>(Imm);
101   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
102     Offset = Imm & 0xFFFFF;
103   } else { // GFX9+ supports 21-bit signed offsets.
104     Offset = SignExtend64<21>(Imm);
105   }
106   return addOperand(Inst, MCOperand::createImm(Offset));
107 }
108 
109 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
110                                   const MCDisassembler *Decoder) {
111   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
112   return addOperand(Inst, DAsm->decodeBoolReg(Val));
113 }
114 
115 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
116                                        uint64_t Addr,
117                                        const MCDisassembler *Decoder) {
118   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
119   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
120 }
121 
122 static DecodeStatus decodeDpp8FI(MCInst &Inst, unsigned Val, uint64_t Addr,
123                                  const MCDisassembler *Decoder) {
124   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
125   return addOperand(Inst, DAsm->decodeDpp8FI(Val));
126 }
127 
128 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
129   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
130                                         uint64_t /*Addr*/,                     \
131                                         const MCDisassembler *Decoder) {       \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
134   }
135 
136 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
137 // number of register. Used by VGPR only and AGPR only operands.
138 #define DECODE_OPERAND_REG_8(RegClass)                                         \
139   static DecodeStatus Decode##RegClass##RegisterClass(                         \
140       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
141       const MCDisassembler *Decoder) {                                         \
142     assert(Imm < (1 << 8) && "8-bit encoding");                                \
143     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
144     return addOperand(                                                         \
145         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
146   }
147 
148 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
149                      ImmWidth)                                                 \
150   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
151                            const MCDisassembler *Decoder) {                    \
152     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
153     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
154     return addOperand(Inst,                                                    \
155                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
156                                         MandatoryLiteral, ImmWidth));          \
157   }
158 
159 static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize,
160                                 AMDGPUDisassembler::OpWidthTy OpWidth,
161                                 unsigned Imm, unsigned EncImm,
162                                 bool MandatoryLiteral, unsigned ImmWidth,
163                                 AMDGPU::OperandSemantics Sema,
164                                 const MCDisassembler *Decoder) {
165   assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!");
166   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
167   return addOperand(Inst, DAsm->decodeSrcOp(OpWidth, EncImm, MandatoryLiteral,
168                                             ImmWidth, Sema));
169 }
170 
171 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
172 // get register class. Used by SGPR only operands.
173 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
174   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
175 
176 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
177 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
178 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
179 // Used by AV_ register classes (AGPR or VGPR only register operands).
180 template <AMDGPUDisassembler::OpWidthTy OpWidth>
181 static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
182                                const MCDisassembler *Decoder) {
183   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm | AMDGPU::EncValues::IS_VGPR,
184                      false, 0, AMDGPU::OperandSemantics::INT, Decoder);
185 }
186 
187 // Decoder for Src(9-bit encoding) registers only.
188 template <AMDGPUDisassembler::OpWidthTy OpWidth>
189 static DecodeStatus decodeSrcReg9(MCInst &Inst, unsigned Imm,
190                                   uint64_t /* Addr */,
191                                   const MCDisassembler *Decoder) {
192   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, 0,
193                      AMDGPU::OperandSemantics::INT, Decoder);
194 }
195 
196 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
197 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
198 // only.
199 template <AMDGPUDisassembler::OpWidthTy OpWidth>
200 static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
201                                 const MCDisassembler *Decoder) {
202   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, 0,
203                      AMDGPU::OperandSemantics::INT, Decoder);
204 }
205 
206 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
207 // Imm{9} is acc, registers only.
208 template <AMDGPUDisassembler::OpWidthTy OpWidth>
209 static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm,
210                                   uint64_t /* Addr */,
211                                   const MCDisassembler *Decoder) {
212   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm, false, 0,
213                      AMDGPU::OperandSemantics::INT, Decoder);
214 }
215 
216 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
217 // register from RegClass or immediate. Registers that don't belong to RegClass
218 // will be decoded and InstPrinter will report warning. Immediate will be
219 // decoded into constant of size ImmWidth, should match width of immediate used
220 // by OperandType (important for floating point types).
221 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
222           unsigned OperandSemantics>
223 static DecodeStatus decodeSrcRegOrImm9(MCInst &Inst, unsigned Imm,
224                                        uint64_t /* Addr */,
225                                        const MCDisassembler *Decoder) {
226   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, ImmWidth,
227                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
228 }
229 
230 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
231 // and decode using 'enum10' from decodeSrcOp.
232 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
233           unsigned OperandSemantics>
234 static DecodeStatus decodeSrcRegOrImmA9(MCInst &Inst, unsigned Imm,
235                                         uint64_t /* Addr */,
236                                         const MCDisassembler *Decoder) {
237   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, ImmWidth,
238                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
239 }
240 
241 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
242           unsigned OperandSemantics>
243 static DecodeStatus decodeSrcRegOrImmDeferred9(MCInst &Inst, unsigned Imm,
244                                                uint64_t /* Addr */,
245                                                const MCDisassembler *Decoder) {
246   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, true, ImmWidth,
247                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
248 }
249 
250 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
251 // when RegisterClass is used as an operand. Most often used for destination
252 // operands.
253 
254 DECODE_OPERAND_REG_8(VGPR_32)
255 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
256 DECODE_OPERAND_REG_8(VReg_64)
257 DECODE_OPERAND_REG_8(VReg_96)
258 DECODE_OPERAND_REG_8(VReg_128)
259 DECODE_OPERAND_REG_8(VReg_256)
260 DECODE_OPERAND_REG_8(VReg_288)
261 DECODE_OPERAND_REG_8(VReg_352)
262 DECODE_OPERAND_REG_8(VReg_384)
263 DECODE_OPERAND_REG_8(VReg_512)
264 DECODE_OPERAND_REG_8(VReg_1024)
265 
266 DECODE_OPERAND_REG_7(SReg_32, OPW32)
267 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
268 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
269 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
270 DECODE_OPERAND_REG_7(SReg_64, OPW64)
271 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
272 DECODE_OPERAND_REG_7(SReg_96, OPW96)
273 DECODE_OPERAND_REG_7(SReg_128, OPW128)
274 DECODE_OPERAND_REG_7(SReg_256, OPW256)
275 DECODE_OPERAND_REG_7(SReg_512, OPW512)
276 
277 DECODE_OPERAND_REG_8(AGPR_32)
278 DECODE_OPERAND_REG_8(AReg_64)
279 DECODE_OPERAND_REG_8(AReg_128)
280 DECODE_OPERAND_REG_8(AReg_256)
281 DECODE_OPERAND_REG_8(AReg_512)
282 DECODE_OPERAND_REG_8(AReg_1024)
283 
284 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
285                                                uint64_t /*Addr*/,
286                                                const MCDisassembler *Decoder) {
287   assert(isUInt<10>(Imm) && "10-bit encoding expected");
288   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
289 
290   bool IsHi = Imm & (1 << 9);
291   unsigned RegIdx = Imm & 0xff;
292   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
293   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
294 }
295 
296 static DecodeStatus
297 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
298                                  const MCDisassembler *Decoder) {
299   assert(isUInt<8>(Imm) && "8-bit encoding expected");
300 
301   bool IsHi = Imm & (1 << 7);
302   unsigned RegIdx = Imm & 0x7f;
303   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
304   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
305 }
306 
307 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
308                                                 uint64_t /*Addr*/,
309                                                 const MCDisassembler *Decoder) {
310   assert(isUInt<9>(Imm) && "9-bit encoding expected");
311 
312   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
313   bool IsVGPR = Imm & (1 << 8);
314   if (IsVGPR) {
315     bool IsHi = Imm & (1 << 7);
316     unsigned RegIdx = Imm & 0x7f;
317     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
318   }
319   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
320                                                    Imm & 0xFF, false, 16));
321 }
322 
323 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
324                                           uint64_t /*Addr*/,
325                                           const MCDisassembler *Decoder) {
326   assert(isUInt<10>(Imm) && "10-bit encoding expected");
327 
328   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
329   bool IsVGPR = Imm & (1 << 8);
330   if (IsVGPR) {
331     bool IsHi = Imm & (1 << 9);
332     unsigned RegIdx = Imm & 0xff;
333     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
334   }
335   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
336                                                    Imm & 0xFF, false, 16));
337 }
338 
339 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
340                                          uint64_t Addr,
341                                          const MCDisassembler *Decoder) {
342   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
343   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
344 }
345 
346 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
347                                           uint64_t Addr, const void *Decoder) {
348   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
349   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
350 }
351 
352 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
353                           const MCRegisterInfo *MRI) {
354   if (OpIdx < 0)
355     return false;
356 
357   const MCOperand &Op = Inst.getOperand(OpIdx);
358   if (!Op.isReg())
359     return false;
360 
361   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
362   auto Reg = Sub ? Sub : Op.getReg();
363   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
364 }
365 
366 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
367                                  AMDGPUDisassembler::OpWidthTy Opw,
368                                  const MCDisassembler *Decoder) {
369   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
370   if (!DAsm->isGFX90A()) {
371     Imm &= 511;
372   } else {
373     // If atomic has both vdata and vdst their register classes are tied.
374     // The bit is decoded along with the vdst, first operand. We need to
375     // change register class to AGPR if vdst was AGPR.
376     // If a DS instruction has both data0 and data1 their register classes
377     // are also tied.
378     unsigned Opc = Inst.getOpcode();
379     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
380     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
381                                                         : AMDGPU::OpName::vdata;
382     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
383     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
384     if ((int)Inst.getNumOperands() == DataIdx) {
385       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
386       if (IsAGPROperand(Inst, DstIdx, MRI))
387         Imm |= 512;
388     }
389 
390     if (TSFlags & SIInstrFlags::DS) {
391       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
392       if ((int)Inst.getNumOperands() == Data2Idx &&
393           IsAGPROperand(Inst, DataIdx, MRI))
394         Imm |= 512;
395     }
396   }
397   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
398 }
399 
400 template <AMDGPUDisassembler::OpWidthTy Opw>
401 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
402                                  uint64_t /* Addr */,
403                                  const MCDisassembler *Decoder) {
404   return decodeAVLdSt(Inst, Imm, Opw, Decoder);
405 }
406 
407 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
408                                            uint64_t Addr,
409                                            const MCDisassembler *Decoder) {
410   assert(Imm < (1 << 9) && "9-bit encoding");
411   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
412   return addOperand(Inst,
413                     DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64,
414                                       AMDGPU::OperandSemantics::FP64));
415 }
416 
417 #define DECODE_SDWA(DecName) \
418 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
419 
420 DECODE_SDWA(Src32)
421 DECODE_SDWA(Src16)
422 DECODE_SDWA(VopcDst)
423 
424 #include "AMDGPUGenDisassemblerTables.inc"
425 
426 //===----------------------------------------------------------------------===//
427 //
428 //===----------------------------------------------------------------------===//
429 
430 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
431   assert(Bytes.size() >= sizeof(T));
432   const auto Res =
433       support::endian::read<T, llvm::endianness::little>(Bytes.data());
434   Bytes = Bytes.slice(sizeof(T));
435   return Res;
436 }
437 
438 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
439   assert(Bytes.size() >= 12);
440   uint64_t Lo =
441       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
442   Bytes = Bytes.slice(8);
443   uint64_t Hi =
444       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
445   Bytes = Bytes.slice(4);
446   return DecoderUInt128(Lo, Hi);
447 }
448 
449 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
450                                                 ArrayRef<uint8_t> Bytes_,
451                                                 uint64_t Address,
452                                                 raw_ostream &CS) const {
453   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
454   Bytes = Bytes_.slice(0, MaxInstBytesNum);
455 
456   // In case the opcode is not recognized we'll assume a Size of 4 bytes (unless
457   // there are fewer bytes left). This will be overridden on success.
458   Size = std::min((size_t)4, Bytes_.size());
459 
460   do {
461     // ToDo: better to switch encoding length using some bit predicate
462     // but it is unknown yet, so try all we can
463 
464     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
465     // encodings
466     if (isGFX11Plus() && Bytes.size() >= 12 ) {
467       DecoderUInt128 DecW = eat12Bytes(Bytes);
468 
469       if (isGFX11() &&
470           tryDecodeInst(DecoderTableGFX1196, DecoderTableGFX11_FAKE1696, MI,
471                         DecW, Address, CS))
472         break;
473 
474       if (isGFX12() &&
475           tryDecodeInst(DecoderTableGFX1296, DecoderTableGFX12_FAKE1696, MI,
476                         DecW, Address, CS))
477         break;
478 
479       if (isGFX12() &&
480           tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS))
481         break;
482     }
483 
484     // Reinitialize Bytes
485     Bytes = Bytes_.slice(0, MaxInstBytesNum);
486 
487     if (Bytes.size() >= 8) {
488       const uint64_t QW = eatBytes<uint64_t>(Bytes);
489 
490       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) &&
491           tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS))
492         break;
493 
494       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) &&
495           tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS))
496         break;
497 
498       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
499       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
500       // table first so we print the correct name.
501       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts) &&
502           tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS))
503         break;
504 
505       if (STI.hasFeature(AMDGPU::FeatureGFX940Insts) &&
506           tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS))
507         break;
508 
509       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) &&
510           tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS))
511         break;
512 
513       if ((isVI() || isGFX9()) &&
514           tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS))
515         break;
516 
517       if (isGFX9() && tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS))
518         break;
519 
520       if (isGFX10() && tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS))
521         break;
522 
523       if (isGFX12() &&
524           tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
525                         Address, CS))
526         break;
527 
528       if (isGFX11() &&
529           tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
530                         Address, CS))
531         break;
532 
533       if (isGFX11() &&
534           tryDecodeInst(DecoderTableGFX11W6464, MI, QW, Address, CS))
535         break;
536 
537       if (isGFX12() &&
538           tryDecodeInst(DecoderTableGFX12W6464, MI, QW, Address, CS))
539         break;
540     }
541 
542     // Reinitialize Bytes
543     Bytes = Bytes_.slice(0, MaxInstBytesNum);
544 
545     // Try decode 32-bit instruction
546     if (Bytes.size() >= 4) {
547       const uint32_t DW = eatBytes<uint32_t>(Bytes);
548 
549       if ((isVI() || isGFX9()) &&
550           tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS))
551         break;
552 
553       if (tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS))
554         break;
555 
556       if (isGFX9() && tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS))
557         break;
558 
559       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) &&
560           tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS))
561         break;
562 
563       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) &&
564           tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS))
565         break;
566 
567       if (isGFX10() && tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS))
568         break;
569 
570       if (isGFX11() &&
571           tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
572                         Address, CS))
573         break;
574 
575       if (isGFX12() &&
576           tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
577                         Address, CS))
578         break;
579     }
580 
581     return MCDisassembler::Fail;
582   } while (false);
583 
584   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DPP) {
585     if (isMacDPP(MI))
586       convertMacDPPInst(MI);
587 
588     if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
589       convertVOP3PDPPInst(MI);
590     else if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) ||
591              AMDGPU::isVOPC64DPP(MI.getOpcode()))
592       convertVOPCDPPInst(MI); // Special VOP3 case
593     else if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) !=
594              -1)
595       convertDPP8Inst(MI);
596     else if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3)
597       convertVOP3DPPInst(MI); // Regular VOP3 case
598   }
599 
600   if (AMDGPU::isMAC(MI.getOpcode())) {
601     // Insert dummy unused src2_modifiers.
602     insertNamedMCOperand(MI, MCOperand::createImm(0),
603                          AMDGPU::OpName::src2_modifiers);
604   }
605 
606   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
607       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp) {
608     // Insert dummy unused src2_modifiers.
609     insertNamedMCOperand(MI, MCOperand::createImm(0),
610                          AMDGPU::OpName::src2_modifiers);
611   }
612 
613   if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
614       !AMDGPU::hasGDS(STI)) {
615     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
616   }
617 
618   if (MCII->get(MI.getOpcode()).TSFlags &
619       (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD)) {
620     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
621                                              AMDGPU::OpName::cpol);
622     if (CPolPos != -1) {
623       unsigned CPol =
624           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
625               AMDGPU::CPol::GLC : 0;
626       if (MI.getNumOperands() <= (unsigned)CPolPos) {
627         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
628                              AMDGPU::OpName::cpol);
629       } else if (CPol) {
630         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
631       }
632     }
633   }
634 
635   if ((MCII->get(MI.getOpcode()).TSFlags &
636        (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
637       (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
638     // GFX90A lost TFE, its place is occupied by ACC.
639     int TFEOpIdx =
640         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
641     if (TFEOpIdx != -1) {
642       auto TFEIter = MI.begin();
643       std::advance(TFEIter, TFEOpIdx);
644       MI.insert(TFEIter, MCOperand::createImm(0));
645     }
646   }
647 
648   if (MCII->get(MI.getOpcode()).TSFlags &
649       (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) {
650     int SWZOpIdx =
651         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
652     if (SWZOpIdx != -1) {
653       auto SWZIter = MI.begin();
654       std::advance(SWZIter, SWZOpIdx);
655       MI.insert(SWZIter, MCOperand::createImm(0));
656     }
657   }
658 
659   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG) {
660     int VAddr0Idx =
661         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
662     int RsrcIdx =
663         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
664     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
665     if (VAddr0Idx >= 0 && NSAArgs > 0) {
666       unsigned NSAWords = (NSAArgs + 3) / 4;
667       if (Bytes.size() < 4 * NSAWords)
668         return MCDisassembler::Fail;
669       for (unsigned i = 0; i < NSAArgs; ++i) {
670         const unsigned VAddrIdx = VAddr0Idx + 1 + i;
671         auto VAddrRCID =
672             MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
673         MI.insert(MI.begin() + VAddrIdx, createRegOperand(VAddrRCID, Bytes[i]));
674       }
675       Bytes = Bytes.slice(4 * NSAWords);
676     }
677 
678     convertMIMGInst(MI);
679   }
680 
681   if (MCII->get(MI.getOpcode()).TSFlags &
682       (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE))
683     convertMIMGInst(MI);
684 
685   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)
686     convertEXPInst(MI);
687 
688   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)
689     convertVINTERPInst(MI);
690 
691   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SDWA)
692     convertSDWAInst(MI);
693 
694   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
695                                               AMDGPU::OpName::vdst_in);
696   if (VDstIn_Idx != -1) {
697     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
698                            MCOI::OperandConstraint::TIED_TO);
699     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
700          !MI.getOperand(VDstIn_Idx).isReg() ||
701          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
702       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
703         MI.erase(&MI.getOperand(VDstIn_Idx));
704       insertNamedMCOperand(MI,
705         MCOperand::createReg(MI.getOperand(Tied).getReg()),
706         AMDGPU::OpName::vdst_in);
707     }
708   }
709 
710   int ImmLitIdx =
711       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
712   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
713   if (ImmLitIdx != -1 && !IsSOPK)
714     convertFMAanyK(MI, ImmLitIdx);
715 
716   Size = MaxInstBytesNum - Bytes.size();
717   return MCDisassembler::Success;
718 }
719 
720 void AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
721   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
722     // The MCInst still has these fields even though they are no longer encoded
723     // in the GFX11 instruction.
724     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
725     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
726   }
727 }
728 
729 void AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
730   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
731       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
732       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
733       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
734       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
735       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
736       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
737       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
738     // The MCInst has this field that is not directly encoded in the
739     // instruction.
740     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
741   }
742 }
743 
744 void AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
745   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
746       STI.hasFeature(AMDGPU::FeatureGFX10)) {
747     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
748       // VOPC - insert clamp
749       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
750   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
751     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
752     if (SDst != -1) {
753       // VOPC - insert VCC register as sdst
754       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
755                            AMDGPU::OpName::sdst);
756     } else {
757       // VOP1/2 - insert omod if present in instruction
758       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
759     }
760   }
761 }
762 
763 struct VOPModifiers {
764   unsigned OpSel = 0;
765   unsigned OpSelHi = 0;
766   unsigned NegLo = 0;
767   unsigned NegHi = 0;
768 };
769 
770 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
771 // Note that these values do not affect disassembler output,
772 // so this is only necessary for consistency with src_modifiers.
773 static VOPModifiers collectVOPModifiers(const MCInst &MI,
774                                         bool IsVOP3P = false) {
775   VOPModifiers Modifiers;
776   unsigned Opc = MI.getOpcode();
777   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
778                         AMDGPU::OpName::src1_modifiers,
779                         AMDGPU::OpName::src2_modifiers};
780   for (int J = 0; J < 3; ++J) {
781     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
782     if (OpIdx == -1)
783       continue;
784 
785     unsigned Val = MI.getOperand(OpIdx).getImm();
786 
787     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
788     if (IsVOP3P) {
789       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
790       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
791       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
792     } else if (J == 0) {
793       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
794     }
795   }
796 
797   return Modifiers;
798 }
799 
800 // Instructions decode the op_sel/suffix bits into the src_modifier
801 // operands. Copy those bits into the src operands for true16 VGPRs.
802 void AMDGPUDisassembler::convertTrue16OpSel(MCInst &MI) const {
803   const unsigned Opc = MI.getOpcode();
804   const MCRegisterClass &ConversionRC =
805       MRI.getRegClass(AMDGPU::VGPR_16RegClassID);
806   constexpr std::array<std::tuple<int, int, unsigned>, 4> OpAndOpMods = {
807       {{AMDGPU::OpName::src0, AMDGPU::OpName::src0_modifiers,
808         SISrcMods::OP_SEL_0},
809        {AMDGPU::OpName::src1, AMDGPU::OpName::src1_modifiers,
810         SISrcMods::OP_SEL_0},
811        {AMDGPU::OpName::src2, AMDGPU::OpName::src2_modifiers,
812         SISrcMods::OP_SEL_0},
813        {AMDGPU::OpName::vdst, AMDGPU::OpName::src0_modifiers,
814         SISrcMods::DST_OP_SEL}}};
815   for (const auto &[OpName, OpModsName, OpSelMask] : OpAndOpMods) {
816     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, OpName);
817     int OpModsIdx = AMDGPU::getNamedOperandIdx(Opc, OpModsName);
818     if (OpIdx == -1 || OpModsIdx == -1)
819       continue;
820     MCOperand &Op = MI.getOperand(OpIdx);
821     if (!Op.isReg())
822       continue;
823     if (!ConversionRC.contains(Op.getReg()))
824       continue;
825     unsigned OpEnc = MRI.getEncodingValue(Op.getReg());
826     const MCOperand &OpMods = MI.getOperand(OpModsIdx);
827     unsigned ModVal = OpMods.getImm();
828     if (ModVal & OpSelMask) { // isHi
829       unsigned RegIdx = OpEnc & AMDGPU::HWEncoding::REG_IDX_MASK;
830       Op.setReg(ConversionRC.getRegister(RegIdx * 2 + 1));
831     }
832   }
833 }
834 
835 // MAC opcodes have special old and src2 operands.
836 // src2 is tied to dst, while old is not tied (but assumed to be).
837 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
838   constexpr int DST_IDX = 0;
839   auto Opcode = MI.getOpcode();
840   const auto &Desc = MCII->get(Opcode);
841   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
842 
843   if (OldIdx != -1 && Desc.getOperandConstraint(
844                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
845     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
846     assert(Desc.getOperandConstraint(
847                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
848                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
849     (void)DST_IDX;
850     return true;
851   }
852 
853   return false;
854 }
855 
856 // Create dummy old operand and insert dummy unused src2_modifiers
857 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
858   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
859   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
860   insertNamedMCOperand(MI, MCOperand::createImm(0),
861                        AMDGPU::OpName::src2_modifiers);
862 }
863 
864 void AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
865   unsigned Opc = MI.getOpcode();
866 
867   int VDstInIdx =
868       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
869   if (VDstInIdx != -1)
870     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
871 
872   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp8_gfx12 ||
873       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp8_gfx12)
874     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
875 
876   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
877   if (MI.getNumOperands() < DescNumOps &&
878       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
879     convertTrue16OpSel(MI);
880     auto Mods = collectVOPModifiers(MI);
881     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
882                          AMDGPU::OpName::op_sel);
883   } else {
884     // Insert dummy unused src modifiers.
885     if (MI.getNumOperands() < DescNumOps &&
886         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
887       insertNamedMCOperand(MI, MCOperand::createImm(0),
888                            AMDGPU::OpName::src0_modifiers);
889 
890     if (MI.getNumOperands() < DescNumOps &&
891         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
892       insertNamedMCOperand(MI, MCOperand::createImm(0),
893                            AMDGPU::OpName::src1_modifiers);
894   }
895 }
896 
897 void AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
898   convertTrue16OpSel(MI);
899 
900   int VDstInIdx =
901       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
902   if (VDstInIdx != -1)
903     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
904 
905   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp_gfx12 ||
906       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp_gfx12)
907     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
908 
909   unsigned Opc = MI.getOpcode();
910   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
911   if (MI.getNumOperands() < DescNumOps &&
912       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
913     auto Mods = collectVOPModifiers(MI);
914     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
915                          AMDGPU::OpName::op_sel);
916   }
917 }
918 
919 // Note that before gfx10, the MIMG encoding provided no information about
920 // VADDR size. Consequently, decoded instructions always show address as if it
921 // has 1 dword, which could be not really so.
922 void AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
923   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
924 
925   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
926                                            AMDGPU::OpName::vdst);
927 
928   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
929                                             AMDGPU::OpName::vdata);
930   int VAddr0Idx =
931       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
932   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
933                                                 : AMDGPU::OpName::rsrc;
934   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
935   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
936                                             AMDGPU::OpName::dmask);
937 
938   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
939                                             AMDGPU::OpName::tfe);
940   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
941                                             AMDGPU::OpName::d16);
942 
943   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
944   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
945       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
946 
947   assert(VDataIdx != -1);
948   if (BaseOpcode->BVH) {
949     // Add A16 operand for intersect_ray instructions
950     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
951     return;
952   }
953 
954   bool IsAtomic = (VDstIdx != -1);
955   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
956   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
957   bool IsNSA = false;
958   bool IsPartialNSA = false;
959   unsigned AddrSize = Info->VAddrDwords;
960 
961   if (isGFX10Plus()) {
962     unsigned DimIdx =
963         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
964     int A16Idx =
965         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
966     const AMDGPU::MIMGDimInfo *Dim =
967         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
968     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
969 
970     AddrSize =
971         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
972 
973     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
974     // VIMAGE insts other than BVH never use vaddr4.
975     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
976             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
977             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
978     if (!IsNSA) {
979       if (!IsVSample && AddrSize > 12)
980         AddrSize = 16;
981     } else {
982       if (AddrSize > Info->VAddrDwords) {
983         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
984           // The NSA encoding does not contain enough operands for the
985           // combination of base opcode / dimension. Should this be an error?
986           return;
987         }
988         IsPartialNSA = true;
989       }
990     }
991   }
992 
993   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
994   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
995 
996   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
997   if (D16 && AMDGPU::hasPackedD16(STI)) {
998     DstSize = (DstSize + 1) / 2;
999   }
1000 
1001   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1002     DstSize += 1;
1003 
1004   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1005     return;
1006 
1007   int NewOpcode =
1008       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1009   if (NewOpcode == -1)
1010     return;
1011 
1012   // Widen the register to the correct number of enabled channels.
1013   unsigned NewVdata = AMDGPU::NoRegister;
1014   if (DstSize != Info->VDataDwords) {
1015     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1016 
1017     // Get first subregister of VData
1018     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1019     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1020     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1021 
1022     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1023                                        &MRI.getRegClass(DataRCID));
1024     if (NewVdata == AMDGPU::NoRegister) {
1025       // It's possible to encode this such that the low register + enabled
1026       // components exceeds the register count.
1027       return;
1028     }
1029   }
1030 
1031   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1032   // If using partial NSA on GFX11+ widen last address register.
1033   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1034   unsigned NewVAddrSA = AMDGPU::NoRegister;
1035   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1036       AddrSize != Info->VAddrDwords) {
1037     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1038     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1039     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1040 
1041     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1042     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1043                                         &MRI.getRegClass(AddrRCID));
1044     if (!NewVAddrSA)
1045       return;
1046   }
1047 
1048   MI.setOpcode(NewOpcode);
1049 
1050   if (NewVdata != AMDGPU::NoRegister) {
1051     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1052 
1053     if (IsAtomic) {
1054       // Atomic operations have an additional operand (a copy of data)
1055       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1056     }
1057   }
1058 
1059   if (NewVAddrSA) {
1060     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1061   } else if (IsNSA) {
1062     assert(AddrSize <= Info->VAddrDwords);
1063     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1064              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1065   }
1066 }
1067 
1068 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1069 // decoder only adds to src_modifiers, so manually add the bits to the other
1070 // operands.
1071 void AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1072   unsigned Opc = MI.getOpcode();
1073   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1074   auto Mods = collectVOPModifiers(MI, true);
1075 
1076   if (MI.getNumOperands() < DescNumOps &&
1077       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1078     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1079 
1080   if (MI.getNumOperands() < DescNumOps &&
1081       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1082     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1083                          AMDGPU::OpName::op_sel);
1084   if (MI.getNumOperands() < DescNumOps &&
1085       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1086     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1087                          AMDGPU::OpName::op_sel_hi);
1088   if (MI.getNumOperands() < DescNumOps &&
1089       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1090     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1091                          AMDGPU::OpName::neg_lo);
1092   if (MI.getNumOperands() < DescNumOps &&
1093       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1094     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1095                          AMDGPU::OpName::neg_hi);
1096 }
1097 
1098 // Create dummy old operand and insert optional operands
1099 void AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1100   unsigned Opc = MI.getOpcode();
1101   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1102 
1103   if (MI.getNumOperands() < DescNumOps &&
1104       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1105     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1106 
1107   if (MI.getNumOperands() < DescNumOps &&
1108       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1109     insertNamedMCOperand(MI, MCOperand::createImm(0),
1110                          AMDGPU::OpName::src0_modifiers);
1111 
1112   if (MI.getNumOperands() < DescNumOps &&
1113       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1114     insertNamedMCOperand(MI, MCOperand::createImm(0),
1115                          AMDGPU::OpName::src1_modifiers);
1116 }
1117 
1118 void AMDGPUDisassembler::convertFMAanyK(MCInst &MI, int ImmLitIdx) const {
1119   assert(HasLiteral && "Should have decoded a literal");
1120   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1121   unsigned DescNumOps = Desc.getNumOperands();
1122   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1123                        AMDGPU::OpName::immDeferred);
1124   assert(DescNumOps == MI.getNumOperands());
1125   for (unsigned I = 0; I < DescNumOps; ++I) {
1126     auto &Op = MI.getOperand(I);
1127     auto OpType = Desc.operands()[I].OperandType;
1128     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1129                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1130     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1131         IsDeferredOp)
1132       Op.setImm(Literal);
1133   }
1134 }
1135 
1136 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1137   return getContext().getRegisterInfo()->
1138     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1139 }
1140 
1141 inline
1142 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1143                                          const Twine& ErrMsg) const {
1144   *CommentStream << "Error: " + ErrMsg;
1145 
1146   // ToDo: add support for error operands to MCInst.h
1147   // return MCOperand::createError(V);
1148   return MCOperand();
1149 }
1150 
1151 inline
1152 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1153   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1154 }
1155 
1156 inline
1157 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1158                                                unsigned Val) const {
1159   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1160   if (Val >= RegCl.getNumRegs())
1161     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1162                            ": unknown register " + Twine(Val));
1163   return createRegOperand(RegCl.getRegister(Val));
1164 }
1165 
1166 inline
1167 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1168                                                 unsigned Val) const {
1169   // ToDo: SI/CI have 104 SGPRs, VI - 102
1170   // Valery: here we accepting as much as we can, let assembler sort it out
1171   int shift = 0;
1172   switch (SRegClassID) {
1173   case AMDGPU::SGPR_32RegClassID:
1174   case AMDGPU::TTMP_32RegClassID:
1175     break;
1176   case AMDGPU::SGPR_64RegClassID:
1177   case AMDGPU::TTMP_64RegClassID:
1178     shift = 1;
1179     break;
1180   case AMDGPU::SGPR_96RegClassID:
1181   case AMDGPU::TTMP_96RegClassID:
1182   case AMDGPU::SGPR_128RegClassID:
1183   case AMDGPU::TTMP_128RegClassID:
1184   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1185   // this bundle?
1186   case AMDGPU::SGPR_256RegClassID:
1187   case AMDGPU::TTMP_256RegClassID:
1188     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1189   // this bundle?
1190   case AMDGPU::SGPR_288RegClassID:
1191   case AMDGPU::TTMP_288RegClassID:
1192   case AMDGPU::SGPR_320RegClassID:
1193   case AMDGPU::TTMP_320RegClassID:
1194   case AMDGPU::SGPR_352RegClassID:
1195   case AMDGPU::TTMP_352RegClassID:
1196   case AMDGPU::SGPR_384RegClassID:
1197   case AMDGPU::TTMP_384RegClassID:
1198   case AMDGPU::SGPR_512RegClassID:
1199   case AMDGPU::TTMP_512RegClassID:
1200     shift = 2;
1201     break;
1202   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1203   // this bundle?
1204   default:
1205     llvm_unreachable("unhandled register class");
1206   }
1207 
1208   if (Val % (1 << shift)) {
1209     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1210                    << ": scalar reg isn't aligned " << Val;
1211   }
1212 
1213   return createRegOperand(SRegClassID, Val >> shift);
1214 }
1215 
1216 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1217                                                   bool IsHi) const {
1218   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1219   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1220 }
1221 
1222 // Decode Literals for insts which always have a literal in the encoding
1223 MCOperand
1224 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1225   if (HasLiteral) {
1226     assert(
1227         AMDGPU::hasVOPD(STI) &&
1228         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1229     if (Literal != Val)
1230       return errOperand(Val, "More than one unique literal is illegal");
1231   }
1232   HasLiteral = true;
1233   Literal = Val;
1234   return MCOperand::createImm(Literal);
1235 }
1236 
1237 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1238   // For now all literal constants are supposed to be unsigned integer
1239   // ToDo: deal with signed/unsigned 64-bit integer constants
1240   // ToDo: deal with float/double constants
1241   if (!HasLiteral) {
1242     if (Bytes.size() < 4) {
1243       return errOperand(0, "cannot read literal, inst bytes left " +
1244                         Twine(Bytes.size()));
1245     }
1246     HasLiteral = true;
1247     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1248     if (ExtendFP64)
1249       Literal64 <<= 32;
1250   }
1251   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1252 }
1253 
1254 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1255   using namespace AMDGPU::EncValues;
1256 
1257   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1258   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1259     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1260     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1261       // Cast prevents negative overflow.
1262 }
1263 
1264 static int64_t getInlineImmVal32(unsigned Imm) {
1265   switch (Imm) {
1266   case 240:
1267     return llvm::bit_cast<uint32_t>(0.5f);
1268   case 241:
1269     return llvm::bit_cast<uint32_t>(-0.5f);
1270   case 242:
1271     return llvm::bit_cast<uint32_t>(1.0f);
1272   case 243:
1273     return llvm::bit_cast<uint32_t>(-1.0f);
1274   case 244:
1275     return llvm::bit_cast<uint32_t>(2.0f);
1276   case 245:
1277     return llvm::bit_cast<uint32_t>(-2.0f);
1278   case 246:
1279     return llvm::bit_cast<uint32_t>(4.0f);
1280   case 247:
1281     return llvm::bit_cast<uint32_t>(-4.0f);
1282   case 248: // 1 / (2 * PI)
1283     return 0x3e22f983;
1284   default:
1285     llvm_unreachable("invalid fp inline imm");
1286   }
1287 }
1288 
1289 static int64_t getInlineImmVal64(unsigned Imm) {
1290   switch (Imm) {
1291   case 240:
1292     return llvm::bit_cast<uint64_t>(0.5);
1293   case 241:
1294     return llvm::bit_cast<uint64_t>(-0.5);
1295   case 242:
1296     return llvm::bit_cast<uint64_t>(1.0);
1297   case 243:
1298     return llvm::bit_cast<uint64_t>(-1.0);
1299   case 244:
1300     return llvm::bit_cast<uint64_t>(2.0);
1301   case 245:
1302     return llvm::bit_cast<uint64_t>(-2.0);
1303   case 246:
1304     return llvm::bit_cast<uint64_t>(4.0);
1305   case 247:
1306     return llvm::bit_cast<uint64_t>(-4.0);
1307   case 248: // 1 / (2 * PI)
1308     return 0x3fc45f306dc9c882;
1309   default:
1310     llvm_unreachable("invalid fp inline imm");
1311   }
1312 }
1313 
1314 static int64_t getInlineImmValF16(unsigned Imm) {
1315   switch (Imm) {
1316   case 240:
1317     return 0x3800;
1318   case 241:
1319     return 0xB800;
1320   case 242:
1321     return 0x3C00;
1322   case 243:
1323     return 0xBC00;
1324   case 244:
1325     return 0x4000;
1326   case 245:
1327     return 0xC000;
1328   case 246:
1329     return 0x4400;
1330   case 247:
1331     return 0xC400;
1332   case 248: // 1 / (2 * PI)
1333     return 0x3118;
1334   default:
1335     llvm_unreachable("invalid fp inline imm");
1336   }
1337 }
1338 
1339 static int64_t getInlineImmValBF16(unsigned Imm) {
1340   switch (Imm) {
1341   case 240:
1342     return 0x3F00;
1343   case 241:
1344     return 0xBF00;
1345   case 242:
1346     return 0x3F80;
1347   case 243:
1348     return 0xBF80;
1349   case 244:
1350     return 0x4000;
1351   case 245:
1352     return 0xC000;
1353   case 246:
1354     return 0x4080;
1355   case 247:
1356     return 0xC080;
1357   case 248: // 1 / (2 * PI)
1358     return 0x3E22;
1359   default:
1360     llvm_unreachable("invalid fp inline imm");
1361   }
1362 }
1363 
1364 static int64_t getInlineImmVal16(unsigned Imm, AMDGPU::OperandSemantics Sema) {
1365   return (Sema == AMDGPU::OperandSemantics::BF16) ? getInlineImmValBF16(Imm)
1366                                                   : getInlineImmValF16(Imm);
1367 }
1368 
1369 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm,
1370                                             AMDGPU::OperandSemantics Sema) {
1371   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN &&
1372          Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1373 
1374   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1375   // ImmWidth 0 is a default case where operand should not allow immediates.
1376   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1377   // use it to print verbose error message.
1378   switch (ImmWidth) {
1379   case 0:
1380   case 32:
1381     return MCOperand::createImm(getInlineImmVal32(Imm));
1382   case 64:
1383     return MCOperand::createImm(getInlineImmVal64(Imm));
1384   case 16:
1385     return MCOperand::createImm(getInlineImmVal16(Imm, Sema));
1386   default:
1387     llvm_unreachable("implement me");
1388   }
1389 }
1390 
1391 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1392   using namespace AMDGPU;
1393 
1394   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1395   switch (Width) {
1396   default: // fall
1397   case OPW32:
1398   case OPW16:
1399   case OPWV216:
1400     return VGPR_32RegClassID;
1401   case OPW64:
1402   case OPWV232: return VReg_64RegClassID;
1403   case OPW96: return VReg_96RegClassID;
1404   case OPW128: return VReg_128RegClassID;
1405   case OPW160: return VReg_160RegClassID;
1406   case OPW256: return VReg_256RegClassID;
1407   case OPW288: return VReg_288RegClassID;
1408   case OPW320: return VReg_320RegClassID;
1409   case OPW352: return VReg_352RegClassID;
1410   case OPW384: return VReg_384RegClassID;
1411   case OPW512: return VReg_512RegClassID;
1412   case OPW1024: return VReg_1024RegClassID;
1413   }
1414 }
1415 
1416 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1417   using namespace AMDGPU;
1418 
1419   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1420   switch (Width) {
1421   default: // fall
1422   case OPW32:
1423   case OPW16:
1424   case OPWV216:
1425     return AGPR_32RegClassID;
1426   case OPW64:
1427   case OPWV232: return AReg_64RegClassID;
1428   case OPW96: return AReg_96RegClassID;
1429   case OPW128: return AReg_128RegClassID;
1430   case OPW160: return AReg_160RegClassID;
1431   case OPW256: return AReg_256RegClassID;
1432   case OPW288: return AReg_288RegClassID;
1433   case OPW320: return AReg_320RegClassID;
1434   case OPW352: return AReg_352RegClassID;
1435   case OPW384: return AReg_384RegClassID;
1436   case OPW512: return AReg_512RegClassID;
1437   case OPW1024: return AReg_1024RegClassID;
1438   }
1439 }
1440 
1441 
1442 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1443   using namespace AMDGPU;
1444 
1445   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1446   switch (Width) {
1447   default: // fall
1448   case OPW32:
1449   case OPW16:
1450   case OPWV216:
1451     return SGPR_32RegClassID;
1452   case OPW64:
1453   case OPWV232: return SGPR_64RegClassID;
1454   case OPW96: return SGPR_96RegClassID;
1455   case OPW128: return SGPR_128RegClassID;
1456   case OPW160: return SGPR_160RegClassID;
1457   case OPW256: return SGPR_256RegClassID;
1458   case OPW288: return SGPR_288RegClassID;
1459   case OPW320: return SGPR_320RegClassID;
1460   case OPW352: return SGPR_352RegClassID;
1461   case OPW384: return SGPR_384RegClassID;
1462   case OPW512: return SGPR_512RegClassID;
1463   }
1464 }
1465 
1466 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1467   using namespace AMDGPU;
1468 
1469   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1470   switch (Width) {
1471   default: // fall
1472   case OPW32:
1473   case OPW16:
1474   case OPWV216:
1475     return TTMP_32RegClassID;
1476   case OPW64:
1477   case OPWV232: return TTMP_64RegClassID;
1478   case OPW128: return TTMP_128RegClassID;
1479   case OPW256: return TTMP_256RegClassID;
1480   case OPW288: return TTMP_288RegClassID;
1481   case OPW320: return TTMP_320RegClassID;
1482   case OPW352: return TTMP_352RegClassID;
1483   case OPW384: return TTMP_384RegClassID;
1484   case OPW512: return TTMP_512RegClassID;
1485   }
1486 }
1487 
1488 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1489   using namespace AMDGPU::EncValues;
1490 
1491   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1492   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1493 
1494   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1495 }
1496 
1497 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1498                                           bool MandatoryLiteral,
1499                                           unsigned ImmWidth,
1500                                           AMDGPU::OperandSemantics Sema) const {
1501   using namespace AMDGPU::EncValues;
1502 
1503   assert(Val < 1024); // enum10
1504 
1505   bool IsAGPR = Val & 512;
1506   Val &= 511;
1507 
1508   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1509     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1510                                    : getVgprClassId(Width), Val - VGPR_MIN);
1511   }
1512   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1513                             Sema);
1514 }
1515 
1516 MCOperand
1517 AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, unsigned Val,
1518                                        bool MandatoryLiteral, unsigned ImmWidth,
1519                                        AMDGPU::OperandSemantics Sema) const {
1520   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1521   // decoded earlier.
1522   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1523   using namespace AMDGPU::EncValues;
1524 
1525   if (Val <= SGPR_MAX) {
1526     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1527     static_assert(SGPR_MIN == 0);
1528     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1529   }
1530 
1531   int TTmpIdx = getTTmpIdx(Val);
1532   if (TTmpIdx >= 0) {
1533     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1534   }
1535 
1536   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1537     return decodeIntImmed(Val);
1538 
1539   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1540     return decodeFPImmed(ImmWidth, Val, Sema);
1541 
1542   if (Val == LITERAL_CONST) {
1543     if (MandatoryLiteral)
1544       // Keep a sentinel value for deferred setting
1545       return MCOperand::createImm(LITERAL_CONST);
1546     else
1547       return decodeLiteralConstant(Sema == AMDGPU::OperandSemantics::FP64);
1548   }
1549 
1550   switch (Width) {
1551   case OPW32:
1552   case OPW16:
1553   case OPWV216:
1554     return decodeSpecialReg32(Val);
1555   case OPW64:
1556   case OPWV232:
1557     return decodeSpecialReg64(Val);
1558   default:
1559     llvm_unreachable("unexpected immediate type");
1560   }
1561 }
1562 
1563 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1564 // opposite of bit 0 of DstX.
1565 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1566                                                unsigned Val) const {
1567   int VDstXInd =
1568       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1569   assert(VDstXInd != -1);
1570   assert(Inst.getOperand(VDstXInd).isReg());
1571   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1572   Val |= ~XDstReg & 1;
1573   auto Width = llvm::AMDGPUDisassembler::OPW32;
1574   return createRegOperand(getVgprClassId(Width), Val);
1575 }
1576 
1577 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1578   using namespace AMDGPU;
1579 
1580   switch (Val) {
1581   // clang-format off
1582   case 102: return createRegOperand(FLAT_SCR_LO);
1583   case 103: return createRegOperand(FLAT_SCR_HI);
1584   case 104: return createRegOperand(XNACK_MASK_LO);
1585   case 105: return createRegOperand(XNACK_MASK_HI);
1586   case 106: return createRegOperand(VCC_LO);
1587   case 107: return createRegOperand(VCC_HI);
1588   case 108: return createRegOperand(TBA_LO);
1589   case 109: return createRegOperand(TBA_HI);
1590   case 110: return createRegOperand(TMA_LO);
1591   case 111: return createRegOperand(TMA_HI);
1592   case 124:
1593     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1594   case 125:
1595     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1596   case 126: return createRegOperand(EXEC_LO);
1597   case 127: return createRegOperand(EXEC_HI);
1598   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1599   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1600   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1601   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1602   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1603   case 251: return createRegOperand(SRC_VCCZ);
1604   case 252: return createRegOperand(SRC_EXECZ);
1605   case 253: return createRegOperand(SRC_SCC);
1606   case 254: return createRegOperand(LDS_DIRECT);
1607   default: break;
1608     // clang-format on
1609   }
1610   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1611 }
1612 
1613 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1614   using namespace AMDGPU;
1615 
1616   switch (Val) {
1617   case 102: return createRegOperand(FLAT_SCR);
1618   case 104: return createRegOperand(XNACK_MASK);
1619   case 106: return createRegOperand(VCC);
1620   case 108: return createRegOperand(TBA);
1621   case 110: return createRegOperand(TMA);
1622   case 124:
1623     if (isGFX11Plus())
1624       return createRegOperand(SGPR_NULL);
1625     break;
1626   case 125:
1627     if (!isGFX11Plus())
1628       return createRegOperand(SGPR_NULL);
1629     break;
1630   case 126: return createRegOperand(EXEC);
1631   case 235: return createRegOperand(SRC_SHARED_BASE);
1632   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1633   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1634   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1635   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1636   case 251: return createRegOperand(SRC_VCCZ);
1637   case 252: return createRegOperand(SRC_EXECZ);
1638   case 253: return createRegOperand(SRC_SCC);
1639   default: break;
1640   }
1641   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1642 }
1643 
1644 MCOperand
1645 AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, const unsigned Val,
1646                                   unsigned ImmWidth,
1647                                   AMDGPU::OperandSemantics Sema) const {
1648   using namespace AMDGPU::SDWA;
1649   using namespace AMDGPU::EncValues;
1650 
1651   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1652       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1653     // XXX: cast to int is needed to avoid stupid warning:
1654     // compare with unsigned is always true
1655     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1656         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1657       return createRegOperand(getVgprClassId(Width),
1658                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1659     }
1660     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1661         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1662                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1663       return createSRegOperand(getSgprClassId(Width),
1664                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1665     }
1666     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1667         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1668       return createSRegOperand(getTtmpClassId(Width),
1669                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1670     }
1671 
1672     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1673 
1674     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1675       return decodeIntImmed(SVal);
1676 
1677     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1678       return decodeFPImmed(ImmWidth, SVal, Sema);
1679 
1680     return decodeSpecialReg32(SVal);
1681   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1682     return createRegOperand(getVgprClassId(Width), Val);
1683   }
1684   llvm_unreachable("unsupported target");
1685 }
1686 
1687 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1688   return decodeSDWASrc(OPW16, Val, 16, AMDGPU::OperandSemantics::FP16);
1689 }
1690 
1691 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1692   return decodeSDWASrc(OPW32, Val, 32, AMDGPU::OperandSemantics::FP32);
1693 }
1694 
1695 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1696   using namespace AMDGPU::SDWA;
1697 
1698   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1699           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1700          "SDWAVopcDst should be present only on GFX9+");
1701 
1702   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1703 
1704   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1705     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1706 
1707     int TTmpIdx = getTTmpIdx(Val);
1708     if (TTmpIdx >= 0) {
1709       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1710       return createSRegOperand(TTmpClsId, TTmpIdx);
1711     } else if (Val > SGPR_MAX) {
1712       return IsWave64 ? decodeSpecialReg64(Val)
1713                       : decodeSpecialReg32(Val);
1714     } else {
1715       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1716     }
1717   } else {
1718     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1719   }
1720 }
1721 
1722 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1723   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1724              ? decodeSrcOp(OPW64, Val)
1725              : decodeSrcOp(OPW32, Val);
1726 }
1727 
1728 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1729   return decodeSrcOp(OPW32, Val);
1730 }
1731 
1732 MCOperand AMDGPUDisassembler::decodeDpp8FI(unsigned Val) const {
1733   if (Val != AMDGPU::DPP::DPP8_FI_0 && Val != AMDGPU::DPP::DPP8_FI_1)
1734     return MCOperand();
1735   return MCOperand::createImm(Val);
1736 }
1737 
1738 bool AMDGPUDisassembler::isVI() const {
1739   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1740 }
1741 
1742 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1743 
1744 bool AMDGPUDisassembler::isGFX90A() const {
1745   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1746 }
1747 
1748 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1749 
1750 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1751 
1752 bool AMDGPUDisassembler::isGFX10Plus() const {
1753   return AMDGPU::isGFX10Plus(STI);
1754 }
1755 
1756 bool AMDGPUDisassembler::isGFX11() const {
1757   return STI.hasFeature(AMDGPU::FeatureGFX11);
1758 }
1759 
1760 bool AMDGPUDisassembler::isGFX11Plus() const {
1761   return AMDGPU::isGFX11Plus(STI);
1762 }
1763 
1764 bool AMDGPUDisassembler::isGFX12() const {
1765   return STI.hasFeature(AMDGPU::FeatureGFX12);
1766 }
1767 
1768 bool AMDGPUDisassembler::isGFX12Plus() const {
1769   return AMDGPU::isGFX12Plus(STI);
1770 }
1771 
1772 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1773   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1774 }
1775 
1776 bool AMDGPUDisassembler::hasKernargPreload() const {
1777   return AMDGPU::hasKernargPreload(STI);
1778 }
1779 
1780 //===----------------------------------------------------------------------===//
1781 // AMDGPU specific symbol handling
1782 //===----------------------------------------------------------------------===//
1783 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1784 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1785   do {                                                                         \
1786     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1787   } while (0)
1788 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1789   do {                                                                         \
1790     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1791              << GET_FIELD(MASK) << '\n';                                       \
1792   } while (0)
1793 
1794 // NOLINTNEXTLINE(readability-identifier-naming)
1795 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1796     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1797   using namespace amdhsa;
1798   StringRef Indent = "\t";
1799 
1800   // We cannot accurately backward compute #VGPRs used from
1801   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1802   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1803   // simply calculate the inverse of what the assembler does.
1804 
1805   uint32_t GranulatedWorkitemVGPRCount =
1806       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1807 
1808   uint32_t NextFreeVGPR =
1809       (GranulatedWorkitemVGPRCount + 1) *
1810       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1811 
1812   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1813 
1814   // We cannot backward compute values used to calculate
1815   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1816   // directives can't be computed:
1817   // .amdhsa_reserve_vcc
1818   // .amdhsa_reserve_flat_scratch
1819   // .amdhsa_reserve_xnack_mask
1820   // They take their respective default values if not specified in the assembly.
1821   //
1822   // GRANULATED_WAVEFRONT_SGPR_COUNT
1823   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1824   //
1825   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1826   // are set to 0. So while disassembling we consider that:
1827   //
1828   // GRANULATED_WAVEFRONT_SGPR_COUNT
1829   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1830   //
1831   // The disassembler cannot recover the original values of those 3 directives.
1832 
1833   uint32_t GranulatedWavefrontSGPRCount =
1834       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1835 
1836   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1837     return MCDisassembler::Fail;
1838 
1839   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1840                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1841 
1842   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1843   if (!hasArchitectedFlatScratch())
1844     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1845   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1846   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1847 
1848   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1849     return MCDisassembler::Fail;
1850 
1851   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1852                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1853   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1854                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1855   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1856                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1857   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1858                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1859 
1860   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1861     return MCDisassembler::Fail;
1862 
1863   if (!isGFX12Plus())
1864     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1865                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1866 
1867   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1868     return MCDisassembler::Fail;
1869 
1870   if (!isGFX12Plus())
1871     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1872                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1873 
1874   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1875     return MCDisassembler::Fail;
1876 
1877   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1878     return MCDisassembler::Fail;
1879 
1880   if (isGFX9Plus())
1881     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1882 
1883   if (!isGFX9Plus())
1884     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1885       return MCDisassembler::Fail;
1886   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1887     return MCDisassembler::Fail;
1888   if (!isGFX10Plus())
1889     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1890       return MCDisassembler::Fail;
1891 
1892   if (isGFX10Plus()) {
1893     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1894                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1895     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1896     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1897   }
1898 
1899   if (isGFX12Plus())
1900     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1901                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1902 
1903   return MCDisassembler::Success;
1904 }
1905 
1906 // NOLINTNEXTLINE(readability-identifier-naming)
1907 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1908     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1909   using namespace amdhsa;
1910   StringRef Indent = "\t";
1911   if (hasArchitectedFlatScratch())
1912     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1913                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1914   else
1915     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1916                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1917   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1918                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1919   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1920                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1921   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1922                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1923   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1924                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1925   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1926                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1927 
1928   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1929     return MCDisassembler::Fail;
1930 
1931   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1932     return MCDisassembler::Fail;
1933 
1934   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1935     return MCDisassembler::Fail;
1936 
1937   PRINT_DIRECTIVE(
1938       ".amdhsa_exception_fp_ieee_invalid_op",
1939       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1940   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1941                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1942   PRINT_DIRECTIVE(
1943       ".amdhsa_exception_fp_ieee_div_zero",
1944       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1945   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1946                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1947   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1948                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1949   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1950                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1951   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1952                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1953 
1954   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1955     return MCDisassembler::Fail;
1956 
1957   return MCDisassembler::Success;
1958 }
1959 
1960 // NOLINTNEXTLINE(readability-identifier-naming)
1961 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1962     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1963   using namespace amdhsa;
1964   StringRef Indent = "\t";
1965   if (isGFX90A()) {
1966     KdStream << Indent << ".amdhsa_accum_offset "
1967              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1968              << '\n';
1969     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1970       return MCDisassembler::Fail;
1971     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1972     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
1973       return MCDisassembler::Fail;
1974   } else if (isGFX10Plus()) {
1975     // Bits [0-3].
1976     if (!isGFX12Plus()) {
1977       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
1978         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
1979                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
1980       } else {
1981         PRINT_PSEUDO_DIRECTIVE_COMMENT(
1982             "SHARED_VGPR_COUNT",
1983             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
1984       }
1985     } else {
1986       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0)
1987         return MCDisassembler::Fail;
1988     }
1989 
1990     // Bits [4-11].
1991     if (isGFX11()) {
1992       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
1993                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
1994       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
1995                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
1996       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
1997                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
1998     } else if (isGFX12Plus()) {
1999       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2000           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2001     } else {
2002       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1)
2003         return MCDisassembler::Fail;
2004     }
2005 
2006     // Bits [12].
2007     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2)
2008       return MCDisassembler::Fail;
2009 
2010     // Bits [13].
2011     if (isGFX12Plus()) {
2012       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2013                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2014     } else {
2015       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3)
2016         return MCDisassembler::Fail;
2017     }
2018 
2019     // Bits [14-30].
2020     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4)
2021       return MCDisassembler::Fail;
2022 
2023     // Bits [31].
2024     if (isGFX11Plus()) {
2025       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2026                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2027     } else {
2028       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5)
2029         return MCDisassembler::Fail;
2030     }
2031   } else if (FourByteBuffer) {
2032     return MCDisassembler::Fail;
2033   }
2034   return MCDisassembler::Success;
2035 }
2036 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2037 #undef PRINT_DIRECTIVE
2038 #undef GET_FIELD
2039 
2040 MCDisassembler::DecodeStatus
2041 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2042     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2043     raw_string_ostream &KdStream) const {
2044 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2045   do {                                                                         \
2046     KdStream << Indent << DIRECTIVE " "                                        \
2047              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2048   } while (0)
2049 
2050   uint16_t TwoByteBuffer = 0;
2051   uint32_t FourByteBuffer = 0;
2052 
2053   StringRef ReservedBytes;
2054   StringRef Indent = "\t";
2055 
2056   assert(Bytes.size() == 64);
2057   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2058 
2059   switch (Cursor.tell()) {
2060   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2061     FourByteBuffer = DE.getU32(Cursor);
2062     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2063              << '\n';
2064     return MCDisassembler::Success;
2065 
2066   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2067     FourByteBuffer = DE.getU32(Cursor);
2068     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2069              << FourByteBuffer << '\n';
2070     return MCDisassembler::Success;
2071 
2072   case amdhsa::KERNARG_SIZE_OFFSET:
2073     FourByteBuffer = DE.getU32(Cursor);
2074     KdStream << Indent << ".amdhsa_kernarg_size "
2075              << FourByteBuffer << '\n';
2076     return MCDisassembler::Success;
2077 
2078   case amdhsa::RESERVED0_OFFSET:
2079     // 4 reserved bytes, must be 0.
2080     ReservedBytes = DE.getBytes(Cursor, 4);
2081     for (int I = 0; I < 4; ++I) {
2082       if (ReservedBytes[I] != 0) {
2083         return MCDisassembler::Fail;
2084       }
2085     }
2086     return MCDisassembler::Success;
2087 
2088   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2089     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2090     // So far no directive controls this for Code Object V3, so simply skip for
2091     // disassembly.
2092     DE.skip(Cursor, 8);
2093     return MCDisassembler::Success;
2094 
2095   case amdhsa::RESERVED1_OFFSET:
2096     // 20 reserved bytes, must be 0.
2097     ReservedBytes = DE.getBytes(Cursor, 20);
2098     for (int I = 0; I < 20; ++I) {
2099       if (ReservedBytes[I] != 0) {
2100         return MCDisassembler::Fail;
2101       }
2102     }
2103     return MCDisassembler::Success;
2104 
2105   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2106     FourByteBuffer = DE.getU32(Cursor);
2107     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2108 
2109   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2110     FourByteBuffer = DE.getU32(Cursor);
2111     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2112 
2113   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2114     FourByteBuffer = DE.getU32(Cursor);
2115     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2116 
2117   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2118     using namespace amdhsa;
2119     TwoByteBuffer = DE.getU16(Cursor);
2120 
2121     if (!hasArchitectedFlatScratch())
2122       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2123                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2124     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2125                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2126     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2127                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2128     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2129                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2130     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2131                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2132     if (!hasArchitectedFlatScratch())
2133       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2134                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2135     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2136                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2137 
2138     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2139       return MCDisassembler::Fail;
2140 
2141     // Reserved for GFX9
2142     if (isGFX9() &&
2143         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2144       return MCDisassembler::Fail;
2145     } else if (isGFX10Plus()) {
2146       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2147                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2148     }
2149 
2150     if (CodeObjectVersion >= AMDGPU::AMDHSA_COV5)
2151       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2152                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2153 
2154     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2155       return MCDisassembler::Fail;
2156 
2157     return MCDisassembler::Success;
2158 
2159   case amdhsa::KERNARG_PRELOAD_OFFSET:
2160     using namespace amdhsa;
2161     TwoByteBuffer = DE.getU16(Cursor);
2162     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2163       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2164                       KERNARG_PRELOAD_SPEC_LENGTH);
2165     }
2166 
2167     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2168       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2169                       KERNARG_PRELOAD_SPEC_OFFSET);
2170     }
2171     return MCDisassembler::Success;
2172 
2173   case amdhsa::RESERVED3_OFFSET:
2174     // 4 bytes from here are reserved, must be 0.
2175     ReservedBytes = DE.getBytes(Cursor, 4);
2176     for (int I = 0; I < 4; ++I) {
2177       if (ReservedBytes[I] != 0)
2178         return MCDisassembler::Fail;
2179     }
2180     return MCDisassembler::Success;
2181 
2182   default:
2183     llvm_unreachable("Unhandled index. Case statements cover everything.");
2184     return MCDisassembler::Fail;
2185   }
2186 #undef PRINT_DIRECTIVE
2187 }
2188 
2189 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2190     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2191   // CP microcode requires the kernel descriptor to be 64 aligned.
2192   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2193     return MCDisassembler::Fail;
2194 
2195   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2196   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2197   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2198   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2199   // when required.
2200   if (isGFX10Plus()) {
2201     uint16_t KernelCodeProperties =
2202         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2203                                 llvm::endianness::little);
2204     EnableWavefrontSize32 =
2205         AMDHSA_BITS_GET(KernelCodeProperties,
2206                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2207   }
2208 
2209   std::string Kd;
2210   raw_string_ostream KdStream(Kd);
2211   KdStream << ".amdhsa_kernel " << KdName << '\n';
2212 
2213   DataExtractor::Cursor C(0);
2214   while (C && C.tell() < Bytes.size()) {
2215     MCDisassembler::DecodeStatus Status =
2216         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2217 
2218     cantFail(C.takeError());
2219 
2220     if (Status == MCDisassembler::Fail)
2221       return MCDisassembler::Fail;
2222   }
2223   KdStream << ".end_amdhsa_kernel\n";
2224   outs() << KdStream.str();
2225   return MCDisassembler::Success;
2226 }
2227 
2228 std::optional<MCDisassembler::DecodeStatus>
2229 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2230                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2231                                   raw_ostream &CStream) const {
2232   // Right now only kernel descriptor needs to be handled.
2233   // We ignore all other symbols for target specific handling.
2234   // TODO:
2235   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2236   // Object V2 and V3 when symbols are marked protected.
2237 
2238   // amd_kernel_code_t for Code Object V2.
2239   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2240     Size = 256;
2241     return MCDisassembler::Fail;
2242   }
2243 
2244   // Code Object V3 kernel descriptors.
2245   StringRef Name = Symbol.Name;
2246   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2247     Size = 64; // Size = 64 regardless of success or failure.
2248     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2249   }
2250   return std::nullopt;
2251 }
2252 
2253 //===----------------------------------------------------------------------===//
2254 // AMDGPUSymbolizer
2255 //===----------------------------------------------------------------------===//
2256 
2257 // Try to find symbol name for specified label
2258 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2259     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2260     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2261     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2262 
2263   if (!IsBranch) {
2264     return false;
2265   }
2266 
2267   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2268   if (!Symbols)
2269     return false;
2270 
2271   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2272     return Val.Addr == static_cast<uint64_t>(Value) &&
2273            Val.Type == ELF::STT_NOTYPE;
2274   });
2275   if (Result != Symbols->end()) {
2276     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2277     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2278     Inst.addOperand(MCOperand::createExpr(Add));
2279     return true;
2280   }
2281   // Add to list of referenced addresses, so caller can synthesize a label.
2282   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2283   return false;
2284 }
2285 
2286 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2287                                                        int64_t Value,
2288                                                        uint64_t Address) {
2289   llvm_unreachable("unimplemented");
2290 }
2291 
2292 //===----------------------------------------------------------------------===//
2293 // Initialization
2294 //===----------------------------------------------------------------------===//
2295 
2296 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2297                               LLVMOpInfoCallback /*GetOpInfo*/,
2298                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2299                               void *DisInfo,
2300                               MCContext *Ctx,
2301                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2302   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2303 }
2304 
2305 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2306                                                 const MCSubtargetInfo &STI,
2307                                                 MCContext &Ctx) {
2308   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2309 }
2310 
2311 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2312   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2313                                          createAMDGPUDisassembler);
2314   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2315                                        createAMDGPUSymbolizer);
2316 }
2317