1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, MCInstrInfo const *MCII) 49 : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 50 MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) { 51 // ToDo: AMDGPUDisassembler supports only VI ISA. 52 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 53 report_fatal_error("Disassembly not yet supported for subtarget"); 54 } 55 56 inline static MCDisassembler::DecodeStatus 57 addOperand(MCInst &Inst, const MCOperand& Opnd) { 58 Inst.addOperand(Opnd); 59 return Opnd.isValid() ? 60 MCDisassembler::Success : 61 MCDisassembler::Fail; 62 } 63 64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 65 uint16_t NameIdx) { 66 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 67 if (OpIdx != -1) { 68 auto I = MI.begin(); 69 std::advance(I, OpIdx); 70 MI.insert(I, Op); 71 } 72 return OpIdx; 73 } 74 75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, 76 uint64_t Addr, 77 const MCDisassembler *Decoder) { 78 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 79 80 // Our branches take a simm16, but we need two extra bits to account for the 81 // factor of 4. 82 APInt SignedOffset(18, Imm * 4, true); 83 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 84 85 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 86 return MCDisassembler::Success; 87 return addOperand(Inst, MCOperand::createImm(Imm)); 88 } 89 90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 91 const MCDisassembler *Decoder) { 92 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 93 int64_t Offset; 94 if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets. 95 Offset = SignExtend64<24>(Imm); 96 } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val, 111 uint64_t Addr, 112 const MCDisassembler *Decoder) { 113 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 114 return addOperand(Inst, DAsm->decodeSplitBarrier(Val)); 115 } 116 117 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 118 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 119 uint64_t /*Addr*/, \ 120 const MCDisassembler *Decoder) { \ 121 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 122 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 123 } 124 125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 126 // number of register. Used by VGPR only and AGPR only operands. 127 #define DECODE_OPERAND_REG_8(RegClass) \ 128 static DecodeStatus Decode##RegClass##RegisterClass( \ 129 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 130 const MCDisassembler *Decoder) { \ 131 assert(Imm < (1 << 8) && "8-bit encoding"); \ 132 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 133 return addOperand( \ 134 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 135 } 136 137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 138 ImmWidth) \ 139 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 140 const MCDisassembler *Decoder) { \ 141 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 142 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 143 return addOperand(Inst, \ 144 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 145 MandatoryLiteral, ImmWidth)); \ 146 } 147 148 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 149 // get register class. Used by SGPR only operands. 150 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 151 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 152 153 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 154 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 155 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 156 // Used by AV_ register classes (AGPR or VGPR only register operands). 157 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 158 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 159 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 160 161 // Decoder for Src(9-bit encoding) registers only. 162 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 163 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 164 165 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 166 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 167 // only. 168 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 169 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 170 171 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 172 // Imm{9} is acc, registers only. 173 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 174 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 175 176 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 177 // register from RegClass or immediate. Registers that don't belong to RegClass 178 // will be decoded and InstPrinter will report warning. Immediate will be 179 // decoded into constant of size ImmWidth, should match width of immediate used 180 // by OperandType (important for floating point types). 181 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 182 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 183 false, ImmWidth) 184 185 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 186 // and decode using 'enum10' from decodeSrcOp. 187 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 188 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 189 Imm | 512, false, ImmWidth) 190 191 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 192 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 193 OpWidth, Imm, true, ImmWidth) 194 195 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 196 // when RegisterClass is used as an operand. Most often used for destination 197 // operands. 198 199 DECODE_OPERAND_REG_8(VGPR_32) 200 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 201 DECODE_OPERAND_REG_8(VReg_64) 202 DECODE_OPERAND_REG_8(VReg_96) 203 DECODE_OPERAND_REG_8(VReg_128) 204 DECODE_OPERAND_REG_8(VReg_256) 205 DECODE_OPERAND_REG_8(VReg_288) 206 DECODE_OPERAND_REG_8(VReg_352) 207 DECODE_OPERAND_REG_8(VReg_384) 208 DECODE_OPERAND_REG_8(VReg_512) 209 DECODE_OPERAND_REG_8(VReg_1024) 210 211 DECODE_OPERAND_REG_7(SReg_32, OPW32) 212 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32) 213 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 214 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 215 DECODE_OPERAND_REG_7(SReg_64, OPW64) 216 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 217 DECODE_OPERAND_REG_7(SReg_96, OPW96) 218 DECODE_OPERAND_REG_7(SReg_128, OPW128) 219 DECODE_OPERAND_REG_7(SReg_256, OPW256) 220 DECODE_OPERAND_REG_7(SReg_512, OPW512) 221 222 DECODE_OPERAND_REG_8(AGPR_32) 223 DECODE_OPERAND_REG_8(AReg_64) 224 DECODE_OPERAND_REG_8(AReg_128) 225 DECODE_OPERAND_REG_8(AReg_256) 226 DECODE_OPERAND_REG_8(AReg_512) 227 DECODE_OPERAND_REG_8(AReg_1024) 228 229 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 230 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 231 232 // Decoders for register only source RegisterOperands that use use 9-bit Src 233 // encoding: 'decodeOperand_<RegClass>'. 234 235 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 236 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 237 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 238 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 239 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 240 241 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 242 243 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 244 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 245 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 246 247 // Decoders for register or immediate RegisterOperands that use 9-bit Src 248 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 249 250 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 251 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 252 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16) 253 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 254 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 255 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 256 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 257 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 258 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) 259 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 260 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 261 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 262 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 263 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 264 265 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 266 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 267 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 268 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 269 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 270 271 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 272 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 273 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 274 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32) 275 276 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm, 277 uint64_t /*Addr*/, 278 const MCDisassembler *Decoder) { 279 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 280 assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used"); 281 282 bool IsHi = Imm & (1 << 9); 283 unsigned RegIdx = Imm & 0xff; 284 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 285 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 286 } 287 288 static DecodeStatus 289 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, 290 const MCDisassembler *Decoder) { 291 assert(isUInt<8>(Imm) && "8-bit encoding expected"); 292 293 bool IsHi = Imm & (1 << 7); 294 unsigned RegIdx = Imm & 0x7f; 295 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 296 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 297 } 298 299 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm, 300 uint64_t /*Addr*/, 301 const MCDisassembler *Decoder) { 302 assert(isUInt<9>(Imm) && "9-bit encoding expected"); 303 304 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 305 bool IsVGPR = Imm & (1 << 8); 306 if (IsVGPR) { 307 bool IsHi = Imm & (1 << 7); 308 unsigned RegIdx = Imm & 0x7f; 309 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 310 } 311 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 312 Imm & 0xFF, false, 16)); 313 } 314 315 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm, 316 uint64_t /*Addr*/, 317 const MCDisassembler *Decoder) { 318 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 319 320 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 321 bool IsVGPR = Imm & (1 << 8); 322 if (IsVGPR) { 323 bool IsHi = Imm & (1 << 9); 324 unsigned RegIdx = Imm & 0xff; 325 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 326 } 327 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 328 Imm & 0xFF, false, 16)); 329 } 330 331 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, 332 uint64_t Addr, 333 const MCDisassembler *Decoder) { 334 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 335 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 336 } 337 338 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 339 uint64_t Addr, const void *Decoder) { 340 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 341 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 342 } 343 344 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 345 const MCRegisterInfo *MRI) { 346 if (OpIdx < 0) 347 return false; 348 349 const MCOperand &Op = Inst.getOperand(OpIdx); 350 if (!Op.isReg()) 351 return false; 352 353 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 354 auto Reg = Sub ? Sub : Op.getReg(); 355 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 356 } 357 358 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 359 AMDGPUDisassembler::OpWidthTy Opw, 360 const MCDisassembler *Decoder) { 361 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 362 if (!DAsm->isGFX90A()) { 363 Imm &= 511; 364 } else { 365 // If atomic has both vdata and vdst their register classes are tied. 366 // The bit is decoded along with the vdst, first operand. We need to 367 // change register class to AGPR if vdst was AGPR. 368 // If a DS instruction has both data0 and data1 their register classes 369 // are also tied. 370 unsigned Opc = Inst.getOpcode(); 371 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 372 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 373 : AMDGPU::OpName::vdata; 374 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 375 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 376 if ((int)Inst.getNumOperands() == DataIdx) { 377 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 378 if (IsAGPROperand(Inst, DstIdx, MRI)) 379 Imm |= 512; 380 } 381 382 if (TSFlags & SIInstrFlags::DS) { 383 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 384 if ((int)Inst.getNumOperands() == Data2Idx && 385 IsAGPROperand(Inst, DataIdx, MRI)) 386 Imm |= 512; 387 } 388 } 389 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 390 } 391 392 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm, 393 uint64_t Addr, 394 const MCDisassembler *Decoder) { 395 assert(Imm < (1 << 9) && "9-bit encoding"); 396 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 397 return addOperand( 398 Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true)); 399 } 400 401 static DecodeStatus 402 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 403 const MCDisassembler *Decoder) { 404 return decodeOperand_AVLdSt_Any(Inst, Imm, 405 AMDGPUDisassembler::OPW32, Decoder); 406 } 407 408 static DecodeStatus 409 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 410 const MCDisassembler *Decoder) { 411 return decodeOperand_AVLdSt_Any(Inst, Imm, 412 AMDGPUDisassembler::OPW64, Decoder); 413 } 414 415 static DecodeStatus 416 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 417 const MCDisassembler *Decoder) { 418 return decodeOperand_AVLdSt_Any(Inst, Imm, 419 AMDGPUDisassembler::OPW96, Decoder); 420 } 421 422 static DecodeStatus 423 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 424 const MCDisassembler *Decoder) { 425 return decodeOperand_AVLdSt_Any(Inst, Imm, 426 AMDGPUDisassembler::OPW128, Decoder); 427 } 428 429 static DecodeStatus 430 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 431 const MCDisassembler *Decoder) { 432 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 433 Decoder); 434 } 435 436 #define DECODE_SDWA(DecName) \ 437 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 438 439 DECODE_SDWA(Src32) 440 DECODE_SDWA(Src16) 441 DECODE_SDWA(VopcDst) 442 443 #include "AMDGPUGenDisassemblerTables.inc" 444 445 //===----------------------------------------------------------------------===// 446 // 447 //===----------------------------------------------------------------------===// 448 449 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 450 assert(Bytes.size() >= sizeof(T)); 451 const auto Res = 452 support::endian::read<T, llvm::endianness::little>(Bytes.data()); 453 Bytes = Bytes.slice(sizeof(T)); 454 return Res; 455 } 456 457 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 458 assert(Bytes.size() >= 12); 459 uint64_t Lo = 460 support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data()); 461 Bytes = Bytes.slice(8); 462 uint64_t Hi = 463 support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data()); 464 Bytes = Bytes.slice(4); 465 return DecoderUInt128(Lo, Hi); 466 } 467 468 // The disassembler is greedy, so we need to check FI operand value to 469 // not parse a dpp if the correct literal is not set. For dpp16 the 470 // autogenerated decoder checks the dpp literal 471 static bool isValidDPP8(const MCInst &MI) { 472 using namespace llvm::AMDGPU::DPP; 473 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 474 assert(FiIdx != -1); 475 if ((unsigned)FiIdx >= MI.getNumOperands()) 476 return false; 477 unsigned Fi = MI.getOperand(FiIdx).getImm(); 478 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 479 } 480 481 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 482 ArrayRef<uint8_t> Bytes_, 483 uint64_t Address, 484 raw_ostream &CS) const { 485 bool IsSDWA = false; 486 487 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 488 Bytes = Bytes_.slice(0, MaxInstBytesNum); 489 490 DecodeStatus Res = MCDisassembler::Fail; 491 do { 492 // ToDo: better to switch encoding length using some bit predicate 493 // but it is unknown yet, so try all we can 494 495 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 496 // encodings 497 if (isGFX11Plus() && Bytes.size() >= 12 ) { 498 DecoderUInt128 DecW = eat12Bytes(Bytes); 499 Res = 500 tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696, 501 MI, DecW, Address, CS); 502 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 503 break; 504 MI = MCInst(); // clear 505 Res = 506 tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696, 507 MI, DecW, Address, CS); 508 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 509 break; 510 MI = MCInst(); // clear 511 512 const auto convertVOPDPP = [&]() { 513 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) { 514 convertVOP3PDPPInst(MI); 515 } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) { 516 convertVOPCDPPInst(MI); // Special VOP3 case 517 } else { 518 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 519 convertVOP3DPPInst(MI); // Regular VOP3 case 520 } 521 }; 522 Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696, 523 MI, DecW, Address, CS); 524 if (Res) { 525 convertVOPDPP(); 526 break; 527 } 528 Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696, 529 MI, DecW, Address, CS); 530 if (Res) { 531 convertVOPDPP(); 532 break; 533 } 534 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS); 535 if (Res) 536 break; 537 538 Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS); 539 if (Res) 540 break; 541 } 542 // Reinitialize Bytes 543 Bytes = Bytes_.slice(0, MaxInstBytesNum); 544 545 if (Bytes.size() >= 8) { 546 const uint64_t QW = eatBytes<uint64_t>(Bytes); 547 548 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 549 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS); 550 if (Res) { 551 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 552 == -1) 553 break; 554 if (convertDPP8Inst(MI) == MCDisassembler::Success) 555 break; 556 MI = MCInst(); // clear 557 } 558 } 559 560 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS); 561 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 562 break; 563 MI = MCInst(); // clear 564 565 Res = tryDecodeInst(DecoderTableDPP8GFX1164, 566 DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS); 567 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 568 break; 569 MI = MCInst(); // clear 570 571 Res = tryDecodeInst(DecoderTableDPP8GFX1264, 572 DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS); 573 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 574 break; 575 MI = MCInst(); // clear 576 577 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS); 578 if (Res) break; 579 580 Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664, 581 MI, QW, Address, CS); 582 if (Res) { 583 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 584 convertVOPCDPPInst(MI); 585 break; 586 } 587 588 Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664, 589 MI, QW, Address, CS); 590 if (Res) { 591 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 592 convertVOPCDPPInst(MI); 593 break; 594 } 595 596 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS); 597 if (Res) { IsSDWA = true; break; } 598 599 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS); 600 if (Res) { IsSDWA = true; break; } 601 602 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS); 603 if (Res) { IsSDWA = true; break; } 604 605 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) { 606 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS); 607 if (Res) 608 break; 609 } 610 611 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 612 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 613 // table first so we print the correct name. 614 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) { 615 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS); 616 if (Res) 617 break; 618 } 619 } 620 621 // Reinitialize Bytes as DPP64 could have eaten too much 622 Bytes = Bytes_.slice(0, MaxInstBytesNum); 623 624 // Try decode 32-bit instruction 625 if (Bytes.size() < 4) break; 626 const uint32_t DW = eatBytes<uint32_t>(Bytes); 627 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS); 628 if (Res) break; 629 630 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS); 631 if (Res) break; 632 633 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS); 634 if (Res) break; 635 636 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 637 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS); 638 if (Res) 639 break; 640 } 641 642 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 643 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS); 644 if (Res) break; 645 } 646 647 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS); 648 if (Res) break; 649 650 Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW, 651 Address, CS); 652 if (Res) break; 653 654 Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW, 655 Address, CS); 656 if (Res) 657 break; 658 659 if (Bytes.size() < 4) break; 660 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 661 662 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) { 663 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS); 664 if (Res) 665 break; 666 } 667 668 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 669 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS); 670 if (Res) 671 break; 672 } 673 674 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS); 675 if (Res) break; 676 677 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS); 678 if (Res) break; 679 680 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS); 681 if (Res) break; 682 683 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS); 684 if (Res) break; 685 686 Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW, 687 Address, CS); 688 if (Res) 689 break; 690 691 Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW, 692 Address, CS); 693 if (Res) 694 break; 695 696 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS); 697 } while (false); 698 699 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 700 // Insert dummy unused src2_modifiers. 701 insertNamedMCOperand(MI, MCOperand::createImm(0), 702 AMDGPU::OpName::src2_modifiers); 703 } 704 705 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 706 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 707 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 708 AMDGPU::OpName::cpol); 709 if (CPolPos != -1) { 710 unsigned CPol = 711 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 712 AMDGPU::CPol::GLC : 0; 713 if (MI.getNumOperands() <= (unsigned)CPolPos) { 714 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 715 AMDGPU::OpName::cpol); 716 } else if (CPol) { 717 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 718 } 719 } 720 } 721 722 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 723 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 724 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 725 // GFX90A lost TFE, its place is occupied by ACC. 726 int TFEOpIdx = 727 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 728 if (TFEOpIdx != -1) { 729 auto TFEIter = MI.begin(); 730 std::advance(TFEIter, TFEOpIdx); 731 MI.insert(TFEIter, MCOperand::createImm(0)); 732 } 733 } 734 735 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 736 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 737 int SWZOpIdx = 738 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 739 if (SWZOpIdx != -1) { 740 auto SWZIter = MI.begin(); 741 std::advance(SWZIter, SWZOpIdx); 742 MI.insert(SWZIter, MCOperand::createImm(0)); 743 } 744 } 745 746 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 747 int VAddr0Idx = 748 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 749 int RsrcIdx = 750 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 751 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 752 if (VAddr0Idx >= 0 && NSAArgs > 0) { 753 unsigned NSAWords = (NSAArgs + 3) / 4; 754 if (Bytes.size() < 4 * NSAWords) { 755 Res = MCDisassembler::Fail; 756 } else { 757 for (unsigned i = 0; i < NSAArgs; ++i) { 758 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 759 auto VAddrRCID = 760 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 761 MI.insert(MI.begin() + VAddrIdx, 762 createRegOperand(VAddrRCID, Bytes[i])); 763 } 764 Bytes = Bytes.slice(4 * NSAWords); 765 } 766 } 767 768 if (Res) 769 Res = convertMIMGInst(MI); 770 } 771 772 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 773 (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE))) 774 Res = convertMIMGInst(MI); 775 776 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 777 Res = convertEXPInst(MI); 778 779 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 780 Res = convertVINTERPInst(MI); 781 782 if (Res && IsSDWA) 783 Res = convertSDWAInst(MI); 784 785 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 786 AMDGPU::OpName::vdst_in); 787 if (VDstIn_Idx != -1) { 788 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 789 MCOI::OperandConstraint::TIED_TO); 790 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 791 !MI.getOperand(VDstIn_Idx).isReg() || 792 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 793 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 794 MI.erase(&MI.getOperand(VDstIn_Idx)); 795 insertNamedMCOperand(MI, 796 MCOperand::createReg(MI.getOperand(Tied).getReg()), 797 AMDGPU::OpName::vdst_in); 798 } 799 } 800 801 int ImmLitIdx = 802 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 803 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 804 if (Res && ImmLitIdx != -1 && !IsSOPK) 805 Res = convertFMAanyK(MI, ImmLitIdx); 806 807 // if the opcode was not recognized we'll assume a Size of 4 bytes 808 // (unless there are fewer bytes left) 809 Size = Res ? (MaxInstBytesNum - Bytes.size()) 810 : std::min((size_t)4, Bytes_.size()); 811 return Res; 812 } 813 814 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 815 if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) { 816 // The MCInst still has these fields even though they are no longer encoded 817 // in the GFX11 instruction. 818 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 819 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 820 } 821 return MCDisassembler::Success; 822 } 823 824 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 825 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 826 MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 || 827 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 828 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 || 829 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 830 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 || 831 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 || 832 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) { 833 // The MCInst has this field that is not directly encoded in the 834 // instruction. 835 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 836 } 837 return MCDisassembler::Success; 838 } 839 840 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 841 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 842 STI.hasFeature(AMDGPU::FeatureGFX10)) { 843 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 844 // VOPC - insert clamp 845 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 846 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 847 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 848 if (SDst != -1) { 849 // VOPC - insert VCC register as sdst 850 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 851 AMDGPU::OpName::sdst); 852 } else { 853 // VOP1/2 - insert omod if present in instruction 854 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 855 } 856 } 857 return MCDisassembler::Success; 858 } 859 860 struct VOPModifiers { 861 unsigned OpSel = 0; 862 unsigned OpSelHi = 0; 863 unsigned NegLo = 0; 864 unsigned NegHi = 0; 865 }; 866 867 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 868 // Note that these values do not affect disassembler output, 869 // so this is only necessary for consistency with src_modifiers. 870 static VOPModifiers collectVOPModifiers(const MCInst &MI, 871 bool IsVOP3P = false) { 872 VOPModifiers Modifiers; 873 unsigned Opc = MI.getOpcode(); 874 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 875 AMDGPU::OpName::src1_modifiers, 876 AMDGPU::OpName::src2_modifiers}; 877 for (int J = 0; J < 3; ++J) { 878 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 879 if (OpIdx == -1) 880 continue; 881 882 unsigned Val = MI.getOperand(OpIdx).getImm(); 883 884 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 885 if (IsVOP3P) { 886 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 887 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 888 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 889 } else if (J == 0) { 890 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 891 } 892 } 893 894 return Modifiers; 895 } 896 897 // MAC opcodes have special old and src2 operands. 898 // src2 is tied to dst, while old is not tied (but assumed to be). 899 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 900 constexpr int DST_IDX = 0; 901 auto Opcode = MI.getOpcode(); 902 const auto &Desc = MCII->get(Opcode); 903 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 904 905 if (OldIdx != -1 && Desc.getOperandConstraint( 906 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 907 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 908 assert(Desc.getOperandConstraint( 909 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 910 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 911 (void)DST_IDX; 912 return true; 913 } 914 915 return false; 916 } 917 918 // Create dummy old operand and insert dummy unused src2_modifiers 919 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 920 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 921 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 922 insertNamedMCOperand(MI, MCOperand::createImm(0), 923 AMDGPU::OpName::src2_modifiers); 924 } 925 926 // We must check FI == literal to reject not genuine dpp8 insts, and we must 927 // first add optional MI operands to check FI 928 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 929 unsigned Opc = MI.getOpcode(); 930 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 931 convertVOP3PDPPInst(MI); 932 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 933 AMDGPU::isVOPC64DPP(Opc)) { 934 convertVOPCDPPInst(MI); 935 } else { 936 if (isMacDPP(MI)) 937 convertMacDPPInst(MI); 938 939 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 940 if (MI.getNumOperands() < DescNumOps && 941 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 942 auto Mods = collectVOPModifiers(MI); 943 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 944 AMDGPU::OpName::op_sel); 945 } else { 946 // Insert dummy unused src modifiers. 947 if (MI.getNumOperands() < DescNumOps && 948 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 949 insertNamedMCOperand(MI, MCOperand::createImm(0), 950 AMDGPU::OpName::src0_modifiers); 951 952 if (MI.getNumOperands() < DescNumOps && 953 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 954 insertNamedMCOperand(MI, MCOperand::createImm(0), 955 AMDGPU::OpName::src1_modifiers); 956 } 957 } 958 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 959 } 960 961 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 962 if (isMacDPP(MI)) 963 convertMacDPPInst(MI); 964 965 unsigned Opc = MI.getOpcode(); 966 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 967 if (MI.getNumOperands() < DescNumOps && 968 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 969 auto Mods = collectVOPModifiers(MI); 970 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 971 AMDGPU::OpName::op_sel); 972 } 973 return MCDisassembler::Success; 974 } 975 976 // Note that before gfx10, the MIMG encoding provided no information about 977 // VADDR size. Consequently, decoded instructions always show address as if it 978 // has 1 dword, which could be not really so. 979 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 980 auto TSFlags = MCII->get(MI.getOpcode()).TSFlags; 981 982 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 983 AMDGPU::OpName::vdst); 984 985 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 986 AMDGPU::OpName::vdata); 987 int VAddr0Idx = 988 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 989 int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc 990 : AMDGPU::OpName::rsrc; 991 int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName); 992 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 993 AMDGPU::OpName::dmask); 994 995 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 996 AMDGPU::OpName::tfe); 997 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 998 AMDGPU::OpName::d16); 999 1000 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 1001 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1002 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 1003 1004 assert(VDataIdx != -1); 1005 if (BaseOpcode->BVH) { 1006 // Add A16 operand for intersect_ray instructions 1007 addOperand(MI, MCOperand::createImm(BaseOpcode->A16)); 1008 return MCDisassembler::Success; 1009 } 1010 1011 bool IsAtomic = (VDstIdx != -1); 1012 bool IsGather4 = TSFlags & SIInstrFlags::Gather4; 1013 bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE; 1014 bool IsNSA = false; 1015 bool IsPartialNSA = false; 1016 unsigned AddrSize = Info->VAddrDwords; 1017 1018 if (isGFX10Plus()) { 1019 unsigned DimIdx = 1020 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 1021 int A16Idx = 1022 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 1023 const AMDGPU::MIMGDimInfo *Dim = 1024 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 1025 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 1026 1027 AddrSize = 1028 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 1029 1030 // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms. 1031 // VIMAGE insts other than BVH never use vaddr4. 1032 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 1033 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA || 1034 Info->MIMGEncoding == AMDGPU::MIMGEncGfx12; 1035 if (!IsNSA) { 1036 if (!IsVSample && AddrSize > 12) 1037 AddrSize = 16; 1038 } else { 1039 if (AddrSize > Info->VAddrDwords) { 1040 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 1041 // The NSA encoding does not contain enough operands for the 1042 // combination of base opcode / dimension. Should this be an error? 1043 return MCDisassembler::Success; 1044 } 1045 IsPartialNSA = true; 1046 } 1047 } 1048 } 1049 1050 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 1051 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 1052 1053 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 1054 if (D16 && AMDGPU::hasPackedD16(STI)) { 1055 DstSize = (DstSize + 1) / 2; 1056 } 1057 1058 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 1059 DstSize += 1; 1060 1061 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 1062 return MCDisassembler::Success; 1063 1064 int NewOpcode = 1065 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 1066 if (NewOpcode == -1) 1067 return MCDisassembler::Success; 1068 1069 // Widen the register to the correct number of enabled channels. 1070 unsigned NewVdata = AMDGPU::NoRegister; 1071 if (DstSize != Info->VDataDwords) { 1072 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 1073 1074 // Get first subregister of VData 1075 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 1076 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 1077 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 1078 1079 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 1080 &MRI.getRegClass(DataRCID)); 1081 if (NewVdata == AMDGPU::NoRegister) { 1082 // It's possible to encode this such that the low register + enabled 1083 // components exceeds the register count. 1084 return MCDisassembler::Success; 1085 } 1086 } 1087 1088 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 1089 // If using partial NSA on GFX11+ widen last address register. 1090 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 1091 unsigned NewVAddrSA = AMDGPU::NoRegister; 1092 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 1093 AddrSize != Info->VAddrDwords) { 1094 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 1095 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 1096 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 1097 1098 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 1099 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 1100 &MRI.getRegClass(AddrRCID)); 1101 if (!NewVAddrSA) 1102 return MCDisassembler::Success; 1103 } 1104 1105 MI.setOpcode(NewOpcode); 1106 1107 if (NewVdata != AMDGPU::NoRegister) { 1108 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 1109 1110 if (IsAtomic) { 1111 // Atomic operations have an additional operand (a copy of data) 1112 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 1113 } 1114 } 1115 1116 if (NewVAddrSA) { 1117 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 1118 } else if (IsNSA) { 1119 assert(AddrSize <= Info->VAddrDwords); 1120 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 1121 MI.begin() + VAddr0Idx + Info->VAddrDwords); 1122 } 1123 1124 return MCDisassembler::Success; 1125 } 1126 1127 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 1128 // decoder only adds to src_modifiers, so manually add the bits to the other 1129 // operands. 1130 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 1131 unsigned Opc = MI.getOpcode(); 1132 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1133 auto Mods = collectVOPModifiers(MI, true); 1134 1135 if (MI.getNumOperands() < DescNumOps && 1136 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 1137 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 1138 1139 if (MI.getNumOperands() < DescNumOps && 1140 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1141 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1142 AMDGPU::OpName::op_sel); 1143 if (MI.getNumOperands() < DescNumOps && 1144 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1145 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1146 AMDGPU::OpName::op_sel_hi); 1147 if (MI.getNumOperands() < DescNumOps && 1148 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1149 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1150 AMDGPU::OpName::neg_lo); 1151 if (MI.getNumOperands() < DescNumOps && 1152 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1153 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1154 AMDGPU::OpName::neg_hi); 1155 1156 return MCDisassembler::Success; 1157 } 1158 1159 // Create dummy old operand and insert optional operands 1160 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1161 unsigned Opc = MI.getOpcode(); 1162 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1163 1164 if (MI.getNumOperands() < DescNumOps && 1165 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1166 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1167 1168 if (MI.getNumOperands() < DescNumOps && 1169 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1170 insertNamedMCOperand(MI, MCOperand::createImm(0), 1171 AMDGPU::OpName::src0_modifiers); 1172 1173 if (MI.getNumOperands() < DescNumOps && 1174 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1175 insertNamedMCOperand(MI, MCOperand::createImm(0), 1176 AMDGPU::OpName::src1_modifiers); 1177 return MCDisassembler::Success; 1178 } 1179 1180 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1181 int ImmLitIdx) const { 1182 assert(HasLiteral && "Should have decoded a literal"); 1183 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1184 unsigned DescNumOps = Desc.getNumOperands(); 1185 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1186 AMDGPU::OpName::immDeferred); 1187 assert(DescNumOps == MI.getNumOperands()); 1188 for (unsigned I = 0; I < DescNumOps; ++I) { 1189 auto &Op = MI.getOperand(I); 1190 auto OpType = Desc.operands()[I].OperandType; 1191 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1192 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1193 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1194 IsDeferredOp) 1195 Op.setImm(Literal); 1196 } 1197 return MCDisassembler::Success; 1198 } 1199 1200 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1201 return getContext().getRegisterInfo()-> 1202 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1203 } 1204 1205 inline 1206 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1207 const Twine& ErrMsg) const { 1208 *CommentStream << "Error: " + ErrMsg; 1209 1210 // ToDo: add support for error operands to MCInst.h 1211 // return MCOperand::createError(V); 1212 return MCOperand(); 1213 } 1214 1215 inline 1216 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1217 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1218 } 1219 1220 inline 1221 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1222 unsigned Val) const { 1223 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1224 if (Val >= RegCl.getNumRegs()) 1225 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1226 ": unknown register " + Twine(Val)); 1227 return createRegOperand(RegCl.getRegister(Val)); 1228 } 1229 1230 inline 1231 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1232 unsigned Val) const { 1233 // ToDo: SI/CI have 104 SGPRs, VI - 102 1234 // Valery: here we accepting as much as we can, let assembler sort it out 1235 int shift = 0; 1236 switch (SRegClassID) { 1237 case AMDGPU::SGPR_32RegClassID: 1238 case AMDGPU::TTMP_32RegClassID: 1239 break; 1240 case AMDGPU::SGPR_64RegClassID: 1241 case AMDGPU::TTMP_64RegClassID: 1242 shift = 1; 1243 break; 1244 case AMDGPU::SGPR_96RegClassID: 1245 case AMDGPU::TTMP_96RegClassID: 1246 case AMDGPU::SGPR_128RegClassID: 1247 case AMDGPU::TTMP_128RegClassID: 1248 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1249 // this bundle? 1250 case AMDGPU::SGPR_256RegClassID: 1251 case AMDGPU::TTMP_256RegClassID: 1252 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1253 // this bundle? 1254 case AMDGPU::SGPR_288RegClassID: 1255 case AMDGPU::TTMP_288RegClassID: 1256 case AMDGPU::SGPR_320RegClassID: 1257 case AMDGPU::TTMP_320RegClassID: 1258 case AMDGPU::SGPR_352RegClassID: 1259 case AMDGPU::TTMP_352RegClassID: 1260 case AMDGPU::SGPR_384RegClassID: 1261 case AMDGPU::TTMP_384RegClassID: 1262 case AMDGPU::SGPR_512RegClassID: 1263 case AMDGPU::TTMP_512RegClassID: 1264 shift = 2; 1265 break; 1266 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1267 // this bundle? 1268 default: 1269 llvm_unreachable("unhandled register class"); 1270 } 1271 1272 if (Val % (1 << shift)) { 1273 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1274 << ": scalar reg isn't aligned " << Val; 1275 } 1276 1277 return createRegOperand(SRegClassID, Val >> shift); 1278 } 1279 1280 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx, 1281 bool IsHi) const { 1282 unsigned RCID = 1283 IsHi ? AMDGPU::VGPR_HI16RegClassID : AMDGPU::VGPR_LO16RegClassID; 1284 return createRegOperand(RCID, RegIdx); 1285 } 1286 1287 // Decode Literals for insts which always have a literal in the encoding 1288 MCOperand 1289 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1290 if (HasLiteral) { 1291 assert( 1292 AMDGPU::hasVOPD(STI) && 1293 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1294 if (Literal != Val) 1295 return errOperand(Val, "More than one unique literal is illegal"); 1296 } 1297 HasLiteral = true; 1298 Literal = Val; 1299 return MCOperand::createImm(Literal); 1300 } 1301 1302 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const { 1303 // For now all literal constants are supposed to be unsigned integer 1304 // ToDo: deal with signed/unsigned 64-bit integer constants 1305 // ToDo: deal with float/double constants 1306 if (!HasLiteral) { 1307 if (Bytes.size() < 4) { 1308 return errOperand(0, "cannot read literal, inst bytes left " + 1309 Twine(Bytes.size())); 1310 } 1311 HasLiteral = true; 1312 Literal = Literal64 = eatBytes<uint32_t>(Bytes); 1313 if (ExtendFP64) 1314 Literal64 <<= 32; 1315 } 1316 return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal); 1317 } 1318 1319 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1320 using namespace AMDGPU::EncValues; 1321 1322 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1323 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1324 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1325 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1326 // Cast prevents negative overflow. 1327 } 1328 1329 static int64_t getInlineImmVal32(unsigned Imm) { 1330 switch (Imm) { 1331 case 240: 1332 return llvm::bit_cast<uint32_t>(0.5f); 1333 case 241: 1334 return llvm::bit_cast<uint32_t>(-0.5f); 1335 case 242: 1336 return llvm::bit_cast<uint32_t>(1.0f); 1337 case 243: 1338 return llvm::bit_cast<uint32_t>(-1.0f); 1339 case 244: 1340 return llvm::bit_cast<uint32_t>(2.0f); 1341 case 245: 1342 return llvm::bit_cast<uint32_t>(-2.0f); 1343 case 246: 1344 return llvm::bit_cast<uint32_t>(4.0f); 1345 case 247: 1346 return llvm::bit_cast<uint32_t>(-4.0f); 1347 case 248: // 1 / (2 * PI) 1348 return 0x3e22f983; 1349 default: 1350 llvm_unreachable("invalid fp inline imm"); 1351 } 1352 } 1353 1354 static int64_t getInlineImmVal64(unsigned Imm) { 1355 switch (Imm) { 1356 case 240: 1357 return llvm::bit_cast<uint64_t>(0.5); 1358 case 241: 1359 return llvm::bit_cast<uint64_t>(-0.5); 1360 case 242: 1361 return llvm::bit_cast<uint64_t>(1.0); 1362 case 243: 1363 return llvm::bit_cast<uint64_t>(-1.0); 1364 case 244: 1365 return llvm::bit_cast<uint64_t>(2.0); 1366 case 245: 1367 return llvm::bit_cast<uint64_t>(-2.0); 1368 case 246: 1369 return llvm::bit_cast<uint64_t>(4.0); 1370 case 247: 1371 return llvm::bit_cast<uint64_t>(-4.0); 1372 case 248: // 1 / (2 * PI) 1373 return 0x3fc45f306dc9c882; 1374 default: 1375 llvm_unreachable("invalid fp inline imm"); 1376 } 1377 } 1378 1379 static int64_t getInlineImmVal16(unsigned Imm) { 1380 switch (Imm) { 1381 case 240: 1382 return 0x3800; 1383 case 241: 1384 return 0xB800; 1385 case 242: 1386 return 0x3C00; 1387 case 243: 1388 return 0xBC00; 1389 case 244: 1390 return 0x4000; 1391 case 245: 1392 return 0xC000; 1393 case 246: 1394 return 0x4400; 1395 case 247: 1396 return 0xC400; 1397 case 248: // 1 / (2 * PI) 1398 return 0x3118; 1399 default: 1400 llvm_unreachable("invalid fp inline imm"); 1401 } 1402 } 1403 1404 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1405 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1406 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1407 1408 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1409 // ImmWidth 0 is a default case where operand should not allow immediates. 1410 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1411 // use it to print verbose error message. 1412 switch (ImmWidth) { 1413 case 0: 1414 case 32: 1415 return MCOperand::createImm(getInlineImmVal32(Imm)); 1416 case 64: 1417 return MCOperand::createImm(getInlineImmVal64(Imm)); 1418 case 16: 1419 return MCOperand::createImm(getInlineImmVal16(Imm)); 1420 default: 1421 llvm_unreachable("implement me"); 1422 } 1423 } 1424 1425 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1426 using namespace AMDGPU; 1427 1428 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1429 switch (Width) { 1430 default: // fall 1431 case OPW32: 1432 case OPW16: 1433 case OPWV216: 1434 return VGPR_32RegClassID; 1435 case OPW64: 1436 case OPWV232: return VReg_64RegClassID; 1437 case OPW96: return VReg_96RegClassID; 1438 case OPW128: return VReg_128RegClassID; 1439 case OPW160: return VReg_160RegClassID; 1440 case OPW256: return VReg_256RegClassID; 1441 case OPW288: return VReg_288RegClassID; 1442 case OPW320: return VReg_320RegClassID; 1443 case OPW352: return VReg_352RegClassID; 1444 case OPW384: return VReg_384RegClassID; 1445 case OPW512: return VReg_512RegClassID; 1446 case OPW1024: return VReg_1024RegClassID; 1447 } 1448 } 1449 1450 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1451 using namespace AMDGPU; 1452 1453 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1454 switch (Width) { 1455 default: // fall 1456 case OPW32: 1457 case OPW16: 1458 case OPWV216: 1459 return AGPR_32RegClassID; 1460 case OPW64: 1461 case OPWV232: return AReg_64RegClassID; 1462 case OPW96: return AReg_96RegClassID; 1463 case OPW128: return AReg_128RegClassID; 1464 case OPW160: return AReg_160RegClassID; 1465 case OPW256: return AReg_256RegClassID; 1466 case OPW288: return AReg_288RegClassID; 1467 case OPW320: return AReg_320RegClassID; 1468 case OPW352: return AReg_352RegClassID; 1469 case OPW384: return AReg_384RegClassID; 1470 case OPW512: return AReg_512RegClassID; 1471 case OPW1024: return AReg_1024RegClassID; 1472 } 1473 } 1474 1475 1476 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1477 using namespace AMDGPU; 1478 1479 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1480 switch (Width) { 1481 default: // fall 1482 case OPW32: 1483 case OPW16: 1484 case OPWV216: 1485 return SGPR_32RegClassID; 1486 case OPW64: 1487 case OPWV232: return SGPR_64RegClassID; 1488 case OPW96: return SGPR_96RegClassID; 1489 case OPW128: return SGPR_128RegClassID; 1490 case OPW160: return SGPR_160RegClassID; 1491 case OPW256: return SGPR_256RegClassID; 1492 case OPW288: return SGPR_288RegClassID; 1493 case OPW320: return SGPR_320RegClassID; 1494 case OPW352: return SGPR_352RegClassID; 1495 case OPW384: return SGPR_384RegClassID; 1496 case OPW512: return SGPR_512RegClassID; 1497 } 1498 } 1499 1500 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1501 using namespace AMDGPU; 1502 1503 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1504 switch (Width) { 1505 default: // fall 1506 case OPW32: 1507 case OPW16: 1508 case OPWV216: 1509 return TTMP_32RegClassID; 1510 case OPW64: 1511 case OPWV232: return TTMP_64RegClassID; 1512 case OPW128: return TTMP_128RegClassID; 1513 case OPW256: return TTMP_256RegClassID; 1514 case OPW288: return TTMP_288RegClassID; 1515 case OPW320: return TTMP_320RegClassID; 1516 case OPW352: return TTMP_352RegClassID; 1517 case OPW384: return TTMP_384RegClassID; 1518 case OPW512: return TTMP_512RegClassID; 1519 } 1520 } 1521 1522 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1523 using namespace AMDGPU::EncValues; 1524 1525 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1526 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1527 1528 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1529 } 1530 1531 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1532 bool MandatoryLiteral, 1533 unsigned ImmWidth, bool IsFP) const { 1534 using namespace AMDGPU::EncValues; 1535 1536 assert(Val < 1024); // enum10 1537 1538 bool IsAGPR = Val & 512; 1539 Val &= 511; 1540 1541 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1542 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1543 : getVgprClassId(Width), Val - VGPR_MIN); 1544 } 1545 return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth, 1546 IsFP); 1547 } 1548 1549 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, 1550 unsigned Val, 1551 bool MandatoryLiteral, 1552 unsigned ImmWidth, 1553 bool IsFP) const { 1554 // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been 1555 // decoded earlier. 1556 assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0"); 1557 using namespace AMDGPU::EncValues; 1558 1559 if (Val <= SGPR_MAX) { 1560 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1561 static_assert(SGPR_MIN == 0); 1562 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1563 } 1564 1565 int TTmpIdx = getTTmpIdx(Val); 1566 if (TTmpIdx >= 0) { 1567 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1568 } 1569 1570 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1571 return decodeIntImmed(Val); 1572 1573 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1574 return decodeFPImmed(ImmWidth, Val); 1575 1576 if (Val == LITERAL_CONST) { 1577 if (MandatoryLiteral) 1578 // Keep a sentinel value for deferred setting 1579 return MCOperand::createImm(LITERAL_CONST); 1580 else 1581 return decodeLiteralConstant(IsFP && ImmWidth == 64); 1582 } 1583 1584 switch (Width) { 1585 case OPW32: 1586 case OPW16: 1587 case OPWV216: 1588 return decodeSpecialReg32(Val); 1589 case OPW64: 1590 case OPWV232: 1591 return decodeSpecialReg64(Val); 1592 default: 1593 llvm_unreachable("unexpected immediate type"); 1594 } 1595 } 1596 1597 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1598 // opposite of bit 0 of DstX. 1599 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1600 unsigned Val) const { 1601 int VDstXInd = 1602 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1603 assert(VDstXInd != -1); 1604 assert(Inst.getOperand(VDstXInd).isReg()); 1605 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1606 Val |= ~XDstReg & 1; 1607 auto Width = llvm::AMDGPUDisassembler::OPW32; 1608 return createRegOperand(getVgprClassId(Width), Val); 1609 } 1610 1611 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1612 using namespace AMDGPU; 1613 1614 switch (Val) { 1615 // clang-format off 1616 case 102: return createRegOperand(FLAT_SCR_LO); 1617 case 103: return createRegOperand(FLAT_SCR_HI); 1618 case 104: return createRegOperand(XNACK_MASK_LO); 1619 case 105: return createRegOperand(XNACK_MASK_HI); 1620 case 106: return createRegOperand(VCC_LO); 1621 case 107: return createRegOperand(VCC_HI); 1622 case 108: return createRegOperand(TBA_LO); 1623 case 109: return createRegOperand(TBA_HI); 1624 case 110: return createRegOperand(TMA_LO); 1625 case 111: return createRegOperand(TMA_HI); 1626 case 124: 1627 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1628 case 125: 1629 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1630 case 126: return createRegOperand(EXEC_LO); 1631 case 127: return createRegOperand(EXEC_HI); 1632 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1633 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1634 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1635 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1636 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1637 case 251: return createRegOperand(SRC_VCCZ); 1638 case 252: return createRegOperand(SRC_EXECZ); 1639 case 253: return createRegOperand(SRC_SCC); 1640 case 254: return createRegOperand(LDS_DIRECT); 1641 default: break; 1642 // clang-format on 1643 } 1644 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1645 } 1646 1647 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1648 using namespace AMDGPU; 1649 1650 switch (Val) { 1651 case 102: return createRegOperand(FLAT_SCR); 1652 case 104: return createRegOperand(XNACK_MASK); 1653 case 106: return createRegOperand(VCC); 1654 case 108: return createRegOperand(TBA); 1655 case 110: return createRegOperand(TMA); 1656 case 124: 1657 if (isGFX11Plus()) 1658 return createRegOperand(SGPR_NULL); 1659 break; 1660 case 125: 1661 if (!isGFX11Plus()) 1662 return createRegOperand(SGPR_NULL); 1663 break; 1664 case 126: return createRegOperand(EXEC); 1665 case 235: return createRegOperand(SRC_SHARED_BASE); 1666 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1667 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1668 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1669 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1670 case 251: return createRegOperand(SRC_VCCZ); 1671 case 252: return createRegOperand(SRC_EXECZ); 1672 case 253: return createRegOperand(SRC_SCC); 1673 default: break; 1674 } 1675 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1676 } 1677 1678 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1679 const unsigned Val, 1680 unsigned ImmWidth) const { 1681 using namespace AMDGPU::SDWA; 1682 using namespace AMDGPU::EncValues; 1683 1684 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1685 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1686 // XXX: cast to int is needed to avoid stupid warning: 1687 // compare with unsigned is always true 1688 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1689 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1690 return createRegOperand(getVgprClassId(Width), 1691 Val - SDWA9EncValues::SRC_VGPR_MIN); 1692 } 1693 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1694 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1695 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1696 return createSRegOperand(getSgprClassId(Width), 1697 Val - SDWA9EncValues::SRC_SGPR_MIN); 1698 } 1699 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1700 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1701 return createSRegOperand(getTtmpClassId(Width), 1702 Val - SDWA9EncValues::SRC_TTMP_MIN); 1703 } 1704 1705 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1706 1707 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1708 return decodeIntImmed(SVal); 1709 1710 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1711 return decodeFPImmed(ImmWidth, SVal); 1712 1713 return decodeSpecialReg32(SVal); 1714 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 1715 return createRegOperand(getVgprClassId(Width), Val); 1716 } 1717 llvm_unreachable("unsupported target"); 1718 } 1719 1720 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1721 return decodeSDWASrc(OPW16, Val, 16); 1722 } 1723 1724 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1725 return decodeSDWASrc(OPW32, Val, 32); 1726 } 1727 1728 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1729 using namespace AMDGPU::SDWA; 1730 1731 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1732 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1733 "SDWAVopcDst should be present only on GFX9+"); 1734 1735 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1736 1737 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1738 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1739 1740 int TTmpIdx = getTTmpIdx(Val); 1741 if (TTmpIdx >= 0) { 1742 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1743 return createSRegOperand(TTmpClsId, TTmpIdx); 1744 } else if (Val > SGPR_MAX) { 1745 return IsWave64 ? decodeSpecialReg64(Val) 1746 : decodeSpecialReg32(Val); 1747 } else { 1748 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1749 } 1750 } else { 1751 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1752 } 1753 } 1754 1755 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1756 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1757 ? decodeSrcOp(OPW64, Val) 1758 : decodeSrcOp(OPW32, Val); 1759 } 1760 1761 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const { 1762 return decodeSrcOp(OPW32, Val); 1763 } 1764 1765 bool AMDGPUDisassembler::isVI() const { 1766 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1767 } 1768 1769 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1770 1771 bool AMDGPUDisassembler::isGFX90A() const { 1772 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1773 } 1774 1775 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1776 1777 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1778 1779 bool AMDGPUDisassembler::isGFX10Plus() const { 1780 return AMDGPU::isGFX10Plus(STI); 1781 } 1782 1783 bool AMDGPUDisassembler::isGFX11() const { 1784 return STI.hasFeature(AMDGPU::FeatureGFX11); 1785 } 1786 1787 bool AMDGPUDisassembler::isGFX11Plus() const { 1788 return AMDGPU::isGFX11Plus(STI); 1789 } 1790 1791 bool AMDGPUDisassembler::isGFX12Plus() const { 1792 return AMDGPU::isGFX12Plus(STI); 1793 } 1794 1795 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1796 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1797 } 1798 1799 bool AMDGPUDisassembler::hasKernargPreload() const { 1800 return AMDGPU::hasKernargPreload(STI); 1801 } 1802 1803 //===----------------------------------------------------------------------===// 1804 // AMDGPU specific symbol handling 1805 //===----------------------------------------------------------------------===// 1806 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1807 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1808 do { \ 1809 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1810 } while (0) 1811 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ 1812 do { \ 1813 KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ 1814 << GET_FIELD(MASK) << '\n'; \ 1815 } while (0) 1816 1817 // NOLINTNEXTLINE(readability-identifier-naming) 1818 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1819 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1820 using namespace amdhsa; 1821 StringRef Indent = "\t"; 1822 1823 // We cannot accurately backward compute #VGPRs used from 1824 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1825 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1826 // simply calculate the inverse of what the assembler does. 1827 1828 uint32_t GranulatedWorkitemVGPRCount = 1829 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1830 1831 uint32_t NextFreeVGPR = 1832 (GranulatedWorkitemVGPRCount + 1) * 1833 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); 1834 1835 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1836 1837 // We cannot backward compute values used to calculate 1838 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1839 // directives can't be computed: 1840 // .amdhsa_reserve_vcc 1841 // .amdhsa_reserve_flat_scratch 1842 // .amdhsa_reserve_xnack_mask 1843 // They take their respective default values if not specified in the assembly. 1844 // 1845 // GRANULATED_WAVEFRONT_SGPR_COUNT 1846 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1847 // 1848 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1849 // are set to 0. So while disassembling we consider that: 1850 // 1851 // GRANULATED_WAVEFRONT_SGPR_COUNT 1852 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1853 // 1854 // The disassembler cannot recover the original values of those 3 directives. 1855 1856 uint32_t GranulatedWavefrontSGPRCount = 1857 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1858 1859 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1860 return MCDisassembler::Fail; 1861 1862 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1863 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1864 1865 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1866 if (!hasArchitectedFlatScratch()) 1867 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1868 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1869 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1870 1871 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1872 return MCDisassembler::Fail; 1873 1874 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1875 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1876 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1877 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1878 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1879 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1880 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1881 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1882 1883 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1884 return MCDisassembler::Fail; 1885 1886 if (!isGFX12Plus()) 1887 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", 1888 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP); 1889 1890 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1891 return MCDisassembler::Fail; 1892 1893 if (!isGFX12Plus()) 1894 PRINT_DIRECTIVE(".amdhsa_ieee_mode", 1895 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE); 1896 1897 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1898 return MCDisassembler::Fail; 1899 1900 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1901 return MCDisassembler::Fail; 1902 1903 if (isGFX9Plus()) 1904 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL); 1905 1906 if (!isGFX9Plus()) 1907 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0) 1908 return MCDisassembler::Fail; 1909 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1) 1910 return MCDisassembler::Fail; 1911 if (!isGFX10Plus()) 1912 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2) 1913 return MCDisassembler::Fail; 1914 1915 if (isGFX10Plus()) { 1916 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1917 COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE); 1918 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED); 1919 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS); 1920 } 1921 1922 if (isGFX12Plus()) 1923 PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling", 1924 COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN); 1925 1926 return MCDisassembler::Success; 1927 } 1928 1929 // NOLINTNEXTLINE(readability-identifier-naming) 1930 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1931 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1932 using namespace amdhsa; 1933 StringRef Indent = "\t"; 1934 if (hasArchitectedFlatScratch()) 1935 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1936 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1937 else 1938 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1939 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1940 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1941 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1942 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1943 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1944 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1945 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1946 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1947 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1948 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1949 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1950 1951 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1952 return MCDisassembler::Fail; 1953 1954 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1955 return MCDisassembler::Fail; 1956 1957 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1958 return MCDisassembler::Fail; 1959 1960 PRINT_DIRECTIVE( 1961 ".amdhsa_exception_fp_ieee_invalid_op", 1962 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1963 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1964 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1965 PRINT_DIRECTIVE( 1966 ".amdhsa_exception_fp_ieee_div_zero", 1967 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1968 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1969 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1970 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1971 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1972 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1973 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1974 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1975 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1976 1977 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1978 return MCDisassembler::Fail; 1979 1980 return MCDisassembler::Success; 1981 } 1982 1983 // NOLINTNEXTLINE(readability-identifier-naming) 1984 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 1985 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1986 using namespace amdhsa; 1987 StringRef Indent = "\t"; 1988 if (isGFX90A()) { 1989 KdStream << Indent << ".amdhsa_accum_offset " 1990 << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 1991 << '\n'; 1992 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0) 1993 return MCDisassembler::Fail; 1994 PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); 1995 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1) 1996 return MCDisassembler::Fail; 1997 } else if (isGFX10Plus()) { 1998 if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { 1999 PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", 2000 COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 2001 } else { 2002 PRINT_PSEUDO_DIRECTIVE_COMMENT( 2003 "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 2004 } 2005 2006 if (isGFX11Plus()) { 2007 PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", 2008 COMPUTE_PGM_RSRC3_GFX11_PLUS_INST_PREF_SIZE); 2009 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", 2010 COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START); 2011 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", 2012 COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_END); 2013 } else { 2014 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED0) 2015 return MCDisassembler::Fail; 2016 } 2017 2018 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED1) 2019 return MCDisassembler::Fail; 2020 2021 if (isGFX11Plus()) { 2022 PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", 2023 COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START); 2024 } else { 2025 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED2) 2026 return MCDisassembler::Fail; 2027 } 2028 } else if (FourByteBuffer) { 2029 return MCDisassembler::Fail; 2030 } 2031 return MCDisassembler::Success; 2032 } 2033 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT 2034 #undef PRINT_DIRECTIVE 2035 #undef GET_FIELD 2036 2037 MCDisassembler::DecodeStatus 2038 AMDGPUDisassembler::decodeKernelDescriptorDirective( 2039 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 2040 raw_string_ostream &KdStream) const { 2041 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 2042 do { \ 2043 KdStream << Indent << DIRECTIVE " " \ 2044 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 2045 } while (0) 2046 2047 uint16_t TwoByteBuffer = 0; 2048 uint32_t FourByteBuffer = 0; 2049 2050 StringRef ReservedBytes; 2051 StringRef Indent = "\t"; 2052 2053 assert(Bytes.size() == 64); 2054 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 2055 2056 switch (Cursor.tell()) { 2057 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 2058 FourByteBuffer = DE.getU32(Cursor); 2059 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 2060 << '\n'; 2061 return MCDisassembler::Success; 2062 2063 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 2064 FourByteBuffer = DE.getU32(Cursor); 2065 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 2066 << FourByteBuffer << '\n'; 2067 return MCDisassembler::Success; 2068 2069 case amdhsa::KERNARG_SIZE_OFFSET: 2070 FourByteBuffer = DE.getU32(Cursor); 2071 KdStream << Indent << ".amdhsa_kernarg_size " 2072 << FourByteBuffer << '\n'; 2073 return MCDisassembler::Success; 2074 2075 case amdhsa::RESERVED0_OFFSET: 2076 // 4 reserved bytes, must be 0. 2077 ReservedBytes = DE.getBytes(Cursor, 4); 2078 for (int I = 0; I < 4; ++I) { 2079 if (ReservedBytes[I] != 0) { 2080 return MCDisassembler::Fail; 2081 } 2082 } 2083 return MCDisassembler::Success; 2084 2085 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 2086 // KERNEL_CODE_ENTRY_BYTE_OFFSET 2087 // So far no directive controls this for Code Object V3, so simply skip for 2088 // disassembly. 2089 DE.skip(Cursor, 8); 2090 return MCDisassembler::Success; 2091 2092 case amdhsa::RESERVED1_OFFSET: 2093 // 20 reserved bytes, must be 0. 2094 ReservedBytes = DE.getBytes(Cursor, 20); 2095 for (int I = 0; I < 20; ++I) { 2096 if (ReservedBytes[I] != 0) { 2097 return MCDisassembler::Fail; 2098 } 2099 } 2100 return MCDisassembler::Success; 2101 2102 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 2103 FourByteBuffer = DE.getU32(Cursor); 2104 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 2105 2106 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 2107 FourByteBuffer = DE.getU32(Cursor); 2108 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 2109 2110 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 2111 FourByteBuffer = DE.getU32(Cursor); 2112 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 2113 2114 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 2115 using namespace amdhsa; 2116 TwoByteBuffer = DE.getU16(Cursor); 2117 2118 if (!hasArchitectedFlatScratch()) 2119 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 2120 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 2121 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 2122 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 2123 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 2124 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 2125 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 2126 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 2127 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 2128 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 2129 if (!hasArchitectedFlatScratch()) 2130 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 2131 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 2132 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 2133 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 2134 2135 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 2136 return MCDisassembler::Fail; 2137 2138 // Reserved for GFX9 2139 if (isGFX9() && 2140 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 2141 return MCDisassembler::Fail; 2142 } else if (isGFX10Plus()) { 2143 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 2144 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2145 } 2146 2147 if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5) 2148 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 2149 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 2150 2151 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 2152 return MCDisassembler::Fail; 2153 2154 return MCDisassembler::Success; 2155 2156 case amdhsa::KERNARG_PRELOAD_OFFSET: 2157 using namespace amdhsa; 2158 TwoByteBuffer = DE.getU16(Cursor); 2159 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) { 2160 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length", 2161 KERNARG_PRELOAD_SPEC_LENGTH); 2162 } 2163 2164 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) { 2165 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset", 2166 KERNARG_PRELOAD_SPEC_OFFSET); 2167 } 2168 return MCDisassembler::Success; 2169 2170 case amdhsa::RESERVED3_OFFSET: 2171 // 4 bytes from here are reserved, must be 0. 2172 ReservedBytes = DE.getBytes(Cursor, 4); 2173 for (int I = 0; I < 4; ++I) { 2174 if (ReservedBytes[I] != 0) 2175 return MCDisassembler::Fail; 2176 } 2177 return MCDisassembler::Success; 2178 2179 default: 2180 llvm_unreachable("Unhandled index. Case statements cover everything."); 2181 return MCDisassembler::Fail; 2182 } 2183 #undef PRINT_DIRECTIVE 2184 } 2185 2186 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 2187 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 2188 // CP microcode requires the kernel descriptor to be 64 aligned. 2189 if (Bytes.size() != 64 || KdAddress % 64 != 0) 2190 return MCDisassembler::Fail; 2191 2192 // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 2193 // requires us to know the setting of .amdhsa_wavefront_size32 in order to 2194 // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong 2195 // order. Workaround this by first looking up .amdhsa_wavefront_size32 here 2196 // when required. 2197 if (isGFX10Plus()) { 2198 uint16_t KernelCodeProperties = 2199 support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], 2200 llvm::endianness::little); 2201 EnableWavefrontSize32 = 2202 AMDHSA_BITS_GET(KernelCodeProperties, 2203 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2204 } 2205 2206 std::string Kd; 2207 raw_string_ostream KdStream(Kd); 2208 KdStream << ".amdhsa_kernel " << KdName << '\n'; 2209 2210 DataExtractor::Cursor C(0); 2211 while (C && C.tell() < Bytes.size()) { 2212 MCDisassembler::DecodeStatus Status = 2213 decodeKernelDescriptorDirective(C, Bytes, KdStream); 2214 2215 cantFail(C.takeError()); 2216 2217 if (Status == MCDisassembler::Fail) 2218 return MCDisassembler::Fail; 2219 } 2220 KdStream << ".end_amdhsa_kernel\n"; 2221 outs() << KdStream.str(); 2222 return MCDisassembler::Success; 2223 } 2224 2225 std::optional<MCDisassembler::DecodeStatus> 2226 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2227 ArrayRef<uint8_t> Bytes, uint64_t Address, 2228 raw_ostream &CStream) const { 2229 // Right now only kernel descriptor needs to be handled. 2230 // We ignore all other symbols for target specific handling. 2231 // TODO: 2232 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2233 // Object V2 and V3 when symbols are marked protected. 2234 2235 // amd_kernel_code_t for Code Object V2. 2236 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2237 Size = 256; 2238 return MCDisassembler::Fail; 2239 } 2240 2241 // Code Object V3 kernel descriptors. 2242 StringRef Name = Symbol.Name; 2243 if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) { 2244 Size = 64; // Size = 64 regardless of success or failure. 2245 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2246 } 2247 return std::nullopt; 2248 } 2249 2250 //===----------------------------------------------------------------------===// 2251 // AMDGPUSymbolizer 2252 //===----------------------------------------------------------------------===// 2253 2254 // Try to find symbol name for specified label 2255 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2256 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2257 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2258 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2259 2260 if (!IsBranch) { 2261 return false; 2262 } 2263 2264 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2265 if (!Symbols) 2266 return false; 2267 2268 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2269 return Val.Addr == static_cast<uint64_t>(Value) && 2270 Val.Type == ELF::STT_NOTYPE; 2271 }); 2272 if (Result != Symbols->end()) { 2273 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2274 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2275 Inst.addOperand(MCOperand::createExpr(Add)); 2276 return true; 2277 } 2278 // Add to list of referenced addresses, so caller can synthesize a label. 2279 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2280 return false; 2281 } 2282 2283 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2284 int64_t Value, 2285 uint64_t Address) { 2286 llvm_unreachable("unimplemented"); 2287 } 2288 2289 //===----------------------------------------------------------------------===// 2290 // Initialization 2291 //===----------------------------------------------------------------------===// 2292 2293 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2294 LLVMOpInfoCallback /*GetOpInfo*/, 2295 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2296 void *DisInfo, 2297 MCContext *Ctx, 2298 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2299 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2300 } 2301 2302 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2303 const MCSubtargetInfo &STI, 2304 MCContext &Ctx) { 2305 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2306 } 2307 2308 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2309 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2310 createAMDGPUDisassembler); 2311 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2312 createAMDGPUSymbolizer); 2313 } 2314