xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 552539bdaccc187ce1781f579a8076e4c917fa28)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VGPR_32_Lo128)
123 DECODE_OPERAND_REG(VRegOrLds_32)
124 DECODE_OPERAND_REG(VS_32)
125 DECODE_OPERAND_REG(VS_64)
126 DECODE_OPERAND_REG(VS_128)
127 
128 DECODE_OPERAND_REG(VReg_64)
129 DECODE_OPERAND_REG(VReg_96)
130 DECODE_OPERAND_REG(VReg_128)
131 DECODE_OPERAND_REG(VReg_256)
132 DECODE_OPERAND_REG(VReg_512)
133 DECODE_OPERAND_REG(VReg_1024)
134 
135 DECODE_OPERAND_REG(SReg_32)
136 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
137 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
138 DECODE_OPERAND_REG(SRegOrLds_32)
139 DECODE_OPERAND_REG(SReg_64)
140 DECODE_OPERAND_REG(SReg_64_XEXEC)
141 DECODE_OPERAND_REG(SReg_128)
142 DECODE_OPERAND_REG(SReg_256)
143 DECODE_OPERAND_REG(SReg_512)
144 
145 DECODE_OPERAND_REG(AGPR_32)
146 DECODE_OPERAND_REG(AReg_64)
147 DECODE_OPERAND_REG(AReg_128)
148 DECODE_OPERAND_REG(AReg_256)
149 DECODE_OPERAND_REG(AReg_512)
150 DECODE_OPERAND_REG(AReg_1024)
151 DECODE_OPERAND_REG(AV_32)
152 DECODE_OPERAND_REG(AV_64)
153 DECODE_OPERAND_REG(AV_128)
154 DECODE_OPERAND_REG(AVDst_128)
155 DECODE_OPERAND_REG(AVDst_512)
156 
157 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
158                                          uint64_t Addr,
159                                          const MCDisassembler *Decoder) {
160   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
161   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
162 }
163 
164 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
165                                            uint64_t Addr,
166                                            const MCDisassembler *Decoder) {
167   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
168   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
169 }
170 
171 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
172                                            uint64_t Addr,
173                                            const MCDisassembler *Decoder) {
174   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
175   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
176 }
177 
178 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
179                                         uint64_t Addr,
180                                         const MCDisassembler *Decoder) {
181   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
182   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
183 }
184 
185 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
186                                         uint64_t Addr,
187                                         const MCDisassembler *Decoder) {
188   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
189   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
190 }
191 
192 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
193                                           uint64_t Addr,
194                                           const MCDisassembler *Decoder) {
195   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
196   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
197 }
198 
199 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
200                                            uint64_t Addr,
201                                            const MCDisassembler *Decoder) {
202   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
203   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
204 }
205 
206 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
207                                            uint64_t Addr,
208                                            const MCDisassembler *Decoder) {
209   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
210   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
211 }
212 
213 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
214                                            uint64_t Addr,
215                                            const MCDisassembler *Decoder) {
216   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
217   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
218 }
219 
220 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
221                                             uint64_t Addr,
222                                             const MCDisassembler *Decoder) {
223   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
224   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
225 }
226 
227 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
228                                           uint64_t Addr,
229                                           const MCDisassembler *Decoder) {
230   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
231   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
232 }
233 
234 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
235                                            uint64_t Addr,
236                                            const MCDisassembler *Decoder) {
237   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
238   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
239 }
240 
241 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
242                                            uint64_t Addr,
243                                            const MCDisassembler *Decoder) {
244   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
245   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
246 }
247 
248 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
249                                            uint64_t Addr,
250                                            const MCDisassembler *Decoder) {
251   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
252   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
253 }
254 
255 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
256                                             uint64_t Addr,
257                                             const MCDisassembler *Decoder) {
258   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
259   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
260 }
261 
262 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
263                                           uint64_t Addr,
264                                           const MCDisassembler *Decoder) {
265   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
266   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
267 }
268 
269 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
270                                           uint64_t Addr,
271                                           const MCDisassembler *Decoder) {
272   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
273   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
274 }
275 
276 static DecodeStatus
277 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
278                              const MCDisassembler *Decoder) {
279   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
280   return addOperand(
281       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
282 }
283 
284 static DecodeStatus
285 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
286                              const MCDisassembler *Decoder) {
287   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
288   return addOperand(
289       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
290 }
291 
292 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
293                                           uint64_t Addr, const void *Decoder) {
294   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
295   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
296 }
297 
298 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
299                           const MCRegisterInfo *MRI) {
300   if (OpIdx < 0)
301     return false;
302 
303   const MCOperand &Op = Inst.getOperand(OpIdx);
304   if (!Op.isReg())
305     return false;
306 
307   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
308   auto Reg = Sub ? Sub : Op.getReg();
309   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
310 }
311 
312 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
313                                              AMDGPUDisassembler::OpWidthTy Opw,
314                                              const MCDisassembler *Decoder) {
315   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
316   if (!DAsm->isGFX90A()) {
317     Imm &= 511;
318   } else {
319     // If atomic has both vdata and vdst their register classes are tied.
320     // The bit is decoded along with the vdst, first operand. We need to
321     // change register class to AGPR if vdst was AGPR.
322     // If a DS instruction has both data0 and data1 their register classes
323     // are also tied.
324     unsigned Opc = Inst.getOpcode();
325     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
326     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
327                                                         : AMDGPU::OpName::vdata;
328     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
329     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
330     if ((int)Inst.getNumOperands() == DataIdx) {
331       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
332       if (IsAGPROperand(Inst, DstIdx, MRI))
333         Imm |= 512;
334     }
335 
336     if (TSFlags & SIInstrFlags::DS) {
337       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
338       if ((int)Inst.getNumOperands() == Data2Idx &&
339           IsAGPROperand(Inst, DataIdx, MRI))
340         Imm |= 512;
341     }
342   }
343   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
344 }
345 
346 static DecodeStatus
347 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
348                              const MCDisassembler *Decoder) {
349   return decodeOperand_AVLdSt_Any(Inst, Imm,
350                                   AMDGPUDisassembler::OPW32, Decoder);
351 }
352 
353 static DecodeStatus
354 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
355                              const MCDisassembler *Decoder) {
356   return decodeOperand_AVLdSt_Any(Inst, Imm,
357                                   AMDGPUDisassembler::OPW64, Decoder);
358 }
359 
360 static DecodeStatus
361 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
362                              const MCDisassembler *Decoder) {
363   return decodeOperand_AVLdSt_Any(Inst, Imm,
364                                   AMDGPUDisassembler::OPW96, Decoder);
365 }
366 
367 static DecodeStatus
368 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
369                               const MCDisassembler *Decoder) {
370   return decodeOperand_AVLdSt_Any(Inst, Imm,
371                                   AMDGPUDisassembler::OPW128, Decoder);
372 }
373 
374 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
375                                           uint64_t Addr,
376                                           const MCDisassembler *Decoder) {
377   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
378   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
379 }
380 
381 #define DECODE_SDWA(DecName) \
382 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
383 
384 DECODE_SDWA(Src32)
385 DECODE_SDWA(Src16)
386 DECODE_SDWA(VopcDst)
387 
388 #include "AMDGPUGenDisassemblerTables.inc"
389 
390 //===----------------------------------------------------------------------===//
391 //
392 //===----------------------------------------------------------------------===//
393 
394 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
395   assert(Bytes.size() >= sizeof(T));
396   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
397   Bytes = Bytes.slice(sizeof(T));
398   return Res;
399 }
400 
401 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
402   assert(Bytes.size() >= 12);
403   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
404       Bytes.data());
405   Bytes = Bytes.slice(8);
406   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
407       Bytes.data());
408   Bytes = Bytes.slice(4);
409   return DecoderUInt128(Lo, Hi);
410 }
411 
412 // The disassembler is greedy, so we need to check FI operand value to
413 // not parse a dpp if the correct literal is not set. For dpp16 the
414 // autogenerated decoder checks the dpp literal
415 static bool isValidDPP8(const MCInst &MI) {
416   using namespace llvm::AMDGPU::DPP;
417   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
418   assert(FiIdx != -1);
419   if ((unsigned)FiIdx >= MI.getNumOperands())
420     return false;
421   unsigned Fi = MI.getOperand(FiIdx).getImm();
422   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
423 }
424 
425 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
426                                                 ArrayRef<uint8_t> Bytes_,
427                                                 uint64_t Address,
428                                                 raw_ostream &CS) const {
429   CommentStream = &CS;
430   bool IsSDWA = false;
431 
432   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
433   Bytes = Bytes_.slice(0, MaxInstBytesNum);
434 
435   DecodeStatus Res = MCDisassembler::Fail;
436   do {
437     // ToDo: better to switch encoding length using some bit predicate
438     // but it is unknown yet, so try all we can
439 
440     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
441     // encodings
442     if (isGFX11Plus() && Bytes.size() >= 12 ) {
443       DecoderUInt128 DecW = eat12Bytes(Bytes);
444       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
445                                           Address);
446       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
447         break;
448       MI = MCInst(); // clear
449       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
450                                           Address);
451       if (Res) {
452         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
453           convertVOP3PDPPInst(MI);
454         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
455           convertVOPCDPPInst(MI); // Special VOP3 case
456         else {
457           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
458           convertVOP3DPPInst(MI); // Regular VOP3 case
459         }
460         break;
461       }
462       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
463       if (Res)
464         break;
465     }
466     // Reinitialize Bytes
467     Bytes = Bytes_.slice(0, MaxInstBytesNum);
468 
469     if (Bytes.size() >= 8) {
470       const uint64_t QW = eatBytes<uint64_t>(Bytes);
471 
472       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
473         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
474         if (Res) {
475           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
476               == -1)
477             break;
478           if (convertDPP8Inst(MI) == MCDisassembler::Success)
479             break;
480           MI = MCInst(); // clear
481         }
482       }
483 
484       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
485       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
486         break;
487       MI = MCInst(); // clear
488 
489       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
490       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
491         break;
492       MI = MCInst(); // clear
493 
494       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
495       if (Res) break;
496 
497       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
498       if (Res) {
499         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
500           convertVOPCDPPInst(MI);
501         break;
502       }
503 
504       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
505       if (Res) { IsSDWA = true;  break; }
506 
507       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
508       if (Res) { IsSDWA = true;  break; }
509 
510       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
511       if (Res) { IsSDWA = true;  break; }
512 
513       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
514         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
515         if (Res)
516           break;
517       }
518 
519       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
520       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
521       // table first so we print the correct name.
522       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
523         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
524         if (Res)
525           break;
526       }
527     }
528 
529     // Reinitialize Bytes as DPP64 could have eaten too much
530     Bytes = Bytes_.slice(0, MaxInstBytesNum);
531 
532     // Try decode 32-bit instruction
533     if (Bytes.size() < 4) break;
534     const uint32_t DW = eatBytes<uint32_t>(Bytes);
535     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
536     if (Res) break;
537 
538     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
539     if (Res) break;
540 
541     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
542     if (Res) break;
543 
544     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
545       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
546       if (Res)
547         break;
548     }
549 
550     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
551       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
552       if (Res) break;
553     }
554 
555     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
556     if (Res) break;
557 
558     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
559     if (Res) break;
560 
561     if (Bytes.size() < 4) break;
562     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
563 
564     if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) {
565       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address);
566       if (Res)
567         break;
568     }
569 
570     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
571       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
572       if (Res)
573         break;
574     }
575 
576     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
577     if (Res) break;
578 
579     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
580     if (Res) break;
581 
582     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
583     if (Res) break;
584 
585     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
586     if (Res) break;
587 
588     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
589     if (Res)
590       break;
591 
592     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
593   } while (false);
594 
595   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
596               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
597               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
598               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
599               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
600               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
601               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
602               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
603               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
604               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
605               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
606               MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
607               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
608               MI.getOpcode() == AMDGPU::V_FMAC_F16_t16_e64_gfx11)) {
609     // Insert dummy unused src2_modifiers.
610     insertNamedMCOperand(MI, MCOperand::createImm(0),
611                          AMDGPU::OpName::src2_modifiers);
612   }
613 
614   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
615           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
616     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
617                                              AMDGPU::OpName::cpol);
618     if (CPolPos != -1) {
619       unsigned CPol =
620           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
621               AMDGPU::CPol::GLC : 0;
622       if (MI.getNumOperands() <= (unsigned)CPolPos) {
623         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
624                              AMDGPU::OpName::cpol);
625       } else if (CPol) {
626         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
627       }
628     }
629   }
630 
631   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
632               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
633              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
634     // GFX90A lost TFE, its place is occupied by ACC.
635     int TFEOpIdx =
636         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
637     if (TFEOpIdx != -1) {
638       auto TFEIter = MI.begin();
639       std::advance(TFEIter, TFEOpIdx);
640       MI.insert(TFEIter, MCOperand::createImm(0));
641     }
642   }
643 
644   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
645               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
646     int SWZOpIdx =
647         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
648     if (SWZOpIdx != -1) {
649       auto SWZIter = MI.begin();
650       std::advance(SWZIter, SWZOpIdx);
651       MI.insert(SWZIter, MCOperand::createImm(0));
652     }
653   }
654 
655   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
656     int VAddr0Idx =
657         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
658     int RsrcIdx =
659         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
660     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
661     if (VAddr0Idx >= 0 && NSAArgs > 0) {
662       unsigned NSAWords = (NSAArgs + 3) / 4;
663       if (Bytes.size() < 4 * NSAWords) {
664         Res = MCDisassembler::Fail;
665       } else {
666         for (unsigned i = 0; i < NSAArgs; ++i) {
667           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
668           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
669           MI.insert(MI.begin() + VAddrIdx,
670                     createRegOperand(VAddrRCID, Bytes[i]));
671         }
672         Bytes = Bytes.slice(4 * NSAWords);
673       }
674     }
675 
676     if (Res)
677       Res = convertMIMGInst(MI);
678   }
679 
680   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
681     Res = convertEXPInst(MI);
682 
683   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
684     Res = convertVINTERPInst(MI);
685 
686   if (Res && IsSDWA)
687     Res = convertSDWAInst(MI);
688 
689   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
690                                               AMDGPU::OpName::vdst_in);
691   if (VDstIn_Idx != -1) {
692     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
693                            MCOI::OperandConstraint::TIED_TO);
694     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
695          !MI.getOperand(VDstIn_Idx).isReg() ||
696          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
697       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
698         MI.erase(&MI.getOperand(VDstIn_Idx));
699       insertNamedMCOperand(MI,
700         MCOperand::createReg(MI.getOperand(Tied).getReg()),
701         AMDGPU::OpName::vdst_in);
702     }
703   }
704 
705   int ImmLitIdx =
706       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
707   if (Res && ImmLitIdx != -1)
708     Res = convertFMAanyK(MI, ImmLitIdx);
709 
710   // if the opcode was not recognized we'll assume a Size of 4 bytes
711   // (unless there are fewer bytes left)
712   Size = Res ? (MaxInstBytesNum - Bytes.size())
713              : std::min((size_t)4, Bytes_.size());
714   return Res;
715 }
716 
717 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
718   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
719     // The MCInst still has these fields even though they are no longer encoded
720     // in the GFX11 instruction.
721     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
722     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
723   }
724   return MCDisassembler::Success;
725 }
726 
727 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
728   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
729       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
730       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
731       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
732     // The MCInst has this field that is not directly encoded in the
733     // instruction.
734     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
735   }
736   return MCDisassembler::Success;
737 }
738 
739 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
740   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
741       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
742     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
743       // VOPC - insert clamp
744       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
745   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
746     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
747     if (SDst != -1) {
748       // VOPC - insert VCC register as sdst
749       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
750                            AMDGPU::OpName::sdst);
751     } else {
752       // VOP1/2 - insert omod if present in instruction
753       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
754     }
755   }
756   return MCDisassembler::Success;
757 }
758 
759 struct VOPModifiers {
760   unsigned OpSel = 0;
761   unsigned OpSelHi = 0;
762   unsigned NegLo = 0;
763   unsigned NegHi = 0;
764 };
765 
766 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
767 // Note that these values do not affect disassembler output,
768 // so this is only necessary for consistency with src_modifiers.
769 static VOPModifiers collectVOPModifiers(const MCInst &MI,
770                                         bool IsVOP3P = false) {
771   VOPModifiers Modifiers;
772   unsigned Opc = MI.getOpcode();
773   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
774                         AMDGPU::OpName::src1_modifiers,
775                         AMDGPU::OpName::src2_modifiers};
776   for (int J = 0; J < 3; ++J) {
777     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
778     if (OpIdx == -1)
779       continue;
780 
781     unsigned Val = MI.getOperand(OpIdx).getImm();
782 
783     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
784     if (IsVOP3P) {
785       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
786       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
787       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
788     } else if (J == 0) {
789       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
790     }
791   }
792 
793   return Modifiers;
794 }
795 
796 // We must check FI == literal to reject not genuine dpp8 insts, and we must
797 // first add optional MI operands to check FI
798 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
799   unsigned Opc = MI.getOpcode();
800   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
801   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
802     convertVOP3PDPPInst(MI);
803   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
804              AMDGPU::isVOPC64DPP(Opc)) {
805     convertVOPCDPPInst(MI);
806   } else if (MI.getNumOperands() < DescNumOps &&
807              AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1) {
808     auto Mods = collectVOPModifiers(MI);
809     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
810                          AMDGPU::OpName::op_sel);
811   } else {
812     // Insert dummy unused src modifiers.
813     if (MI.getNumOperands() < DescNumOps &&
814         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
815       insertNamedMCOperand(MI, MCOperand::createImm(0),
816                            AMDGPU::OpName::src0_modifiers);
817 
818     if (MI.getNumOperands() < DescNumOps &&
819         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
820       insertNamedMCOperand(MI, MCOperand::createImm(0),
821                            AMDGPU::OpName::src1_modifiers);
822   }
823   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
824 }
825 
826 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
827   unsigned Opc = MI.getOpcode();
828   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
829   if (MI.getNumOperands() < DescNumOps &&
830       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1) {
831     auto Mods = collectVOPModifiers(MI);
832     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
833                          AMDGPU::OpName::op_sel);
834   }
835   return MCDisassembler::Success;
836 }
837 
838 // Note that before gfx10, the MIMG encoding provided no information about
839 // VADDR size. Consequently, decoded instructions always show address as if it
840 // has 1 dword, which could be not really so.
841 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
842 
843   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
844                                            AMDGPU::OpName::vdst);
845 
846   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
847                                             AMDGPU::OpName::vdata);
848   int VAddr0Idx =
849       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
850   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
851                                             AMDGPU::OpName::dmask);
852 
853   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
854                                             AMDGPU::OpName::tfe);
855   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
856                                             AMDGPU::OpName::d16);
857 
858   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
859   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
860       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
861 
862   assert(VDataIdx != -1);
863   if (BaseOpcode->BVH) {
864     // Add A16 operand for intersect_ray instructions
865     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
866       addOperand(MI, MCOperand::createImm(1));
867     }
868     return MCDisassembler::Success;
869   }
870 
871   bool IsAtomic = (VDstIdx != -1);
872   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
873   bool IsNSA = false;
874   unsigned AddrSize = Info->VAddrDwords;
875 
876   if (isGFX10Plus()) {
877     unsigned DimIdx =
878         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
879     int A16Idx =
880         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
881     const AMDGPU::MIMGDimInfo *Dim =
882         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
883     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
884 
885     AddrSize =
886         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
887 
888     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
889             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
890     if (!IsNSA) {
891       if (AddrSize > 8)
892         AddrSize = 16;
893     } else {
894       if (AddrSize > Info->VAddrDwords) {
895         // The NSA encoding does not contain enough operands for the combination
896         // of base opcode / dimension. Should this be an error?
897         return MCDisassembler::Success;
898       }
899     }
900   }
901 
902   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
903   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
904 
905   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
906   if (D16 && AMDGPU::hasPackedD16(STI)) {
907     DstSize = (DstSize + 1) / 2;
908   }
909 
910   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
911     DstSize += 1;
912 
913   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
914     return MCDisassembler::Success;
915 
916   int NewOpcode =
917       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
918   if (NewOpcode == -1)
919     return MCDisassembler::Success;
920 
921   // Widen the register to the correct number of enabled channels.
922   unsigned NewVdata = AMDGPU::NoRegister;
923   if (DstSize != Info->VDataDwords) {
924     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
925 
926     // Get first subregister of VData
927     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
928     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
929     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
930 
931     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
932                                        &MRI.getRegClass(DataRCID));
933     if (NewVdata == AMDGPU::NoRegister) {
934       // It's possible to encode this such that the low register + enabled
935       // components exceeds the register count.
936       return MCDisassembler::Success;
937     }
938   }
939 
940   // If not using NSA on GFX10+, widen address register to correct size.
941   unsigned NewVAddr0 = AMDGPU::NoRegister;
942   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
943     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
944     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
945     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
946 
947     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
948     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
949                                         &MRI.getRegClass(AddrRCID));
950     if (NewVAddr0 == AMDGPU::NoRegister)
951       return MCDisassembler::Success;
952   }
953 
954   MI.setOpcode(NewOpcode);
955 
956   if (NewVdata != AMDGPU::NoRegister) {
957     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
958 
959     if (IsAtomic) {
960       // Atomic operations have an additional operand (a copy of data)
961       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
962     }
963   }
964 
965   if (NewVAddr0 != AMDGPU::NoRegister) {
966     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
967   } else if (IsNSA) {
968     assert(AddrSize <= Info->VAddrDwords);
969     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
970              MI.begin() + VAddr0Idx + Info->VAddrDwords);
971   }
972 
973   return MCDisassembler::Success;
974 }
975 
976 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
977 // decoder only adds to src_modifiers, so manually add the bits to the other
978 // operands.
979 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
980   unsigned Opc = MI.getOpcode();
981   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
982   auto Mods = collectVOPModifiers(MI, true);
983 
984   if (MI.getNumOperands() < DescNumOps &&
985       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1)
986     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
987 
988   if (MI.getNumOperands() < DescNumOps &&
989       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1)
990     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
991                          AMDGPU::OpName::op_sel);
992   if (MI.getNumOperands() < DescNumOps &&
993       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1)
994     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
995                          AMDGPU::OpName::op_sel_hi);
996   if (MI.getNumOperands() < DescNumOps &&
997       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1)
998     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
999                          AMDGPU::OpName::neg_lo);
1000   if (MI.getNumOperands() < DescNumOps &&
1001       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1)
1002     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1003                          AMDGPU::OpName::neg_hi);
1004 
1005   return MCDisassembler::Success;
1006 }
1007 
1008 // Create dummy old operand and insert optional operands
1009 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1010   unsigned Opc = MI.getOpcode();
1011   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1012 
1013   if (MI.getNumOperands() < DescNumOps &&
1014       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::old) != -1)
1015     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1016 
1017   if (MI.getNumOperands() < DescNumOps &&
1018       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
1019     insertNamedMCOperand(MI, MCOperand::createImm(0),
1020                          AMDGPU::OpName::src0_modifiers);
1021 
1022   if (MI.getNumOperands() < DescNumOps &&
1023       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
1024     insertNamedMCOperand(MI, MCOperand::createImm(0),
1025                          AMDGPU::OpName::src1_modifiers);
1026   return MCDisassembler::Success;
1027 }
1028 
1029 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1030                                                 int ImmLitIdx) const {
1031   assert(HasLiteral && "Should have decoded a literal");
1032   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1033   unsigned DescNumOps = Desc.getNumOperands();
1034   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1035                        AMDGPU::OpName::immDeferred);
1036   assert(DescNumOps == MI.getNumOperands());
1037   for (unsigned I = 0; I < DescNumOps; ++I) {
1038     auto &Op = MI.getOperand(I);
1039     auto OpType = Desc.OpInfo[I].OperandType;
1040     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1041                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1042     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1043         IsDeferredOp)
1044       Op.setImm(Literal);
1045   }
1046   return MCDisassembler::Success;
1047 }
1048 
1049 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1050   return getContext().getRegisterInfo()->
1051     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1052 }
1053 
1054 inline
1055 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1056                                          const Twine& ErrMsg) const {
1057   *CommentStream << "Error: " + ErrMsg;
1058 
1059   // ToDo: add support for error operands to MCInst.h
1060   // return MCOperand::createError(V);
1061   return MCOperand();
1062 }
1063 
1064 inline
1065 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1066   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1067 }
1068 
1069 inline
1070 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1071                                                unsigned Val) const {
1072   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1073   if (Val >= RegCl.getNumRegs())
1074     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1075                            ": unknown register " + Twine(Val));
1076   return createRegOperand(RegCl.getRegister(Val));
1077 }
1078 
1079 inline
1080 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1081                                                 unsigned Val) const {
1082   // ToDo: SI/CI have 104 SGPRs, VI - 102
1083   // Valery: here we accepting as much as we can, let assembler sort it out
1084   int shift = 0;
1085   switch (SRegClassID) {
1086   case AMDGPU::SGPR_32RegClassID:
1087   case AMDGPU::TTMP_32RegClassID:
1088     break;
1089   case AMDGPU::SGPR_64RegClassID:
1090   case AMDGPU::TTMP_64RegClassID:
1091     shift = 1;
1092     break;
1093   case AMDGPU::SGPR_128RegClassID:
1094   case AMDGPU::TTMP_128RegClassID:
1095   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1096   // this bundle?
1097   case AMDGPU::SGPR_256RegClassID:
1098   case AMDGPU::TTMP_256RegClassID:
1099     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1100   // this bundle?
1101   case AMDGPU::SGPR_512RegClassID:
1102   case AMDGPU::TTMP_512RegClassID:
1103     shift = 2;
1104     break;
1105   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1106   // this bundle?
1107   default:
1108     llvm_unreachable("unhandled register class");
1109   }
1110 
1111   if (Val % (1 << shift)) {
1112     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1113                    << ": scalar reg isn't aligned " << Val;
1114   }
1115 
1116   return createRegOperand(SRegClassID, Val >> shift);
1117 }
1118 
1119 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1120   return decodeSrcOp(OPW32, Val);
1121 }
1122 
1123 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1124   return decodeSrcOp(OPW64, Val);
1125 }
1126 
1127 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1128   return decodeSrcOp(OPW128, Val);
1129 }
1130 
1131 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1132   return decodeSrcOp(OPW16, Val);
1133 }
1134 
1135 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1136   return decodeSrcOp(OPWV216, Val);
1137 }
1138 
1139 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1140   return decodeSrcOp(OPWV232, Val);
1141 }
1142 
1143 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32_Lo128(unsigned Val) const {
1144   return createRegOperand(AMDGPU::VGPR_32_Lo128RegClassID, Val);
1145 }
1146 
1147 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1148   // Some instructions have operand restrictions beyond what the encoding
1149   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1150   // high bit.
1151   Val &= 255;
1152 
1153   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1154 }
1155 
1156 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1157   return decodeSrcOp(OPW32, Val);
1158 }
1159 
1160 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1161   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1162 }
1163 
1164 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1165   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1166 }
1167 
1168 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1169   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1170 }
1171 
1172 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1173   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1174 }
1175 
1176 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1177   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1178 }
1179 
1180 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1181   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1182 }
1183 
1184 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1185   return decodeSrcOp(OPW32, Val);
1186 }
1187 
1188 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1189   return decodeSrcOp(OPW64, Val);
1190 }
1191 
1192 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1193   return decodeSrcOp(OPW128, Val);
1194 }
1195 
1196 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1197   using namespace AMDGPU::EncValues;
1198   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1199   return decodeSrcOp(OPW128, Val | IS_VGPR);
1200 }
1201 
1202 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1203   using namespace AMDGPU::EncValues;
1204   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1205   return decodeSrcOp(OPW512, Val | IS_VGPR);
1206 }
1207 
1208 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1209   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1210 }
1211 
1212 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1213   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1214 }
1215 
1216 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1217   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1218 }
1219 
1220 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1221   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1222 }
1223 
1224 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1225   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1226 }
1227 
1228 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1229   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1230 }
1231 
1232 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1233   // table-gen generated disassembler doesn't care about operand types
1234   // leaving only registry class so SSrc_32 operand turns into SReg_32
1235   // and therefore we accept immediates and literals here as well
1236   return decodeSrcOp(OPW32, Val);
1237 }
1238 
1239 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1240   unsigned Val) const {
1241   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1242   return decodeOperand_SReg_32(Val);
1243 }
1244 
1245 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1246   unsigned Val) const {
1247   // SReg_32_XM0 is SReg_32 without EXEC_HI
1248   return decodeOperand_SReg_32(Val);
1249 }
1250 
1251 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1252   // table-gen generated disassembler doesn't care about operand types
1253   // leaving only registry class so SSrc_32 operand turns into SReg_32
1254   // and therefore we accept immediates and literals here as well
1255   return decodeSrcOp(OPW32, Val);
1256 }
1257 
1258 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1259   return decodeSrcOp(OPW64, Val);
1260 }
1261 
1262 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1263   return decodeSrcOp(OPW64, Val);
1264 }
1265 
1266 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1267   return decodeSrcOp(OPW128, Val);
1268 }
1269 
1270 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1271   return decodeDstOp(OPW256, Val);
1272 }
1273 
1274 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1275   return decodeDstOp(OPW512, Val);
1276 }
1277 
1278 // Decode Literals for insts which always have a literal in the encoding
1279 MCOperand
1280 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1281   if (HasLiteral) {
1282     assert(
1283         AMDGPU::hasVOPD(STI) &&
1284         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1285     if (Literal != Val)
1286       return errOperand(Val, "More than one unique literal is illegal");
1287   }
1288   HasLiteral = true;
1289   Literal = Val;
1290   return MCOperand::createImm(Literal);
1291 }
1292 
1293 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1294   // For now all literal constants are supposed to be unsigned integer
1295   // ToDo: deal with signed/unsigned 64-bit integer constants
1296   // ToDo: deal with float/double constants
1297   if (!HasLiteral) {
1298     if (Bytes.size() < 4) {
1299       return errOperand(0, "cannot read literal, inst bytes left " +
1300                         Twine(Bytes.size()));
1301     }
1302     HasLiteral = true;
1303     Literal = eatBytes<uint32_t>(Bytes);
1304   }
1305   return MCOperand::createImm(Literal);
1306 }
1307 
1308 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1309   using namespace AMDGPU::EncValues;
1310 
1311   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1312   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1313     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1314     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1315       // Cast prevents negative overflow.
1316 }
1317 
1318 static int64_t getInlineImmVal32(unsigned Imm) {
1319   switch (Imm) {
1320   case 240:
1321     return FloatToBits(0.5f);
1322   case 241:
1323     return FloatToBits(-0.5f);
1324   case 242:
1325     return FloatToBits(1.0f);
1326   case 243:
1327     return FloatToBits(-1.0f);
1328   case 244:
1329     return FloatToBits(2.0f);
1330   case 245:
1331     return FloatToBits(-2.0f);
1332   case 246:
1333     return FloatToBits(4.0f);
1334   case 247:
1335     return FloatToBits(-4.0f);
1336   case 248: // 1 / (2 * PI)
1337     return 0x3e22f983;
1338   default:
1339     llvm_unreachable("invalid fp inline imm");
1340   }
1341 }
1342 
1343 static int64_t getInlineImmVal64(unsigned Imm) {
1344   switch (Imm) {
1345   case 240:
1346     return DoubleToBits(0.5);
1347   case 241:
1348     return DoubleToBits(-0.5);
1349   case 242:
1350     return DoubleToBits(1.0);
1351   case 243:
1352     return DoubleToBits(-1.0);
1353   case 244:
1354     return DoubleToBits(2.0);
1355   case 245:
1356     return DoubleToBits(-2.0);
1357   case 246:
1358     return DoubleToBits(4.0);
1359   case 247:
1360     return DoubleToBits(-4.0);
1361   case 248: // 1 / (2 * PI)
1362     return 0x3fc45f306dc9c882;
1363   default:
1364     llvm_unreachable("invalid fp inline imm");
1365   }
1366 }
1367 
1368 static int64_t getInlineImmVal16(unsigned Imm) {
1369   switch (Imm) {
1370   case 240:
1371     return 0x3800;
1372   case 241:
1373     return 0xB800;
1374   case 242:
1375     return 0x3C00;
1376   case 243:
1377     return 0xBC00;
1378   case 244:
1379     return 0x4000;
1380   case 245:
1381     return 0xC000;
1382   case 246:
1383     return 0x4400;
1384   case 247:
1385     return 0xC400;
1386   case 248: // 1 / (2 * PI)
1387     return 0x3118;
1388   default:
1389     llvm_unreachable("invalid fp inline imm");
1390   }
1391 }
1392 
1393 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1394   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1395       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1396 
1397   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1398   switch (Width) {
1399   case OPW32:
1400   case OPW128: // splat constants
1401   case OPW512:
1402   case OPW1024:
1403   case OPWV232:
1404     return MCOperand::createImm(getInlineImmVal32(Imm));
1405   case OPW64:
1406   case OPW256:
1407     return MCOperand::createImm(getInlineImmVal64(Imm));
1408   case OPW16:
1409   case OPWV216:
1410     return MCOperand::createImm(getInlineImmVal16(Imm));
1411   default:
1412     llvm_unreachable("implement me");
1413   }
1414 }
1415 
1416 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1417   using namespace AMDGPU;
1418 
1419   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1420   switch (Width) {
1421   default: // fall
1422   case OPW32:
1423   case OPW16:
1424   case OPWV216:
1425     return VGPR_32RegClassID;
1426   case OPW64:
1427   case OPWV232: return VReg_64RegClassID;
1428   case OPW96: return VReg_96RegClassID;
1429   case OPW128: return VReg_128RegClassID;
1430   case OPW160: return VReg_160RegClassID;
1431   case OPW256: return VReg_256RegClassID;
1432   case OPW512: return VReg_512RegClassID;
1433   case OPW1024: return VReg_1024RegClassID;
1434   }
1435 }
1436 
1437 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1438   using namespace AMDGPU;
1439 
1440   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1441   switch (Width) {
1442   default: // fall
1443   case OPW32:
1444   case OPW16:
1445   case OPWV216:
1446     return AGPR_32RegClassID;
1447   case OPW64:
1448   case OPWV232: return AReg_64RegClassID;
1449   case OPW96: return AReg_96RegClassID;
1450   case OPW128: return AReg_128RegClassID;
1451   case OPW160: return AReg_160RegClassID;
1452   case OPW256: return AReg_256RegClassID;
1453   case OPW512: return AReg_512RegClassID;
1454   case OPW1024: return AReg_1024RegClassID;
1455   }
1456 }
1457 
1458 
1459 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1460   using namespace AMDGPU;
1461 
1462   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1463   switch (Width) {
1464   default: // fall
1465   case OPW32:
1466   case OPW16:
1467   case OPWV216:
1468     return SGPR_32RegClassID;
1469   case OPW64:
1470   case OPWV232: return SGPR_64RegClassID;
1471   case OPW96: return SGPR_96RegClassID;
1472   case OPW128: return SGPR_128RegClassID;
1473   case OPW160: return SGPR_160RegClassID;
1474   case OPW256: return SGPR_256RegClassID;
1475   case OPW512: return SGPR_512RegClassID;
1476   }
1477 }
1478 
1479 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1480   using namespace AMDGPU;
1481 
1482   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1483   switch (Width) {
1484   default: // fall
1485   case OPW32:
1486   case OPW16:
1487   case OPWV216:
1488     return TTMP_32RegClassID;
1489   case OPW64:
1490   case OPWV232: return TTMP_64RegClassID;
1491   case OPW128: return TTMP_128RegClassID;
1492   case OPW256: return TTMP_256RegClassID;
1493   case OPW512: return TTMP_512RegClassID;
1494   }
1495 }
1496 
1497 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1498   using namespace AMDGPU::EncValues;
1499 
1500   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1501   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1502 
1503   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1504 }
1505 
1506 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1507                                           bool MandatoryLiteral) const {
1508   using namespace AMDGPU::EncValues;
1509 
1510   assert(Val < 1024); // enum10
1511 
1512   bool IsAGPR = Val & 512;
1513   Val &= 511;
1514 
1515   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1516     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1517                                    : getVgprClassId(Width), Val - VGPR_MIN);
1518   }
1519   if (Val <= SGPR_MAX) {
1520     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1521     static_assert(SGPR_MIN == 0);
1522     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1523   }
1524 
1525   int TTmpIdx = getTTmpIdx(Val);
1526   if (TTmpIdx >= 0) {
1527     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1528   }
1529 
1530   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1531     return decodeIntImmed(Val);
1532 
1533   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1534     return decodeFPImmed(Width, Val);
1535 
1536   if (Val == LITERAL_CONST) {
1537     if (MandatoryLiteral)
1538       // Keep a sentinel value for deferred setting
1539       return MCOperand::createImm(LITERAL_CONST);
1540     else
1541       return decodeLiteralConstant();
1542   }
1543 
1544   switch (Width) {
1545   case OPW32:
1546   case OPW16:
1547   case OPWV216:
1548     return decodeSpecialReg32(Val);
1549   case OPW64:
1550   case OPWV232:
1551     return decodeSpecialReg64(Val);
1552   default:
1553     llvm_unreachable("unexpected immediate type");
1554   }
1555 }
1556 
1557 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1558   using namespace AMDGPU::EncValues;
1559 
1560   assert(Val < 128);
1561   assert(Width == OPW256 || Width == OPW512);
1562 
1563   if (Val <= SGPR_MAX) {
1564     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1565     static_assert(SGPR_MIN == 0);
1566     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1567   }
1568 
1569   int TTmpIdx = getTTmpIdx(Val);
1570   if (TTmpIdx >= 0) {
1571     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1572   }
1573 
1574   llvm_unreachable("unknown dst register");
1575 }
1576 
1577 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1578 // opposite of bit 0 of DstX.
1579 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1580                                                unsigned Val) const {
1581   int VDstXInd =
1582       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1583   assert(VDstXInd != -1);
1584   assert(Inst.getOperand(VDstXInd).isReg());
1585   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1586   Val |= ~XDstReg & 1;
1587   auto Width = llvm::AMDGPUDisassembler::OPW32;
1588   return createRegOperand(getVgprClassId(Width), Val);
1589 }
1590 
1591 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1592   using namespace AMDGPU;
1593 
1594   switch (Val) {
1595   case 102: return createRegOperand(FLAT_SCR_LO);
1596   case 103: return createRegOperand(FLAT_SCR_HI);
1597   case 104: return createRegOperand(XNACK_MASK_LO);
1598   case 105: return createRegOperand(XNACK_MASK_HI);
1599   case 106: return createRegOperand(VCC_LO);
1600   case 107: return createRegOperand(VCC_HI);
1601   case 108: return createRegOperand(TBA_LO);
1602   case 109: return createRegOperand(TBA_HI);
1603   case 110: return createRegOperand(TMA_LO);
1604   case 111: return createRegOperand(TMA_HI);
1605   case 124:
1606     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1607   case 125:
1608     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1609   case 126: return createRegOperand(EXEC_LO);
1610   case 127: return createRegOperand(EXEC_HI);
1611   case 235: return createRegOperand(SRC_SHARED_BASE);
1612   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1613   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1614   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1615   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1616   case 251: return createRegOperand(SRC_VCCZ);
1617   case 252: return createRegOperand(SRC_EXECZ);
1618   case 253: return createRegOperand(SRC_SCC);
1619   case 254: return createRegOperand(LDS_DIRECT);
1620   default: break;
1621   }
1622   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1623 }
1624 
1625 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1626   using namespace AMDGPU;
1627 
1628   switch (Val) {
1629   case 102: return createRegOperand(FLAT_SCR);
1630   case 104: return createRegOperand(XNACK_MASK);
1631   case 106: return createRegOperand(VCC);
1632   case 108: return createRegOperand(TBA);
1633   case 110: return createRegOperand(TMA);
1634   case 124:
1635     if (isGFX11Plus())
1636       return createRegOperand(SGPR_NULL);
1637     break;
1638   case 125:
1639     if (!isGFX11Plus())
1640       return createRegOperand(SGPR_NULL);
1641     break;
1642   case 126: return createRegOperand(EXEC);
1643   case 235: return createRegOperand(SRC_SHARED_BASE);
1644   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1645   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1646   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1647   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1648   case 251: return createRegOperand(SRC_VCCZ);
1649   case 252: return createRegOperand(SRC_EXECZ);
1650   case 253: return createRegOperand(SRC_SCC);
1651   default: break;
1652   }
1653   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1654 }
1655 
1656 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1657                                             const unsigned Val) const {
1658   using namespace AMDGPU::SDWA;
1659   using namespace AMDGPU::EncValues;
1660 
1661   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1662       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1663     // XXX: cast to int is needed to avoid stupid warning:
1664     // compare with unsigned is always true
1665     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1666         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1667       return createRegOperand(getVgprClassId(Width),
1668                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1669     }
1670     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1671         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1672                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1673       return createSRegOperand(getSgprClassId(Width),
1674                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1675     }
1676     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1677         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1678       return createSRegOperand(getTtmpClassId(Width),
1679                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1680     }
1681 
1682     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1683 
1684     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1685       return decodeIntImmed(SVal);
1686 
1687     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1688       return decodeFPImmed(Width, SVal);
1689 
1690     return decodeSpecialReg32(SVal);
1691   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1692     return createRegOperand(getVgprClassId(Width), Val);
1693   }
1694   llvm_unreachable("unsupported target");
1695 }
1696 
1697 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1698   return decodeSDWASrc(OPW16, Val);
1699 }
1700 
1701 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1702   return decodeSDWASrc(OPW32, Val);
1703 }
1704 
1705 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1706   using namespace AMDGPU::SDWA;
1707 
1708   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1709           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1710          "SDWAVopcDst should be present only on GFX9+");
1711 
1712   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1713 
1714   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1715     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1716 
1717     int TTmpIdx = getTTmpIdx(Val);
1718     if (TTmpIdx >= 0) {
1719       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1720       return createSRegOperand(TTmpClsId, TTmpIdx);
1721     } else if (Val > SGPR_MAX) {
1722       return IsWave64 ? decodeSpecialReg64(Val)
1723                       : decodeSpecialReg32(Val);
1724     } else {
1725       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1726     }
1727   } else {
1728     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1729   }
1730 }
1731 
1732 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1733   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1734     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1735 }
1736 
1737 bool AMDGPUDisassembler::isVI() const {
1738   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1739 }
1740 
1741 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1742 
1743 bool AMDGPUDisassembler::isGFX90A() const {
1744   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1745 }
1746 
1747 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1748 
1749 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1750 
1751 bool AMDGPUDisassembler::isGFX10Plus() const {
1752   return AMDGPU::isGFX10Plus(STI);
1753 }
1754 
1755 bool AMDGPUDisassembler::isGFX11() const {
1756   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1757 }
1758 
1759 bool AMDGPUDisassembler::isGFX11Plus() const {
1760   return AMDGPU::isGFX11Plus(STI);
1761 }
1762 
1763 
1764 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1765   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1766 }
1767 
1768 //===----------------------------------------------------------------------===//
1769 // AMDGPU specific symbol handling
1770 //===----------------------------------------------------------------------===//
1771 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1772   do {                                                                         \
1773     KdStream << Indent << DIRECTIVE " "                                        \
1774              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1775   } while (0)
1776 
1777 // NOLINTNEXTLINE(readability-identifier-naming)
1778 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1779     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1780   using namespace amdhsa;
1781   StringRef Indent = "\t";
1782 
1783   // We cannot accurately backward compute #VGPRs used from
1784   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1785   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1786   // simply calculate the inverse of what the assembler does.
1787 
1788   uint32_t GranulatedWorkitemVGPRCount =
1789       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1790       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1791 
1792   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1793                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1794 
1795   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1796 
1797   // We cannot backward compute values used to calculate
1798   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1799   // directives can't be computed:
1800   // .amdhsa_reserve_vcc
1801   // .amdhsa_reserve_flat_scratch
1802   // .amdhsa_reserve_xnack_mask
1803   // They take their respective default values if not specified in the assembly.
1804   //
1805   // GRANULATED_WAVEFRONT_SGPR_COUNT
1806   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1807   //
1808   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1809   // are set to 0. So while disassembling we consider that:
1810   //
1811   // GRANULATED_WAVEFRONT_SGPR_COUNT
1812   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1813   //
1814   // The disassembler cannot recover the original values of those 3 directives.
1815 
1816   uint32_t GranulatedWavefrontSGPRCount =
1817       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1818       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1819 
1820   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1821     return MCDisassembler::Fail;
1822 
1823   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1824                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1825 
1826   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1827   if (!hasArchitectedFlatScratch())
1828     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1829   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1830   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1831 
1832   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1833     return MCDisassembler::Fail;
1834 
1835   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1836                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1837   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1838                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1839   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1840                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1841   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1842                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1843 
1844   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1845     return MCDisassembler::Fail;
1846 
1847   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1848 
1849   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1850     return MCDisassembler::Fail;
1851 
1852   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1853 
1854   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1855     return MCDisassembler::Fail;
1856 
1857   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1858     return MCDisassembler::Fail;
1859 
1860   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1861 
1862   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1863     return MCDisassembler::Fail;
1864 
1865   if (isGFX10Plus()) {
1866     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1867                     COMPUTE_PGM_RSRC1_WGP_MODE);
1868     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1869     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1870   }
1871   return MCDisassembler::Success;
1872 }
1873 
1874 // NOLINTNEXTLINE(readability-identifier-naming)
1875 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1876     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1877   using namespace amdhsa;
1878   StringRef Indent = "\t";
1879   if (hasArchitectedFlatScratch())
1880     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1881                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1882   else
1883     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1884                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1885   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1886                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1887   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1888                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1889   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1890                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1891   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1892                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1893   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1894                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1895 
1896   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1897     return MCDisassembler::Fail;
1898 
1899   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1900     return MCDisassembler::Fail;
1901 
1902   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1903     return MCDisassembler::Fail;
1904 
1905   PRINT_DIRECTIVE(
1906       ".amdhsa_exception_fp_ieee_invalid_op",
1907       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1908   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1909                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1910   PRINT_DIRECTIVE(
1911       ".amdhsa_exception_fp_ieee_div_zero",
1912       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1913   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1914                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1915   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1916                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1917   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1918                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1919   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1920                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1921 
1922   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1923     return MCDisassembler::Fail;
1924 
1925   return MCDisassembler::Success;
1926 }
1927 
1928 #undef PRINT_DIRECTIVE
1929 
1930 MCDisassembler::DecodeStatus
1931 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1932     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1933     raw_string_ostream &KdStream) const {
1934 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1935   do {                                                                         \
1936     KdStream << Indent << DIRECTIVE " "                                        \
1937              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1938   } while (0)
1939 
1940   uint16_t TwoByteBuffer = 0;
1941   uint32_t FourByteBuffer = 0;
1942 
1943   StringRef ReservedBytes;
1944   StringRef Indent = "\t";
1945 
1946   assert(Bytes.size() == 64);
1947   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1948 
1949   switch (Cursor.tell()) {
1950   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1951     FourByteBuffer = DE.getU32(Cursor);
1952     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1953              << '\n';
1954     return MCDisassembler::Success;
1955 
1956   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1957     FourByteBuffer = DE.getU32(Cursor);
1958     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1959              << FourByteBuffer << '\n';
1960     return MCDisassembler::Success;
1961 
1962   case amdhsa::KERNARG_SIZE_OFFSET:
1963     FourByteBuffer = DE.getU32(Cursor);
1964     KdStream << Indent << ".amdhsa_kernarg_size "
1965              << FourByteBuffer << '\n';
1966     return MCDisassembler::Success;
1967 
1968   case amdhsa::RESERVED0_OFFSET:
1969     // 4 reserved bytes, must be 0.
1970     ReservedBytes = DE.getBytes(Cursor, 4);
1971     for (int I = 0; I < 4; ++I) {
1972       if (ReservedBytes[I] != 0) {
1973         return MCDisassembler::Fail;
1974       }
1975     }
1976     return MCDisassembler::Success;
1977 
1978   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1979     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1980     // So far no directive controls this for Code Object V3, so simply skip for
1981     // disassembly.
1982     DE.skip(Cursor, 8);
1983     return MCDisassembler::Success;
1984 
1985   case amdhsa::RESERVED1_OFFSET:
1986     // 20 reserved bytes, must be 0.
1987     ReservedBytes = DE.getBytes(Cursor, 20);
1988     for (int I = 0; I < 20; ++I) {
1989       if (ReservedBytes[I] != 0) {
1990         return MCDisassembler::Fail;
1991       }
1992     }
1993     return MCDisassembler::Success;
1994 
1995   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1996     // COMPUTE_PGM_RSRC3
1997     //  - Only set for GFX10, GFX6-9 have this to be 0.
1998     //  - Currently no directives directly control this.
1999     FourByteBuffer = DE.getU32(Cursor);
2000     if (!isGFX10Plus() && FourByteBuffer) {
2001       return MCDisassembler::Fail;
2002     }
2003     return MCDisassembler::Success;
2004 
2005   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2006     FourByteBuffer = DE.getU32(Cursor);
2007     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
2008         MCDisassembler::Fail) {
2009       return MCDisassembler::Fail;
2010     }
2011     return MCDisassembler::Success;
2012 
2013   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2014     FourByteBuffer = DE.getU32(Cursor);
2015     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
2016         MCDisassembler::Fail) {
2017       return MCDisassembler::Fail;
2018     }
2019     return MCDisassembler::Success;
2020 
2021   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2022     using namespace amdhsa;
2023     TwoByteBuffer = DE.getU16(Cursor);
2024 
2025     if (!hasArchitectedFlatScratch())
2026       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2027                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2028     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2029                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2030     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2031                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2032     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2033                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2034     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2035                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2036     if (!hasArchitectedFlatScratch())
2037       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2038                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2039     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2040                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2041 
2042     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2043       return MCDisassembler::Fail;
2044 
2045     // Reserved for GFX9
2046     if (isGFX9() &&
2047         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2048       return MCDisassembler::Fail;
2049     } else if (isGFX10Plus()) {
2050       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2051                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2052     }
2053 
2054     PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2055                     KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2056 
2057     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2058       return MCDisassembler::Fail;
2059 
2060     return MCDisassembler::Success;
2061 
2062   case amdhsa::RESERVED2_OFFSET:
2063     // 6 bytes from here are reserved, must be 0.
2064     ReservedBytes = DE.getBytes(Cursor, 6);
2065     for (int I = 0; I < 6; ++I) {
2066       if (ReservedBytes[I] != 0)
2067         return MCDisassembler::Fail;
2068     }
2069     return MCDisassembler::Success;
2070 
2071   default:
2072     llvm_unreachable("Unhandled index. Case statements cover everything.");
2073     return MCDisassembler::Fail;
2074   }
2075 #undef PRINT_DIRECTIVE
2076 }
2077 
2078 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2079     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2080   // CP microcode requires the kernel descriptor to be 64 aligned.
2081   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2082     return MCDisassembler::Fail;
2083 
2084   std::string Kd;
2085   raw_string_ostream KdStream(Kd);
2086   KdStream << ".amdhsa_kernel " << KdName << '\n';
2087 
2088   DataExtractor::Cursor C(0);
2089   while (C && C.tell() < Bytes.size()) {
2090     MCDisassembler::DecodeStatus Status =
2091         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2092 
2093     cantFail(C.takeError());
2094 
2095     if (Status == MCDisassembler::Fail)
2096       return MCDisassembler::Fail;
2097   }
2098   KdStream << ".end_amdhsa_kernel\n";
2099   outs() << KdStream.str();
2100   return MCDisassembler::Success;
2101 }
2102 
2103 Optional<MCDisassembler::DecodeStatus>
2104 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2105                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2106                                   raw_ostream &CStream) const {
2107   // Right now only kernel descriptor needs to be handled.
2108   // We ignore all other symbols for target specific handling.
2109   // TODO:
2110   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2111   // Object V2 and V3 when symbols are marked protected.
2112 
2113   // amd_kernel_code_t for Code Object V2.
2114   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2115     Size = 256;
2116     return MCDisassembler::Fail;
2117   }
2118 
2119   // Code Object V3 kernel descriptors.
2120   StringRef Name = Symbol.Name;
2121   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2122     Size = 64; // Size = 64 regardless of success or failure.
2123     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2124   }
2125   return None;
2126 }
2127 
2128 //===----------------------------------------------------------------------===//
2129 // AMDGPUSymbolizer
2130 //===----------------------------------------------------------------------===//
2131 
2132 // Try to find symbol name for specified label
2133 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2134     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2135     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2136     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2137 
2138   if (!IsBranch) {
2139     return false;
2140   }
2141 
2142   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2143   if (!Symbols)
2144     return false;
2145 
2146   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2147     return Val.Addr == static_cast<uint64_t>(Value) &&
2148            Val.Type == ELF::STT_NOTYPE;
2149   });
2150   if (Result != Symbols->end()) {
2151     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2152     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2153     Inst.addOperand(MCOperand::createExpr(Add));
2154     return true;
2155   }
2156   // Add to list of referenced addresses, so caller can synthesize a label.
2157   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2158   return false;
2159 }
2160 
2161 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2162                                                        int64_t Value,
2163                                                        uint64_t Address) {
2164   llvm_unreachable("unimplemented");
2165 }
2166 
2167 //===----------------------------------------------------------------------===//
2168 // Initialization
2169 //===----------------------------------------------------------------------===//
2170 
2171 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2172                               LLVMOpInfoCallback /*GetOpInfo*/,
2173                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2174                               void *DisInfo,
2175                               MCContext *Ctx,
2176                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2177   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2178 }
2179 
2180 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2181                                                 const MCSubtargetInfo &STI,
2182                                                 MCContext &Ctx) {
2183   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2184 }
2185 
2186 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2187   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2188                                          createAMDGPUDisassembler);
2189   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2190                                        createAMDGPUSymbolizer);
2191 }
2192