xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 522b259976620b3e67df2d6c5eb555a1c69592a9)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixedLenDisassembler.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/TargetRegistry.h"
33 #include "llvm/Support/AMDHSAKernelDescriptor.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "amdgpu-disassembler"
38 
39 #define SGPR_MAX                                                               \
40   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
41                  : AMDGPU::EncValues::SGPR_MAX_SI)
42 
43 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
44 
45 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
46                                        MCContext &Ctx,
47                                        MCInstrInfo const *MCII) :
48   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
49   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
50 
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr, const void *Decoder) {
77   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
78 
79   // Our branches take a simm16, but we need two extra bits to account for the
80   // factor of 4.
81   APInt SignedOffset(18, Imm * 4, true);
82   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
83 
84   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
85     return MCDisassembler::Success;
86   return addOperand(Inst, MCOperand::createImm(Imm));
87 }
88 
89 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm,
90                                      uint64_t Addr, const void *Decoder) {
91   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
92   int64_t Offset;
93   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
94     Offset = Imm & 0xFFFFF;
95   } else {                    // GFX9+ supports 21-bit signed offsets.
96     Offset = SignExtend64<21>(Imm);
97   }
98   return addOperand(Inst, MCOperand::createImm(Offset));
99 }
100 
101 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val,
102                                   uint64_t Addr, const void *Decoder) {
103   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
104   return addOperand(Inst, DAsm->decodeBoolReg(Val));
105 }
106 
107 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \
108 static DecodeStatus StaticDecoderName(MCInst &Inst, \
109                                        unsigned Imm, \
110                                        uint64_t /*Addr*/, \
111                                        const void *Decoder) { \
112   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
113   return addOperand(Inst, DAsm->DecoderName(Imm)); \
114 }
115 
116 #define DECODE_OPERAND_REG(RegClass) \
117 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
118 
119 DECODE_OPERAND_REG(VGPR_32)
120 DECODE_OPERAND_REG(VRegOrLds_32)
121 DECODE_OPERAND_REG(VS_32)
122 DECODE_OPERAND_REG(VS_64)
123 DECODE_OPERAND_REG(VS_128)
124 
125 DECODE_OPERAND_REG(VReg_64)
126 DECODE_OPERAND_REG(VReg_96)
127 DECODE_OPERAND_REG(VReg_128)
128 DECODE_OPERAND_REG(VReg_256)
129 DECODE_OPERAND_REG(VReg_512)
130 DECODE_OPERAND_REG(VReg_1024)
131 
132 DECODE_OPERAND_REG(SReg_32)
133 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
134 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
135 DECODE_OPERAND_REG(SRegOrLds_32)
136 DECODE_OPERAND_REG(SReg_64)
137 DECODE_OPERAND_REG(SReg_64_XEXEC)
138 DECODE_OPERAND_REG(SReg_128)
139 DECODE_OPERAND_REG(SReg_256)
140 DECODE_OPERAND_REG(SReg_512)
141 
142 DECODE_OPERAND_REG(AGPR_32)
143 DECODE_OPERAND_REG(AReg_64)
144 DECODE_OPERAND_REG(AReg_128)
145 DECODE_OPERAND_REG(AReg_256)
146 DECODE_OPERAND_REG(AReg_512)
147 DECODE_OPERAND_REG(AReg_1024)
148 DECODE_OPERAND_REG(AV_32)
149 DECODE_OPERAND_REG(AV_64)
150 
151 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
152                                          unsigned Imm,
153                                          uint64_t Addr,
154                                          const void *Decoder) {
155   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
156   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
157 }
158 
159 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
160                                          unsigned Imm,
161                                          uint64_t Addr,
162                                          const void *Decoder) {
163   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
164   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
165 }
166 
167 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst,
168                                            unsigned Imm,
169                                            uint64_t Addr,
170                                            const void *Decoder) {
171   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
172   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
173 }
174 
175 static DecodeStatus decodeOperand_VS_16(MCInst &Inst,
176                                         unsigned Imm,
177                                         uint64_t Addr,
178                                         const void *Decoder) {
179   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
180   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
181 }
182 
183 static DecodeStatus decodeOperand_VS_32(MCInst &Inst,
184                                         unsigned Imm,
185                                         uint64_t Addr,
186                                         const void *Decoder) {
187   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190 
191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst,
192                                           unsigned Imm,
193                                           uint64_t Addr,
194                                           const void *Decoder) {
195   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
196   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
197 }
198 
199 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst,
200                                            unsigned Imm,
201                                            uint64_t Addr,
202                                            const void *Decoder) {
203   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
204   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
205 }
206 
207 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst,
208                                            unsigned Imm,
209                                            uint64_t Addr,
210                                            const void *Decoder) {
211   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
212   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
213 }
214 
215 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst,
216                                            unsigned Imm,
217                                            uint64_t Addr,
218                                            const void *Decoder) {
219   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
220   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
221 }
222 
223 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst,
224                                             unsigned Imm,
225                                             uint64_t Addr,
226                                             const void *Decoder) {
227   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
228   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
229 }
230 
231 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst,
232                                           unsigned Imm,
233                                           uint64_t Addr,
234                                           const void *Decoder) {
235   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
236   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
237 }
238 
239 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst,
240                                            unsigned Imm,
241                                            uint64_t Addr,
242                                            const void *Decoder) {
243   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
245 }
246 
247 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst,
248                                            unsigned Imm,
249                                            uint64_t Addr,
250                                            const void *Decoder) {
251   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
252   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
253 }
254 
255 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst,
256                                            unsigned Imm,
257                                            uint64_t Addr,
258                                            const void *Decoder) {
259   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
260   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
261 }
262 
263 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst,
264                                             unsigned Imm,
265                                             uint64_t Addr,
266                                             const void *Decoder) {
267   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
268   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
269 }
270 
271 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
272                                           uint64_t Addr, const void *Decoder) {
273   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
274   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
275 }
276 
277 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
278                                           uint64_t Addr, const void *Decoder) {
279   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
280   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
281 }
282 
283 static DecodeStatus decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm,
284                                                  uint64_t Addr,
285                                                  const void *Decoder) {
286   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(
288       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
289 }
290 
291 static DecodeStatus decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm,
292                                                  uint64_t Addr,
293                                                  const void *Decoder) {
294   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
295   return addOperand(
296       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
297 }
298 
299 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
300                           const MCRegisterInfo *MRI) {
301   if (OpIdx < 0)
302     return false;
303 
304   const MCOperand &Op = Inst.getOperand(OpIdx);
305   if (!Op.isReg())
306     return false;
307 
308   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
309   auto Reg = Sub ? Sub : Op.getReg();
310   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
311 }
312 
313 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst,
314                                              unsigned Imm,
315                                              AMDGPUDisassembler::OpWidthTy Opw,
316                                              const void *Decoder) {
317   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
318   if (!DAsm->isGFX90A()) {
319     Imm &= 511;
320   } else {
321     // If atomic has both vdata and vdst their register classes are tied.
322     // The bit is decoded along with the vdst, first operand. We need to
323     // change register class to AGPR if vdst was AGPR.
324     // If a DS instruction has both data0 and data1 their register classes
325     // are also tied.
326     unsigned Opc = Inst.getOpcode();
327     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
328     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
329                                                         : AMDGPU::OpName::vdata;
330     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
331     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
332     if ((int)Inst.getNumOperands() == DataIdx) {
333       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
334       if (IsAGPROperand(Inst, DstIdx, MRI))
335         Imm |= 512;
336     }
337 
338     if (TSFlags & SIInstrFlags::DS) {
339       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
340       if ((int)Inst.getNumOperands() == Data2Idx &&
341           IsAGPROperand(Inst, DataIdx, MRI))
342         Imm |= 512;
343     }
344   }
345   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
346 }
347 
348 static DecodeStatus DecodeAVLdSt_32RegisterClass(MCInst &Inst,
349                                                  unsigned Imm,
350                                                  uint64_t Addr,
351                                                  const void *Decoder) {
352   return decodeOperand_AVLdSt_Any(Inst, Imm,
353                                   AMDGPUDisassembler::OPW32, Decoder);
354 }
355 
356 static DecodeStatus DecodeAVLdSt_64RegisterClass(MCInst &Inst,
357                                                  unsigned Imm,
358                                                  uint64_t Addr,
359                                                  const void *Decoder) {
360   return decodeOperand_AVLdSt_Any(Inst, Imm,
361                                   AMDGPUDisassembler::OPW64, Decoder);
362 }
363 
364 static DecodeStatus DecodeAVLdSt_96RegisterClass(MCInst &Inst,
365                                                  unsigned Imm,
366                                                  uint64_t Addr,
367                                                  const void *Decoder) {
368   return decodeOperand_AVLdSt_Any(Inst, Imm,
369                                   AMDGPUDisassembler::OPW96, Decoder);
370 }
371 
372 static DecodeStatus DecodeAVLdSt_128RegisterClass(MCInst &Inst,
373                                                   unsigned Imm,
374                                                   uint64_t Addr,
375                                                   const void *Decoder) {
376   return decodeOperand_AVLdSt_Any(Inst, Imm,
377                                   AMDGPUDisassembler::OPW128, Decoder);
378 }
379 
380 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst,
381                                           unsigned Imm,
382                                           uint64_t Addr,
383                                           const void *Decoder) {
384   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
385   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
386 }
387 
388 #define DECODE_SDWA(DecName) \
389 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
390 
391 DECODE_SDWA(Src32)
392 DECODE_SDWA(Src16)
393 DECODE_SDWA(VopcDst)
394 
395 #include "AMDGPUGenDisassemblerTables.inc"
396 
397 //===----------------------------------------------------------------------===//
398 //
399 //===----------------------------------------------------------------------===//
400 
401 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
402   assert(Bytes.size() >= sizeof(T));
403   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
404   Bytes = Bytes.slice(sizeof(T));
405   return Res;
406 }
407 
408 DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
409                                                MCInst &MI,
410                                                uint64_t Inst,
411                                                uint64_t Address) const {
412   assert(MI.getOpcode() == 0);
413   assert(MI.getNumOperands() == 0);
414   MCInst TmpInst;
415   HasLiteral = false;
416   const auto SavedBytes = Bytes;
417   if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
418     MI = TmpInst;
419     return MCDisassembler::Success;
420   }
421   Bytes = SavedBytes;
422   return MCDisassembler::Fail;
423 }
424 
425 // The disassembler is greedy, so we need to check FI operand value to
426 // not parse a dpp if the correct literal is not set. For dpp16 the
427 // autogenerated decoder checks the dpp literal
428 static bool isValidDPP8(const MCInst &MI) {
429   using namespace llvm::AMDGPU::DPP;
430   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
431   assert(FiIdx != -1);
432   if ((unsigned)FiIdx >= MI.getNumOperands())
433     return false;
434   unsigned Fi = MI.getOperand(FiIdx).getImm();
435   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
436 }
437 
438 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
439                                                 ArrayRef<uint8_t> Bytes_,
440                                                 uint64_t Address,
441                                                 raw_ostream &CS) const {
442   CommentStream = &CS;
443   bool IsSDWA = false;
444 
445   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
446   Bytes = Bytes_.slice(0, MaxInstBytesNum);
447 
448   DecodeStatus Res = MCDisassembler::Fail;
449   do {
450     // ToDo: better to switch encoding length using some bit predicate
451     // but it is unknown yet, so try all we can
452 
453     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
454     // encodings
455     if (Bytes.size() >= 8) {
456       const uint64_t QW = eatBytes<uint64_t>(Bytes);
457 
458       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
459         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
460         if (Res) {
461           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
462               == -1)
463             break;
464           if (convertDPP8Inst(MI) == MCDisassembler::Success)
465             break;
466           MI = MCInst(); // clear
467         }
468       }
469 
470       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
471       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
472         break;
473 
474       MI = MCInst(); // clear
475 
476       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
477       if (Res) break;
478 
479       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
480       if (Res) { IsSDWA = true;  break; }
481 
482       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
483       if (Res) { IsSDWA = true;  break; }
484 
485       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
486       if (Res) { IsSDWA = true;  break; }
487 
488       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
489         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
490         if (Res)
491           break;
492       }
493 
494       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
495       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
496       // table first so we print the correct name.
497       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
498         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
499         if (Res)
500           break;
501       }
502     }
503 
504     // Reinitialize Bytes as DPP64 could have eaten too much
505     Bytes = Bytes_.slice(0, MaxInstBytesNum);
506 
507     // Try decode 32-bit instruction
508     if (Bytes.size() < 4) break;
509     const uint32_t DW = eatBytes<uint32_t>(Bytes);
510     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
511     if (Res) break;
512 
513     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
514     if (Res) break;
515 
516     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
517     if (Res) break;
518 
519     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
520       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
521       if (Res)
522         break;
523     }
524 
525     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
526       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
527       if (Res) break;
528     }
529 
530     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
531     if (Res) break;
532 
533     if (Bytes.size() < 4) break;
534     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
535 
536     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
537       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
538       if (Res)
539         break;
540     }
541 
542     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
543     if (Res) break;
544 
545     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
546     if (Res) break;
547 
548     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
549     if (Res) break;
550 
551     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
552   } while (false);
553 
554   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
555               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
556               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
557               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
558               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
559               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
560               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
561               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
562               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
563               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
564               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
565     // Insert dummy unused src2_modifiers.
566     insertNamedMCOperand(MI, MCOperand::createImm(0),
567                          AMDGPU::OpName::src2_modifiers);
568   }
569 
570   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
571           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
572     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
573                                              AMDGPU::OpName::cpol);
574     if (CPolPos != -1) {
575       unsigned CPol =
576           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
577               AMDGPU::CPol::GLC : 0;
578       if (MI.getNumOperands() <= (unsigned)CPolPos) {
579         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
580                              AMDGPU::OpName::cpol);
581       } else if (CPol) {
582         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
583       }
584     }
585   }
586 
587   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
588               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
589              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
590     // GFX90A lost TFE, its place is occupied by ACC.
591     int TFEOpIdx =
592         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
593     if (TFEOpIdx != -1) {
594       auto TFEIter = MI.begin();
595       std::advance(TFEIter, TFEOpIdx);
596       MI.insert(TFEIter, MCOperand::createImm(0));
597     }
598   }
599 
600   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
601               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
602     int SWZOpIdx =
603         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
604     if (SWZOpIdx != -1) {
605       auto SWZIter = MI.begin();
606       std::advance(SWZIter, SWZOpIdx);
607       MI.insert(SWZIter, MCOperand::createImm(0));
608     }
609   }
610 
611   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
612     int VAddr0Idx =
613         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
614     int RsrcIdx =
615         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
616     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
617     if (VAddr0Idx >= 0 && NSAArgs > 0) {
618       unsigned NSAWords = (NSAArgs + 3) / 4;
619       if (Bytes.size() < 4 * NSAWords) {
620         Res = MCDisassembler::Fail;
621       } else {
622         for (unsigned i = 0; i < NSAArgs; ++i) {
623           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
624                     decodeOperand_VGPR_32(Bytes[i]));
625         }
626         Bytes = Bytes.slice(4 * NSAWords);
627       }
628     }
629 
630     if (Res)
631       Res = convertMIMGInst(MI);
632   }
633 
634   if (Res && IsSDWA)
635     Res = convertSDWAInst(MI);
636 
637   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
638                                               AMDGPU::OpName::vdst_in);
639   if (VDstIn_Idx != -1) {
640     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
641                            MCOI::OperandConstraint::TIED_TO);
642     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
643          !MI.getOperand(VDstIn_Idx).isReg() ||
644          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
645       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
646         MI.erase(&MI.getOperand(VDstIn_Idx));
647       insertNamedMCOperand(MI,
648         MCOperand::createReg(MI.getOperand(Tied).getReg()),
649         AMDGPU::OpName::vdst_in);
650     }
651   }
652 
653   int ImmLitIdx =
654       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
655   if (Res && ImmLitIdx != -1)
656     Res = convertFMAanyK(MI, ImmLitIdx);
657 
658   // if the opcode was not recognized we'll assume a Size of 4 bytes
659   // (unless there are fewer bytes left)
660   Size = Res ? (MaxInstBytesNum - Bytes.size())
661              : std::min((size_t)4, Bytes_.size());
662   return Res;
663 }
664 
665 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
666   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
667       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
668     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
669       // VOPC - insert clamp
670       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
671   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
672     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
673     if (SDst != -1) {
674       // VOPC - insert VCC register as sdst
675       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
676                            AMDGPU::OpName::sdst);
677     } else {
678       // VOP1/2 - insert omod if present in instruction
679       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
680     }
681   }
682   return MCDisassembler::Success;
683 }
684 
685 // We must check FI == literal to reject not genuine dpp8 insts, and we must
686 // first add optional MI operands to check FI
687 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
688   unsigned Opc = MI.getOpcode();
689   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
690 
691   // Insert dummy unused src modifiers.
692   if (MI.getNumOperands() < DescNumOps &&
693       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
694     insertNamedMCOperand(MI, MCOperand::createImm(0),
695                          AMDGPU::OpName::src0_modifiers);
696 
697   if (MI.getNumOperands() < DescNumOps &&
698       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
699     insertNamedMCOperand(MI, MCOperand::createImm(0),
700                          AMDGPU::OpName::src1_modifiers);
701 
702   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
703 }
704 
705 // Note that before gfx10, the MIMG encoding provided no information about
706 // VADDR size. Consequently, decoded instructions always show address as if it
707 // has 1 dword, which could be not really so.
708 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
709 
710   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
711                                            AMDGPU::OpName::vdst);
712 
713   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
714                                             AMDGPU::OpName::vdata);
715   int VAddr0Idx =
716       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
717   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
718                                             AMDGPU::OpName::dmask);
719 
720   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
721                                             AMDGPU::OpName::tfe);
722   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
723                                             AMDGPU::OpName::d16);
724 
725   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
726   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
727       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
728 
729   assert(VDataIdx != -1);
730   if (BaseOpcode->BVH) {
731     // Add A16 operand for intersect_ray instructions
732     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
733       addOperand(MI, MCOperand::createImm(1));
734     }
735     return MCDisassembler::Success;
736   }
737 
738   bool IsAtomic = (VDstIdx != -1);
739   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
740   bool IsNSA = false;
741   unsigned AddrSize = Info->VAddrDwords;
742 
743   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
744     unsigned DimIdx =
745         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
746     int A16Idx =
747         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
748     const AMDGPU::MIMGDimInfo *Dim =
749         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
750     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
751 
752     AddrSize =
753         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
754 
755     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
756     if (!IsNSA) {
757       if (AddrSize > 8)
758         AddrSize = 16;
759     } else {
760       if (AddrSize > Info->VAddrDwords) {
761         // The NSA encoding does not contain enough operands for the combination
762         // of base opcode / dimension. Should this be an error?
763         return MCDisassembler::Success;
764       }
765     }
766   }
767 
768   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
769   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
770 
771   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
772   if (D16 && AMDGPU::hasPackedD16(STI)) {
773     DstSize = (DstSize + 1) / 2;
774   }
775 
776   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
777     DstSize += 1;
778 
779   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
780     return MCDisassembler::Success;
781 
782   int NewOpcode =
783       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
784   if (NewOpcode == -1)
785     return MCDisassembler::Success;
786 
787   // Widen the register to the correct number of enabled channels.
788   unsigned NewVdata = AMDGPU::NoRegister;
789   if (DstSize != Info->VDataDwords) {
790     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
791 
792     // Get first subregister of VData
793     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
794     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
795     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
796 
797     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
798                                        &MRI.getRegClass(DataRCID));
799     if (NewVdata == AMDGPU::NoRegister) {
800       // It's possible to encode this such that the low register + enabled
801       // components exceeds the register count.
802       return MCDisassembler::Success;
803     }
804   }
805 
806   unsigned NewVAddr0 = AMDGPU::NoRegister;
807   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
808       AddrSize != Info->VAddrDwords) {
809     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
810     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
811     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
812 
813     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
814     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
815                                         &MRI.getRegClass(AddrRCID));
816     if (NewVAddr0 == AMDGPU::NoRegister)
817       return MCDisassembler::Success;
818   }
819 
820   MI.setOpcode(NewOpcode);
821 
822   if (NewVdata != AMDGPU::NoRegister) {
823     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
824 
825     if (IsAtomic) {
826       // Atomic operations have an additional operand (a copy of data)
827       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
828     }
829   }
830 
831   if (NewVAddr0 != AMDGPU::NoRegister) {
832     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
833   } else if (IsNSA) {
834     assert(AddrSize <= Info->VAddrDwords);
835     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
836              MI.begin() + VAddr0Idx + Info->VAddrDwords);
837   }
838 
839   return MCDisassembler::Success;
840 }
841 
842 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
843                                                 int ImmLitIdx) const {
844   assert(HasLiteral && "Should have decoded a literal");
845   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
846   unsigned DescNumOps = Desc.getNumOperands();
847   assert(DescNumOps == MI.getNumOperands());
848   for (unsigned I = 0; I < DescNumOps; ++I) {
849     auto &Op = MI.getOperand(I);
850     auto OpType = Desc.OpInfo[I].OperandType;
851     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
852                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
853     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
854         IsDeferredOp)
855       Op.setImm(Literal);
856   }
857   return MCDisassembler::Success;
858 }
859 
860 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
861   return getContext().getRegisterInfo()->
862     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
863 }
864 
865 inline
866 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
867                                          const Twine& ErrMsg) const {
868   *CommentStream << "Error: " + ErrMsg;
869 
870   // ToDo: add support for error operands to MCInst.h
871   // return MCOperand::createError(V);
872   return MCOperand();
873 }
874 
875 inline
876 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
877   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
878 }
879 
880 inline
881 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
882                                                unsigned Val) const {
883   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
884   if (Val >= RegCl.getNumRegs())
885     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
886                            ": unknown register " + Twine(Val));
887   return createRegOperand(RegCl.getRegister(Val));
888 }
889 
890 inline
891 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
892                                                 unsigned Val) const {
893   // ToDo: SI/CI have 104 SGPRs, VI - 102
894   // Valery: here we accepting as much as we can, let assembler sort it out
895   int shift = 0;
896   switch (SRegClassID) {
897   case AMDGPU::SGPR_32RegClassID:
898   case AMDGPU::TTMP_32RegClassID:
899     break;
900   case AMDGPU::SGPR_64RegClassID:
901   case AMDGPU::TTMP_64RegClassID:
902     shift = 1;
903     break;
904   case AMDGPU::SGPR_128RegClassID:
905   case AMDGPU::TTMP_128RegClassID:
906   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
907   // this bundle?
908   case AMDGPU::SGPR_256RegClassID:
909   case AMDGPU::TTMP_256RegClassID:
910     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
911   // this bundle?
912   case AMDGPU::SGPR_512RegClassID:
913   case AMDGPU::TTMP_512RegClassID:
914     shift = 2;
915     break;
916   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
917   // this bundle?
918   default:
919     llvm_unreachable("unhandled register class");
920   }
921 
922   if (Val % (1 << shift)) {
923     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
924                    << ": scalar reg isn't aligned " << Val;
925   }
926 
927   return createRegOperand(SRegClassID, Val >> shift);
928 }
929 
930 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
931   return decodeSrcOp(OPW32, Val);
932 }
933 
934 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
935   return decodeSrcOp(OPW64, Val);
936 }
937 
938 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
939   return decodeSrcOp(OPW128, Val);
940 }
941 
942 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
943   return decodeSrcOp(OPW16, Val);
944 }
945 
946 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
947   return decodeSrcOp(OPWV216, Val);
948 }
949 
950 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
951   return decodeSrcOp(OPWV232, Val);
952 }
953 
954 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
955   // Some instructions have operand restrictions beyond what the encoding
956   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
957   // high bit.
958   Val &= 255;
959 
960   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
961 }
962 
963 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
964   return decodeSrcOp(OPW32, Val);
965 }
966 
967 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
968   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
969 }
970 
971 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
972   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
973 }
974 
975 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
976   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
977 }
978 
979 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
980   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
981 }
982 
983 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
984   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
985 }
986 
987 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
988   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
989 }
990 
991 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
992   return decodeSrcOp(OPW32, Val);
993 }
994 
995 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
996   return decodeSrcOp(OPW64, Val);
997 }
998 
999 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1000   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1001 }
1002 
1003 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1004   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1005 }
1006 
1007 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1008   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1009 }
1010 
1011 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1012   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1013 }
1014 
1015 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1016   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1017 }
1018 
1019 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1020   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1021 }
1022 
1023 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1024   // table-gen generated disassembler doesn't care about operand types
1025   // leaving only registry class so SSrc_32 operand turns into SReg_32
1026   // and therefore we accept immediates and literals here as well
1027   return decodeSrcOp(OPW32, Val);
1028 }
1029 
1030 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1031   unsigned Val) const {
1032   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1033   return decodeOperand_SReg_32(Val);
1034 }
1035 
1036 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1037   unsigned Val) const {
1038   // SReg_32_XM0 is SReg_32 without EXEC_HI
1039   return decodeOperand_SReg_32(Val);
1040 }
1041 
1042 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1043   // table-gen generated disassembler doesn't care about operand types
1044   // leaving only registry class so SSrc_32 operand turns into SReg_32
1045   // and therefore we accept immediates and literals here as well
1046   return decodeSrcOp(OPW32, Val);
1047 }
1048 
1049 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1050   return decodeSrcOp(OPW64, Val);
1051 }
1052 
1053 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1054   return decodeSrcOp(OPW64, Val);
1055 }
1056 
1057 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1058   return decodeSrcOp(OPW128, Val);
1059 }
1060 
1061 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1062   return decodeDstOp(OPW256, Val);
1063 }
1064 
1065 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1066   return decodeDstOp(OPW512, Val);
1067 }
1068 
1069 // Decode Literals for insts which always have a literal in the encoding
1070 MCOperand
1071 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1072   if (HasLiteral) {
1073     if (Literal != Val)
1074       return errOperand(Val, "More than one unique literal is illegal");
1075   }
1076   HasLiteral = true;
1077   Literal = Val;
1078   return MCOperand::createImm(Literal);
1079 }
1080 
1081 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1082   // For now all literal constants are supposed to be unsigned integer
1083   // ToDo: deal with signed/unsigned 64-bit integer constants
1084   // ToDo: deal with float/double constants
1085   if (!HasLiteral) {
1086     if (Bytes.size() < 4) {
1087       return errOperand(0, "cannot read literal, inst bytes left " +
1088                         Twine(Bytes.size()));
1089     }
1090     HasLiteral = true;
1091     Literal = eatBytes<uint32_t>(Bytes);
1092   }
1093   return MCOperand::createImm(Literal);
1094 }
1095 
1096 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1097   using namespace AMDGPU::EncValues;
1098 
1099   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1100   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1101     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1102     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1103       // Cast prevents negative overflow.
1104 }
1105 
1106 static int64_t getInlineImmVal32(unsigned Imm) {
1107   switch (Imm) {
1108   case 240:
1109     return FloatToBits(0.5f);
1110   case 241:
1111     return FloatToBits(-0.5f);
1112   case 242:
1113     return FloatToBits(1.0f);
1114   case 243:
1115     return FloatToBits(-1.0f);
1116   case 244:
1117     return FloatToBits(2.0f);
1118   case 245:
1119     return FloatToBits(-2.0f);
1120   case 246:
1121     return FloatToBits(4.0f);
1122   case 247:
1123     return FloatToBits(-4.0f);
1124   case 248: // 1 / (2 * PI)
1125     return 0x3e22f983;
1126   default:
1127     llvm_unreachable("invalid fp inline imm");
1128   }
1129 }
1130 
1131 static int64_t getInlineImmVal64(unsigned Imm) {
1132   switch (Imm) {
1133   case 240:
1134     return DoubleToBits(0.5);
1135   case 241:
1136     return DoubleToBits(-0.5);
1137   case 242:
1138     return DoubleToBits(1.0);
1139   case 243:
1140     return DoubleToBits(-1.0);
1141   case 244:
1142     return DoubleToBits(2.0);
1143   case 245:
1144     return DoubleToBits(-2.0);
1145   case 246:
1146     return DoubleToBits(4.0);
1147   case 247:
1148     return DoubleToBits(-4.0);
1149   case 248: // 1 / (2 * PI)
1150     return 0x3fc45f306dc9c882;
1151   default:
1152     llvm_unreachable("invalid fp inline imm");
1153   }
1154 }
1155 
1156 static int64_t getInlineImmVal16(unsigned Imm) {
1157   switch (Imm) {
1158   case 240:
1159     return 0x3800;
1160   case 241:
1161     return 0xB800;
1162   case 242:
1163     return 0x3C00;
1164   case 243:
1165     return 0xBC00;
1166   case 244:
1167     return 0x4000;
1168   case 245:
1169     return 0xC000;
1170   case 246:
1171     return 0x4400;
1172   case 247:
1173     return 0xC400;
1174   case 248: // 1 / (2 * PI)
1175     return 0x3118;
1176   default:
1177     llvm_unreachable("invalid fp inline imm");
1178   }
1179 }
1180 
1181 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1182   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1183       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1184 
1185   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1186   switch (Width) {
1187   case OPW32:
1188   case OPW128: // splat constants
1189   case OPW512:
1190   case OPW1024:
1191   case OPWV232:
1192     return MCOperand::createImm(getInlineImmVal32(Imm));
1193   case OPW64:
1194   case OPW256:
1195     return MCOperand::createImm(getInlineImmVal64(Imm));
1196   case OPW16:
1197   case OPWV216:
1198     return MCOperand::createImm(getInlineImmVal16(Imm));
1199   default:
1200     llvm_unreachable("implement me");
1201   }
1202 }
1203 
1204 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1205   using namespace AMDGPU;
1206 
1207   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1208   switch (Width) {
1209   default: // fall
1210   case OPW32:
1211   case OPW16:
1212   case OPWV216:
1213     return VGPR_32RegClassID;
1214   case OPW64:
1215   case OPWV232: return VReg_64RegClassID;
1216   case OPW96: return VReg_96RegClassID;
1217   case OPW128: return VReg_128RegClassID;
1218   case OPW160: return VReg_160RegClassID;
1219   case OPW256: return VReg_256RegClassID;
1220   case OPW512: return VReg_512RegClassID;
1221   case OPW1024: return VReg_1024RegClassID;
1222   }
1223 }
1224 
1225 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1226   using namespace AMDGPU;
1227 
1228   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1229   switch (Width) {
1230   default: // fall
1231   case OPW32:
1232   case OPW16:
1233   case OPWV216:
1234     return AGPR_32RegClassID;
1235   case OPW64:
1236   case OPWV232: return AReg_64RegClassID;
1237   case OPW96: return AReg_96RegClassID;
1238   case OPW128: return AReg_128RegClassID;
1239   case OPW160: return AReg_160RegClassID;
1240   case OPW256: return AReg_256RegClassID;
1241   case OPW512: return AReg_512RegClassID;
1242   case OPW1024: return AReg_1024RegClassID;
1243   }
1244 }
1245 
1246 
1247 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1248   using namespace AMDGPU;
1249 
1250   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1251   switch (Width) {
1252   default: // fall
1253   case OPW32:
1254   case OPW16:
1255   case OPWV216:
1256     return SGPR_32RegClassID;
1257   case OPW64:
1258   case OPWV232: return SGPR_64RegClassID;
1259   case OPW96: return SGPR_96RegClassID;
1260   case OPW128: return SGPR_128RegClassID;
1261   case OPW160: return SGPR_160RegClassID;
1262   case OPW256: return SGPR_256RegClassID;
1263   case OPW512: return SGPR_512RegClassID;
1264   }
1265 }
1266 
1267 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1268   using namespace AMDGPU;
1269 
1270   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1271   switch (Width) {
1272   default: // fall
1273   case OPW32:
1274   case OPW16:
1275   case OPWV216:
1276     return TTMP_32RegClassID;
1277   case OPW64:
1278   case OPWV232: return TTMP_64RegClassID;
1279   case OPW128: return TTMP_128RegClassID;
1280   case OPW256: return TTMP_256RegClassID;
1281   case OPW512: return TTMP_512RegClassID;
1282   }
1283 }
1284 
1285 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1286   using namespace AMDGPU::EncValues;
1287 
1288   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1289   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1290 
1291   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1292 }
1293 
1294 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1295                                           bool MandatoryLiteral) const {
1296   using namespace AMDGPU::EncValues;
1297 
1298   assert(Val < 1024); // enum10
1299 
1300   bool IsAGPR = Val & 512;
1301   Val &= 511;
1302 
1303   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1304     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1305                                    : getVgprClassId(Width), Val - VGPR_MIN);
1306   }
1307   if (Val <= SGPR_MAX) {
1308     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1309     static_assert(SGPR_MIN == 0, "");
1310     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1311   }
1312 
1313   int TTmpIdx = getTTmpIdx(Val);
1314   if (TTmpIdx >= 0) {
1315     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1316   }
1317 
1318   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1319     return decodeIntImmed(Val);
1320 
1321   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1322     return decodeFPImmed(Width, Val);
1323 
1324   if (Val == LITERAL_CONST) {
1325     if (MandatoryLiteral)
1326       // Keep a sentinel value for deferred setting
1327       return MCOperand::createImm(LITERAL_CONST);
1328     else
1329       return decodeLiteralConstant();
1330   }
1331 
1332   switch (Width) {
1333   case OPW32:
1334   case OPW16:
1335   case OPWV216:
1336     return decodeSpecialReg32(Val);
1337   case OPW64:
1338   case OPWV232:
1339     return decodeSpecialReg64(Val);
1340   default:
1341     llvm_unreachable("unexpected immediate type");
1342   }
1343 }
1344 
1345 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1346   using namespace AMDGPU::EncValues;
1347 
1348   assert(Val < 128);
1349   assert(Width == OPW256 || Width == OPW512);
1350 
1351   if (Val <= SGPR_MAX) {
1352     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1353     static_assert(SGPR_MIN == 0, "");
1354     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1355   }
1356 
1357   int TTmpIdx = getTTmpIdx(Val);
1358   if (TTmpIdx >= 0) {
1359     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1360   }
1361 
1362   llvm_unreachable("unknown dst register");
1363 }
1364 
1365 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1366   using namespace AMDGPU;
1367 
1368   switch (Val) {
1369   case 102: return createRegOperand(FLAT_SCR_LO);
1370   case 103: return createRegOperand(FLAT_SCR_HI);
1371   case 104: return createRegOperand(XNACK_MASK_LO);
1372   case 105: return createRegOperand(XNACK_MASK_HI);
1373   case 106: return createRegOperand(VCC_LO);
1374   case 107: return createRegOperand(VCC_HI);
1375   case 108: return createRegOperand(TBA_LO);
1376   case 109: return createRegOperand(TBA_HI);
1377   case 110: return createRegOperand(TMA_LO);
1378   case 111: return createRegOperand(TMA_HI);
1379   case 124: return createRegOperand(M0);
1380   case 125: return createRegOperand(SGPR_NULL);
1381   case 126: return createRegOperand(EXEC_LO);
1382   case 127: return createRegOperand(EXEC_HI);
1383   case 235: return createRegOperand(SRC_SHARED_BASE);
1384   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1385   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1386   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1387   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1388   case 251: return createRegOperand(SRC_VCCZ);
1389   case 252: return createRegOperand(SRC_EXECZ);
1390   case 253: return createRegOperand(SRC_SCC);
1391   case 254: return createRegOperand(LDS_DIRECT);
1392   default: break;
1393   }
1394   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1395 }
1396 
1397 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1398   using namespace AMDGPU;
1399 
1400   switch (Val) {
1401   case 102: return createRegOperand(FLAT_SCR);
1402   case 104: return createRegOperand(XNACK_MASK);
1403   case 106: return createRegOperand(VCC);
1404   case 108: return createRegOperand(TBA);
1405   case 110: return createRegOperand(TMA);
1406   case 125: return createRegOperand(SGPR_NULL);
1407   case 126: return createRegOperand(EXEC);
1408   case 235: return createRegOperand(SRC_SHARED_BASE);
1409   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1410   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1411   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1412   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1413   case 251: return createRegOperand(SRC_VCCZ);
1414   case 252: return createRegOperand(SRC_EXECZ);
1415   case 253: return createRegOperand(SRC_SCC);
1416   default: break;
1417   }
1418   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1419 }
1420 
1421 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1422                                             const unsigned Val) const {
1423   using namespace AMDGPU::SDWA;
1424   using namespace AMDGPU::EncValues;
1425 
1426   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1427       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1428     // XXX: cast to int is needed to avoid stupid warning:
1429     // compare with unsigned is always true
1430     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1431         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1432       return createRegOperand(getVgprClassId(Width),
1433                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1434     }
1435     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1436         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1437                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1438       return createSRegOperand(getSgprClassId(Width),
1439                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1440     }
1441     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1442         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1443       return createSRegOperand(getTtmpClassId(Width),
1444                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1445     }
1446 
1447     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1448 
1449     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1450       return decodeIntImmed(SVal);
1451 
1452     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1453       return decodeFPImmed(Width, SVal);
1454 
1455     return decodeSpecialReg32(SVal);
1456   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1457     return createRegOperand(getVgprClassId(Width), Val);
1458   }
1459   llvm_unreachable("unsupported target");
1460 }
1461 
1462 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1463   return decodeSDWASrc(OPW16, Val);
1464 }
1465 
1466 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1467   return decodeSDWASrc(OPW32, Val);
1468 }
1469 
1470 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1471   using namespace AMDGPU::SDWA;
1472 
1473   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1474           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1475          "SDWAVopcDst should be present only on GFX9+");
1476 
1477   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1478 
1479   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1480     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1481 
1482     int TTmpIdx = getTTmpIdx(Val);
1483     if (TTmpIdx >= 0) {
1484       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1485       return createSRegOperand(TTmpClsId, TTmpIdx);
1486     } else if (Val > SGPR_MAX) {
1487       return IsWave64 ? decodeSpecialReg64(Val)
1488                       : decodeSpecialReg32(Val);
1489     } else {
1490       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1491     }
1492   } else {
1493     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1494   }
1495 }
1496 
1497 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1498   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1499     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1500 }
1501 
1502 bool AMDGPUDisassembler::isVI() const {
1503   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1504 }
1505 
1506 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1507 
1508 bool AMDGPUDisassembler::isGFX90A() const {
1509   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1510 }
1511 
1512 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1513 
1514 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1515 
1516 bool AMDGPUDisassembler::isGFX10Plus() const {
1517   return AMDGPU::isGFX10Plus(STI);
1518 }
1519 
1520 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1521   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1522 }
1523 
1524 //===----------------------------------------------------------------------===//
1525 // AMDGPU specific symbol handling
1526 //===----------------------------------------------------------------------===//
1527 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1528   do {                                                                         \
1529     KdStream << Indent << DIRECTIVE " "                                        \
1530              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1531   } while (0)
1532 
1533 // NOLINTNEXTLINE(readability-identifier-naming)
1534 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1535     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1536   using namespace amdhsa;
1537   StringRef Indent = "\t";
1538 
1539   // We cannot accurately backward compute #VGPRs used from
1540   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1541   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1542   // simply calculate the inverse of what the assembler does.
1543 
1544   uint32_t GranulatedWorkitemVGPRCount =
1545       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1546       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1547 
1548   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1549                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1550 
1551   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1552 
1553   // We cannot backward compute values used to calculate
1554   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1555   // directives can't be computed:
1556   // .amdhsa_reserve_vcc
1557   // .amdhsa_reserve_flat_scratch
1558   // .amdhsa_reserve_xnack_mask
1559   // They take their respective default values if not specified in the assembly.
1560   //
1561   // GRANULATED_WAVEFRONT_SGPR_COUNT
1562   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1563   //
1564   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1565   // are set to 0. So while disassembling we consider that:
1566   //
1567   // GRANULATED_WAVEFRONT_SGPR_COUNT
1568   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1569   //
1570   // The disassembler cannot recover the original values of those 3 directives.
1571 
1572   uint32_t GranulatedWavefrontSGPRCount =
1573       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1574       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1575 
1576   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1577     return MCDisassembler::Fail;
1578 
1579   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1580                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1581 
1582   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1583   if (!hasArchitectedFlatScratch())
1584     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1585   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1586   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1587 
1588   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1589     return MCDisassembler::Fail;
1590 
1591   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1592                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1593   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1594                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1595   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1596                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1597   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1598                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1599 
1600   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1601     return MCDisassembler::Fail;
1602 
1603   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1604 
1605   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1606     return MCDisassembler::Fail;
1607 
1608   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1609 
1610   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1611     return MCDisassembler::Fail;
1612 
1613   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1614     return MCDisassembler::Fail;
1615 
1616   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1617 
1618   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1619     return MCDisassembler::Fail;
1620 
1621   if (isGFX10Plus()) {
1622     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1623                     COMPUTE_PGM_RSRC1_WGP_MODE);
1624     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1625     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1626   }
1627   return MCDisassembler::Success;
1628 }
1629 
1630 // NOLINTNEXTLINE(readability-identifier-naming)
1631 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1632     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1633   using namespace amdhsa;
1634   StringRef Indent = "\t";
1635   if (hasArchitectedFlatScratch())
1636     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1637                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1638   else
1639     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1640                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1641   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1642                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1643   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1644                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1645   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1646                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1647   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1648                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1649   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1650                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1651 
1652   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1653     return MCDisassembler::Fail;
1654 
1655   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1656     return MCDisassembler::Fail;
1657 
1658   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1659     return MCDisassembler::Fail;
1660 
1661   PRINT_DIRECTIVE(
1662       ".amdhsa_exception_fp_ieee_invalid_op",
1663       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1664   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1665                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1666   PRINT_DIRECTIVE(
1667       ".amdhsa_exception_fp_ieee_div_zero",
1668       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1669   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1670                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1671   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1672                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1673   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1674                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1675   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1676                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1677 
1678   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1679     return MCDisassembler::Fail;
1680 
1681   return MCDisassembler::Success;
1682 }
1683 
1684 #undef PRINT_DIRECTIVE
1685 
1686 MCDisassembler::DecodeStatus
1687 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1688     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1689     raw_string_ostream &KdStream) const {
1690 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1691   do {                                                                         \
1692     KdStream << Indent << DIRECTIVE " "                                        \
1693              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1694   } while (0)
1695 
1696   uint16_t TwoByteBuffer = 0;
1697   uint32_t FourByteBuffer = 0;
1698 
1699   StringRef ReservedBytes;
1700   StringRef Indent = "\t";
1701 
1702   assert(Bytes.size() == 64);
1703   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1704 
1705   switch (Cursor.tell()) {
1706   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1707     FourByteBuffer = DE.getU32(Cursor);
1708     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1709              << '\n';
1710     return MCDisassembler::Success;
1711 
1712   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1713     FourByteBuffer = DE.getU32(Cursor);
1714     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1715              << FourByteBuffer << '\n';
1716     return MCDisassembler::Success;
1717 
1718   case amdhsa::KERNARG_SIZE_OFFSET:
1719     FourByteBuffer = DE.getU32(Cursor);
1720     KdStream << Indent << ".amdhsa_kernarg_size "
1721              << FourByteBuffer << '\n';
1722     return MCDisassembler::Success;
1723 
1724   case amdhsa::RESERVED0_OFFSET:
1725     // 4 reserved bytes, must be 0.
1726     ReservedBytes = DE.getBytes(Cursor, 4);
1727     for (int I = 0; I < 4; ++I) {
1728       if (ReservedBytes[I] != 0) {
1729         return MCDisassembler::Fail;
1730       }
1731     }
1732     return MCDisassembler::Success;
1733 
1734   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1735     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1736     // So far no directive controls this for Code Object V3, so simply skip for
1737     // disassembly.
1738     DE.skip(Cursor, 8);
1739     return MCDisassembler::Success;
1740 
1741   case amdhsa::RESERVED1_OFFSET:
1742     // 20 reserved bytes, must be 0.
1743     ReservedBytes = DE.getBytes(Cursor, 20);
1744     for (int I = 0; I < 20; ++I) {
1745       if (ReservedBytes[I] != 0) {
1746         return MCDisassembler::Fail;
1747       }
1748     }
1749     return MCDisassembler::Success;
1750 
1751   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1752     // COMPUTE_PGM_RSRC3
1753     //  - Only set for GFX10, GFX6-9 have this to be 0.
1754     //  - Currently no directives directly control this.
1755     FourByteBuffer = DE.getU32(Cursor);
1756     if (!isGFX10Plus() && FourByteBuffer) {
1757       return MCDisassembler::Fail;
1758     }
1759     return MCDisassembler::Success;
1760 
1761   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1762     FourByteBuffer = DE.getU32(Cursor);
1763     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1764         MCDisassembler::Fail) {
1765       return MCDisassembler::Fail;
1766     }
1767     return MCDisassembler::Success;
1768 
1769   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1770     FourByteBuffer = DE.getU32(Cursor);
1771     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1772         MCDisassembler::Fail) {
1773       return MCDisassembler::Fail;
1774     }
1775     return MCDisassembler::Success;
1776 
1777   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1778     using namespace amdhsa;
1779     TwoByteBuffer = DE.getU16(Cursor);
1780 
1781     if (!hasArchitectedFlatScratch())
1782       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1783                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1784     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1785                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1786     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1787                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1788     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1789                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1790     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1791                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1792     if (!hasArchitectedFlatScratch())
1793       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1794                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1795     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1796                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1797 
1798     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1799       return MCDisassembler::Fail;
1800 
1801     // Reserved for GFX9
1802     if (isGFX9() &&
1803         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1804       return MCDisassembler::Fail;
1805     } else if (isGFX10Plus()) {
1806       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1807                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1808     }
1809 
1810     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1811       return MCDisassembler::Fail;
1812 
1813     return MCDisassembler::Success;
1814 
1815   case amdhsa::RESERVED2_OFFSET:
1816     // 6 bytes from here are reserved, must be 0.
1817     ReservedBytes = DE.getBytes(Cursor, 6);
1818     for (int I = 0; I < 6; ++I) {
1819       if (ReservedBytes[I] != 0)
1820         return MCDisassembler::Fail;
1821     }
1822     return MCDisassembler::Success;
1823 
1824   default:
1825     llvm_unreachable("Unhandled index. Case statements cover everything.");
1826     return MCDisassembler::Fail;
1827   }
1828 #undef PRINT_DIRECTIVE
1829 }
1830 
1831 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1832     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1833   // CP microcode requires the kernel descriptor to be 64 aligned.
1834   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1835     return MCDisassembler::Fail;
1836 
1837   std::string Kd;
1838   raw_string_ostream KdStream(Kd);
1839   KdStream << ".amdhsa_kernel " << KdName << '\n';
1840 
1841   DataExtractor::Cursor C(0);
1842   while (C && C.tell() < Bytes.size()) {
1843     MCDisassembler::DecodeStatus Status =
1844         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1845 
1846     cantFail(C.takeError());
1847 
1848     if (Status == MCDisassembler::Fail)
1849       return MCDisassembler::Fail;
1850   }
1851   KdStream << ".end_amdhsa_kernel\n";
1852   outs() << KdStream.str();
1853   return MCDisassembler::Success;
1854 }
1855 
1856 Optional<MCDisassembler::DecodeStatus>
1857 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1858                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1859                                   raw_ostream &CStream) const {
1860   // Right now only kernel descriptor needs to be handled.
1861   // We ignore all other symbols for target specific handling.
1862   // TODO:
1863   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1864   // Object V2 and V3 when symbols are marked protected.
1865 
1866   // amd_kernel_code_t for Code Object V2.
1867   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1868     Size = 256;
1869     return MCDisassembler::Fail;
1870   }
1871 
1872   // Code Object V3 kernel descriptors.
1873   StringRef Name = Symbol.Name;
1874   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1875     Size = 64; // Size = 64 regardless of success or failure.
1876     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1877   }
1878   return None;
1879 }
1880 
1881 //===----------------------------------------------------------------------===//
1882 // AMDGPUSymbolizer
1883 //===----------------------------------------------------------------------===//
1884 
1885 // Try to find symbol name for specified label
1886 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1887                                 raw_ostream &/*cStream*/, int64_t Value,
1888                                 uint64_t /*Address*/, bool IsBranch,
1889                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1890 
1891   if (!IsBranch) {
1892     return false;
1893   }
1894 
1895   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1896   if (!Symbols)
1897     return false;
1898 
1899   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1900     return Val.Addr == static_cast<uint64_t>(Value) &&
1901            Val.Type == ELF::STT_NOTYPE;
1902   });
1903   if (Result != Symbols->end()) {
1904     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1905     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1906     Inst.addOperand(MCOperand::createExpr(Add));
1907     return true;
1908   }
1909   // Add to list of referenced addresses, so caller can synthesize a label.
1910   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1911   return false;
1912 }
1913 
1914 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1915                                                        int64_t Value,
1916                                                        uint64_t Address) {
1917   llvm_unreachable("unimplemented");
1918 }
1919 
1920 //===----------------------------------------------------------------------===//
1921 // Initialization
1922 //===----------------------------------------------------------------------===//
1923 
1924 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1925                               LLVMOpInfoCallback /*GetOpInfo*/,
1926                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1927                               void *DisInfo,
1928                               MCContext *Ctx,
1929                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1930   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1931 }
1932 
1933 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1934                                                 const MCSubtargetInfo &STI,
1935                                                 MCContext &Ctx) {
1936   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1937 }
1938 
1939 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1940   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1941                                          createAMDGPUDisassembler);
1942   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1943                                        createAMDGPUSymbolizer);
1944 }
1945