xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 4874838a63fb48b18eeafa0da361955f6ce67f1d)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VRegOrLds_32)
123 DECODE_OPERAND_REG(VS_32)
124 DECODE_OPERAND_REG(VS_64)
125 DECODE_OPERAND_REG(VS_128)
126 
127 DECODE_OPERAND_REG(VReg_64)
128 DECODE_OPERAND_REG(VReg_96)
129 DECODE_OPERAND_REG(VReg_128)
130 DECODE_OPERAND_REG(VReg_256)
131 DECODE_OPERAND_REG(VReg_512)
132 DECODE_OPERAND_REG(VReg_1024)
133 
134 DECODE_OPERAND_REG(SReg_32)
135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
137 DECODE_OPERAND_REG(SRegOrLds_32)
138 DECODE_OPERAND_REG(SReg_64)
139 DECODE_OPERAND_REG(SReg_64_XEXEC)
140 DECODE_OPERAND_REG(SReg_128)
141 DECODE_OPERAND_REG(SReg_256)
142 DECODE_OPERAND_REG(SReg_512)
143 
144 DECODE_OPERAND_REG(AGPR_32)
145 DECODE_OPERAND_REG(AReg_64)
146 DECODE_OPERAND_REG(AReg_128)
147 DECODE_OPERAND_REG(AReg_256)
148 DECODE_OPERAND_REG(AReg_512)
149 DECODE_OPERAND_REG(AReg_1024)
150 DECODE_OPERAND_REG(AV_32)
151 DECODE_OPERAND_REG(AV_64)
152 DECODE_OPERAND_REG(AV_128)
153 DECODE_OPERAND_REG(AVDst_128)
154 DECODE_OPERAND_REG(AVDst_512)
155 
156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
157                                          uint64_t Addr,
158                                          const MCDisassembler *Decoder) {
159   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
161 }
162 
163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
164                                            uint64_t Addr,
165                                            const MCDisassembler *Decoder) {
166   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
167   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
168 }
169 
170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
171                                            uint64_t Addr,
172                                            const MCDisassembler *Decoder) {
173   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
175 }
176 
177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
178                                         uint64_t Addr,
179                                         const MCDisassembler *Decoder) {
180   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
182 }
183 
184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
185                                         uint64_t Addr,
186                                         const MCDisassembler *Decoder) {
187   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190 
191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
192                                           uint64_t Addr,
193                                           const MCDisassembler *Decoder) {
194   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
195   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
196 }
197 
198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
199                                            uint64_t Addr,
200                                            const MCDisassembler *Decoder) {
201   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
202   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
203 }
204 
205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
206                                            uint64_t Addr,
207                                            const MCDisassembler *Decoder) {
208   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
209   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
210 }
211 
212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
213                                            uint64_t Addr,
214                                            const MCDisassembler *Decoder) {
215   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218 
219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
220                                             uint64_t Addr,
221                                             const MCDisassembler *Decoder) {
222   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
223   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
224 }
225 
226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
227                                           uint64_t Addr,
228                                           const MCDisassembler *Decoder) {
229   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
231 }
232 
233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
234                                            uint64_t Addr,
235                                            const MCDisassembler *Decoder) {
236   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
237   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
238 }
239 
240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
241                                            uint64_t Addr,
242                                            const MCDisassembler *Decoder) {
243   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
245 }
246 
247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
248                                            uint64_t Addr,
249                                            const MCDisassembler *Decoder) {
250   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
251   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
252 }
253 
254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
255                                             uint64_t Addr,
256                                             const MCDisassembler *Decoder) {
257   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
258   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
259 }
260 
261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
262                                           uint64_t Addr,
263                                           const MCDisassembler *Decoder) {
264   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
265   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
266 }
267 
268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
269                                           uint64_t Addr,
270                                           const MCDisassembler *Decoder) {
271   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
272   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
273 }
274 
275 static DecodeStatus
276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
277                              const MCDisassembler *Decoder) {
278   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
279   return addOperand(
280       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
281 }
282 
283 static DecodeStatus
284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
285                              const MCDisassembler *Decoder) {
286   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(
288       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
289 }
290 
291 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
292                                           uint64_t Addr, const void *Decoder) {
293   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
294   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
295 }
296 
297 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
298                           const MCRegisterInfo *MRI) {
299   if (OpIdx < 0)
300     return false;
301 
302   const MCOperand &Op = Inst.getOperand(OpIdx);
303   if (!Op.isReg())
304     return false;
305 
306   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
307   auto Reg = Sub ? Sub : Op.getReg();
308   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
309 }
310 
311 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
312                                              AMDGPUDisassembler::OpWidthTy Opw,
313                                              const MCDisassembler *Decoder) {
314   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
315   if (!DAsm->isGFX90A()) {
316     Imm &= 511;
317   } else {
318     // If atomic has both vdata and vdst their register classes are tied.
319     // The bit is decoded along with the vdst, first operand. We need to
320     // change register class to AGPR if vdst was AGPR.
321     // If a DS instruction has both data0 and data1 their register classes
322     // are also tied.
323     unsigned Opc = Inst.getOpcode();
324     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
325     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
326                                                         : AMDGPU::OpName::vdata;
327     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
328     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
329     if ((int)Inst.getNumOperands() == DataIdx) {
330       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
331       if (IsAGPROperand(Inst, DstIdx, MRI))
332         Imm |= 512;
333     }
334 
335     if (TSFlags & SIInstrFlags::DS) {
336       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
337       if ((int)Inst.getNumOperands() == Data2Idx &&
338           IsAGPROperand(Inst, DataIdx, MRI))
339         Imm |= 512;
340     }
341   }
342   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
343 }
344 
345 static DecodeStatus
346 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
347                              const MCDisassembler *Decoder) {
348   return decodeOperand_AVLdSt_Any(Inst, Imm,
349                                   AMDGPUDisassembler::OPW32, Decoder);
350 }
351 
352 static DecodeStatus
353 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
354                              const MCDisassembler *Decoder) {
355   return decodeOperand_AVLdSt_Any(Inst, Imm,
356                                   AMDGPUDisassembler::OPW64, Decoder);
357 }
358 
359 static DecodeStatus
360 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
361                              const MCDisassembler *Decoder) {
362   return decodeOperand_AVLdSt_Any(Inst, Imm,
363                                   AMDGPUDisassembler::OPW96, Decoder);
364 }
365 
366 static DecodeStatus
367 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
368                               const MCDisassembler *Decoder) {
369   return decodeOperand_AVLdSt_Any(Inst, Imm,
370                                   AMDGPUDisassembler::OPW128, Decoder);
371 }
372 
373 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
374                                           uint64_t Addr,
375                                           const MCDisassembler *Decoder) {
376   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
377   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
378 }
379 
380 #define DECODE_SDWA(DecName) \
381 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
382 
383 DECODE_SDWA(Src32)
384 DECODE_SDWA(Src16)
385 DECODE_SDWA(VopcDst)
386 
387 #include "AMDGPUGenDisassemblerTables.inc"
388 
389 //===----------------------------------------------------------------------===//
390 //
391 //===----------------------------------------------------------------------===//
392 
393 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
394   assert(Bytes.size() >= sizeof(T));
395   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
396   Bytes = Bytes.slice(sizeof(T));
397   return Res;
398 }
399 
400 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
401   assert(Bytes.size() >= 12);
402   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
403       Bytes.data());
404   Bytes = Bytes.slice(8);
405   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
406       Bytes.data());
407   Bytes = Bytes.slice(4);
408   return DecoderUInt128(Lo, Hi);
409 }
410 
411 // The disassembler is greedy, so we need to check FI operand value to
412 // not parse a dpp if the correct literal is not set. For dpp16 the
413 // autogenerated decoder checks the dpp literal
414 static bool isValidDPP8(const MCInst &MI) {
415   using namespace llvm::AMDGPU::DPP;
416   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
417   assert(FiIdx != -1);
418   if ((unsigned)FiIdx >= MI.getNumOperands())
419     return false;
420   unsigned Fi = MI.getOperand(FiIdx).getImm();
421   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
422 }
423 
424 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
425                                                 ArrayRef<uint8_t> Bytes_,
426                                                 uint64_t Address,
427                                                 raw_ostream &CS) const {
428   CommentStream = &CS;
429   bool IsSDWA = false;
430 
431   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
432   Bytes = Bytes_.slice(0, MaxInstBytesNum);
433 
434   DecodeStatus Res = MCDisassembler::Fail;
435   do {
436     // ToDo: better to switch encoding length using some bit predicate
437     // but it is unknown yet, so try all we can
438 
439     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
440     // encodings
441     if (isGFX11Plus() && Bytes.size() >= 12 ) {
442       DecoderUInt128 DecW = eat12Bytes(Bytes);
443       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
444                                           Address);
445       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
446         break;
447       MI = MCInst(); // clear
448       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
449                                           Address);
450       if (Res) {
451         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
452           convertVOP3PDPPInst(MI);
453         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
454           convertVOPCDPPInst(MI);
455         break;
456       }
457       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
458       if (Res)
459         break;
460     }
461     // Reinitialize Bytes
462     Bytes = Bytes_.slice(0, MaxInstBytesNum);
463 
464     if (Bytes.size() >= 8) {
465       const uint64_t QW = eatBytes<uint64_t>(Bytes);
466 
467       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
468         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
469         if (Res) {
470           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
471               == -1)
472             break;
473           if (convertDPP8Inst(MI) == MCDisassembler::Success)
474             break;
475           MI = MCInst(); // clear
476         }
477       }
478 
479       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
480       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
481         break;
482       MI = MCInst(); // clear
483 
484       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
485       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
486         break;
487       MI = MCInst(); // clear
488 
489       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
490       if (Res) break;
491 
492       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
493       if (Res) {
494         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
495           convertVOPCDPPInst(MI);
496         break;
497       }
498 
499       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
500       if (Res) { IsSDWA = true;  break; }
501 
502       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
503       if (Res) { IsSDWA = true;  break; }
504 
505       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
506       if (Res) { IsSDWA = true;  break; }
507 
508       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
509         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
510         if (Res)
511           break;
512       }
513 
514       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
515       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
516       // table first so we print the correct name.
517       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
518         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
519         if (Res)
520           break;
521       }
522     }
523 
524     // Reinitialize Bytes as DPP64 could have eaten too much
525     Bytes = Bytes_.slice(0, MaxInstBytesNum);
526 
527     // Try decode 32-bit instruction
528     if (Bytes.size() < 4) break;
529     const uint32_t DW = eatBytes<uint32_t>(Bytes);
530     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
531     if (Res) break;
532 
533     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
534     if (Res) break;
535 
536     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
537     if (Res) break;
538 
539     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
540       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
541       if (Res)
542         break;
543     }
544 
545     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
546       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
547       if (Res) break;
548     }
549 
550     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
551     if (Res) break;
552 
553     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
554     if (Res) break;
555 
556     if (Bytes.size() < 4) break;
557     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
558 
559     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
560       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
561       if (Res)
562         break;
563     }
564 
565     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
566     if (Res) break;
567 
568     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
569     if (Res) break;
570 
571     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
572     if (Res) break;
573 
574     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
575     if (Res) break;
576 
577     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
578     if (Res)
579       break;
580 
581     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
582   } while (false);
583 
584   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
585               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
586               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
587               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
588               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
589               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
590               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
591               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
592               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
593               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
594               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
595               MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
596               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
597               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx11)) {
598     // Insert dummy unused src2_modifiers.
599     insertNamedMCOperand(MI, MCOperand::createImm(0),
600                          AMDGPU::OpName::src2_modifiers);
601   }
602 
603   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
604           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
605     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
606                                              AMDGPU::OpName::cpol);
607     if (CPolPos != -1) {
608       unsigned CPol =
609           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
610               AMDGPU::CPol::GLC : 0;
611       if (MI.getNumOperands() <= (unsigned)CPolPos) {
612         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
613                              AMDGPU::OpName::cpol);
614       } else if (CPol) {
615         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
616       }
617     }
618   }
619 
620   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
621               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
622              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
623     // GFX90A lost TFE, its place is occupied by ACC.
624     int TFEOpIdx =
625         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
626     if (TFEOpIdx != -1) {
627       auto TFEIter = MI.begin();
628       std::advance(TFEIter, TFEOpIdx);
629       MI.insert(TFEIter, MCOperand::createImm(0));
630     }
631   }
632 
633   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
634               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
635     int SWZOpIdx =
636         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
637     if (SWZOpIdx != -1) {
638       auto SWZIter = MI.begin();
639       std::advance(SWZIter, SWZOpIdx);
640       MI.insert(SWZIter, MCOperand::createImm(0));
641     }
642   }
643 
644   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
645     int VAddr0Idx =
646         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
647     int RsrcIdx =
648         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
649     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
650     if (VAddr0Idx >= 0 && NSAArgs > 0) {
651       unsigned NSAWords = (NSAArgs + 3) / 4;
652       if (Bytes.size() < 4 * NSAWords) {
653         Res = MCDisassembler::Fail;
654       } else {
655         for (unsigned i = 0; i < NSAArgs; ++i) {
656           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
657           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
658           MI.insert(MI.begin() + VAddrIdx,
659                     createRegOperand(VAddrRCID, Bytes[i]));
660         }
661         Bytes = Bytes.slice(4 * NSAWords);
662       }
663     }
664 
665     if (Res)
666       Res = convertMIMGInst(MI);
667   }
668 
669   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
670     Res = convertEXPInst(MI);
671 
672   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
673     Res = convertVINTERPInst(MI);
674 
675   if (Res && IsSDWA)
676     Res = convertSDWAInst(MI);
677 
678   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
679                                               AMDGPU::OpName::vdst_in);
680   if (VDstIn_Idx != -1) {
681     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
682                            MCOI::OperandConstraint::TIED_TO);
683     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
684          !MI.getOperand(VDstIn_Idx).isReg() ||
685          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
686       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
687         MI.erase(&MI.getOperand(VDstIn_Idx));
688       insertNamedMCOperand(MI,
689         MCOperand::createReg(MI.getOperand(Tied).getReg()),
690         AMDGPU::OpName::vdst_in);
691     }
692   }
693 
694   int ImmLitIdx =
695       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
696   if (Res && ImmLitIdx != -1)
697     Res = convertFMAanyK(MI, ImmLitIdx);
698 
699   // if the opcode was not recognized we'll assume a Size of 4 bytes
700   // (unless there are fewer bytes left)
701   Size = Res ? (MaxInstBytesNum - Bytes.size())
702              : std::min((size_t)4, Bytes_.size());
703   return Res;
704 }
705 
706 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
707   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
708     // The MCInst still has these fields even though they are no longer encoded
709     // in the GFX11 instruction.
710     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
711     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
712   }
713   return MCDisassembler::Success;
714 }
715 
716 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
717   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
718       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
719       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
720       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
721     // The MCInst has this field that is not directly encoded in the
722     // instruction.
723     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
724   }
725   return MCDisassembler::Success;
726 }
727 
728 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
729   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
730       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
731     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
732       // VOPC - insert clamp
733       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
734   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
735     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
736     if (SDst != -1) {
737       // VOPC - insert VCC register as sdst
738       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
739                            AMDGPU::OpName::sdst);
740     } else {
741       // VOP1/2 - insert omod if present in instruction
742       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
743     }
744   }
745   return MCDisassembler::Success;
746 }
747 
748 // We must check FI == literal to reject not genuine dpp8 insts, and we must
749 // first add optional MI operands to check FI
750 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
751   unsigned Opc = MI.getOpcode();
752   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
753   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
754     convertVOP3PDPPInst(MI);
755   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
756              AMDGPU::isVOPC64DPP(Opc)) {
757     convertVOPCDPPInst(MI);
758   } else {
759     // Insert dummy unused src modifiers.
760     if (MI.getNumOperands() < DescNumOps &&
761         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
762       insertNamedMCOperand(MI, MCOperand::createImm(0),
763                            AMDGPU::OpName::src0_modifiers);
764 
765     if (MI.getNumOperands() < DescNumOps &&
766         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
767       insertNamedMCOperand(MI, MCOperand::createImm(0),
768                            AMDGPU::OpName::src1_modifiers);
769   }
770   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
771 }
772 
773 // Note that before gfx10, the MIMG encoding provided no information about
774 // VADDR size. Consequently, decoded instructions always show address as if it
775 // has 1 dword, which could be not really so.
776 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
777 
778   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
779                                            AMDGPU::OpName::vdst);
780 
781   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
782                                             AMDGPU::OpName::vdata);
783   int VAddr0Idx =
784       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
785   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
786                                             AMDGPU::OpName::dmask);
787 
788   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
789                                             AMDGPU::OpName::tfe);
790   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
791                                             AMDGPU::OpName::d16);
792 
793   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
794   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
795       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
796 
797   assert(VDataIdx != -1);
798   if (BaseOpcode->BVH) {
799     // Add A16 operand for intersect_ray instructions
800     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
801       addOperand(MI, MCOperand::createImm(1));
802     }
803     return MCDisassembler::Success;
804   }
805 
806   bool IsAtomic = (VDstIdx != -1);
807   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
808   bool IsNSA = false;
809   unsigned AddrSize = Info->VAddrDwords;
810 
811   if (isGFX10Plus()) {
812     unsigned DimIdx =
813         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
814     int A16Idx =
815         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
816     const AMDGPU::MIMGDimInfo *Dim =
817         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
818     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
819 
820     AddrSize =
821         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
822 
823     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
824             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
825     if (!IsNSA) {
826       if (AddrSize > 8)
827         AddrSize = 16;
828     } else {
829       if (AddrSize > Info->VAddrDwords) {
830         // The NSA encoding does not contain enough operands for the combination
831         // of base opcode / dimension. Should this be an error?
832         return MCDisassembler::Success;
833       }
834     }
835   }
836 
837   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
838   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
839 
840   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
841   if (D16 && AMDGPU::hasPackedD16(STI)) {
842     DstSize = (DstSize + 1) / 2;
843   }
844 
845   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
846     DstSize += 1;
847 
848   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
849     return MCDisassembler::Success;
850 
851   int NewOpcode =
852       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
853   if (NewOpcode == -1)
854     return MCDisassembler::Success;
855 
856   // Widen the register to the correct number of enabled channels.
857   unsigned NewVdata = AMDGPU::NoRegister;
858   if (DstSize != Info->VDataDwords) {
859     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
860 
861     // Get first subregister of VData
862     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
863     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
864     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
865 
866     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
867                                        &MRI.getRegClass(DataRCID));
868     if (NewVdata == AMDGPU::NoRegister) {
869       // It's possible to encode this such that the low register + enabled
870       // components exceeds the register count.
871       return MCDisassembler::Success;
872     }
873   }
874 
875   // If not using NSA on GFX10+, widen address register to correct size.
876   unsigned NewVAddr0 = AMDGPU::NoRegister;
877   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
878     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
879     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
880     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
881 
882     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
883     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
884                                         &MRI.getRegClass(AddrRCID));
885     if (NewVAddr0 == AMDGPU::NoRegister)
886       return MCDisassembler::Success;
887   }
888 
889   MI.setOpcode(NewOpcode);
890 
891   if (NewVdata != AMDGPU::NoRegister) {
892     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
893 
894     if (IsAtomic) {
895       // Atomic operations have an additional operand (a copy of data)
896       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
897     }
898   }
899 
900   if (NewVAddr0 != AMDGPU::NoRegister) {
901     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
902   } else if (IsNSA) {
903     assert(AddrSize <= Info->VAddrDwords);
904     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
905              MI.begin() + VAddr0Idx + Info->VAddrDwords);
906   }
907 
908   return MCDisassembler::Success;
909 }
910 
911 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
912 // decoder only adds to src_modifiers, so manually add the bits to the other
913 // operands.
914 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
915   unsigned Opc = MI.getOpcode();
916   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
917 
918   if (MI.getNumOperands() < DescNumOps &&
919       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1)
920     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
921 
922   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
923                         AMDGPU::OpName::src1_modifiers,
924                         AMDGPU::OpName::src2_modifiers};
925   unsigned OpSel = 0;
926   unsigned OpSelHi = 0;
927   unsigned NegLo = 0;
928   unsigned NegHi = 0;
929   for (int J = 0; J < 3; ++J) {
930     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
931     if (OpIdx == -1)
932       break;
933     unsigned Val = MI.getOperand(OpIdx).getImm();
934 
935     OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
936     OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
937     NegLo |= !!(Val & SISrcMods::NEG) << J;
938     NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
939   }
940 
941   if (MI.getNumOperands() < DescNumOps &&
942       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1)
943     insertNamedMCOperand(MI, MCOperand::createImm(OpSel),
944                          AMDGPU::OpName::op_sel);
945   if (MI.getNumOperands() < DescNumOps &&
946       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1)
947     insertNamedMCOperand(MI, MCOperand::createImm(OpSelHi),
948                          AMDGPU::OpName::op_sel_hi);
949   if (MI.getNumOperands() < DescNumOps &&
950       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1)
951     insertNamedMCOperand(MI, MCOperand::createImm(NegLo),
952                          AMDGPU::OpName::neg_lo);
953   if (MI.getNumOperands() < DescNumOps &&
954       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1)
955     insertNamedMCOperand(MI, MCOperand::createImm(NegHi),
956                          AMDGPU::OpName::neg_hi);
957 
958   return MCDisassembler::Success;
959 }
960 
961 // Create dummy old operand and insert optional operands
962 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
963   unsigned Opc = MI.getOpcode();
964   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
965 
966   if (MI.getNumOperands() < DescNumOps &&
967       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::old) != -1)
968     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
969 
970   if (MI.getNumOperands() < DescNumOps &&
971       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
972     insertNamedMCOperand(MI, MCOperand::createImm(0),
973                          AMDGPU::OpName::src0_modifiers);
974 
975   if (MI.getNumOperands() < DescNumOps &&
976       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
977     insertNamedMCOperand(MI, MCOperand::createImm(0),
978                          AMDGPU::OpName::src1_modifiers);
979   return MCDisassembler::Success;
980 }
981 
982 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
983                                                 int ImmLitIdx) const {
984   assert(HasLiteral && "Should have decoded a literal");
985   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
986   unsigned DescNumOps = Desc.getNumOperands();
987   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
988                        AMDGPU::OpName::immDeferred);
989   assert(DescNumOps == MI.getNumOperands());
990   for (unsigned I = 0; I < DescNumOps; ++I) {
991     auto &Op = MI.getOperand(I);
992     auto OpType = Desc.OpInfo[I].OperandType;
993     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
994                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
995     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
996         IsDeferredOp)
997       Op.setImm(Literal);
998   }
999   return MCDisassembler::Success;
1000 }
1001 
1002 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1003   return getContext().getRegisterInfo()->
1004     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1005 }
1006 
1007 inline
1008 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1009                                          const Twine& ErrMsg) const {
1010   *CommentStream << "Error: " + ErrMsg;
1011 
1012   // ToDo: add support for error operands to MCInst.h
1013   // return MCOperand::createError(V);
1014   return MCOperand();
1015 }
1016 
1017 inline
1018 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1019   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1020 }
1021 
1022 inline
1023 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1024                                                unsigned Val) const {
1025   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1026   if (Val >= RegCl.getNumRegs())
1027     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1028                            ": unknown register " + Twine(Val));
1029   return createRegOperand(RegCl.getRegister(Val));
1030 }
1031 
1032 inline
1033 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1034                                                 unsigned Val) const {
1035   // ToDo: SI/CI have 104 SGPRs, VI - 102
1036   // Valery: here we accepting as much as we can, let assembler sort it out
1037   int shift = 0;
1038   switch (SRegClassID) {
1039   case AMDGPU::SGPR_32RegClassID:
1040   case AMDGPU::TTMP_32RegClassID:
1041     break;
1042   case AMDGPU::SGPR_64RegClassID:
1043   case AMDGPU::TTMP_64RegClassID:
1044     shift = 1;
1045     break;
1046   case AMDGPU::SGPR_128RegClassID:
1047   case AMDGPU::TTMP_128RegClassID:
1048   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1049   // this bundle?
1050   case AMDGPU::SGPR_256RegClassID:
1051   case AMDGPU::TTMP_256RegClassID:
1052     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1053   // this bundle?
1054   case AMDGPU::SGPR_512RegClassID:
1055   case AMDGPU::TTMP_512RegClassID:
1056     shift = 2;
1057     break;
1058   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1059   // this bundle?
1060   default:
1061     llvm_unreachable("unhandled register class");
1062   }
1063 
1064   if (Val % (1 << shift)) {
1065     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1066                    << ": scalar reg isn't aligned " << Val;
1067   }
1068 
1069   return createRegOperand(SRegClassID, Val >> shift);
1070 }
1071 
1072 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1073   return decodeSrcOp(OPW32, Val);
1074 }
1075 
1076 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1077   return decodeSrcOp(OPW64, Val);
1078 }
1079 
1080 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1081   return decodeSrcOp(OPW128, Val);
1082 }
1083 
1084 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1085   return decodeSrcOp(OPW16, Val);
1086 }
1087 
1088 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1089   return decodeSrcOp(OPWV216, Val);
1090 }
1091 
1092 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1093   return decodeSrcOp(OPWV232, Val);
1094 }
1095 
1096 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1097   // Some instructions have operand restrictions beyond what the encoding
1098   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1099   // high bit.
1100   Val &= 255;
1101 
1102   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1103 }
1104 
1105 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1106   return decodeSrcOp(OPW32, Val);
1107 }
1108 
1109 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1110   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1111 }
1112 
1113 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1114   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1115 }
1116 
1117 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1118   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1119 }
1120 
1121 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1122   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1123 }
1124 
1125 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1126   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1127 }
1128 
1129 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1130   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1131 }
1132 
1133 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1134   return decodeSrcOp(OPW32, Val);
1135 }
1136 
1137 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1138   return decodeSrcOp(OPW64, Val);
1139 }
1140 
1141 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1142   return decodeSrcOp(OPW128, Val);
1143 }
1144 
1145 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1146   using namespace AMDGPU::EncValues;
1147   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1148   return decodeSrcOp(OPW128, Val | IS_VGPR);
1149 }
1150 
1151 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1152   using namespace AMDGPU::EncValues;
1153   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1154   return decodeSrcOp(OPW512, Val | IS_VGPR);
1155 }
1156 
1157 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1158   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1159 }
1160 
1161 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1162   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1163 }
1164 
1165 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1166   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1167 }
1168 
1169 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1170   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1171 }
1172 
1173 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1174   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1175 }
1176 
1177 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1178   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1179 }
1180 
1181 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1182   // table-gen generated disassembler doesn't care about operand types
1183   // leaving only registry class so SSrc_32 operand turns into SReg_32
1184   // and therefore we accept immediates and literals here as well
1185   return decodeSrcOp(OPW32, Val);
1186 }
1187 
1188 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1189   unsigned Val) const {
1190   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1191   return decodeOperand_SReg_32(Val);
1192 }
1193 
1194 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1195   unsigned Val) const {
1196   // SReg_32_XM0 is SReg_32 without EXEC_HI
1197   return decodeOperand_SReg_32(Val);
1198 }
1199 
1200 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1201   // table-gen generated disassembler doesn't care about operand types
1202   // leaving only registry class so SSrc_32 operand turns into SReg_32
1203   // and therefore we accept immediates and literals here as well
1204   return decodeSrcOp(OPW32, Val);
1205 }
1206 
1207 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1208   return decodeSrcOp(OPW64, Val);
1209 }
1210 
1211 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1212   return decodeSrcOp(OPW64, Val);
1213 }
1214 
1215 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1216   return decodeSrcOp(OPW128, Val);
1217 }
1218 
1219 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1220   return decodeDstOp(OPW256, Val);
1221 }
1222 
1223 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1224   return decodeDstOp(OPW512, Val);
1225 }
1226 
1227 // Decode Literals for insts which always have a literal in the encoding
1228 MCOperand
1229 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1230   if (HasLiteral) {
1231     assert(
1232         AMDGPU::hasVOPD(STI) &&
1233         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1234     if (Literal != Val)
1235       return errOperand(Val, "More than one unique literal is illegal");
1236   }
1237   HasLiteral = true;
1238   Literal = Val;
1239   return MCOperand::createImm(Literal);
1240 }
1241 
1242 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1243   // For now all literal constants are supposed to be unsigned integer
1244   // ToDo: deal with signed/unsigned 64-bit integer constants
1245   // ToDo: deal with float/double constants
1246   if (!HasLiteral) {
1247     if (Bytes.size() < 4) {
1248       return errOperand(0, "cannot read literal, inst bytes left " +
1249                         Twine(Bytes.size()));
1250     }
1251     HasLiteral = true;
1252     Literal = eatBytes<uint32_t>(Bytes);
1253   }
1254   return MCOperand::createImm(Literal);
1255 }
1256 
1257 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1258   using namespace AMDGPU::EncValues;
1259 
1260   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1261   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1262     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1263     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1264       // Cast prevents negative overflow.
1265 }
1266 
1267 static int64_t getInlineImmVal32(unsigned Imm) {
1268   switch (Imm) {
1269   case 240:
1270     return FloatToBits(0.5f);
1271   case 241:
1272     return FloatToBits(-0.5f);
1273   case 242:
1274     return FloatToBits(1.0f);
1275   case 243:
1276     return FloatToBits(-1.0f);
1277   case 244:
1278     return FloatToBits(2.0f);
1279   case 245:
1280     return FloatToBits(-2.0f);
1281   case 246:
1282     return FloatToBits(4.0f);
1283   case 247:
1284     return FloatToBits(-4.0f);
1285   case 248: // 1 / (2 * PI)
1286     return 0x3e22f983;
1287   default:
1288     llvm_unreachable("invalid fp inline imm");
1289   }
1290 }
1291 
1292 static int64_t getInlineImmVal64(unsigned Imm) {
1293   switch (Imm) {
1294   case 240:
1295     return DoubleToBits(0.5);
1296   case 241:
1297     return DoubleToBits(-0.5);
1298   case 242:
1299     return DoubleToBits(1.0);
1300   case 243:
1301     return DoubleToBits(-1.0);
1302   case 244:
1303     return DoubleToBits(2.0);
1304   case 245:
1305     return DoubleToBits(-2.0);
1306   case 246:
1307     return DoubleToBits(4.0);
1308   case 247:
1309     return DoubleToBits(-4.0);
1310   case 248: // 1 / (2 * PI)
1311     return 0x3fc45f306dc9c882;
1312   default:
1313     llvm_unreachable("invalid fp inline imm");
1314   }
1315 }
1316 
1317 static int64_t getInlineImmVal16(unsigned Imm) {
1318   switch (Imm) {
1319   case 240:
1320     return 0x3800;
1321   case 241:
1322     return 0xB800;
1323   case 242:
1324     return 0x3C00;
1325   case 243:
1326     return 0xBC00;
1327   case 244:
1328     return 0x4000;
1329   case 245:
1330     return 0xC000;
1331   case 246:
1332     return 0x4400;
1333   case 247:
1334     return 0xC400;
1335   case 248: // 1 / (2 * PI)
1336     return 0x3118;
1337   default:
1338     llvm_unreachable("invalid fp inline imm");
1339   }
1340 }
1341 
1342 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1343   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1344       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1345 
1346   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1347   switch (Width) {
1348   case OPW32:
1349   case OPW128: // splat constants
1350   case OPW512:
1351   case OPW1024:
1352   case OPWV232:
1353     return MCOperand::createImm(getInlineImmVal32(Imm));
1354   case OPW64:
1355   case OPW256:
1356     return MCOperand::createImm(getInlineImmVal64(Imm));
1357   case OPW16:
1358   case OPWV216:
1359     return MCOperand::createImm(getInlineImmVal16(Imm));
1360   default:
1361     llvm_unreachable("implement me");
1362   }
1363 }
1364 
1365 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1366   using namespace AMDGPU;
1367 
1368   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1369   switch (Width) {
1370   default: // fall
1371   case OPW32:
1372   case OPW16:
1373   case OPWV216:
1374     return VGPR_32RegClassID;
1375   case OPW64:
1376   case OPWV232: return VReg_64RegClassID;
1377   case OPW96: return VReg_96RegClassID;
1378   case OPW128: return VReg_128RegClassID;
1379   case OPW160: return VReg_160RegClassID;
1380   case OPW256: return VReg_256RegClassID;
1381   case OPW512: return VReg_512RegClassID;
1382   case OPW1024: return VReg_1024RegClassID;
1383   }
1384 }
1385 
1386 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1387   using namespace AMDGPU;
1388 
1389   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1390   switch (Width) {
1391   default: // fall
1392   case OPW32:
1393   case OPW16:
1394   case OPWV216:
1395     return AGPR_32RegClassID;
1396   case OPW64:
1397   case OPWV232: return AReg_64RegClassID;
1398   case OPW96: return AReg_96RegClassID;
1399   case OPW128: return AReg_128RegClassID;
1400   case OPW160: return AReg_160RegClassID;
1401   case OPW256: return AReg_256RegClassID;
1402   case OPW512: return AReg_512RegClassID;
1403   case OPW1024: return AReg_1024RegClassID;
1404   }
1405 }
1406 
1407 
1408 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1409   using namespace AMDGPU;
1410 
1411   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1412   switch (Width) {
1413   default: // fall
1414   case OPW32:
1415   case OPW16:
1416   case OPWV216:
1417     return SGPR_32RegClassID;
1418   case OPW64:
1419   case OPWV232: return SGPR_64RegClassID;
1420   case OPW96: return SGPR_96RegClassID;
1421   case OPW128: return SGPR_128RegClassID;
1422   case OPW160: return SGPR_160RegClassID;
1423   case OPW256: return SGPR_256RegClassID;
1424   case OPW512: return SGPR_512RegClassID;
1425   }
1426 }
1427 
1428 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1429   using namespace AMDGPU;
1430 
1431   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1432   switch (Width) {
1433   default: // fall
1434   case OPW32:
1435   case OPW16:
1436   case OPWV216:
1437     return TTMP_32RegClassID;
1438   case OPW64:
1439   case OPWV232: return TTMP_64RegClassID;
1440   case OPW128: return TTMP_128RegClassID;
1441   case OPW256: return TTMP_256RegClassID;
1442   case OPW512: return TTMP_512RegClassID;
1443   }
1444 }
1445 
1446 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1447   using namespace AMDGPU::EncValues;
1448 
1449   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1450   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1451 
1452   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1453 }
1454 
1455 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1456                                           bool MandatoryLiteral) const {
1457   using namespace AMDGPU::EncValues;
1458 
1459   assert(Val < 1024); // enum10
1460 
1461   bool IsAGPR = Val & 512;
1462   Val &= 511;
1463 
1464   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1465     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1466                                    : getVgprClassId(Width), Val - VGPR_MIN);
1467   }
1468   if (Val <= SGPR_MAX) {
1469     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1470     static_assert(SGPR_MIN == 0, "");
1471     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1472   }
1473 
1474   int TTmpIdx = getTTmpIdx(Val);
1475   if (TTmpIdx >= 0) {
1476     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1477   }
1478 
1479   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1480     return decodeIntImmed(Val);
1481 
1482   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1483     return decodeFPImmed(Width, Val);
1484 
1485   if (Val == LITERAL_CONST) {
1486     if (MandatoryLiteral)
1487       // Keep a sentinel value for deferred setting
1488       return MCOperand::createImm(LITERAL_CONST);
1489     else
1490       return decodeLiteralConstant();
1491   }
1492 
1493   switch (Width) {
1494   case OPW32:
1495   case OPW16:
1496   case OPWV216:
1497     return decodeSpecialReg32(Val);
1498   case OPW64:
1499   case OPWV232:
1500     return decodeSpecialReg64(Val);
1501   default:
1502     llvm_unreachable("unexpected immediate type");
1503   }
1504 }
1505 
1506 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1507   using namespace AMDGPU::EncValues;
1508 
1509   assert(Val < 128);
1510   assert(Width == OPW256 || Width == OPW512);
1511 
1512   if (Val <= SGPR_MAX) {
1513     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1514     static_assert(SGPR_MIN == 0, "");
1515     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1516   }
1517 
1518   int TTmpIdx = getTTmpIdx(Val);
1519   if (TTmpIdx >= 0) {
1520     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1521   }
1522 
1523   llvm_unreachable("unknown dst register");
1524 }
1525 
1526 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1527 // opposite of bit 0 of DstX.
1528 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1529                                                unsigned Val) const {
1530   int VDstXInd =
1531       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1532   assert(VDstXInd != -1);
1533   assert(Inst.getOperand(VDstXInd).isReg());
1534   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1535   Val |= ~XDstReg & 1;
1536   auto Width = llvm::AMDGPUDisassembler::OPW32;
1537   return createRegOperand(getVgprClassId(Width), Val);
1538 }
1539 
1540 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1541   using namespace AMDGPU;
1542 
1543   switch (Val) {
1544   case 102: return createRegOperand(FLAT_SCR_LO);
1545   case 103: return createRegOperand(FLAT_SCR_HI);
1546   case 104: return createRegOperand(XNACK_MASK_LO);
1547   case 105: return createRegOperand(XNACK_MASK_HI);
1548   case 106: return createRegOperand(VCC_LO);
1549   case 107: return createRegOperand(VCC_HI);
1550   case 108: return createRegOperand(TBA_LO);
1551   case 109: return createRegOperand(TBA_HI);
1552   case 110: return createRegOperand(TMA_LO);
1553   case 111: return createRegOperand(TMA_HI);
1554   case 124:
1555     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1556   case 125:
1557     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1558   case 126: return createRegOperand(EXEC_LO);
1559   case 127: return createRegOperand(EXEC_HI);
1560   case 235: return createRegOperand(SRC_SHARED_BASE);
1561   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1562   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1563   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1564   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1565   case 251: return createRegOperand(SRC_VCCZ);
1566   case 252: return createRegOperand(SRC_EXECZ);
1567   case 253: return createRegOperand(SRC_SCC);
1568   case 254: return createRegOperand(LDS_DIRECT);
1569   default: break;
1570   }
1571   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1572 }
1573 
1574 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1575   using namespace AMDGPU;
1576 
1577   switch (Val) {
1578   case 102: return createRegOperand(FLAT_SCR);
1579   case 104: return createRegOperand(XNACK_MASK);
1580   case 106: return createRegOperand(VCC);
1581   case 108: return createRegOperand(TBA);
1582   case 110: return createRegOperand(TMA);
1583   case 124:
1584     if (isGFX11Plus())
1585       return createRegOperand(SGPR_NULL);
1586     break;
1587   case 125:
1588     if (!isGFX11Plus())
1589       return createRegOperand(SGPR_NULL);
1590     break;
1591   case 126: return createRegOperand(EXEC);
1592   case 235: return createRegOperand(SRC_SHARED_BASE);
1593   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1594   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1595   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1596   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1597   case 251: return createRegOperand(SRC_VCCZ);
1598   case 252: return createRegOperand(SRC_EXECZ);
1599   case 253: return createRegOperand(SRC_SCC);
1600   default: break;
1601   }
1602   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1603 }
1604 
1605 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1606                                             const unsigned Val) const {
1607   using namespace AMDGPU::SDWA;
1608   using namespace AMDGPU::EncValues;
1609 
1610   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1611       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1612     // XXX: cast to int is needed to avoid stupid warning:
1613     // compare with unsigned is always true
1614     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1615         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1616       return createRegOperand(getVgprClassId(Width),
1617                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1618     }
1619     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1620         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1621                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1622       return createSRegOperand(getSgprClassId(Width),
1623                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1624     }
1625     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1626         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1627       return createSRegOperand(getTtmpClassId(Width),
1628                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1629     }
1630 
1631     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1632 
1633     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1634       return decodeIntImmed(SVal);
1635 
1636     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1637       return decodeFPImmed(Width, SVal);
1638 
1639     return decodeSpecialReg32(SVal);
1640   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1641     return createRegOperand(getVgprClassId(Width), Val);
1642   }
1643   llvm_unreachable("unsupported target");
1644 }
1645 
1646 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1647   return decodeSDWASrc(OPW16, Val);
1648 }
1649 
1650 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1651   return decodeSDWASrc(OPW32, Val);
1652 }
1653 
1654 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1655   using namespace AMDGPU::SDWA;
1656 
1657   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1658           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1659          "SDWAVopcDst should be present only on GFX9+");
1660 
1661   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1662 
1663   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1664     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1665 
1666     int TTmpIdx = getTTmpIdx(Val);
1667     if (TTmpIdx >= 0) {
1668       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1669       return createSRegOperand(TTmpClsId, TTmpIdx);
1670     } else if (Val > SGPR_MAX) {
1671       return IsWave64 ? decodeSpecialReg64(Val)
1672                       : decodeSpecialReg32(Val);
1673     } else {
1674       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1675     }
1676   } else {
1677     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1678   }
1679 }
1680 
1681 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1682   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1683     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1684 }
1685 
1686 bool AMDGPUDisassembler::isVI() const {
1687   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1688 }
1689 
1690 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1691 
1692 bool AMDGPUDisassembler::isGFX90A() const {
1693   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1694 }
1695 
1696 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1697 
1698 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1699 
1700 bool AMDGPUDisassembler::isGFX10Plus() const {
1701   return AMDGPU::isGFX10Plus(STI);
1702 }
1703 
1704 bool AMDGPUDisassembler::isGFX11() const {
1705   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1706 }
1707 
1708 bool AMDGPUDisassembler::isGFX11Plus() const {
1709   return AMDGPU::isGFX11Plus(STI);
1710 }
1711 
1712 
1713 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1714   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1715 }
1716 
1717 //===----------------------------------------------------------------------===//
1718 // AMDGPU specific symbol handling
1719 //===----------------------------------------------------------------------===//
1720 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1721   do {                                                                         \
1722     KdStream << Indent << DIRECTIVE " "                                        \
1723              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1724   } while (0)
1725 
1726 // NOLINTNEXTLINE(readability-identifier-naming)
1727 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1728     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1729   using namespace amdhsa;
1730   StringRef Indent = "\t";
1731 
1732   // We cannot accurately backward compute #VGPRs used from
1733   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1734   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1735   // simply calculate the inverse of what the assembler does.
1736 
1737   uint32_t GranulatedWorkitemVGPRCount =
1738       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1739       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1740 
1741   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1742                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1743 
1744   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1745 
1746   // We cannot backward compute values used to calculate
1747   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1748   // directives can't be computed:
1749   // .amdhsa_reserve_vcc
1750   // .amdhsa_reserve_flat_scratch
1751   // .amdhsa_reserve_xnack_mask
1752   // They take their respective default values if not specified in the assembly.
1753   //
1754   // GRANULATED_WAVEFRONT_SGPR_COUNT
1755   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1756   //
1757   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1758   // are set to 0. So while disassembling we consider that:
1759   //
1760   // GRANULATED_WAVEFRONT_SGPR_COUNT
1761   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1762   //
1763   // The disassembler cannot recover the original values of those 3 directives.
1764 
1765   uint32_t GranulatedWavefrontSGPRCount =
1766       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1767       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1768 
1769   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1770     return MCDisassembler::Fail;
1771 
1772   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1773                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1774 
1775   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1776   if (!hasArchitectedFlatScratch())
1777     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1778   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1779   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1780 
1781   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1782     return MCDisassembler::Fail;
1783 
1784   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1785                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1786   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1787                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1788   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1789                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1790   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1791                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1792 
1793   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1794     return MCDisassembler::Fail;
1795 
1796   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1797 
1798   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1799     return MCDisassembler::Fail;
1800 
1801   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1802 
1803   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1804     return MCDisassembler::Fail;
1805 
1806   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1807     return MCDisassembler::Fail;
1808 
1809   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1810 
1811   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1812     return MCDisassembler::Fail;
1813 
1814   if (isGFX10Plus()) {
1815     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1816                     COMPUTE_PGM_RSRC1_WGP_MODE);
1817     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1818     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1819   }
1820   return MCDisassembler::Success;
1821 }
1822 
1823 // NOLINTNEXTLINE(readability-identifier-naming)
1824 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1825     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1826   using namespace amdhsa;
1827   StringRef Indent = "\t";
1828   if (hasArchitectedFlatScratch())
1829     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1830                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1831   else
1832     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1833                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1834   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1835                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1836   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1837                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1838   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1839                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1840   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1841                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1842   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1843                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1844 
1845   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1846     return MCDisassembler::Fail;
1847 
1848   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1849     return MCDisassembler::Fail;
1850 
1851   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1852     return MCDisassembler::Fail;
1853 
1854   PRINT_DIRECTIVE(
1855       ".amdhsa_exception_fp_ieee_invalid_op",
1856       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1857   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1858                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1859   PRINT_DIRECTIVE(
1860       ".amdhsa_exception_fp_ieee_div_zero",
1861       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1862   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1863                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1864   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1865                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1866   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1867                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1868   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1869                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1870 
1871   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1872     return MCDisassembler::Fail;
1873 
1874   return MCDisassembler::Success;
1875 }
1876 
1877 #undef PRINT_DIRECTIVE
1878 
1879 MCDisassembler::DecodeStatus
1880 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1881     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1882     raw_string_ostream &KdStream) const {
1883 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1884   do {                                                                         \
1885     KdStream << Indent << DIRECTIVE " "                                        \
1886              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1887   } while (0)
1888 
1889   uint16_t TwoByteBuffer = 0;
1890   uint32_t FourByteBuffer = 0;
1891 
1892   StringRef ReservedBytes;
1893   StringRef Indent = "\t";
1894 
1895   assert(Bytes.size() == 64);
1896   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1897 
1898   switch (Cursor.tell()) {
1899   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1900     FourByteBuffer = DE.getU32(Cursor);
1901     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1902              << '\n';
1903     return MCDisassembler::Success;
1904 
1905   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1906     FourByteBuffer = DE.getU32(Cursor);
1907     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1908              << FourByteBuffer << '\n';
1909     return MCDisassembler::Success;
1910 
1911   case amdhsa::KERNARG_SIZE_OFFSET:
1912     FourByteBuffer = DE.getU32(Cursor);
1913     KdStream << Indent << ".amdhsa_kernarg_size "
1914              << FourByteBuffer << '\n';
1915     return MCDisassembler::Success;
1916 
1917   case amdhsa::RESERVED0_OFFSET:
1918     // 4 reserved bytes, must be 0.
1919     ReservedBytes = DE.getBytes(Cursor, 4);
1920     for (int I = 0; I < 4; ++I) {
1921       if (ReservedBytes[I] != 0) {
1922         return MCDisassembler::Fail;
1923       }
1924     }
1925     return MCDisassembler::Success;
1926 
1927   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1928     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1929     // So far no directive controls this for Code Object V3, so simply skip for
1930     // disassembly.
1931     DE.skip(Cursor, 8);
1932     return MCDisassembler::Success;
1933 
1934   case amdhsa::RESERVED1_OFFSET:
1935     // 20 reserved bytes, must be 0.
1936     ReservedBytes = DE.getBytes(Cursor, 20);
1937     for (int I = 0; I < 20; ++I) {
1938       if (ReservedBytes[I] != 0) {
1939         return MCDisassembler::Fail;
1940       }
1941     }
1942     return MCDisassembler::Success;
1943 
1944   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1945     // COMPUTE_PGM_RSRC3
1946     //  - Only set for GFX10, GFX6-9 have this to be 0.
1947     //  - Currently no directives directly control this.
1948     FourByteBuffer = DE.getU32(Cursor);
1949     if (!isGFX10Plus() && FourByteBuffer) {
1950       return MCDisassembler::Fail;
1951     }
1952     return MCDisassembler::Success;
1953 
1954   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1955     FourByteBuffer = DE.getU32(Cursor);
1956     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1957         MCDisassembler::Fail) {
1958       return MCDisassembler::Fail;
1959     }
1960     return MCDisassembler::Success;
1961 
1962   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1963     FourByteBuffer = DE.getU32(Cursor);
1964     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1965         MCDisassembler::Fail) {
1966       return MCDisassembler::Fail;
1967     }
1968     return MCDisassembler::Success;
1969 
1970   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1971     using namespace amdhsa;
1972     TwoByteBuffer = DE.getU16(Cursor);
1973 
1974     if (!hasArchitectedFlatScratch())
1975       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1976                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1977     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1978                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1979     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1980                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1981     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1982                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1983     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1984                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1985     if (!hasArchitectedFlatScratch())
1986       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1987                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1988     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1989                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1990 
1991     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1992       return MCDisassembler::Fail;
1993 
1994     // Reserved for GFX9
1995     if (isGFX9() &&
1996         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1997       return MCDisassembler::Fail;
1998     } else if (isGFX10Plus()) {
1999       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2000                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2001     }
2002 
2003     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2004       return MCDisassembler::Fail;
2005 
2006     return MCDisassembler::Success;
2007 
2008   case amdhsa::RESERVED2_OFFSET:
2009     // 6 bytes from here are reserved, must be 0.
2010     ReservedBytes = DE.getBytes(Cursor, 6);
2011     for (int I = 0; I < 6; ++I) {
2012       if (ReservedBytes[I] != 0)
2013         return MCDisassembler::Fail;
2014     }
2015     return MCDisassembler::Success;
2016 
2017   default:
2018     llvm_unreachable("Unhandled index. Case statements cover everything.");
2019     return MCDisassembler::Fail;
2020   }
2021 #undef PRINT_DIRECTIVE
2022 }
2023 
2024 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2025     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2026   // CP microcode requires the kernel descriptor to be 64 aligned.
2027   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2028     return MCDisassembler::Fail;
2029 
2030   std::string Kd;
2031   raw_string_ostream KdStream(Kd);
2032   KdStream << ".amdhsa_kernel " << KdName << '\n';
2033 
2034   DataExtractor::Cursor C(0);
2035   while (C && C.tell() < Bytes.size()) {
2036     MCDisassembler::DecodeStatus Status =
2037         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2038 
2039     cantFail(C.takeError());
2040 
2041     if (Status == MCDisassembler::Fail)
2042       return MCDisassembler::Fail;
2043   }
2044   KdStream << ".end_amdhsa_kernel\n";
2045   outs() << KdStream.str();
2046   return MCDisassembler::Success;
2047 }
2048 
2049 Optional<MCDisassembler::DecodeStatus>
2050 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2051                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2052                                   raw_ostream &CStream) const {
2053   // Right now only kernel descriptor needs to be handled.
2054   // We ignore all other symbols for target specific handling.
2055   // TODO:
2056   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2057   // Object V2 and V3 when symbols are marked protected.
2058 
2059   // amd_kernel_code_t for Code Object V2.
2060   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2061     Size = 256;
2062     return MCDisassembler::Fail;
2063   }
2064 
2065   // Code Object V3 kernel descriptors.
2066   StringRef Name = Symbol.Name;
2067   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2068     Size = 64; // Size = 64 regardless of success or failure.
2069     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2070   }
2071   return None;
2072 }
2073 
2074 //===----------------------------------------------------------------------===//
2075 // AMDGPUSymbolizer
2076 //===----------------------------------------------------------------------===//
2077 
2078 // Try to find symbol name for specified label
2079 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2080     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2081     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2082     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2083 
2084   if (!IsBranch) {
2085     return false;
2086   }
2087 
2088   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2089   if (!Symbols)
2090     return false;
2091 
2092   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2093     return Val.Addr == static_cast<uint64_t>(Value) &&
2094            Val.Type == ELF::STT_NOTYPE;
2095   });
2096   if (Result != Symbols->end()) {
2097     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2098     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2099     Inst.addOperand(MCOperand::createExpr(Add));
2100     return true;
2101   }
2102   // Add to list of referenced addresses, so caller can synthesize a label.
2103   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2104   return false;
2105 }
2106 
2107 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2108                                                        int64_t Value,
2109                                                        uint64_t Address) {
2110   llvm_unreachable("unimplemented");
2111 }
2112 
2113 //===----------------------------------------------------------------------===//
2114 // Initialization
2115 //===----------------------------------------------------------------------===//
2116 
2117 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2118                               LLVMOpInfoCallback /*GetOpInfo*/,
2119                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2120                               void *DisInfo,
2121                               MCContext *Ctx,
2122                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2123   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2124 }
2125 
2126 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2127                                                 const MCSubtargetInfo &STI,
2128                                                 MCContext &Ctx) {
2129   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2130 }
2131 
2132 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2133   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2134                                          createAMDGPUDisassembler);
2135   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2136                                        createAMDGPUSymbolizer);
2137 }
2138