xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 485c5393915a89471be7b52878b42c8cc44b662b)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VGPR_32_Lo128)
123 DECODE_OPERAND_REG(VRegOrLds_32)
124 DECODE_OPERAND_REG(VS_32)
125 DECODE_OPERAND_REG(VS_64)
126 DECODE_OPERAND_REG(VS_128)
127 
128 DECODE_OPERAND_REG(VReg_64)
129 DECODE_OPERAND_REG(VReg_96)
130 DECODE_OPERAND_REG(VReg_128)
131 DECODE_OPERAND_REG(VReg_256)
132 DECODE_OPERAND_REG(VReg_512)
133 DECODE_OPERAND_REG(VReg_1024)
134 
135 DECODE_OPERAND_REG(SReg_32)
136 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
137 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
138 DECODE_OPERAND_REG(SRegOrLds_32)
139 DECODE_OPERAND_REG(SReg_64)
140 DECODE_OPERAND_REG(SReg_64_XEXEC)
141 DECODE_OPERAND_REG(SReg_128)
142 DECODE_OPERAND_REG(SReg_256)
143 DECODE_OPERAND_REG(SReg_512)
144 
145 DECODE_OPERAND_REG(AGPR_32)
146 DECODE_OPERAND_REG(AReg_64)
147 DECODE_OPERAND_REG(AReg_128)
148 DECODE_OPERAND_REG(AReg_256)
149 DECODE_OPERAND_REG(AReg_512)
150 DECODE_OPERAND_REG(AReg_1024)
151 DECODE_OPERAND_REG(AV_32)
152 DECODE_OPERAND_REG(AV_64)
153 DECODE_OPERAND_REG(AV_128)
154 DECODE_OPERAND_REG(AVDst_128)
155 DECODE_OPERAND_REG(AVDst_512)
156 
157 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
158                                          uint64_t Addr,
159                                          const MCDisassembler *Decoder) {
160   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
161   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
162 }
163 
164 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
165                                            uint64_t Addr,
166                                            const MCDisassembler *Decoder) {
167   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
168   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
169 }
170 
171 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
172                                            uint64_t Addr,
173                                            const MCDisassembler *Decoder) {
174   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
175   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
176 }
177 
178 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
179                                         uint64_t Addr,
180                                         const MCDisassembler *Decoder) {
181   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
182   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
183 }
184 
185 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
186                                         uint64_t Addr,
187                                         const MCDisassembler *Decoder) {
188   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
189   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
190 }
191 
192 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
193                                           uint64_t Addr,
194                                           const MCDisassembler *Decoder) {
195   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
196   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
197 }
198 
199 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
200                                            uint64_t Addr,
201                                            const MCDisassembler *Decoder) {
202   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
203   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
204 }
205 
206 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
207                                            uint64_t Addr,
208                                            const MCDisassembler *Decoder) {
209   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
210   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
211 }
212 
213 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
214                                            uint64_t Addr,
215                                            const MCDisassembler *Decoder) {
216   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
217   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
218 }
219 
220 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
221                                             uint64_t Addr,
222                                             const MCDisassembler *Decoder) {
223   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
224   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
225 }
226 
227 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
228                                           uint64_t Addr,
229                                           const MCDisassembler *Decoder) {
230   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
231   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
232 }
233 
234 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
235                                            uint64_t Addr,
236                                            const MCDisassembler *Decoder) {
237   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
238   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
239 }
240 
241 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
242                                            uint64_t Addr,
243                                            const MCDisassembler *Decoder) {
244   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
245   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
246 }
247 
248 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
249                                            uint64_t Addr,
250                                            const MCDisassembler *Decoder) {
251   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
252   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
253 }
254 
255 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
256                                             uint64_t Addr,
257                                             const MCDisassembler *Decoder) {
258   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
259   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
260 }
261 
262 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
263                                           uint64_t Addr,
264                                           const MCDisassembler *Decoder) {
265   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
266   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
267 }
268 
269 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
270                                           uint64_t Addr,
271                                           const MCDisassembler *Decoder) {
272   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
273   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
274 }
275 
276 static DecodeStatus
277 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
278                              const MCDisassembler *Decoder) {
279   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
280   return addOperand(
281       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
282 }
283 
284 static DecodeStatus
285 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
286                              const MCDisassembler *Decoder) {
287   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
288   return addOperand(
289       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
290 }
291 
292 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
293                                           uint64_t Addr, const void *Decoder) {
294   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
295   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
296 }
297 
298 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
299                           const MCRegisterInfo *MRI) {
300   if (OpIdx < 0)
301     return false;
302 
303   const MCOperand &Op = Inst.getOperand(OpIdx);
304   if (!Op.isReg())
305     return false;
306 
307   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
308   auto Reg = Sub ? Sub : Op.getReg();
309   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
310 }
311 
312 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
313                                              AMDGPUDisassembler::OpWidthTy Opw,
314                                              const MCDisassembler *Decoder) {
315   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
316   if (!DAsm->isGFX90A()) {
317     Imm &= 511;
318   } else {
319     // If atomic has both vdata and vdst their register classes are tied.
320     // The bit is decoded along with the vdst, first operand. We need to
321     // change register class to AGPR if vdst was AGPR.
322     // If a DS instruction has both data0 and data1 their register classes
323     // are also tied.
324     unsigned Opc = Inst.getOpcode();
325     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
326     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
327                                                         : AMDGPU::OpName::vdata;
328     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
329     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
330     if ((int)Inst.getNumOperands() == DataIdx) {
331       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
332       if (IsAGPROperand(Inst, DstIdx, MRI))
333         Imm |= 512;
334     }
335 
336     if (TSFlags & SIInstrFlags::DS) {
337       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
338       if ((int)Inst.getNumOperands() == Data2Idx &&
339           IsAGPROperand(Inst, DataIdx, MRI))
340         Imm |= 512;
341     }
342   }
343   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
344 }
345 
346 static DecodeStatus
347 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
348                              const MCDisassembler *Decoder) {
349   return decodeOperand_AVLdSt_Any(Inst, Imm,
350                                   AMDGPUDisassembler::OPW32, Decoder);
351 }
352 
353 static DecodeStatus
354 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
355                              const MCDisassembler *Decoder) {
356   return decodeOperand_AVLdSt_Any(Inst, Imm,
357                                   AMDGPUDisassembler::OPW64, Decoder);
358 }
359 
360 static DecodeStatus
361 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
362                              const MCDisassembler *Decoder) {
363   return decodeOperand_AVLdSt_Any(Inst, Imm,
364                                   AMDGPUDisassembler::OPW96, Decoder);
365 }
366 
367 static DecodeStatus
368 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
369                               const MCDisassembler *Decoder) {
370   return decodeOperand_AVLdSt_Any(Inst, Imm,
371                                   AMDGPUDisassembler::OPW128, Decoder);
372 }
373 
374 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
375                                           uint64_t Addr,
376                                           const MCDisassembler *Decoder) {
377   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
378   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
379 }
380 
381 #define DECODE_SDWA(DecName) \
382 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
383 
384 DECODE_SDWA(Src32)
385 DECODE_SDWA(Src16)
386 DECODE_SDWA(VopcDst)
387 
388 #include "AMDGPUGenDisassemblerTables.inc"
389 
390 //===----------------------------------------------------------------------===//
391 //
392 //===----------------------------------------------------------------------===//
393 
394 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
395   assert(Bytes.size() >= sizeof(T));
396   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
397   Bytes = Bytes.slice(sizeof(T));
398   return Res;
399 }
400 
401 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
402   assert(Bytes.size() >= 12);
403   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
404       Bytes.data());
405   Bytes = Bytes.slice(8);
406   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
407       Bytes.data());
408   Bytes = Bytes.slice(4);
409   return DecoderUInt128(Lo, Hi);
410 }
411 
412 // The disassembler is greedy, so we need to check FI operand value to
413 // not parse a dpp if the correct literal is not set. For dpp16 the
414 // autogenerated decoder checks the dpp literal
415 static bool isValidDPP8(const MCInst &MI) {
416   using namespace llvm::AMDGPU::DPP;
417   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
418   assert(FiIdx != -1);
419   if ((unsigned)FiIdx >= MI.getNumOperands())
420     return false;
421   unsigned Fi = MI.getOperand(FiIdx).getImm();
422   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
423 }
424 
425 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
426                                                 ArrayRef<uint8_t> Bytes_,
427                                                 uint64_t Address,
428                                                 raw_ostream &CS) const {
429   CommentStream = &CS;
430   bool IsSDWA = false;
431 
432   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
433   Bytes = Bytes_.slice(0, MaxInstBytesNum);
434 
435   DecodeStatus Res = MCDisassembler::Fail;
436   do {
437     // ToDo: better to switch encoding length using some bit predicate
438     // but it is unknown yet, so try all we can
439 
440     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
441     // encodings
442     if (isGFX11Plus() && Bytes.size() >= 12 ) {
443       DecoderUInt128 DecW = eat12Bytes(Bytes);
444       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
445                                           Address);
446       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
447         break;
448       MI = MCInst(); // clear
449       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
450                                           Address);
451       if (Res) {
452         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
453           convertVOP3PDPPInst(MI);
454         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
455           convertVOPCDPPInst(MI); // Special VOP3 case
456         else {
457           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
458           convertVOP3DPPInst(MI); // Regular VOP3 case
459         }
460         break;
461       }
462       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
463       if (Res)
464         break;
465     }
466     // Reinitialize Bytes
467     Bytes = Bytes_.slice(0, MaxInstBytesNum);
468 
469     if (Bytes.size() >= 8) {
470       const uint64_t QW = eatBytes<uint64_t>(Bytes);
471 
472       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
473         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
474         if (Res) {
475           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
476               == -1)
477             break;
478           if (convertDPP8Inst(MI) == MCDisassembler::Success)
479             break;
480           MI = MCInst(); // clear
481         }
482       }
483 
484       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
485       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
486         break;
487       MI = MCInst(); // clear
488 
489       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
490       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
491         break;
492       MI = MCInst(); // clear
493 
494       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
495       if (Res) break;
496 
497       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
498       if (Res) {
499         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
500           convertVOPCDPPInst(MI);
501         break;
502       }
503 
504       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
505       if (Res) { IsSDWA = true;  break; }
506 
507       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
508       if (Res) { IsSDWA = true;  break; }
509 
510       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
511       if (Res) { IsSDWA = true;  break; }
512 
513       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
514         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
515         if (Res)
516           break;
517       }
518 
519       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
520       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
521       // table first so we print the correct name.
522       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
523         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
524         if (Res)
525           break;
526       }
527     }
528 
529     // Reinitialize Bytes as DPP64 could have eaten too much
530     Bytes = Bytes_.slice(0, MaxInstBytesNum);
531 
532     // Try decode 32-bit instruction
533     if (Bytes.size() < 4) break;
534     const uint32_t DW = eatBytes<uint32_t>(Bytes);
535     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
536     if (Res) break;
537 
538     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
539     if (Res) break;
540 
541     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
542     if (Res) break;
543 
544     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
545       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
546       if (Res)
547         break;
548     }
549 
550     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
551       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
552       if (Res) break;
553     }
554 
555     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
556     if (Res) break;
557 
558     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
559     if (Res) break;
560 
561     if (Bytes.size() < 4) break;
562     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
563 
564     if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) {
565       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address);
566       if (Res)
567         break;
568     }
569 
570     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
571       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
572       if (Res)
573         break;
574     }
575 
576     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
577     if (Res) break;
578 
579     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
580     if (Res) break;
581 
582     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
583     if (Res) break;
584 
585     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
586     if (Res) break;
587 
588     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
589     if (Res)
590       break;
591 
592     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
593   } while (false);
594 
595   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
596               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
597               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
598               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
599               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
600               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
601               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
602               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
603               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
604               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
605               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
606               MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
607               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
608               MI.getOpcode() == AMDGPU::V_FMAC_F16_t16_e64_gfx11)) {
609     // Insert dummy unused src2_modifiers.
610     insertNamedMCOperand(MI, MCOperand::createImm(0),
611                          AMDGPU::OpName::src2_modifiers);
612   }
613 
614   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
615           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
616     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
617                                              AMDGPU::OpName::cpol);
618     if (CPolPos != -1) {
619       unsigned CPol =
620           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
621               AMDGPU::CPol::GLC : 0;
622       if (MI.getNumOperands() <= (unsigned)CPolPos) {
623         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
624                              AMDGPU::OpName::cpol);
625       } else if (CPol) {
626         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
627       }
628     }
629   }
630 
631   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
632               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
633              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
634     // GFX90A lost TFE, its place is occupied by ACC.
635     int TFEOpIdx =
636         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
637     if (TFEOpIdx != -1) {
638       auto TFEIter = MI.begin();
639       std::advance(TFEIter, TFEOpIdx);
640       MI.insert(TFEIter, MCOperand::createImm(0));
641     }
642   }
643 
644   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
645               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
646     int SWZOpIdx =
647         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
648     if (SWZOpIdx != -1) {
649       auto SWZIter = MI.begin();
650       std::advance(SWZIter, SWZOpIdx);
651       MI.insert(SWZIter, MCOperand::createImm(0));
652     }
653   }
654 
655   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
656     int VAddr0Idx =
657         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
658     int RsrcIdx =
659         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
660     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
661     if (VAddr0Idx >= 0 && NSAArgs > 0) {
662       unsigned NSAWords = (NSAArgs + 3) / 4;
663       if (Bytes.size() < 4 * NSAWords) {
664         Res = MCDisassembler::Fail;
665       } else {
666         for (unsigned i = 0; i < NSAArgs; ++i) {
667           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
668           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
669           MI.insert(MI.begin() + VAddrIdx,
670                     createRegOperand(VAddrRCID, Bytes[i]));
671         }
672         Bytes = Bytes.slice(4 * NSAWords);
673       }
674     }
675 
676     if (Res)
677       Res = convertMIMGInst(MI);
678   }
679 
680   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
681     Res = convertEXPInst(MI);
682 
683   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
684     Res = convertVINTERPInst(MI);
685 
686   if (Res && IsSDWA)
687     Res = convertSDWAInst(MI);
688 
689   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
690                                               AMDGPU::OpName::vdst_in);
691   if (VDstIn_Idx != -1) {
692     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
693                            MCOI::OperandConstraint::TIED_TO);
694     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
695          !MI.getOperand(VDstIn_Idx).isReg() ||
696          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
697       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
698         MI.erase(&MI.getOperand(VDstIn_Idx));
699       insertNamedMCOperand(MI,
700         MCOperand::createReg(MI.getOperand(Tied).getReg()),
701         AMDGPU::OpName::vdst_in);
702     }
703   }
704 
705   int ImmLitIdx =
706       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
707   bool isVOP2 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP2;
708   if (Res && ImmLitIdx != -1 && (isVOP2 || AMDGPU::isVOPD(MI.getOpcode())))
709     Res = convertFMAanyK(MI, ImmLitIdx);
710 
711   // if the opcode was not recognized we'll assume a Size of 4 bytes
712   // (unless there are fewer bytes left)
713   Size = Res ? (MaxInstBytesNum - Bytes.size())
714              : std::min((size_t)4, Bytes_.size());
715   return Res;
716 }
717 
718 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
719   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
720     // The MCInst still has these fields even though they are no longer encoded
721     // in the GFX11 instruction.
722     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
723     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
724   }
725   return MCDisassembler::Success;
726 }
727 
728 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
729   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
730       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
731       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
732       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
733     // The MCInst has this field that is not directly encoded in the
734     // instruction.
735     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
736   }
737   return MCDisassembler::Success;
738 }
739 
740 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
741   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
742       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
743     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
744       // VOPC - insert clamp
745       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
746   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
747     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
748     if (SDst != -1) {
749       // VOPC - insert VCC register as sdst
750       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
751                            AMDGPU::OpName::sdst);
752     } else {
753       // VOP1/2 - insert omod if present in instruction
754       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
755     }
756   }
757   return MCDisassembler::Success;
758 }
759 
760 struct VOPModifiers {
761   unsigned OpSel = 0;
762   unsigned OpSelHi = 0;
763   unsigned NegLo = 0;
764   unsigned NegHi = 0;
765 };
766 
767 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
768 // Note that these values do not affect disassembler output,
769 // so this is only necessary for consistency with src_modifiers.
770 static VOPModifiers collectVOPModifiers(const MCInst &MI,
771                                         bool IsVOP3P = false) {
772   VOPModifiers Modifiers;
773   unsigned Opc = MI.getOpcode();
774   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
775                         AMDGPU::OpName::src1_modifiers,
776                         AMDGPU::OpName::src2_modifiers};
777   for (int J = 0; J < 3; ++J) {
778     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
779     if (OpIdx == -1)
780       continue;
781 
782     unsigned Val = MI.getOperand(OpIdx).getImm();
783 
784     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
785     if (IsVOP3P) {
786       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
787       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
788       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
789     } else if (J == 0) {
790       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
791     }
792   }
793 
794   return Modifiers;
795 }
796 
797 // We must check FI == literal to reject not genuine dpp8 insts, and we must
798 // first add optional MI operands to check FI
799 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
800   unsigned Opc = MI.getOpcode();
801   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
802   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
803     convertVOP3PDPPInst(MI);
804   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
805              AMDGPU::isVOPC64DPP(Opc)) {
806     convertVOPCDPPInst(MI);
807   } else if (MI.getNumOperands() < DescNumOps &&
808              AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1) {
809     auto Mods = collectVOPModifiers(MI);
810     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
811                          AMDGPU::OpName::op_sel);
812   } else {
813     // Insert dummy unused src modifiers.
814     if (MI.getNumOperands() < DescNumOps &&
815         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
816       insertNamedMCOperand(MI, MCOperand::createImm(0),
817                            AMDGPU::OpName::src0_modifiers);
818 
819     if (MI.getNumOperands() < DescNumOps &&
820         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
821       insertNamedMCOperand(MI, MCOperand::createImm(0),
822                            AMDGPU::OpName::src1_modifiers);
823   }
824   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
825 }
826 
827 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
828   unsigned Opc = MI.getOpcode();
829   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
830   if (MI.getNumOperands() < DescNumOps &&
831       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1) {
832     auto Mods = collectVOPModifiers(MI);
833     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
834                          AMDGPU::OpName::op_sel);
835   }
836   return MCDisassembler::Success;
837 }
838 
839 // Note that before gfx10, the MIMG encoding provided no information about
840 // VADDR size. Consequently, decoded instructions always show address as if it
841 // has 1 dword, which could be not really so.
842 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
843 
844   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
845                                            AMDGPU::OpName::vdst);
846 
847   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
848                                             AMDGPU::OpName::vdata);
849   int VAddr0Idx =
850       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
851   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
852                                             AMDGPU::OpName::dmask);
853 
854   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
855                                             AMDGPU::OpName::tfe);
856   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
857                                             AMDGPU::OpName::d16);
858 
859   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
860   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
861       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
862 
863   assert(VDataIdx != -1);
864   if (BaseOpcode->BVH) {
865     // Add A16 operand for intersect_ray instructions
866     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
867       addOperand(MI, MCOperand::createImm(1));
868     }
869     return MCDisassembler::Success;
870   }
871 
872   bool IsAtomic = (VDstIdx != -1);
873   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
874   bool IsNSA = false;
875   unsigned AddrSize = Info->VAddrDwords;
876 
877   if (isGFX10Plus()) {
878     unsigned DimIdx =
879         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
880     int A16Idx =
881         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
882     const AMDGPU::MIMGDimInfo *Dim =
883         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
884     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
885 
886     AddrSize =
887         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
888 
889     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
890             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
891     if (!IsNSA) {
892       if (AddrSize > 8)
893         AddrSize = 16;
894     } else {
895       if (AddrSize > Info->VAddrDwords) {
896         // The NSA encoding does not contain enough operands for the combination
897         // of base opcode / dimension. Should this be an error?
898         return MCDisassembler::Success;
899       }
900     }
901   }
902 
903   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
904   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
905 
906   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
907   if (D16 && AMDGPU::hasPackedD16(STI)) {
908     DstSize = (DstSize + 1) / 2;
909   }
910 
911   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
912     DstSize += 1;
913 
914   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
915     return MCDisassembler::Success;
916 
917   int NewOpcode =
918       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
919   if (NewOpcode == -1)
920     return MCDisassembler::Success;
921 
922   // Widen the register to the correct number of enabled channels.
923   unsigned NewVdata = AMDGPU::NoRegister;
924   if (DstSize != Info->VDataDwords) {
925     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
926 
927     // Get first subregister of VData
928     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
929     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
930     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
931 
932     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
933                                        &MRI.getRegClass(DataRCID));
934     if (NewVdata == AMDGPU::NoRegister) {
935       // It's possible to encode this such that the low register + enabled
936       // components exceeds the register count.
937       return MCDisassembler::Success;
938     }
939   }
940 
941   // If not using NSA on GFX10+, widen address register to correct size.
942   unsigned NewVAddr0 = AMDGPU::NoRegister;
943   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
944     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
945     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
946     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
947 
948     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
949     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
950                                         &MRI.getRegClass(AddrRCID));
951     if (NewVAddr0 == AMDGPU::NoRegister)
952       return MCDisassembler::Success;
953   }
954 
955   MI.setOpcode(NewOpcode);
956 
957   if (NewVdata != AMDGPU::NoRegister) {
958     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
959 
960     if (IsAtomic) {
961       // Atomic operations have an additional operand (a copy of data)
962       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
963     }
964   }
965 
966   if (NewVAddr0 != AMDGPU::NoRegister) {
967     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
968   } else if (IsNSA) {
969     assert(AddrSize <= Info->VAddrDwords);
970     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
971              MI.begin() + VAddr0Idx + Info->VAddrDwords);
972   }
973 
974   return MCDisassembler::Success;
975 }
976 
977 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
978 // decoder only adds to src_modifiers, so manually add the bits to the other
979 // operands.
980 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
981   unsigned Opc = MI.getOpcode();
982   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
983   auto Mods = collectVOPModifiers(MI, true);
984 
985   if (MI.getNumOperands() < DescNumOps &&
986       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1)
987     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
988 
989   if (MI.getNumOperands() < DescNumOps &&
990       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1)
991     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
992                          AMDGPU::OpName::op_sel);
993   if (MI.getNumOperands() < DescNumOps &&
994       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1)
995     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
996                          AMDGPU::OpName::op_sel_hi);
997   if (MI.getNumOperands() < DescNumOps &&
998       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1)
999     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1000                          AMDGPU::OpName::neg_lo);
1001   if (MI.getNumOperands() < DescNumOps &&
1002       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1)
1003     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1004                          AMDGPU::OpName::neg_hi);
1005 
1006   return MCDisassembler::Success;
1007 }
1008 
1009 // Create dummy old operand and insert optional operands
1010 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1011   unsigned Opc = MI.getOpcode();
1012   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1013 
1014   if (MI.getNumOperands() < DescNumOps &&
1015       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::old) != -1)
1016     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1017 
1018   if (MI.getNumOperands() < DescNumOps &&
1019       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
1020     insertNamedMCOperand(MI, MCOperand::createImm(0),
1021                          AMDGPU::OpName::src0_modifiers);
1022 
1023   if (MI.getNumOperands() < DescNumOps &&
1024       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
1025     insertNamedMCOperand(MI, MCOperand::createImm(0),
1026                          AMDGPU::OpName::src1_modifiers);
1027   return MCDisassembler::Success;
1028 }
1029 
1030 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1031                                                 int ImmLitIdx) const {
1032   assert(HasLiteral && "Should have decoded a literal");
1033   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1034   unsigned DescNumOps = Desc.getNumOperands();
1035   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1036                        AMDGPU::OpName::immDeferred);
1037   assert(DescNumOps == MI.getNumOperands());
1038   for (unsigned I = 0; I < DescNumOps; ++I) {
1039     auto &Op = MI.getOperand(I);
1040     auto OpType = Desc.OpInfo[I].OperandType;
1041     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1042                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1043     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1044         IsDeferredOp)
1045       Op.setImm(Literal);
1046   }
1047   return MCDisassembler::Success;
1048 }
1049 
1050 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1051   return getContext().getRegisterInfo()->
1052     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1053 }
1054 
1055 inline
1056 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1057                                          const Twine& ErrMsg) const {
1058   *CommentStream << "Error: " + ErrMsg;
1059 
1060   // ToDo: add support for error operands to MCInst.h
1061   // return MCOperand::createError(V);
1062   return MCOperand();
1063 }
1064 
1065 inline
1066 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1067   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1068 }
1069 
1070 inline
1071 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1072                                                unsigned Val) const {
1073   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1074   if (Val >= RegCl.getNumRegs())
1075     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1076                            ": unknown register " + Twine(Val));
1077   return createRegOperand(RegCl.getRegister(Val));
1078 }
1079 
1080 inline
1081 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1082                                                 unsigned Val) const {
1083   // ToDo: SI/CI have 104 SGPRs, VI - 102
1084   // Valery: here we accepting as much as we can, let assembler sort it out
1085   int shift = 0;
1086   switch (SRegClassID) {
1087   case AMDGPU::SGPR_32RegClassID:
1088   case AMDGPU::TTMP_32RegClassID:
1089     break;
1090   case AMDGPU::SGPR_64RegClassID:
1091   case AMDGPU::TTMP_64RegClassID:
1092     shift = 1;
1093     break;
1094   case AMDGPU::SGPR_128RegClassID:
1095   case AMDGPU::TTMP_128RegClassID:
1096   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1097   // this bundle?
1098   case AMDGPU::SGPR_256RegClassID:
1099   case AMDGPU::TTMP_256RegClassID:
1100     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1101   // this bundle?
1102   case AMDGPU::SGPR_512RegClassID:
1103   case AMDGPU::TTMP_512RegClassID:
1104     shift = 2;
1105     break;
1106   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1107   // this bundle?
1108   default:
1109     llvm_unreachable("unhandled register class");
1110   }
1111 
1112   if (Val % (1 << shift)) {
1113     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1114                    << ": scalar reg isn't aligned " << Val;
1115   }
1116 
1117   return createRegOperand(SRegClassID, Val >> shift);
1118 }
1119 
1120 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1121   return decodeSrcOp(OPW32, Val);
1122 }
1123 
1124 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1125   return decodeSrcOp(OPW64, Val);
1126 }
1127 
1128 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1129   return decodeSrcOp(OPW128, Val);
1130 }
1131 
1132 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1133   return decodeSrcOp(OPW16, Val);
1134 }
1135 
1136 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1137   return decodeSrcOp(OPWV216, Val);
1138 }
1139 
1140 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1141   return decodeSrcOp(OPWV232, Val);
1142 }
1143 
1144 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32_Lo128(unsigned Val) const {
1145   return createRegOperand(AMDGPU::VGPR_32_Lo128RegClassID, Val);
1146 }
1147 
1148 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1149   // Some instructions have operand restrictions beyond what the encoding
1150   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1151   // high bit.
1152   Val &= 255;
1153 
1154   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1155 }
1156 
1157 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1158   return decodeSrcOp(OPW32, Val);
1159 }
1160 
1161 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1162   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1163 }
1164 
1165 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1166   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1167 }
1168 
1169 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1170   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1171 }
1172 
1173 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1174   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1175 }
1176 
1177 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1178   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1179 }
1180 
1181 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1182   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1183 }
1184 
1185 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1186   return decodeSrcOp(OPW32, Val);
1187 }
1188 
1189 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1190   return decodeSrcOp(OPW64, Val);
1191 }
1192 
1193 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1194   return decodeSrcOp(OPW128, Val);
1195 }
1196 
1197 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1198   using namespace AMDGPU::EncValues;
1199   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1200   return decodeSrcOp(OPW128, Val | IS_VGPR);
1201 }
1202 
1203 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1204   using namespace AMDGPU::EncValues;
1205   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1206   return decodeSrcOp(OPW512, Val | IS_VGPR);
1207 }
1208 
1209 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1210   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1211 }
1212 
1213 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1214   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1215 }
1216 
1217 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1218   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1219 }
1220 
1221 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1222   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1223 }
1224 
1225 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1226   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1227 }
1228 
1229 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1230   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1231 }
1232 
1233 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1234   // table-gen generated disassembler doesn't care about operand types
1235   // leaving only registry class so SSrc_32 operand turns into SReg_32
1236   // and therefore we accept immediates and literals here as well
1237   return decodeSrcOp(OPW32, Val);
1238 }
1239 
1240 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1241   unsigned Val) const {
1242   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1243   return decodeOperand_SReg_32(Val);
1244 }
1245 
1246 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1247   unsigned Val) const {
1248   // SReg_32_XM0 is SReg_32 without EXEC_HI
1249   return decodeOperand_SReg_32(Val);
1250 }
1251 
1252 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1253   // table-gen generated disassembler doesn't care about operand types
1254   // leaving only registry class so SSrc_32 operand turns into SReg_32
1255   // and therefore we accept immediates and literals here as well
1256   return decodeSrcOp(OPW32, Val);
1257 }
1258 
1259 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1260   return decodeSrcOp(OPW64, Val);
1261 }
1262 
1263 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1264   return decodeSrcOp(OPW64, Val);
1265 }
1266 
1267 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1268   return decodeSrcOp(OPW128, Val);
1269 }
1270 
1271 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1272   return decodeDstOp(OPW256, Val);
1273 }
1274 
1275 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1276   return decodeDstOp(OPW512, Val);
1277 }
1278 
1279 // Decode Literals for insts which always have a literal in the encoding
1280 MCOperand
1281 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1282   if (HasLiteral) {
1283     assert(
1284         AMDGPU::hasVOPD(STI) &&
1285         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1286     if (Literal != Val)
1287       return errOperand(Val, "More than one unique literal is illegal");
1288   }
1289   HasLiteral = true;
1290   Literal = Val;
1291   return MCOperand::createImm(Literal);
1292 }
1293 
1294 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1295   // For now all literal constants are supposed to be unsigned integer
1296   // ToDo: deal with signed/unsigned 64-bit integer constants
1297   // ToDo: deal with float/double constants
1298   if (!HasLiteral) {
1299     if (Bytes.size() < 4) {
1300       return errOperand(0, "cannot read literal, inst bytes left " +
1301                         Twine(Bytes.size()));
1302     }
1303     HasLiteral = true;
1304     Literal = eatBytes<uint32_t>(Bytes);
1305   }
1306   return MCOperand::createImm(Literal);
1307 }
1308 
1309 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1310   using namespace AMDGPU::EncValues;
1311 
1312   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1313   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1314     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1315     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1316       // Cast prevents negative overflow.
1317 }
1318 
1319 static int64_t getInlineImmVal32(unsigned Imm) {
1320   switch (Imm) {
1321   case 240:
1322     return FloatToBits(0.5f);
1323   case 241:
1324     return FloatToBits(-0.5f);
1325   case 242:
1326     return FloatToBits(1.0f);
1327   case 243:
1328     return FloatToBits(-1.0f);
1329   case 244:
1330     return FloatToBits(2.0f);
1331   case 245:
1332     return FloatToBits(-2.0f);
1333   case 246:
1334     return FloatToBits(4.0f);
1335   case 247:
1336     return FloatToBits(-4.0f);
1337   case 248: // 1 / (2 * PI)
1338     return 0x3e22f983;
1339   default:
1340     llvm_unreachable("invalid fp inline imm");
1341   }
1342 }
1343 
1344 static int64_t getInlineImmVal64(unsigned Imm) {
1345   switch (Imm) {
1346   case 240:
1347     return DoubleToBits(0.5);
1348   case 241:
1349     return DoubleToBits(-0.5);
1350   case 242:
1351     return DoubleToBits(1.0);
1352   case 243:
1353     return DoubleToBits(-1.0);
1354   case 244:
1355     return DoubleToBits(2.0);
1356   case 245:
1357     return DoubleToBits(-2.0);
1358   case 246:
1359     return DoubleToBits(4.0);
1360   case 247:
1361     return DoubleToBits(-4.0);
1362   case 248: // 1 / (2 * PI)
1363     return 0x3fc45f306dc9c882;
1364   default:
1365     llvm_unreachable("invalid fp inline imm");
1366   }
1367 }
1368 
1369 static int64_t getInlineImmVal16(unsigned Imm) {
1370   switch (Imm) {
1371   case 240:
1372     return 0x3800;
1373   case 241:
1374     return 0xB800;
1375   case 242:
1376     return 0x3C00;
1377   case 243:
1378     return 0xBC00;
1379   case 244:
1380     return 0x4000;
1381   case 245:
1382     return 0xC000;
1383   case 246:
1384     return 0x4400;
1385   case 247:
1386     return 0xC400;
1387   case 248: // 1 / (2 * PI)
1388     return 0x3118;
1389   default:
1390     llvm_unreachable("invalid fp inline imm");
1391   }
1392 }
1393 
1394 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1395   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1396       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1397 
1398   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1399   switch (Width) {
1400   case OPW32:
1401   case OPW128: // splat constants
1402   case OPW512:
1403   case OPW1024:
1404   case OPWV232:
1405     return MCOperand::createImm(getInlineImmVal32(Imm));
1406   case OPW64:
1407   case OPW256:
1408     return MCOperand::createImm(getInlineImmVal64(Imm));
1409   case OPW16:
1410   case OPWV216:
1411     return MCOperand::createImm(getInlineImmVal16(Imm));
1412   default:
1413     llvm_unreachable("implement me");
1414   }
1415 }
1416 
1417 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1418   using namespace AMDGPU;
1419 
1420   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1421   switch (Width) {
1422   default: // fall
1423   case OPW32:
1424   case OPW16:
1425   case OPWV216:
1426     return VGPR_32RegClassID;
1427   case OPW64:
1428   case OPWV232: return VReg_64RegClassID;
1429   case OPW96: return VReg_96RegClassID;
1430   case OPW128: return VReg_128RegClassID;
1431   case OPW160: return VReg_160RegClassID;
1432   case OPW256: return VReg_256RegClassID;
1433   case OPW512: return VReg_512RegClassID;
1434   case OPW1024: return VReg_1024RegClassID;
1435   }
1436 }
1437 
1438 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1439   using namespace AMDGPU;
1440 
1441   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1442   switch (Width) {
1443   default: // fall
1444   case OPW32:
1445   case OPW16:
1446   case OPWV216:
1447     return AGPR_32RegClassID;
1448   case OPW64:
1449   case OPWV232: return AReg_64RegClassID;
1450   case OPW96: return AReg_96RegClassID;
1451   case OPW128: return AReg_128RegClassID;
1452   case OPW160: return AReg_160RegClassID;
1453   case OPW256: return AReg_256RegClassID;
1454   case OPW512: return AReg_512RegClassID;
1455   case OPW1024: return AReg_1024RegClassID;
1456   }
1457 }
1458 
1459 
1460 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1461   using namespace AMDGPU;
1462 
1463   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1464   switch (Width) {
1465   default: // fall
1466   case OPW32:
1467   case OPW16:
1468   case OPWV216:
1469     return SGPR_32RegClassID;
1470   case OPW64:
1471   case OPWV232: return SGPR_64RegClassID;
1472   case OPW96: return SGPR_96RegClassID;
1473   case OPW128: return SGPR_128RegClassID;
1474   case OPW160: return SGPR_160RegClassID;
1475   case OPW256: return SGPR_256RegClassID;
1476   case OPW512: return SGPR_512RegClassID;
1477   }
1478 }
1479 
1480 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1481   using namespace AMDGPU;
1482 
1483   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1484   switch (Width) {
1485   default: // fall
1486   case OPW32:
1487   case OPW16:
1488   case OPWV216:
1489     return TTMP_32RegClassID;
1490   case OPW64:
1491   case OPWV232: return TTMP_64RegClassID;
1492   case OPW128: return TTMP_128RegClassID;
1493   case OPW256: return TTMP_256RegClassID;
1494   case OPW512: return TTMP_512RegClassID;
1495   }
1496 }
1497 
1498 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1499   using namespace AMDGPU::EncValues;
1500 
1501   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1502   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1503 
1504   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1505 }
1506 
1507 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1508                                           bool MandatoryLiteral) const {
1509   using namespace AMDGPU::EncValues;
1510 
1511   assert(Val < 1024); // enum10
1512 
1513   bool IsAGPR = Val & 512;
1514   Val &= 511;
1515 
1516   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1517     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1518                                    : getVgprClassId(Width), Val - VGPR_MIN);
1519   }
1520   if (Val <= SGPR_MAX) {
1521     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1522     static_assert(SGPR_MIN == 0);
1523     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1524   }
1525 
1526   int TTmpIdx = getTTmpIdx(Val);
1527   if (TTmpIdx >= 0) {
1528     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1529   }
1530 
1531   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1532     return decodeIntImmed(Val);
1533 
1534   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1535     return decodeFPImmed(Width, Val);
1536 
1537   if (Val == LITERAL_CONST) {
1538     if (MandatoryLiteral)
1539       // Keep a sentinel value for deferred setting
1540       return MCOperand::createImm(LITERAL_CONST);
1541     else
1542       return decodeLiteralConstant();
1543   }
1544 
1545   switch (Width) {
1546   case OPW32:
1547   case OPW16:
1548   case OPWV216:
1549     return decodeSpecialReg32(Val);
1550   case OPW64:
1551   case OPWV232:
1552     return decodeSpecialReg64(Val);
1553   default:
1554     llvm_unreachable("unexpected immediate type");
1555   }
1556 }
1557 
1558 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1559   using namespace AMDGPU::EncValues;
1560 
1561   assert(Val < 128);
1562   assert(Width == OPW256 || Width == OPW512);
1563 
1564   if (Val <= SGPR_MAX) {
1565     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1566     static_assert(SGPR_MIN == 0);
1567     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1568   }
1569 
1570   int TTmpIdx = getTTmpIdx(Val);
1571   if (TTmpIdx >= 0) {
1572     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1573   }
1574 
1575   llvm_unreachable("unknown dst register");
1576 }
1577 
1578 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1579 // opposite of bit 0 of DstX.
1580 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1581                                                unsigned Val) const {
1582   int VDstXInd =
1583       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1584   assert(VDstXInd != -1);
1585   assert(Inst.getOperand(VDstXInd).isReg());
1586   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1587   Val |= ~XDstReg & 1;
1588   auto Width = llvm::AMDGPUDisassembler::OPW32;
1589   return createRegOperand(getVgprClassId(Width), Val);
1590 }
1591 
1592 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1593   using namespace AMDGPU;
1594 
1595   switch (Val) {
1596   case 102: return createRegOperand(FLAT_SCR_LO);
1597   case 103: return createRegOperand(FLAT_SCR_HI);
1598   case 104: return createRegOperand(XNACK_MASK_LO);
1599   case 105: return createRegOperand(XNACK_MASK_HI);
1600   case 106: return createRegOperand(VCC_LO);
1601   case 107: return createRegOperand(VCC_HI);
1602   case 108: return createRegOperand(TBA_LO);
1603   case 109: return createRegOperand(TBA_HI);
1604   case 110: return createRegOperand(TMA_LO);
1605   case 111: return createRegOperand(TMA_HI);
1606   case 124:
1607     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1608   case 125:
1609     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1610   case 126: return createRegOperand(EXEC_LO);
1611   case 127: return createRegOperand(EXEC_HI);
1612   case 235: return createRegOperand(SRC_SHARED_BASE);
1613   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1614   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1615   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1616   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1617   case 251: return createRegOperand(SRC_VCCZ);
1618   case 252: return createRegOperand(SRC_EXECZ);
1619   case 253: return createRegOperand(SRC_SCC);
1620   case 254: return createRegOperand(LDS_DIRECT);
1621   default: break;
1622   }
1623   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1624 }
1625 
1626 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1627   using namespace AMDGPU;
1628 
1629   switch (Val) {
1630   case 102: return createRegOperand(FLAT_SCR);
1631   case 104: return createRegOperand(XNACK_MASK);
1632   case 106: return createRegOperand(VCC);
1633   case 108: return createRegOperand(TBA);
1634   case 110: return createRegOperand(TMA);
1635   case 124:
1636     if (isGFX11Plus())
1637       return createRegOperand(SGPR_NULL);
1638     break;
1639   case 125:
1640     if (!isGFX11Plus())
1641       return createRegOperand(SGPR_NULL);
1642     break;
1643   case 126: return createRegOperand(EXEC);
1644   case 235: return createRegOperand(SRC_SHARED_BASE);
1645   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1646   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1647   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1648   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1649   case 251: return createRegOperand(SRC_VCCZ);
1650   case 252: return createRegOperand(SRC_EXECZ);
1651   case 253: return createRegOperand(SRC_SCC);
1652   default: break;
1653   }
1654   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1655 }
1656 
1657 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1658                                             const unsigned Val) const {
1659   using namespace AMDGPU::SDWA;
1660   using namespace AMDGPU::EncValues;
1661 
1662   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1663       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1664     // XXX: cast to int is needed to avoid stupid warning:
1665     // compare with unsigned is always true
1666     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1667         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1668       return createRegOperand(getVgprClassId(Width),
1669                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1670     }
1671     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1672         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1673                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1674       return createSRegOperand(getSgprClassId(Width),
1675                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1676     }
1677     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1678         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1679       return createSRegOperand(getTtmpClassId(Width),
1680                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1681     }
1682 
1683     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1684 
1685     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1686       return decodeIntImmed(SVal);
1687 
1688     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1689       return decodeFPImmed(Width, SVal);
1690 
1691     return decodeSpecialReg32(SVal);
1692   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1693     return createRegOperand(getVgprClassId(Width), Val);
1694   }
1695   llvm_unreachable("unsupported target");
1696 }
1697 
1698 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1699   return decodeSDWASrc(OPW16, Val);
1700 }
1701 
1702 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1703   return decodeSDWASrc(OPW32, Val);
1704 }
1705 
1706 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1707   using namespace AMDGPU::SDWA;
1708 
1709   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1710           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1711          "SDWAVopcDst should be present only on GFX9+");
1712 
1713   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1714 
1715   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1716     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1717 
1718     int TTmpIdx = getTTmpIdx(Val);
1719     if (TTmpIdx >= 0) {
1720       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1721       return createSRegOperand(TTmpClsId, TTmpIdx);
1722     } else if (Val > SGPR_MAX) {
1723       return IsWave64 ? decodeSpecialReg64(Val)
1724                       : decodeSpecialReg32(Val);
1725     } else {
1726       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1727     }
1728   } else {
1729     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1730   }
1731 }
1732 
1733 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1734   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1735     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1736 }
1737 
1738 bool AMDGPUDisassembler::isVI() const {
1739   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1740 }
1741 
1742 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1743 
1744 bool AMDGPUDisassembler::isGFX90A() const {
1745   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1746 }
1747 
1748 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1749 
1750 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1751 
1752 bool AMDGPUDisassembler::isGFX10Plus() const {
1753   return AMDGPU::isGFX10Plus(STI);
1754 }
1755 
1756 bool AMDGPUDisassembler::isGFX11() const {
1757   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1758 }
1759 
1760 bool AMDGPUDisassembler::isGFX11Plus() const {
1761   return AMDGPU::isGFX11Plus(STI);
1762 }
1763 
1764 
1765 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1766   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1767 }
1768 
1769 //===----------------------------------------------------------------------===//
1770 // AMDGPU specific symbol handling
1771 //===----------------------------------------------------------------------===//
1772 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1773   do {                                                                         \
1774     KdStream << Indent << DIRECTIVE " "                                        \
1775              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1776   } while (0)
1777 
1778 // NOLINTNEXTLINE(readability-identifier-naming)
1779 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1780     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1781   using namespace amdhsa;
1782   StringRef Indent = "\t";
1783 
1784   // We cannot accurately backward compute #VGPRs used from
1785   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1786   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1787   // simply calculate the inverse of what the assembler does.
1788 
1789   uint32_t GranulatedWorkitemVGPRCount =
1790       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1791       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1792 
1793   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1794                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1795 
1796   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1797 
1798   // We cannot backward compute values used to calculate
1799   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1800   // directives can't be computed:
1801   // .amdhsa_reserve_vcc
1802   // .amdhsa_reserve_flat_scratch
1803   // .amdhsa_reserve_xnack_mask
1804   // They take their respective default values if not specified in the assembly.
1805   //
1806   // GRANULATED_WAVEFRONT_SGPR_COUNT
1807   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1808   //
1809   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1810   // are set to 0. So while disassembling we consider that:
1811   //
1812   // GRANULATED_WAVEFRONT_SGPR_COUNT
1813   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1814   //
1815   // The disassembler cannot recover the original values of those 3 directives.
1816 
1817   uint32_t GranulatedWavefrontSGPRCount =
1818       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1819       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1820 
1821   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1822     return MCDisassembler::Fail;
1823 
1824   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1825                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1826 
1827   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1828   if (!hasArchitectedFlatScratch())
1829     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1830   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1831   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1832 
1833   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1834     return MCDisassembler::Fail;
1835 
1836   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1837                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1838   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1839                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1840   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1841                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1842   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1843                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1844 
1845   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1846     return MCDisassembler::Fail;
1847 
1848   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1849 
1850   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1851     return MCDisassembler::Fail;
1852 
1853   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1854 
1855   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1856     return MCDisassembler::Fail;
1857 
1858   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1859     return MCDisassembler::Fail;
1860 
1861   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1862 
1863   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1864     return MCDisassembler::Fail;
1865 
1866   if (isGFX10Plus()) {
1867     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1868                     COMPUTE_PGM_RSRC1_WGP_MODE);
1869     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1870     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1871   }
1872   return MCDisassembler::Success;
1873 }
1874 
1875 // NOLINTNEXTLINE(readability-identifier-naming)
1876 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1877     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1878   using namespace amdhsa;
1879   StringRef Indent = "\t";
1880   if (hasArchitectedFlatScratch())
1881     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1882                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1883   else
1884     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1885                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1886   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1887                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1888   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1889                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1890   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1891                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1892   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1893                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1894   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1895                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1896 
1897   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1898     return MCDisassembler::Fail;
1899 
1900   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1901     return MCDisassembler::Fail;
1902 
1903   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1904     return MCDisassembler::Fail;
1905 
1906   PRINT_DIRECTIVE(
1907       ".amdhsa_exception_fp_ieee_invalid_op",
1908       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1909   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1910                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1911   PRINT_DIRECTIVE(
1912       ".amdhsa_exception_fp_ieee_div_zero",
1913       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1914   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1915                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1916   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1917                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1918   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1919                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1920   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1921                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1922 
1923   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1924     return MCDisassembler::Fail;
1925 
1926   return MCDisassembler::Success;
1927 }
1928 
1929 #undef PRINT_DIRECTIVE
1930 
1931 MCDisassembler::DecodeStatus
1932 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1933     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1934     raw_string_ostream &KdStream) const {
1935 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1936   do {                                                                         \
1937     KdStream << Indent << DIRECTIVE " "                                        \
1938              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1939   } while (0)
1940 
1941   uint16_t TwoByteBuffer = 0;
1942   uint32_t FourByteBuffer = 0;
1943 
1944   StringRef ReservedBytes;
1945   StringRef Indent = "\t";
1946 
1947   assert(Bytes.size() == 64);
1948   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1949 
1950   switch (Cursor.tell()) {
1951   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1952     FourByteBuffer = DE.getU32(Cursor);
1953     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1954              << '\n';
1955     return MCDisassembler::Success;
1956 
1957   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1958     FourByteBuffer = DE.getU32(Cursor);
1959     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1960              << FourByteBuffer << '\n';
1961     return MCDisassembler::Success;
1962 
1963   case amdhsa::KERNARG_SIZE_OFFSET:
1964     FourByteBuffer = DE.getU32(Cursor);
1965     KdStream << Indent << ".amdhsa_kernarg_size "
1966              << FourByteBuffer << '\n';
1967     return MCDisassembler::Success;
1968 
1969   case amdhsa::RESERVED0_OFFSET:
1970     // 4 reserved bytes, must be 0.
1971     ReservedBytes = DE.getBytes(Cursor, 4);
1972     for (int I = 0; I < 4; ++I) {
1973       if (ReservedBytes[I] != 0) {
1974         return MCDisassembler::Fail;
1975       }
1976     }
1977     return MCDisassembler::Success;
1978 
1979   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1980     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1981     // So far no directive controls this for Code Object V3, so simply skip for
1982     // disassembly.
1983     DE.skip(Cursor, 8);
1984     return MCDisassembler::Success;
1985 
1986   case amdhsa::RESERVED1_OFFSET:
1987     // 20 reserved bytes, must be 0.
1988     ReservedBytes = DE.getBytes(Cursor, 20);
1989     for (int I = 0; I < 20; ++I) {
1990       if (ReservedBytes[I] != 0) {
1991         return MCDisassembler::Fail;
1992       }
1993     }
1994     return MCDisassembler::Success;
1995 
1996   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1997     // COMPUTE_PGM_RSRC3
1998     //  - Only set for GFX10, GFX6-9 have this to be 0.
1999     //  - Currently no directives directly control this.
2000     FourByteBuffer = DE.getU32(Cursor);
2001     if (!isGFX10Plus() && FourByteBuffer) {
2002       return MCDisassembler::Fail;
2003     }
2004     return MCDisassembler::Success;
2005 
2006   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2007     FourByteBuffer = DE.getU32(Cursor);
2008     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
2009         MCDisassembler::Fail) {
2010       return MCDisassembler::Fail;
2011     }
2012     return MCDisassembler::Success;
2013 
2014   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2015     FourByteBuffer = DE.getU32(Cursor);
2016     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
2017         MCDisassembler::Fail) {
2018       return MCDisassembler::Fail;
2019     }
2020     return MCDisassembler::Success;
2021 
2022   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2023     using namespace amdhsa;
2024     TwoByteBuffer = DE.getU16(Cursor);
2025 
2026     if (!hasArchitectedFlatScratch())
2027       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2028                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2029     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2030                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2031     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2032                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2033     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2034                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2035     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2036                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2037     if (!hasArchitectedFlatScratch())
2038       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2039                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2040     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2041                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2042 
2043     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2044       return MCDisassembler::Fail;
2045 
2046     // Reserved for GFX9
2047     if (isGFX9() &&
2048         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2049       return MCDisassembler::Fail;
2050     } else if (isGFX10Plus()) {
2051       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2052                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2053     }
2054 
2055     PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2056                     KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2057 
2058     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2059       return MCDisassembler::Fail;
2060 
2061     return MCDisassembler::Success;
2062 
2063   case amdhsa::RESERVED2_OFFSET:
2064     // 6 bytes from here are reserved, must be 0.
2065     ReservedBytes = DE.getBytes(Cursor, 6);
2066     for (int I = 0; I < 6; ++I) {
2067       if (ReservedBytes[I] != 0)
2068         return MCDisassembler::Fail;
2069     }
2070     return MCDisassembler::Success;
2071 
2072   default:
2073     llvm_unreachable("Unhandled index. Case statements cover everything.");
2074     return MCDisassembler::Fail;
2075   }
2076 #undef PRINT_DIRECTIVE
2077 }
2078 
2079 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2080     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2081   // CP microcode requires the kernel descriptor to be 64 aligned.
2082   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2083     return MCDisassembler::Fail;
2084 
2085   std::string Kd;
2086   raw_string_ostream KdStream(Kd);
2087   KdStream << ".amdhsa_kernel " << KdName << '\n';
2088 
2089   DataExtractor::Cursor C(0);
2090   while (C && C.tell() < Bytes.size()) {
2091     MCDisassembler::DecodeStatus Status =
2092         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2093 
2094     cantFail(C.takeError());
2095 
2096     if (Status == MCDisassembler::Fail)
2097       return MCDisassembler::Fail;
2098   }
2099   KdStream << ".end_amdhsa_kernel\n";
2100   outs() << KdStream.str();
2101   return MCDisassembler::Success;
2102 }
2103 
2104 Optional<MCDisassembler::DecodeStatus>
2105 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2106                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2107                                   raw_ostream &CStream) const {
2108   // Right now only kernel descriptor needs to be handled.
2109   // We ignore all other symbols for target specific handling.
2110   // TODO:
2111   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2112   // Object V2 and V3 when symbols are marked protected.
2113 
2114   // amd_kernel_code_t for Code Object V2.
2115   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2116     Size = 256;
2117     return MCDisassembler::Fail;
2118   }
2119 
2120   // Code Object V3 kernel descriptors.
2121   StringRef Name = Symbol.Name;
2122   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2123     Size = 64; // Size = 64 regardless of success or failure.
2124     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2125   }
2126   return None;
2127 }
2128 
2129 //===----------------------------------------------------------------------===//
2130 // AMDGPUSymbolizer
2131 //===----------------------------------------------------------------------===//
2132 
2133 // Try to find symbol name for specified label
2134 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2135     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2136     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2137     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2138 
2139   if (!IsBranch) {
2140     return false;
2141   }
2142 
2143   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2144   if (!Symbols)
2145     return false;
2146 
2147   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2148     return Val.Addr == static_cast<uint64_t>(Value) &&
2149            Val.Type == ELF::STT_NOTYPE;
2150   });
2151   if (Result != Symbols->end()) {
2152     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2153     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2154     Inst.addOperand(MCOperand::createExpr(Add));
2155     return true;
2156   }
2157   // Add to list of referenced addresses, so caller can synthesize a label.
2158   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2159   return false;
2160 }
2161 
2162 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2163                                                        int64_t Value,
2164                                                        uint64_t Address) {
2165   llvm_unreachable("unimplemented");
2166 }
2167 
2168 //===----------------------------------------------------------------------===//
2169 // Initialization
2170 //===----------------------------------------------------------------------===//
2171 
2172 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2173                               LLVMOpInfoCallback /*GetOpInfo*/,
2174                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2175                               void *DisInfo,
2176                               MCContext *Ctx,
2177                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2178   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2179 }
2180 
2181 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2182                                                 const MCSubtargetInfo &STI,
2183                                                 MCContext &Ctx) {
2184   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2185 }
2186 
2187 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2188   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2189                                          createAMDGPUDisassembler);
2190   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2191                                        createAMDGPUSymbolizer);
2192 }
2193