xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 44ff904d21ff8b0d559b93f070a7e4ee06228085)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
95     Offset = SignExtend64<24>(Imm);
96   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else { // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
119 // number of register. Used by VGPR only and AGPR only operands.
120 #define DECODE_OPERAND_REG_8(RegClass)                                         \
121   static DecodeStatus Decode##RegClass##RegisterClass(                         \
122       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
123       const MCDisassembler *Decoder) {                                         \
124     assert(Imm < (1 << 8) && "8-bit encoding");                                \
125     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
126     return addOperand(                                                         \
127         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
128   }
129 
130 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
131                      ImmWidth)                                                 \
132   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
133                            const MCDisassembler *Decoder) {                    \
134     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
135     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
136     return addOperand(Inst,                                                    \
137                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
138                                         MandatoryLiteral, ImmWidth));          \
139   }
140 
141 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
142 // get register class. Used by SGPR only operands.
143 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
144   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
145 
146 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
147 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
148 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
149 // Used by AV_ register classes (AGPR or VGPR only register operands).
150 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
151   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
152                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
153 
154 // Decoder for Src(9-bit encoding) registers only.
155 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
156   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
157 
158 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
159 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
160 // only.
161 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
162   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
163 
164 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
165 // Imm{9} is acc, registers only.
166 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
167   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
168 
169 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
170 // register from RegClass or immediate. Registers that don't belong to RegClass
171 // will be decoded and InstPrinter will report warning. Immediate will be
172 // decoded into constant of size ImmWidth, should match width of immediate used
173 // by OperandType (important for floating point types).
174 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
175   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
176                false, ImmWidth)
177 
178 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
179 // and decode using 'enum10' from decodeSrcOp.
180 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
181   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
182                Imm | 512, false, ImmWidth)
183 
184 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
185   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
186                OpWidth, Imm, true, ImmWidth)
187 
188 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
189 // when RegisterClass is used as an operand. Most often used for destination
190 // operands.
191 
192 DECODE_OPERAND_REG_8(VGPR_32)
193 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
194 DECODE_OPERAND_REG_8(VReg_64)
195 DECODE_OPERAND_REG_8(VReg_96)
196 DECODE_OPERAND_REG_8(VReg_128)
197 DECODE_OPERAND_REG_8(VReg_256)
198 DECODE_OPERAND_REG_8(VReg_288)
199 DECODE_OPERAND_REG_8(VReg_352)
200 DECODE_OPERAND_REG_8(VReg_384)
201 DECODE_OPERAND_REG_8(VReg_512)
202 DECODE_OPERAND_REG_8(VReg_1024)
203 
204 DECODE_OPERAND_REG_7(SReg_32, OPW32)
205 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
206 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
207 DECODE_OPERAND_REG_7(SReg_64, OPW64)
208 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
209 DECODE_OPERAND_REG_7(SReg_128, OPW128)
210 DECODE_OPERAND_REG_7(SReg_256, OPW256)
211 DECODE_OPERAND_REG_7(SReg_512, OPW512)
212 
213 DECODE_OPERAND_REG_8(AGPR_32)
214 DECODE_OPERAND_REG_8(AReg_64)
215 DECODE_OPERAND_REG_8(AReg_128)
216 DECODE_OPERAND_REG_8(AReg_256)
217 DECODE_OPERAND_REG_8(AReg_512)
218 DECODE_OPERAND_REG_8(AReg_1024)
219 
220 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
221 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
222 
223 // Decoders for register only source RegisterOperands that use use 9-bit Src
224 // encoding: 'decodeOperand_<RegClass>'.
225 
226 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
227 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
228 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
229 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
230 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
231 
232 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
233 
234 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
235 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
236 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
237 
238 // Decoders for register or immediate RegisterOperands that use 9-bit Src
239 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
240 
241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
243 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
244 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
254 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
255 
256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
259 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
260 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
261 
262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
264 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
265 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
266 
267 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
268                                                uint64_t /*Addr*/,
269                                                const MCDisassembler *Decoder) {
270   assert(isUInt<10>(Imm) && "10-bit encoding expected");
271   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
272 
273   bool IsHi = Imm & (1 << 9);
274   unsigned RegIdx = Imm & 0xff;
275   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
276   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
277 }
278 
279 static DecodeStatus
280 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
281                                  const MCDisassembler *Decoder) {
282   assert(isUInt<8>(Imm) && "8-bit encoding expected");
283 
284   bool IsHi = Imm & (1 << 7);
285   unsigned RegIdx = Imm & 0x7f;
286   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
288 }
289 
290 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
291                                                 uint64_t /*Addr*/,
292                                                 const MCDisassembler *Decoder) {
293   assert(isUInt<9>(Imm) && "9-bit encoding expected");
294 
295   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
296   bool IsVGPR = Imm & (1 << 8);
297   if (IsVGPR) {
298     bool IsHi = Imm & (1 << 7);
299     unsigned RegIdx = Imm & 0x7f;
300     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
301   }
302   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
303                                                    Imm & 0xFF, false, 16));
304 }
305 
306 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
307                                           uint64_t /*Addr*/,
308                                           const MCDisassembler *Decoder) {
309   assert(isUInt<10>(Imm) && "10-bit encoding expected");
310 
311   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
312   bool IsVGPR = Imm & (1 << 8);
313   if (IsVGPR) {
314     bool IsHi = Imm & (1 << 9);
315     unsigned RegIdx = Imm & 0xff;
316     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
317   }
318   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
319                                                    Imm & 0xFF, false, 16));
320 }
321 
322 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
323                                          uint64_t Addr,
324                                          const MCDisassembler *Decoder) {
325   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
326   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
327 }
328 
329 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
330                                           uint64_t Addr, const void *Decoder) {
331   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
332   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
333 }
334 
335 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
336                           const MCRegisterInfo *MRI) {
337   if (OpIdx < 0)
338     return false;
339 
340   const MCOperand &Op = Inst.getOperand(OpIdx);
341   if (!Op.isReg())
342     return false;
343 
344   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
345   auto Reg = Sub ? Sub : Op.getReg();
346   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
347 }
348 
349 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
350                                              AMDGPUDisassembler::OpWidthTy Opw,
351                                              const MCDisassembler *Decoder) {
352   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
353   if (!DAsm->isGFX90A()) {
354     Imm &= 511;
355   } else {
356     // If atomic has both vdata and vdst their register classes are tied.
357     // The bit is decoded along with the vdst, first operand. We need to
358     // change register class to AGPR if vdst was AGPR.
359     // If a DS instruction has both data0 and data1 their register classes
360     // are also tied.
361     unsigned Opc = Inst.getOpcode();
362     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
363     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
364                                                         : AMDGPU::OpName::vdata;
365     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
366     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
367     if ((int)Inst.getNumOperands() == DataIdx) {
368       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
369       if (IsAGPROperand(Inst, DstIdx, MRI))
370         Imm |= 512;
371     }
372 
373     if (TSFlags & SIInstrFlags::DS) {
374       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
375       if ((int)Inst.getNumOperands() == Data2Idx &&
376           IsAGPROperand(Inst, DataIdx, MRI))
377         Imm |= 512;
378     }
379   }
380   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
381 }
382 
383 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
384                                            uint64_t Addr,
385                                            const MCDisassembler *Decoder) {
386   assert(Imm < (1 << 9) && "9-bit encoding");
387   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
388   return addOperand(
389       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
390 }
391 
392 static DecodeStatus
393 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
394                              const MCDisassembler *Decoder) {
395   return decodeOperand_AVLdSt_Any(Inst, Imm,
396                                   AMDGPUDisassembler::OPW32, Decoder);
397 }
398 
399 static DecodeStatus
400 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
401                              const MCDisassembler *Decoder) {
402   return decodeOperand_AVLdSt_Any(Inst, Imm,
403                                   AMDGPUDisassembler::OPW64, Decoder);
404 }
405 
406 static DecodeStatus
407 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
408                              const MCDisassembler *Decoder) {
409   return decodeOperand_AVLdSt_Any(Inst, Imm,
410                                   AMDGPUDisassembler::OPW96, Decoder);
411 }
412 
413 static DecodeStatus
414 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
415                               const MCDisassembler *Decoder) {
416   return decodeOperand_AVLdSt_Any(Inst, Imm,
417                                   AMDGPUDisassembler::OPW128, Decoder);
418 }
419 
420 static DecodeStatus
421 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
422                               const MCDisassembler *Decoder) {
423   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
424                                   Decoder);
425 }
426 
427 #define DECODE_SDWA(DecName) \
428 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
429 
430 DECODE_SDWA(Src32)
431 DECODE_SDWA(Src16)
432 DECODE_SDWA(VopcDst)
433 
434 #include "AMDGPUGenDisassemblerTables.inc"
435 
436 //===----------------------------------------------------------------------===//
437 //
438 //===----------------------------------------------------------------------===//
439 
440 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
441   assert(Bytes.size() >= sizeof(T));
442   const auto Res =
443       support::endian::read<T, llvm::endianness::little>(Bytes.data());
444   Bytes = Bytes.slice(sizeof(T));
445   return Res;
446 }
447 
448 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
449   assert(Bytes.size() >= 12);
450   uint64_t Lo =
451       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
452   Bytes = Bytes.slice(8);
453   uint64_t Hi =
454       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
455   Bytes = Bytes.slice(4);
456   return DecoderUInt128(Lo, Hi);
457 }
458 
459 // The disassembler is greedy, so we need to check FI operand value to
460 // not parse a dpp if the correct literal is not set. For dpp16 the
461 // autogenerated decoder checks the dpp literal
462 static bool isValidDPP8(const MCInst &MI) {
463   using namespace llvm::AMDGPU::DPP;
464   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
465   assert(FiIdx != -1);
466   if ((unsigned)FiIdx >= MI.getNumOperands())
467     return false;
468   unsigned Fi = MI.getOperand(FiIdx).getImm();
469   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
470 }
471 
472 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
473                                                 ArrayRef<uint8_t> Bytes_,
474                                                 uint64_t Address,
475                                                 raw_ostream &CS) const {
476   bool IsSDWA = false;
477 
478   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
479   Bytes = Bytes_.slice(0, MaxInstBytesNum);
480 
481   DecodeStatus Res = MCDisassembler::Fail;
482   do {
483     // ToDo: better to switch encoding length using some bit predicate
484     // but it is unknown yet, so try all we can
485 
486     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
487     // encodings
488     if (isGFX11Plus() && Bytes.size() >= 12 ) {
489       DecoderUInt128 DecW = eat12Bytes(Bytes);
490       Res =
491           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
492                         MI, DecW, Address, CS);
493       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
494         break;
495       MI = MCInst(); // clear
496       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
497                           MI, DecW, Address, CS);
498       if (Res) {
499         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
500           convertVOP3PDPPInst(MI);
501         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
502           convertVOPCDPPInst(MI); // Special VOP3 case
503         else {
504           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
505           convertVOP3DPPInst(MI); // Regular VOP3 case
506         }
507         break;
508       }
509       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
510       if (Res)
511         break;
512 
513       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
514       if (Res)
515         break;
516     }
517     // Reinitialize Bytes
518     Bytes = Bytes_.slice(0, MaxInstBytesNum);
519 
520     if (Bytes.size() >= 8) {
521       const uint64_t QW = eatBytes<uint64_t>(Bytes);
522 
523       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
524         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
525         if (Res) {
526           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
527               == -1)
528             break;
529           if (convertDPP8Inst(MI) == MCDisassembler::Success)
530             break;
531           MI = MCInst(); // clear
532         }
533       }
534 
535       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
536       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
537         break;
538       MI = MCInst(); // clear
539 
540       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
541                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
542       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
543         break;
544       MI = MCInst(); // clear
545 
546       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
547       if (Res) break;
548 
549       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
550                           MI, QW, Address, CS);
551       if (Res) {
552         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
553           convertVOPCDPPInst(MI);
554         break;
555       }
556 
557       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
558       if (Res) { IsSDWA = true;  break; }
559 
560       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
561       if (Res) { IsSDWA = true;  break; }
562 
563       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
564       if (Res) { IsSDWA = true;  break; }
565 
566       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
567         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
568         if (Res)
569           break;
570       }
571 
572       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
573       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
574       // table first so we print the correct name.
575       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
576         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
577         if (Res)
578           break;
579       }
580     }
581 
582     // Reinitialize Bytes as DPP64 could have eaten too much
583     Bytes = Bytes_.slice(0, MaxInstBytesNum);
584 
585     // Try decode 32-bit instruction
586     if (Bytes.size() < 4) break;
587     const uint32_t DW = eatBytes<uint32_t>(Bytes);
588     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
589     if (Res) break;
590 
591     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
592     if (Res) break;
593 
594     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
595     if (Res) break;
596 
597     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
598       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
599       if (Res)
600         break;
601     }
602 
603     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
604       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
605       if (Res) break;
606     }
607 
608     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
609     if (Res) break;
610 
611     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
612                         Address, CS);
613     if (Res) break;
614 
615     Res = tryDecodeInst(DecoderTableGFX1232, MI, DW, Address, CS);
616     if (Res)
617       break;
618 
619     if (Bytes.size() < 4) break;
620     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
621 
622     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
623       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
624       if (Res)
625         break;
626     }
627 
628     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
629       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
630       if (Res)
631         break;
632     }
633 
634     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
635     if (Res) break;
636 
637     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
638     if (Res) break;
639 
640     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
641     if (Res) break;
642 
643     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
644     if (Res) break;
645 
646     Res = tryDecodeInst(DecoderTableGFX1264, MI, QW, Address, CS);
647     if (Res)
648       break;
649 
650     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
651                         Address, CS);
652     if (Res)
653       break;
654 
655     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
656   } while (false);
657 
658   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
659     // Insert dummy unused src2_modifiers.
660     insertNamedMCOperand(MI, MCOperand::createImm(0),
661                          AMDGPU::OpName::src2_modifiers);
662   }
663 
664   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
665           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
666     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
667                                              AMDGPU::OpName::cpol);
668     if (CPolPos != -1) {
669       unsigned CPol =
670           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
671               AMDGPU::CPol::GLC : 0;
672       if (MI.getNumOperands() <= (unsigned)CPolPos) {
673         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
674                              AMDGPU::OpName::cpol);
675       } else if (CPol) {
676         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
677       }
678     }
679   }
680 
681   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
682               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
683              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
684     // GFX90A lost TFE, its place is occupied by ACC.
685     int TFEOpIdx =
686         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
687     if (TFEOpIdx != -1) {
688       auto TFEIter = MI.begin();
689       std::advance(TFEIter, TFEOpIdx);
690       MI.insert(TFEIter, MCOperand::createImm(0));
691     }
692   }
693 
694   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
695               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
696     int SWZOpIdx =
697         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
698     if (SWZOpIdx != -1) {
699       auto SWZIter = MI.begin();
700       std::advance(SWZIter, SWZOpIdx);
701       MI.insert(SWZIter, MCOperand::createImm(0));
702     }
703   }
704 
705   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
706     int VAddr0Idx =
707         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
708     int RsrcIdx =
709         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
710     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
711     if (VAddr0Idx >= 0 && NSAArgs > 0) {
712       unsigned NSAWords = (NSAArgs + 3) / 4;
713       if (Bytes.size() < 4 * NSAWords) {
714         Res = MCDisassembler::Fail;
715       } else {
716         for (unsigned i = 0; i < NSAArgs; ++i) {
717           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
718           auto VAddrRCID =
719               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
720           MI.insert(MI.begin() + VAddrIdx,
721                     createRegOperand(VAddrRCID, Bytes[i]));
722         }
723         Bytes = Bytes.slice(4 * NSAWords);
724       }
725     }
726 
727     if (Res)
728       Res = convertMIMGInst(MI);
729   }
730 
731   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
732               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
733     Res = convertMIMGInst(MI);
734 
735   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
736     Res = convertEXPInst(MI);
737 
738   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
739     Res = convertVINTERPInst(MI);
740 
741   if (Res && IsSDWA)
742     Res = convertSDWAInst(MI);
743 
744   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
745                                               AMDGPU::OpName::vdst_in);
746   if (VDstIn_Idx != -1) {
747     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
748                            MCOI::OperandConstraint::TIED_TO);
749     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
750          !MI.getOperand(VDstIn_Idx).isReg() ||
751          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
752       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
753         MI.erase(&MI.getOperand(VDstIn_Idx));
754       insertNamedMCOperand(MI,
755         MCOperand::createReg(MI.getOperand(Tied).getReg()),
756         AMDGPU::OpName::vdst_in);
757     }
758   }
759 
760   int ImmLitIdx =
761       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
762   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
763   if (Res && ImmLitIdx != -1 && !IsSOPK)
764     Res = convertFMAanyK(MI, ImmLitIdx);
765 
766   // if the opcode was not recognized we'll assume a Size of 4 bytes
767   // (unless there are fewer bytes left)
768   Size = Res ? (MaxInstBytesNum - Bytes.size())
769              : std::min((size_t)4, Bytes_.size());
770   return Res;
771 }
772 
773 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
774   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
775     // The MCInst still has these fields even though they are no longer encoded
776     // in the GFX11 instruction.
777     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
778     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
779   }
780   return MCDisassembler::Success;
781 }
782 
783 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
784   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
785       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
786       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
787       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
788     // The MCInst has this field that is not directly encoded in the
789     // instruction.
790     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
791   }
792   return MCDisassembler::Success;
793 }
794 
795 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
796   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
797       STI.hasFeature(AMDGPU::FeatureGFX10)) {
798     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
799       // VOPC - insert clamp
800       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
801   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
802     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
803     if (SDst != -1) {
804       // VOPC - insert VCC register as sdst
805       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
806                            AMDGPU::OpName::sdst);
807     } else {
808       // VOP1/2 - insert omod if present in instruction
809       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
810     }
811   }
812   return MCDisassembler::Success;
813 }
814 
815 struct VOPModifiers {
816   unsigned OpSel = 0;
817   unsigned OpSelHi = 0;
818   unsigned NegLo = 0;
819   unsigned NegHi = 0;
820 };
821 
822 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
823 // Note that these values do not affect disassembler output,
824 // so this is only necessary for consistency with src_modifiers.
825 static VOPModifiers collectVOPModifiers(const MCInst &MI,
826                                         bool IsVOP3P = false) {
827   VOPModifiers Modifiers;
828   unsigned Opc = MI.getOpcode();
829   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
830                         AMDGPU::OpName::src1_modifiers,
831                         AMDGPU::OpName::src2_modifiers};
832   for (int J = 0; J < 3; ++J) {
833     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
834     if (OpIdx == -1)
835       continue;
836 
837     unsigned Val = MI.getOperand(OpIdx).getImm();
838 
839     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
840     if (IsVOP3P) {
841       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
842       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
843       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
844     } else if (J == 0) {
845       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
846     }
847   }
848 
849   return Modifiers;
850 }
851 
852 // MAC opcodes have special old and src2 operands.
853 // src2 is tied to dst, while old is not tied (but assumed to be).
854 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
855   constexpr int DST_IDX = 0;
856   auto Opcode = MI.getOpcode();
857   const auto &Desc = MCII->get(Opcode);
858   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
859 
860   if (OldIdx != -1 && Desc.getOperandConstraint(
861                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
862     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
863     assert(Desc.getOperandConstraint(
864                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
865                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
866     (void)DST_IDX;
867     return true;
868   }
869 
870   return false;
871 }
872 
873 // Create dummy old operand and insert dummy unused src2_modifiers
874 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
875   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
876   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
877   insertNamedMCOperand(MI, MCOperand::createImm(0),
878                        AMDGPU::OpName::src2_modifiers);
879 }
880 
881 // We must check FI == literal to reject not genuine dpp8 insts, and we must
882 // first add optional MI operands to check FI
883 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
884   unsigned Opc = MI.getOpcode();
885   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
886     convertVOP3PDPPInst(MI);
887   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
888              AMDGPU::isVOPC64DPP(Opc)) {
889     convertVOPCDPPInst(MI);
890   } else {
891     if (isMacDPP(MI))
892       convertMacDPPInst(MI);
893 
894     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
895     if (MI.getNumOperands() < DescNumOps &&
896         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
897       auto Mods = collectVOPModifiers(MI);
898       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
899                            AMDGPU::OpName::op_sel);
900     } else {
901       // Insert dummy unused src modifiers.
902       if (MI.getNumOperands() < DescNumOps &&
903           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
904         insertNamedMCOperand(MI, MCOperand::createImm(0),
905                              AMDGPU::OpName::src0_modifiers);
906 
907       if (MI.getNumOperands() < DescNumOps &&
908           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
909         insertNamedMCOperand(MI, MCOperand::createImm(0),
910                              AMDGPU::OpName::src1_modifiers);
911     }
912   }
913   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
914 }
915 
916 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
917   if (isMacDPP(MI))
918     convertMacDPPInst(MI);
919 
920   unsigned Opc = MI.getOpcode();
921   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
922   if (MI.getNumOperands() < DescNumOps &&
923       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
924     auto Mods = collectVOPModifiers(MI);
925     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
926                          AMDGPU::OpName::op_sel);
927   }
928   return MCDisassembler::Success;
929 }
930 
931 // Note that before gfx10, the MIMG encoding provided no information about
932 // VADDR size. Consequently, decoded instructions always show address as if it
933 // has 1 dword, which could be not really so.
934 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
935   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
936 
937   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
938                                            AMDGPU::OpName::vdst);
939 
940   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
941                                             AMDGPU::OpName::vdata);
942   int VAddr0Idx =
943       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
944   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
945                                                 : AMDGPU::OpName::rsrc;
946   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
947   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
948                                             AMDGPU::OpName::dmask);
949 
950   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
951                                             AMDGPU::OpName::tfe);
952   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
953                                             AMDGPU::OpName::d16);
954 
955   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
956   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
957       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
958 
959   assert(VDataIdx != -1);
960   if (BaseOpcode->BVH) {
961     // Add A16 operand for intersect_ray instructions
962     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
963     return MCDisassembler::Success;
964   }
965 
966   bool IsAtomic = (VDstIdx != -1);
967   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
968   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
969   bool IsNSA = false;
970   bool IsPartialNSA = false;
971   unsigned AddrSize = Info->VAddrDwords;
972 
973   if (isGFX10Plus()) {
974     unsigned DimIdx =
975         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
976     int A16Idx =
977         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
978     const AMDGPU::MIMGDimInfo *Dim =
979         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
980     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
981 
982     AddrSize =
983         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
984 
985     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
986     // VIMAGE insts other than BVH never use vaddr4.
987     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
988             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
989             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
990     if (!IsNSA) {
991       if (!IsVSample && AddrSize > 12)
992         AddrSize = 16;
993     } else {
994       if (AddrSize > Info->VAddrDwords) {
995         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
996           // The NSA encoding does not contain enough operands for the
997           // combination of base opcode / dimension. Should this be an error?
998           return MCDisassembler::Success;
999         }
1000         IsPartialNSA = true;
1001       }
1002     }
1003   }
1004 
1005   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1006   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1007 
1008   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1009   if (D16 && AMDGPU::hasPackedD16(STI)) {
1010     DstSize = (DstSize + 1) / 2;
1011   }
1012 
1013   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1014     DstSize += 1;
1015 
1016   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1017     return MCDisassembler::Success;
1018 
1019   int NewOpcode =
1020       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1021   if (NewOpcode == -1)
1022     return MCDisassembler::Success;
1023 
1024   // Widen the register to the correct number of enabled channels.
1025   unsigned NewVdata = AMDGPU::NoRegister;
1026   if (DstSize != Info->VDataDwords) {
1027     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1028 
1029     // Get first subregister of VData
1030     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1031     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1032     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1033 
1034     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1035                                        &MRI.getRegClass(DataRCID));
1036     if (NewVdata == AMDGPU::NoRegister) {
1037       // It's possible to encode this such that the low register + enabled
1038       // components exceeds the register count.
1039       return MCDisassembler::Success;
1040     }
1041   }
1042 
1043   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1044   // If using partial NSA on GFX11+ widen last address register.
1045   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1046   unsigned NewVAddrSA = AMDGPU::NoRegister;
1047   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1048       AddrSize != Info->VAddrDwords) {
1049     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1050     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1051     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1052 
1053     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1054     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1055                                         &MRI.getRegClass(AddrRCID));
1056     if (!NewVAddrSA)
1057       return MCDisassembler::Success;
1058   }
1059 
1060   MI.setOpcode(NewOpcode);
1061 
1062   if (NewVdata != AMDGPU::NoRegister) {
1063     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1064 
1065     if (IsAtomic) {
1066       // Atomic operations have an additional operand (a copy of data)
1067       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1068     }
1069   }
1070 
1071   if (NewVAddrSA) {
1072     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1073   } else if (IsNSA) {
1074     assert(AddrSize <= Info->VAddrDwords);
1075     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1076              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1077   }
1078 
1079   return MCDisassembler::Success;
1080 }
1081 
1082 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1083 // decoder only adds to src_modifiers, so manually add the bits to the other
1084 // operands.
1085 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1086   unsigned Opc = MI.getOpcode();
1087   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1088   auto Mods = collectVOPModifiers(MI, true);
1089 
1090   if (MI.getNumOperands() < DescNumOps &&
1091       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1092     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1093 
1094   if (MI.getNumOperands() < DescNumOps &&
1095       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1096     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1097                          AMDGPU::OpName::op_sel);
1098   if (MI.getNumOperands() < DescNumOps &&
1099       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1100     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1101                          AMDGPU::OpName::op_sel_hi);
1102   if (MI.getNumOperands() < DescNumOps &&
1103       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1104     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1105                          AMDGPU::OpName::neg_lo);
1106   if (MI.getNumOperands() < DescNumOps &&
1107       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1108     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1109                          AMDGPU::OpName::neg_hi);
1110 
1111   return MCDisassembler::Success;
1112 }
1113 
1114 // Create dummy old operand and insert optional operands
1115 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1116   unsigned Opc = MI.getOpcode();
1117   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1118 
1119   if (MI.getNumOperands() < DescNumOps &&
1120       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1121     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1122 
1123   if (MI.getNumOperands() < DescNumOps &&
1124       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1125     insertNamedMCOperand(MI, MCOperand::createImm(0),
1126                          AMDGPU::OpName::src0_modifiers);
1127 
1128   if (MI.getNumOperands() < DescNumOps &&
1129       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1130     insertNamedMCOperand(MI, MCOperand::createImm(0),
1131                          AMDGPU::OpName::src1_modifiers);
1132   return MCDisassembler::Success;
1133 }
1134 
1135 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1136                                                 int ImmLitIdx) const {
1137   assert(HasLiteral && "Should have decoded a literal");
1138   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1139   unsigned DescNumOps = Desc.getNumOperands();
1140   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1141                        AMDGPU::OpName::immDeferred);
1142   assert(DescNumOps == MI.getNumOperands());
1143   for (unsigned I = 0; I < DescNumOps; ++I) {
1144     auto &Op = MI.getOperand(I);
1145     auto OpType = Desc.operands()[I].OperandType;
1146     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1147                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1148     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1149         IsDeferredOp)
1150       Op.setImm(Literal);
1151   }
1152   return MCDisassembler::Success;
1153 }
1154 
1155 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1156   return getContext().getRegisterInfo()->
1157     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1158 }
1159 
1160 inline
1161 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1162                                          const Twine& ErrMsg) const {
1163   *CommentStream << "Error: " + ErrMsg;
1164 
1165   // ToDo: add support for error operands to MCInst.h
1166   // return MCOperand::createError(V);
1167   return MCOperand();
1168 }
1169 
1170 inline
1171 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1172   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1173 }
1174 
1175 inline
1176 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1177                                                unsigned Val) const {
1178   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1179   if (Val >= RegCl.getNumRegs())
1180     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1181                            ": unknown register " + Twine(Val));
1182   return createRegOperand(RegCl.getRegister(Val));
1183 }
1184 
1185 inline
1186 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1187                                                 unsigned Val) const {
1188   // ToDo: SI/CI have 104 SGPRs, VI - 102
1189   // Valery: here we accepting as much as we can, let assembler sort it out
1190   int shift = 0;
1191   switch (SRegClassID) {
1192   case AMDGPU::SGPR_32RegClassID:
1193   case AMDGPU::TTMP_32RegClassID:
1194     break;
1195   case AMDGPU::SGPR_64RegClassID:
1196   case AMDGPU::TTMP_64RegClassID:
1197     shift = 1;
1198     break;
1199   case AMDGPU::SGPR_128RegClassID:
1200   case AMDGPU::TTMP_128RegClassID:
1201   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1202   // this bundle?
1203   case AMDGPU::SGPR_256RegClassID:
1204   case AMDGPU::TTMP_256RegClassID:
1205     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1206   // this bundle?
1207   case AMDGPU::SGPR_288RegClassID:
1208   case AMDGPU::TTMP_288RegClassID:
1209   case AMDGPU::SGPR_320RegClassID:
1210   case AMDGPU::TTMP_320RegClassID:
1211   case AMDGPU::SGPR_352RegClassID:
1212   case AMDGPU::TTMP_352RegClassID:
1213   case AMDGPU::SGPR_384RegClassID:
1214   case AMDGPU::TTMP_384RegClassID:
1215   case AMDGPU::SGPR_512RegClassID:
1216   case AMDGPU::TTMP_512RegClassID:
1217     shift = 2;
1218     break;
1219   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1220   // this bundle?
1221   default:
1222     llvm_unreachable("unhandled register class");
1223   }
1224 
1225   if (Val % (1 << shift)) {
1226     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1227                    << ": scalar reg isn't aligned " << Val;
1228   }
1229 
1230   return createRegOperand(SRegClassID, Val >> shift);
1231 }
1232 
1233 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1234                                                   bool IsHi) const {
1235   unsigned RCID =
1236       IsHi ? AMDGPU::VGPR_HI16RegClassID : AMDGPU::VGPR_LO16RegClassID;
1237   return createRegOperand(RCID, RegIdx);
1238 }
1239 
1240 // Decode Literals for insts which always have a literal in the encoding
1241 MCOperand
1242 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1243   if (HasLiteral) {
1244     assert(
1245         AMDGPU::hasVOPD(STI) &&
1246         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1247     if (Literal != Val)
1248       return errOperand(Val, "More than one unique literal is illegal");
1249   }
1250   HasLiteral = true;
1251   Literal = Val;
1252   return MCOperand::createImm(Literal);
1253 }
1254 
1255 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1256   // For now all literal constants are supposed to be unsigned integer
1257   // ToDo: deal with signed/unsigned 64-bit integer constants
1258   // ToDo: deal with float/double constants
1259   if (!HasLiteral) {
1260     if (Bytes.size() < 4) {
1261       return errOperand(0, "cannot read literal, inst bytes left " +
1262                         Twine(Bytes.size()));
1263     }
1264     HasLiteral = true;
1265     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1266     if (ExtendFP64)
1267       Literal64 <<= 32;
1268   }
1269   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1270 }
1271 
1272 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1273   using namespace AMDGPU::EncValues;
1274 
1275   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1276   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1277     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1278     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1279       // Cast prevents negative overflow.
1280 }
1281 
1282 static int64_t getInlineImmVal32(unsigned Imm) {
1283   switch (Imm) {
1284   case 240:
1285     return llvm::bit_cast<uint32_t>(0.5f);
1286   case 241:
1287     return llvm::bit_cast<uint32_t>(-0.5f);
1288   case 242:
1289     return llvm::bit_cast<uint32_t>(1.0f);
1290   case 243:
1291     return llvm::bit_cast<uint32_t>(-1.0f);
1292   case 244:
1293     return llvm::bit_cast<uint32_t>(2.0f);
1294   case 245:
1295     return llvm::bit_cast<uint32_t>(-2.0f);
1296   case 246:
1297     return llvm::bit_cast<uint32_t>(4.0f);
1298   case 247:
1299     return llvm::bit_cast<uint32_t>(-4.0f);
1300   case 248: // 1 / (2 * PI)
1301     return 0x3e22f983;
1302   default:
1303     llvm_unreachable("invalid fp inline imm");
1304   }
1305 }
1306 
1307 static int64_t getInlineImmVal64(unsigned Imm) {
1308   switch (Imm) {
1309   case 240:
1310     return llvm::bit_cast<uint64_t>(0.5);
1311   case 241:
1312     return llvm::bit_cast<uint64_t>(-0.5);
1313   case 242:
1314     return llvm::bit_cast<uint64_t>(1.0);
1315   case 243:
1316     return llvm::bit_cast<uint64_t>(-1.0);
1317   case 244:
1318     return llvm::bit_cast<uint64_t>(2.0);
1319   case 245:
1320     return llvm::bit_cast<uint64_t>(-2.0);
1321   case 246:
1322     return llvm::bit_cast<uint64_t>(4.0);
1323   case 247:
1324     return llvm::bit_cast<uint64_t>(-4.0);
1325   case 248: // 1 / (2 * PI)
1326     return 0x3fc45f306dc9c882;
1327   default:
1328     llvm_unreachable("invalid fp inline imm");
1329   }
1330 }
1331 
1332 static int64_t getInlineImmVal16(unsigned Imm) {
1333   switch (Imm) {
1334   case 240:
1335     return 0x3800;
1336   case 241:
1337     return 0xB800;
1338   case 242:
1339     return 0x3C00;
1340   case 243:
1341     return 0xBC00;
1342   case 244:
1343     return 0x4000;
1344   case 245:
1345     return 0xC000;
1346   case 246:
1347     return 0x4400;
1348   case 247:
1349     return 0xC400;
1350   case 248: // 1 / (2 * PI)
1351     return 0x3118;
1352   default:
1353     llvm_unreachable("invalid fp inline imm");
1354   }
1355 }
1356 
1357 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1358   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1359       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1360 
1361   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1362   // ImmWidth 0 is a default case where operand should not allow immediates.
1363   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1364   // use it to print verbose error message.
1365   switch (ImmWidth) {
1366   case 0:
1367   case 32:
1368     return MCOperand::createImm(getInlineImmVal32(Imm));
1369   case 64:
1370     return MCOperand::createImm(getInlineImmVal64(Imm));
1371   case 16:
1372     return MCOperand::createImm(getInlineImmVal16(Imm));
1373   default:
1374     llvm_unreachable("implement me");
1375   }
1376 }
1377 
1378 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1379   using namespace AMDGPU;
1380 
1381   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1382   switch (Width) {
1383   default: // fall
1384   case OPW32:
1385   case OPW16:
1386   case OPWV216:
1387     return VGPR_32RegClassID;
1388   case OPW64:
1389   case OPWV232: return VReg_64RegClassID;
1390   case OPW96: return VReg_96RegClassID;
1391   case OPW128: return VReg_128RegClassID;
1392   case OPW160: return VReg_160RegClassID;
1393   case OPW256: return VReg_256RegClassID;
1394   case OPW288: return VReg_288RegClassID;
1395   case OPW320: return VReg_320RegClassID;
1396   case OPW352: return VReg_352RegClassID;
1397   case OPW384: return VReg_384RegClassID;
1398   case OPW512: return VReg_512RegClassID;
1399   case OPW1024: return VReg_1024RegClassID;
1400   }
1401 }
1402 
1403 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1404   using namespace AMDGPU;
1405 
1406   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1407   switch (Width) {
1408   default: // fall
1409   case OPW32:
1410   case OPW16:
1411   case OPWV216:
1412     return AGPR_32RegClassID;
1413   case OPW64:
1414   case OPWV232: return AReg_64RegClassID;
1415   case OPW96: return AReg_96RegClassID;
1416   case OPW128: return AReg_128RegClassID;
1417   case OPW160: return AReg_160RegClassID;
1418   case OPW256: return AReg_256RegClassID;
1419   case OPW288: return AReg_288RegClassID;
1420   case OPW320: return AReg_320RegClassID;
1421   case OPW352: return AReg_352RegClassID;
1422   case OPW384: return AReg_384RegClassID;
1423   case OPW512: return AReg_512RegClassID;
1424   case OPW1024: return AReg_1024RegClassID;
1425   }
1426 }
1427 
1428 
1429 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1430   using namespace AMDGPU;
1431 
1432   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1433   switch (Width) {
1434   default: // fall
1435   case OPW32:
1436   case OPW16:
1437   case OPWV216:
1438     return SGPR_32RegClassID;
1439   case OPW64:
1440   case OPWV232: return SGPR_64RegClassID;
1441   case OPW96: return SGPR_96RegClassID;
1442   case OPW128: return SGPR_128RegClassID;
1443   case OPW160: return SGPR_160RegClassID;
1444   case OPW256: return SGPR_256RegClassID;
1445   case OPW288: return SGPR_288RegClassID;
1446   case OPW320: return SGPR_320RegClassID;
1447   case OPW352: return SGPR_352RegClassID;
1448   case OPW384: return SGPR_384RegClassID;
1449   case OPW512: return SGPR_512RegClassID;
1450   }
1451 }
1452 
1453 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1454   using namespace AMDGPU;
1455 
1456   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1457   switch (Width) {
1458   default: // fall
1459   case OPW32:
1460   case OPW16:
1461   case OPWV216:
1462     return TTMP_32RegClassID;
1463   case OPW64:
1464   case OPWV232: return TTMP_64RegClassID;
1465   case OPW128: return TTMP_128RegClassID;
1466   case OPW256: return TTMP_256RegClassID;
1467   case OPW288: return TTMP_288RegClassID;
1468   case OPW320: return TTMP_320RegClassID;
1469   case OPW352: return TTMP_352RegClassID;
1470   case OPW384: return TTMP_384RegClassID;
1471   case OPW512: return TTMP_512RegClassID;
1472   }
1473 }
1474 
1475 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1476   using namespace AMDGPU::EncValues;
1477 
1478   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1479   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1480 
1481   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1482 }
1483 
1484 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1485                                           bool MandatoryLiteral,
1486                                           unsigned ImmWidth, bool IsFP) const {
1487   using namespace AMDGPU::EncValues;
1488 
1489   assert(Val < 1024); // enum10
1490 
1491   bool IsAGPR = Val & 512;
1492   Val &= 511;
1493 
1494   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1495     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1496                                    : getVgprClassId(Width), Val - VGPR_MIN);
1497   }
1498   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1499                             IsFP);
1500 }
1501 
1502 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1503                                                  unsigned Val,
1504                                                  bool MandatoryLiteral,
1505                                                  unsigned ImmWidth,
1506                                                  bool IsFP) const {
1507   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1508   // decoded earlier.
1509   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1510   using namespace AMDGPU::EncValues;
1511 
1512   if (Val <= SGPR_MAX) {
1513     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1514     static_assert(SGPR_MIN == 0);
1515     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1516   }
1517 
1518   int TTmpIdx = getTTmpIdx(Val);
1519   if (TTmpIdx >= 0) {
1520     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1521   }
1522 
1523   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1524     return decodeIntImmed(Val);
1525 
1526   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1527     return decodeFPImmed(ImmWidth, Val);
1528 
1529   if (Val == LITERAL_CONST) {
1530     if (MandatoryLiteral)
1531       // Keep a sentinel value for deferred setting
1532       return MCOperand::createImm(LITERAL_CONST);
1533     else
1534       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1535   }
1536 
1537   switch (Width) {
1538   case OPW32:
1539   case OPW16:
1540   case OPWV216:
1541     return decodeSpecialReg32(Val);
1542   case OPW64:
1543   case OPWV232:
1544     return decodeSpecialReg64(Val);
1545   default:
1546     llvm_unreachable("unexpected immediate type");
1547   }
1548 }
1549 
1550 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1551 // opposite of bit 0 of DstX.
1552 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1553                                                unsigned Val) const {
1554   int VDstXInd =
1555       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1556   assert(VDstXInd != -1);
1557   assert(Inst.getOperand(VDstXInd).isReg());
1558   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1559   Val |= ~XDstReg & 1;
1560   auto Width = llvm::AMDGPUDisassembler::OPW32;
1561   return createRegOperand(getVgprClassId(Width), Val);
1562 }
1563 
1564 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1565   using namespace AMDGPU;
1566 
1567   switch (Val) {
1568   // clang-format off
1569   case 102: return createRegOperand(FLAT_SCR_LO);
1570   case 103: return createRegOperand(FLAT_SCR_HI);
1571   case 104: return createRegOperand(XNACK_MASK_LO);
1572   case 105: return createRegOperand(XNACK_MASK_HI);
1573   case 106: return createRegOperand(VCC_LO);
1574   case 107: return createRegOperand(VCC_HI);
1575   case 108: return createRegOperand(TBA_LO);
1576   case 109: return createRegOperand(TBA_HI);
1577   case 110: return createRegOperand(TMA_LO);
1578   case 111: return createRegOperand(TMA_HI);
1579   case 124:
1580     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1581   case 125:
1582     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1583   case 126: return createRegOperand(EXEC_LO);
1584   case 127: return createRegOperand(EXEC_HI);
1585   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1586   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1587   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1588   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1589   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1590   case 251: return createRegOperand(SRC_VCCZ);
1591   case 252: return createRegOperand(SRC_EXECZ);
1592   case 253: return createRegOperand(SRC_SCC);
1593   case 254: return createRegOperand(LDS_DIRECT);
1594   default: break;
1595     // clang-format on
1596   }
1597   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1598 }
1599 
1600 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1601   using namespace AMDGPU;
1602 
1603   switch (Val) {
1604   case 102: return createRegOperand(FLAT_SCR);
1605   case 104: return createRegOperand(XNACK_MASK);
1606   case 106: return createRegOperand(VCC);
1607   case 108: return createRegOperand(TBA);
1608   case 110: return createRegOperand(TMA);
1609   case 124:
1610     if (isGFX11Plus())
1611       return createRegOperand(SGPR_NULL);
1612     break;
1613   case 125:
1614     if (!isGFX11Plus())
1615       return createRegOperand(SGPR_NULL);
1616     break;
1617   case 126: return createRegOperand(EXEC);
1618   case 235: return createRegOperand(SRC_SHARED_BASE);
1619   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1620   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1621   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1622   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1623   case 251: return createRegOperand(SRC_VCCZ);
1624   case 252: return createRegOperand(SRC_EXECZ);
1625   case 253: return createRegOperand(SRC_SCC);
1626   default: break;
1627   }
1628   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1629 }
1630 
1631 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1632                                             const unsigned Val,
1633                                             unsigned ImmWidth) const {
1634   using namespace AMDGPU::SDWA;
1635   using namespace AMDGPU::EncValues;
1636 
1637   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1638       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1639     // XXX: cast to int is needed to avoid stupid warning:
1640     // compare with unsigned is always true
1641     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1642         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1643       return createRegOperand(getVgprClassId(Width),
1644                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1645     }
1646     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1647         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1648                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1649       return createSRegOperand(getSgprClassId(Width),
1650                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1651     }
1652     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1653         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1654       return createSRegOperand(getTtmpClassId(Width),
1655                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1656     }
1657 
1658     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1659 
1660     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1661       return decodeIntImmed(SVal);
1662 
1663     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1664       return decodeFPImmed(ImmWidth, SVal);
1665 
1666     return decodeSpecialReg32(SVal);
1667   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1668     return createRegOperand(getVgprClassId(Width), Val);
1669   }
1670   llvm_unreachable("unsupported target");
1671 }
1672 
1673 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1674   return decodeSDWASrc(OPW16, Val, 16);
1675 }
1676 
1677 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1678   return decodeSDWASrc(OPW32, Val, 32);
1679 }
1680 
1681 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1682   using namespace AMDGPU::SDWA;
1683 
1684   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1685           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1686          "SDWAVopcDst should be present only on GFX9+");
1687 
1688   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1689 
1690   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1691     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1692 
1693     int TTmpIdx = getTTmpIdx(Val);
1694     if (TTmpIdx >= 0) {
1695       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1696       return createSRegOperand(TTmpClsId, TTmpIdx);
1697     } else if (Val > SGPR_MAX) {
1698       return IsWave64 ? decodeSpecialReg64(Val)
1699                       : decodeSpecialReg32(Val);
1700     } else {
1701       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1702     }
1703   } else {
1704     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1705   }
1706 }
1707 
1708 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1709   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1710              ? decodeSrcOp(OPW64, Val)
1711              : decodeSrcOp(OPW32, Val);
1712 }
1713 
1714 bool AMDGPUDisassembler::isVI() const {
1715   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1716 }
1717 
1718 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1719 
1720 bool AMDGPUDisassembler::isGFX90A() const {
1721   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1722 }
1723 
1724 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1725 
1726 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1727 
1728 bool AMDGPUDisassembler::isGFX10Plus() const {
1729   return AMDGPU::isGFX10Plus(STI);
1730 }
1731 
1732 bool AMDGPUDisassembler::isGFX11() const {
1733   return STI.hasFeature(AMDGPU::FeatureGFX11);
1734 }
1735 
1736 bool AMDGPUDisassembler::isGFX11Plus() const {
1737   return AMDGPU::isGFX11Plus(STI);
1738 }
1739 
1740 bool AMDGPUDisassembler::isGFX12Plus() const {
1741   return AMDGPU::isGFX12Plus(STI);
1742 }
1743 
1744 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1745   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1746 }
1747 
1748 bool AMDGPUDisassembler::hasKernargPreload() const {
1749   return AMDGPU::hasKernargPreload(STI);
1750 }
1751 
1752 //===----------------------------------------------------------------------===//
1753 // AMDGPU specific symbol handling
1754 //===----------------------------------------------------------------------===//
1755 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1756 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1757   do {                                                                         \
1758     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1759   } while (0)
1760 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1761   do {                                                                         \
1762     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1763              << GET_FIELD(MASK) << '\n';                                       \
1764   } while (0)
1765 
1766 // NOLINTNEXTLINE(readability-identifier-naming)
1767 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1768     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1769   using namespace amdhsa;
1770   StringRef Indent = "\t";
1771 
1772   // We cannot accurately backward compute #VGPRs used from
1773   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1774   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1775   // simply calculate the inverse of what the assembler does.
1776 
1777   uint32_t GranulatedWorkitemVGPRCount =
1778       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1779 
1780   uint32_t NextFreeVGPR =
1781       (GranulatedWorkitemVGPRCount + 1) *
1782       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1783 
1784   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1785 
1786   // We cannot backward compute values used to calculate
1787   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1788   // directives can't be computed:
1789   // .amdhsa_reserve_vcc
1790   // .amdhsa_reserve_flat_scratch
1791   // .amdhsa_reserve_xnack_mask
1792   // They take their respective default values if not specified in the assembly.
1793   //
1794   // GRANULATED_WAVEFRONT_SGPR_COUNT
1795   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1796   //
1797   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1798   // are set to 0. So while disassembling we consider that:
1799   //
1800   // GRANULATED_WAVEFRONT_SGPR_COUNT
1801   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1802   //
1803   // The disassembler cannot recover the original values of those 3 directives.
1804 
1805   uint32_t GranulatedWavefrontSGPRCount =
1806       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1807 
1808   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1809     return MCDisassembler::Fail;
1810 
1811   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1812                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1813 
1814   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1815   if (!hasArchitectedFlatScratch())
1816     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1817   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1818   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1819 
1820   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1821     return MCDisassembler::Fail;
1822 
1823   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1824                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1825   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1826                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1827   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1828                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1829   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1830                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1831 
1832   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1833     return MCDisassembler::Fail;
1834 
1835   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1836 
1837   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1838     return MCDisassembler::Fail;
1839 
1840   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1841 
1842   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1843     return MCDisassembler::Fail;
1844 
1845   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1846     return MCDisassembler::Fail;
1847 
1848   if (isGFX9Plus())
1849     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1850 
1851   if (!isGFX9Plus())
1852     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1853       return MCDisassembler::Fail;
1854   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1855     return MCDisassembler::Fail;
1856   if (!isGFX10Plus())
1857     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1858       return MCDisassembler::Fail;
1859 
1860   if (isGFX10Plus()) {
1861     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1862                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1863     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1864     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1865   }
1866   return MCDisassembler::Success;
1867 }
1868 
1869 // NOLINTNEXTLINE(readability-identifier-naming)
1870 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1871     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1872   using namespace amdhsa;
1873   StringRef Indent = "\t";
1874   if (hasArchitectedFlatScratch())
1875     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1876                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1877   else
1878     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1879                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1880   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1881                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1882   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1883                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1884   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1885                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1886   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1887                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1888   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1889                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1890 
1891   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1892     return MCDisassembler::Fail;
1893 
1894   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1895     return MCDisassembler::Fail;
1896 
1897   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1898     return MCDisassembler::Fail;
1899 
1900   PRINT_DIRECTIVE(
1901       ".amdhsa_exception_fp_ieee_invalid_op",
1902       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1903   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1904                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1905   PRINT_DIRECTIVE(
1906       ".amdhsa_exception_fp_ieee_div_zero",
1907       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1908   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1909                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1910   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1911                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1912   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1913                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1914   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1915                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1916 
1917   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1918     return MCDisassembler::Fail;
1919 
1920   return MCDisassembler::Success;
1921 }
1922 
1923 // NOLINTNEXTLINE(readability-identifier-naming)
1924 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1925     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1926   using namespace amdhsa;
1927   StringRef Indent = "\t";
1928   if (isGFX90A()) {
1929     KdStream << Indent << ".amdhsa_accum_offset "
1930              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1931              << '\n';
1932     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1933       return MCDisassembler::Fail;
1934     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1935     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
1936       return MCDisassembler::Fail;
1937   } else if (isGFX10Plus()) {
1938     if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
1939       PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
1940                       COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1941     } else {
1942       PRINT_PSEUDO_DIRECTIVE_COMMENT(
1943           "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1944     }
1945 
1946     if (isGFX11Plus()) {
1947       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
1948                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_INST_PREF_SIZE);
1949       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
1950                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
1951       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
1952                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_END);
1953     } else {
1954       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED0)
1955         return MCDisassembler::Fail;
1956     }
1957 
1958     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED1)
1959       return MCDisassembler::Fail;
1960 
1961     if (isGFX11Plus()) {
1962       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
1963                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
1964     } else {
1965       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED2)
1966         return MCDisassembler::Fail;
1967     }
1968   } else if (FourByteBuffer) {
1969     return MCDisassembler::Fail;
1970   }
1971   return MCDisassembler::Success;
1972 }
1973 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
1974 #undef PRINT_DIRECTIVE
1975 #undef GET_FIELD
1976 
1977 MCDisassembler::DecodeStatus
1978 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1979     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1980     raw_string_ostream &KdStream) const {
1981 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1982   do {                                                                         \
1983     KdStream << Indent << DIRECTIVE " "                                        \
1984              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1985   } while (0)
1986 
1987   uint16_t TwoByteBuffer = 0;
1988   uint32_t FourByteBuffer = 0;
1989 
1990   StringRef ReservedBytes;
1991   StringRef Indent = "\t";
1992 
1993   assert(Bytes.size() == 64);
1994   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1995 
1996   switch (Cursor.tell()) {
1997   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1998     FourByteBuffer = DE.getU32(Cursor);
1999     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2000              << '\n';
2001     return MCDisassembler::Success;
2002 
2003   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2004     FourByteBuffer = DE.getU32(Cursor);
2005     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2006              << FourByteBuffer << '\n';
2007     return MCDisassembler::Success;
2008 
2009   case amdhsa::KERNARG_SIZE_OFFSET:
2010     FourByteBuffer = DE.getU32(Cursor);
2011     KdStream << Indent << ".amdhsa_kernarg_size "
2012              << FourByteBuffer << '\n';
2013     return MCDisassembler::Success;
2014 
2015   case amdhsa::RESERVED0_OFFSET:
2016     // 4 reserved bytes, must be 0.
2017     ReservedBytes = DE.getBytes(Cursor, 4);
2018     for (int I = 0; I < 4; ++I) {
2019       if (ReservedBytes[I] != 0) {
2020         return MCDisassembler::Fail;
2021       }
2022     }
2023     return MCDisassembler::Success;
2024 
2025   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2026     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2027     // So far no directive controls this for Code Object V3, so simply skip for
2028     // disassembly.
2029     DE.skip(Cursor, 8);
2030     return MCDisassembler::Success;
2031 
2032   case amdhsa::RESERVED1_OFFSET:
2033     // 20 reserved bytes, must be 0.
2034     ReservedBytes = DE.getBytes(Cursor, 20);
2035     for (int I = 0; I < 20; ++I) {
2036       if (ReservedBytes[I] != 0) {
2037         return MCDisassembler::Fail;
2038       }
2039     }
2040     return MCDisassembler::Success;
2041 
2042   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2043     FourByteBuffer = DE.getU32(Cursor);
2044     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2045 
2046   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2047     FourByteBuffer = DE.getU32(Cursor);
2048     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2049 
2050   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2051     FourByteBuffer = DE.getU32(Cursor);
2052     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2053 
2054   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2055     using namespace amdhsa;
2056     TwoByteBuffer = DE.getU16(Cursor);
2057 
2058     if (!hasArchitectedFlatScratch())
2059       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2060                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2061     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2062                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2063     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2064                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2065     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2066                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2067     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2068                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2069     if (!hasArchitectedFlatScratch())
2070       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2071                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2072     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2073                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2074 
2075     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2076       return MCDisassembler::Fail;
2077 
2078     // Reserved for GFX9
2079     if (isGFX9() &&
2080         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2081       return MCDisassembler::Fail;
2082     } else if (isGFX10Plus()) {
2083       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2084                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2085     }
2086 
2087     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2088       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2089                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2090 
2091     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2092       return MCDisassembler::Fail;
2093 
2094     return MCDisassembler::Success;
2095 
2096   case amdhsa::KERNARG_PRELOAD_OFFSET:
2097     using namespace amdhsa;
2098     TwoByteBuffer = DE.getU16(Cursor);
2099     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2100       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2101                       KERNARG_PRELOAD_SPEC_LENGTH);
2102     }
2103 
2104     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2105       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2106                       KERNARG_PRELOAD_SPEC_OFFSET);
2107     }
2108     return MCDisassembler::Success;
2109 
2110   case amdhsa::RESERVED3_OFFSET:
2111     // 4 bytes from here are reserved, must be 0.
2112     ReservedBytes = DE.getBytes(Cursor, 4);
2113     for (int I = 0; I < 4; ++I) {
2114       if (ReservedBytes[I] != 0)
2115         return MCDisassembler::Fail;
2116     }
2117     return MCDisassembler::Success;
2118 
2119   default:
2120     llvm_unreachable("Unhandled index. Case statements cover everything.");
2121     return MCDisassembler::Fail;
2122   }
2123 #undef PRINT_DIRECTIVE
2124 }
2125 
2126 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2127     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2128   // CP microcode requires the kernel descriptor to be 64 aligned.
2129   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2130     return MCDisassembler::Fail;
2131 
2132   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2133   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2134   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2135   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2136   // when required.
2137   if (isGFX10Plus()) {
2138     uint16_t KernelCodeProperties =
2139         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2140                                 llvm::endianness::little);
2141     EnableWavefrontSize32 =
2142         AMDHSA_BITS_GET(KernelCodeProperties,
2143                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2144   }
2145 
2146   std::string Kd;
2147   raw_string_ostream KdStream(Kd);
2148   KdStream << ".amdhsa_kernel " << KdName << '\n';
2149 
2150   DataExtractor::Cursor C(0);
2151   while (C && C.tell() < Bytes.size()) {
2152     MCDisassembler::DecodeStatus Status =
2153         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2154 
2155     cantFail(C.takeError());
2156 
2157     if (Status == MCDisassembler::Fail)
2158       return MCDisassembler::Fail;
2159   }
2160   KdStream << ".end_amdhsa_kernel\n";
2161   outs() << KdStream.str();
2162   return MCDisassembler::Success;
2163 }
2164 
2165 std::optional<MCDisassembler::DecodeStatus>
2166 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2167                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2168                                   raw_ostream &CStream) const {
2169   // Right now only kernel descriptor needs to be handled.
2170   // We ignore all other symbols for target specific handling.
2171   // TODO:
2172   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2173   // Object V2 and V3 when symbols are marked protected.
2174 
2175   // amd_kernel_code_t for Code Object V2.
2176   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2177     Size = 256;
2178     return MCDisassembler::Fail;
2179   }
2180 
2181   // Code Object V3 kernel descriptors.
2182   StringRef Name = Symbol.Name;
2183   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2184     Size = 64; // Size = 64 regardless of success or failure.
2185     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2186   }
2187   return std::nullopt;
2188 }
2189 
2190 //===----------------------------------------------------------------------===//
2191 // AMDGPUSymbolizer
2192 //===----------------------------------------------------------------------===//
2193 
2194 // Try to find symbol name for specified label
2195 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2196     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2197     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2198     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2199 
2200   if (!IsBranch) {
2201     return false;
2202   }
2203 
2204   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2205   if (!Symbols)
2206     return false;
2207 
2208   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2209     return Val.Addr == static_cast<uint64_t>(Value) &&
2210            Val.Type == ELF::STT_NOTYPE;
2211   });
2212   if (Result != Symbols->end()) {
2213     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2214     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2215     Inst.addOperand(MCOperand::createExpr(Add));
2216     return true;
2217   }
2218   // Add to list of referenced addresses, so caller can synthesize a label.
2219   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2220   return false;
2221 }
2222 
2223 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2224                                                        int64_t Value,
2225                                                        uint64_t Address) {
2226   llvm_unreachable("unimplemented");
2227 }
2228 
2229 //===----------------------------------------------------------------------===//
2230 // Initialization
2231 //===----------------------------------------------------------------------===//
2232 
2233 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2234                               LLVMOpInfoCallback /*GetOpInfo*/,
2235                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2236                               void *DisInfo,
2237                               MCContext *Ctx,
2238                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2239   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2240 }
2241 
2242 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2243                                                 const MCSubtargetInfo &STI,
2244                                                 MCContext &Ctx) {
2245   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2246 }
2247 
2248 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2249   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2250                                          createAMDGPUDisassembler);
2251   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2252                                        createAMDGPUSymbolizer);
2253 }
2254