xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 42f6f95e084a9157a5801dba5e32a7af0616360a)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)),
51       CodeObjectVersion(AMDGPU::getDefaultAMDHSACodeObjectVersion()) {
52   // ToDo: AMDGPUDisassembler supports only VI ISA.
53   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
54     report_fatal_error("Disassembly not yet supported for subtarget");
55 }
56 
57 void AMDGPUDisassembler::setABIVersion(unsigned Version) {
58   CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(Version);
59 }
60 
61 inline static MCDisassembler::DecodeStatus
62 addOperand(MCInst &Inst, const MCOperand& Opnd) {
63   Inst.addOperand(Opnd);
64   return Opnd.isValid() ?
65     MCDisassembler::Success :
66     MCDisassembler::Fail;
67 }
68 
69 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
70                                 uint16_t NameIdx) {
71   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
72   if (OpIdx != -1) {
73     auto I = MI.begin();
74     std::advance(I, OpIdx);
75     MI.insert(I, Op);
76   }
77   return OpIdx;
78 }
79 
80 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
81                                        uint64_t Addr,
82                                        const MCDisassembler *Decoder) {
83   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
84 
85   // Our branches take a simm16, but we need two extra bits to account for the
86   // factor of 4.
87   APInt SignedOffset(18, Imm * 4, true);
88   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
89 
90   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
91     return MCDisassembler::Success;
92   return addOperand(Inst, MCOperand::createImm(Imm));
93 }
94 
95 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
96                                      const MCDisassembler *Decoder) {
97   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
98   int64_t Offset;
99   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
100     Offset = SignExtend64<24>(Imm);
101   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
102     Offset = Imm & 0xFFFFF;
103   } else { // GFX9+ supports 21-bit signed offsets.
104     Offset = SignExtend64<21>(Imm);
105   }
106   return addOperand(Inst, MCOperand::createImm(Offset));
107 }
108 
109 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
110                                   const MCDisassembler *Decoder) {
111   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
112   return addOperand(Inst, DAsm->decodeBoolReg(Val));
113 }
114 
115 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
116                                        uint64_t Addr,
117                                        const MCDisassembler *Decoder) {
118   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
119   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
120 }
121 
122 static DecodeStatus decodeDpp8FI(MCInst &Inst, unsigned Val, uint64_t Addr,
123                                  const MCDisassembler *Decoder) {
124   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
125   return addOperand(Inst, DAsm->decodeDpp8FI(Val));
126 }
127 
128 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
129   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
130                                         uint64_t /*Addr*/,                     \
131                                         const MCDisassembler *Decoder) {       \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
134   }
135 
136 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
137 // number of register. Used by VGPR only and AGPR only operands.
138 #define DECODE_OPERAND_REG_8(RegClass)                                         \
139   static DecodeStatus Decode##RegClass##RegisterClass(                         \
140       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
141       const MCDisassembler *Decoder) {                                         \
142     assert(Imm < (1 << 8) && "8-bit encoding");                                \
143     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
144     return addOperand(                                                         \
145         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
146   }
147 
148 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
149                      ImmWidth)                                                 \
150   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
151                            const MCDisassembler *Decoder) {                    \
152     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
153     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
154     return addOperand(Inst,                                                    \
155                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
156                                         MandatoryLiteral, ImmWidth));          \
157   }
158 
159 static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize,
160                                 AMDGPUDisassembler::OpWidthTy OpWidth,
161                                 unsigned Imm, unsigned EncImm,
162                                 bool MandatoryLiteral, unsigned ImmWidth,
163                                 AMDGPU::OperandSemantics Sema,
164                                 const MCDisassembler *Decoder) {
165   assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!");
166   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
167   return addOperand(Inst, DAsm->decodeSrcOp(OpWidth, EncImm, MandatoryLiteral,
168                                             ImmWidth, Sema));
169 }
170 
171 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
172 // get register class. Used by SGPR only operands.
173 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
174   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
175 
176 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
177 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
178 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
179 // Used by AV_ register classes (AGPR or VGPR only register operands).
180 template <AMDGPUDisassembler::OpWidthTy OpWidth>
181 static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
182                                const MCDisassembler *Decoder) {
183   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm | AMDGPU::EncValues::IS_VGPR,
184                      false, 0, AMDGPU::OperandSemantics::INT, Decoder);
185 }
186 
187 // Decoder for Src(9-bit encoding) registers only.
188 template <AMDGPUDisassembler::OpWidthTy OpWidth>
189 static DecodeStatus decodeSrcReg9(MCInst &Inst, unsigned Imm,
190                                   uint64_t /* Addr */,
191                                   const MCDisassembler *Decoder) {
192   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, 0,
193                      AMDGPU::OperandSemantics::INT, Decoder);
194 }
195 
196 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
197 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
198 // only.
199 template <AMDGPUDisassembler::OpWidthTy OpWidth>
200 static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
201                                 const MCDisassembler *Decoder) {
202   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, 0,
203                      AMDGPU::OperandSemantics::INT, Decoder);
204 }
205 
206 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
207 // Imm{9} is acc, registers only.
208 template <AMDGPUDisassembler::OpWidthTy OpWidth>
209 static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm,
210                                   uint64_t /* Addr */,
211                                   const MCDisassembler *Decoder) {
212   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm, false, 0,
213                      AMDGPU::OperandSemantics::INT, Decoder);
214 }
215 
216 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
217 // register from RegClass or immediate. Registers that don't belong to RegClass
218 // will be decoded and InstPrinter will report warning. Immediate will be
219 // decoded into constant of size ImmWidth, should match width of immediate used
220 // by OperandType (important for floating point types).
221 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
222           unsigned OperandSemantics>
223 static DecodeStatus decodeSrcRegOrImm9(MCInst &Inst, unsigned Imm,
224                                        uint64_t /* Addr */,
225                                        const MCDisassembler *Decoder) {
226   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, ImmWidth,
227                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
228 }
229 
230 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
231 // and decode using 'enum10' from decodeSrcOp.
232 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
233           unsigned OperandSemantics>
234 static DecodeStatus decodeSrcRegOrImmA9(MCInst &Inst, unsigned Imm,
235                                         uint64_t /* Addr */,
236                                         const MCDisassembler *Decoder) {
237   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, ImmWidth,
238                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
239 }
240 
241 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
242           unsigned OperandSemantics>
243 static DecodeStatus decodeSrcRegOrImmDeferred9(MCInst &Inst, unsigned Imm,
244                                                uint64_t /* Addr */,
245                                                const MCDisassembler *Decoder) {
246   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, true, ImmWidth,
247                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
248 }
249 
250 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
251 // when RegisterClass is used as an operand. Most often used for destination
252 // operands.
253 
254 DECODE_OPERAND_REG_8(VGPR_32)
255 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
256 DECODE_OPERAND_REG_8(VReg_64)
257 DECODE_OPERAND_REG_8(VReg_96)
258 DECODE_OPERAND_REG_8(VReg_128)
259 DECODE_OPERAND_REG_8(VReg_256)
260 DECODE_OPERAND_REG_8(VReg_288)
261 DECODE_OPERAND_REG_8(VReg_352)
262 DECODE_OPERAND_REG_8(VReg_384)
263 DECODE_OPERAND_REG_8(VReg_512)
264 DECODE_OPERAND_REG_8(VReg_1024)
265 
266 DECODE_OPERAND_REG_7(SReg_32, OPW32)
267 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
268 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
269 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
270 DECODE_OPERAND_REG_7(SReg_64, OPW64)
271 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
272 DECODE_OPERAND_REG_7(SReg_96, OPW96)
273 DECODE_OPERAND_REG_7(SReg_128, OPW128)
274 DECODE_OPERAND_REG_7(SReg_256, OPW256)
275 DECODE_OPERAND_REG_7(SReg_512, OPW512)
276 
277 DECODE_OPERAND_REG_8(AGPR_32)
278 DECODE_OPERAND_REG_8(AReg_64)
279 DECODE_OPERAND_REG_8(AReg_128)
280 DECODE_OPERAND_REG_8(AReg_256)
281 DECODE_OPERAND_REG_8(AReg_512)
282 DECODE_OPERAND_REG_8(AReg_1024)
283 
284 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
285                                                uint64_t /*Addr*/,
286                                                const MCDisassembler *Decoder) {
287   assert(isUInt<10>(Imm) && "10-bit encoding expected");
288   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
289 
290   bool IsHi = Imm & (1 << 9);
291   unsigned RegIdx = Imm & 0xff;
292   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
293   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
294 }
295 
296 static DecodeStatus
297 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
298                                  const MCDisassembler *Decoder) {
299   assert(isUInt<8>(Imm) && "8-bit encoding expected");
300 
301   bool IsHi = Imm & (1 << 7);
302   unsigned RegIdx = Imm & 0x7f;
303   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
304   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
305 }
306 
307 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
308                                                 uint64_t /*Addr*/,
309                                                 const MCDisassembler *Decoder) {
310   assert(isUInt<9>(Imm) && "9-bit encoding expected");
311 
312   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
313   bool IsVGPR = Imm & (1 << 8);
314   if (IsVGPR) {
315     bool IsHi = Imm & (1 << 7);
316     unsigned RegIdx = Imm & 0x7f;
317     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
318   }
319   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
320                                                    Imm & 0xFF, false, 16));
321 }
322 
323 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
324                                           uint64_t /*Addr*/,
325                                           const MCDisassembler *Decoder) {
326   assert(isUInt<10>(Imm) && "10-bit encoding expected");
327 
328   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
329   bool IsVGPR = Imm & (1 << 8);
330   if (IsVGPR) {
331     bool IsHi = Imm & (1 << 9);
332     unsigned RegIdx = Imm & 0xff;
333     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
334   }
335   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
336                                                    Imm & 0xFF, false, 16));
337 }
338 
339 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
340                                          uint64_t Addr,
341                                          const MCDisassembler *Decoder) {
342   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
343   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
344 }
345 
346 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
347                                           uint64_t Addr, const void *Decoder) {
348   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
349   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
350 }
351 
352 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
353                           const MCRegisterInfo *MRI) {
354   if (OpIdx < 0)
355     return false;
356 
357   const MCOperand &Op = Inst.getOperand(OpIdx);
358   if (!Op.isReg())
359     return false;
360 
361   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
362   auto Reg = Sub ? Sub : Op.getReg();
363   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
364 }
365 
366 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
367                                  AMDGPUDisassembler::OpWidthTy Opw,
368                                  const MCDisassembler *Decoder) {
369   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
370   if (!DAsm->isGFX90A()) {
371     Imm &= 511;
372   } else {
373     // If atomic has both vdata and vdst their register classes are tied.
374     // The bit is decoded along with the vdst, first operand. We need to
375     // change register class to AGPR if vdst was AGPR.
376     // If a DS instruction has both data0 and data1 their register classes
377     // are also tied.
378     unsigned Opc = Inst.getOpcode();
379     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
380     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
381                                                         : AMDGPU::OpName::vdata;
382     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
383     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
384     if ((int)Inst.getNumOperands() == DataIdx) {
385       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
386       if (IsAGPROperand(Inst, DstIdx, MRI))
387         Imm |= 512;
388     }
389 
390     if (TSFlags & SIInstrFlags::DS) {
391       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
392       if ((int)Inst.getNumOperands() == Data2Idx &&
393           IsAGPROperand(Inst, DataIdx, MRI))
394         Imm |= 512;
395     }
396   }
397   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
398 }
399 
400 template <AMDGPUDisassembler::OpWidthTy Opw>
401 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
402                                  uint64_t /* Addr */,
403                                  const MCDisassembler *Decoder) {
404   return decodeAVLdSt(Inst, Imm, Opw, Decoder);
405 }
406 
407 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
408                                            uint64_t Addr,
409                                            const MCDisassembler *Decoder) {
410   assert(Imm < (1 << 9) && "9-bit encoding");
411   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
412   return addOperand(Inst,
413                     DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64,
414                                       AMDGPU::OperandSemantics::FP64));
415 }
416 
417 #define DECODE_SDWA(DecName) \
418 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
419 
420 DECODE_SDWA(Src32)
421 DECODE_SDWA(Src16)
422 DECODE_SDWA(VopcDst)
423 
424 #include "AMDGPUGenDisassemblerTables.inc"
425 
426 //===----------------------------------------------------------------------===//
427 //
428 //===----------------------------------------------------------------------===//
429 
430 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
431   assert(Bytes.size() >= sizeof(T));
432   const auto Res =
433       support::endian::read<T, llvm::endianness::little>(Bytes.data());
434   Bytes = Bytes.slice(sizeof(T));
435   return Res;
436 }
437 
438 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
439   assert(Bytes.size() >= 12);
440   uint64_t Lo =
441       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
442   Bytes = Bytes.slice(8);
443   uint64_t Hi =
444       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
445   Bytes = Bytes.slice(4);
446   return DecoderUInt128(Lo, Hi);
447 }
448 
449 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
450                                                 ArrayRef<uint8_t> Bytes_,
451                                                 uint64_t Address,
452                                                 raw_ostream &CS) const {
453   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
454   Bytes = Bytes_.slice(0, MaxInstBytesNum);
455 
456   // In case the opcode is not recognized we'll assume a Size of 4 bytes (unless
457   // there are fewer bytes left). This will be overridden on success.
458   Size = std::min((size_t)4, Bytes_.size());
459 
460   do {
461     // ToDo: better to switch encoding length using some bit predicate
462     // but it is unknown yet, so try all we can
463 
464     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
465     // encodings
466     if (isGFX11Plus() && Bytes.size() >= 12 ) {
467       DecoderUInt128 DecW = eat12Bytes(Bytes);
468 
469       if (tryDecodeInst(DecoderTableGFX1196, DecoderTableGFX11_FAKE1696, MI,
470                         DecW, Address, CS))
471         break;
472 
473       if (tryDecodeInst(DecoderTableGFX1296, DecoderTableGFX12_FAKE1696, MI,
474                         DecW, Address, CS))
475         break;
476 
477       if (tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS))
478         break;
479     }
480 
481     // Reinitialize Bytes
482     Bytes = Bytes_.slice(0, MaxInstBytesNum);
483 
484     if (Bytes.size() >= 8) {
485       const uint64_t QW = eatBytes<uint64_t>(Bytes);
486 
487       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) &&
488           tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS))
489         break;
490 
491       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) &&
492           tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS))
493         break;
494 
495       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
496       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
497       // table first so we print the correct name.
498       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts) &&
499           tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS))
500         break;
501 
502       if (STI.hasFeature(AMDGPU::FeatureGFX940Insts) &&
503           tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS))
504         break;
505 
506       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) &&
507           tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS))
508         break;
509 
510       if (tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS))
511         break;
512 
513       if (tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS))
514         break;
515 
516       if (tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS))
517         break;
518 
519       if (tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
520                         Address, CS))
521         break;
522 
523       if (tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
524                         Address, CS))
525         break;
526 
527       if (tryDecodeInst(DecoderTableGFX11W6464, MI, QW, Address, CS))
528         break;
529 
530       if (tryDecodeInst(DecoderTableGFX12W6464, MI, QW, Address, CS))
531         break;
532     }
533 
534     // Reinitialize Bytes
535     Bytes = Bytes_.slice(0, MaxInstBytesNum);
536 
537     // Try decode 32-bit instruction
538     if (Bytes.size() >= 4) {
539       const uint32_t DW = eatBytes<uint32_t>(Bytes);
540 
541       if (tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS))
542         break;
543 
544       if (tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS))
545         break;
546 
547       if (tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS))
548         break;
549 
550       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) &&
551           tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS))
552         break;
553 
554       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) &&
555           tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS))
556         break;
557 
558       if (tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS))
559         break;
560 
561       if (tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
562                         Address, CS))
563         break;
564 
565       if (tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
566                         Address, CS))
567         break;
568     }
569 
570     return MCDisassembler::Fail;
571   } while (false);
572 
573   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DPP) {
574     if (isMacDPP(MI))
575       convertMacDPPInst(MI);
576 
577     if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
578       convertVOP3PDPPInst(MI);
579     else if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) ||
580              AMDGPU::isVOPC64DPP(MI.getOpcode()))
581       convertVOPCDPPInst(MI); // Special VOP3 case
582     else if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) !=
583              -1)
584       convertDPP8Inst(MI);
585     else if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3)
586       convertVOP3DPPInst(MI); // Regular VOP3 case
587   }
588 
589   if (AMDGPU::isMAC(MI.getOpcode())) {
590     // Insert dummy unused src2_modifiers.
591     insertNamedMCOperand(MI, MCOperand::createImm(0),
592                          AMDGPU::OpName::src2_modifiers);
593   }
594 
595   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
596       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp) {
597     // Insert dummy unused src2_modifiers.
598     insertNamedMCOperand(MI, MCOperand::createImm(0),
599                          AMDGPU::OpName::src2_modifiers);
600   }
601 
602   if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
603       !AMDGPU::hasGDS(STI)) {
604     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
605   }
606 
607   if (MCII->get(MI.getOpcode()).TSFlags &
608       (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD)) {
609     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
610                                              AMDGPU::OpName::cpol);
611     if (CPolPos != -1) {
612       unsigned CPol =
613           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
614               AMDGPU::CPol::GLC : 0;
615       if (MI.getNumOperands() <= (unsigned)CPolPos) {
616         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
617                              AMDGPU::OpName::cpol);
618       } else if (CPol) {
619         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
620       }
621     }
622   }
623 
624   if ((MCII->get(MI.getOpcode()).TSFlags &
625        (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
626       (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
627     // GFX90A lost TFE, its place is occupied by ACC.
628     int TFEOpIdx =
629         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
630     if (TFEOpIdx != -1) {
631       auto TFEIter = MI.begin();
632       std::advance(TFEIter, TFEOpIdx);
633       MI.insert(TFEIter, MCOperand::createImm(0));
634     }
635   }
636 
637   if (MCII->get(MI.getOpcode()).TSFlags &
638       (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) {
639     int SWZOpIdx =
640         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
641     if (SWZOpIdx != -1) {
642       auto SWZIter = MI.begin();
643       std::advance(SWZIter, SWZOpIdx);
644       MI.insert(SWZIter, MCOperand::createImm(0));
645     }
646   }
647 
648   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG) {
649     int VAddr0Idx =
650         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
651     int RsrcIdx =
652         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
653     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
654     if (VAddr0Idx >= 0 && NSAArgs > 0) {
655       unsigned NSAWords = (NSAArgs + 3) / 4;
656       if (Bytes.size() < 4 * NSAWords)
657         return MCDisassembler::Fail;
658       for (unsigned i = 0; i < NSAArgs; ++i) {
659         const unsigned VAddrIdx = VAddr0Idx + 1 + i;
660         auto VAddrRCID =
661             MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
662         MI.insert(MI.begin() + VAddrIdx, createRegOperand(VAddrRCID, Bytes[i]));
663       }
664       Bytes = Bytes.slice(4 * NSAWords);
665     }
666 
667     convertMIMGInst(MI);
668   }
669 
670   if (MCII->get(MI.getOpcode()).TSFlags &
671       (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE))
672     convertMIMGInst(MI);
673 
674   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)
675     convertEXPInst(MI);
676 
677   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)
678     convertVINTERPInst(MI);
679 
680   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SDWA)
681     convertSDWAInst(MI);
682 
683   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
684                                               AMDGPU::OpName::vdst_in);
685   if (VDstIn_Idx != -1) {
686     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
687                            MCOI::OperandConstraint::TIED_TO);
688     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
689          !MI.getOperand(VDstIn_Idx).isReg() ||
690          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
691       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
692         MI.erase(&MI.getOperand(VDstIn_Idx));
693       insertNamedMCOperand(MI,
694         MCOperand::createReg(MI.getOperand(Tied).getReg()),
695         AMDGPU::OpName::vdst_in);
696     }
697   }
698 
699   int ImmLitIdx =
700       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
701   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
702   if (ImmLitIdx != -1 && !IsSOPK)
703     convertFMAanyK(MI, ImmLitIdx);
704 
705   Size = MaxInstBytesNum - Bytes.size();
706   return MCDisassembler::Success;
707 }
708 
709 void AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
710   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
711     // The MCInst still has these fields even though they are no longer encoded
712     // in the GFX11 instruction.
713     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
714     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
715   }
716 }
717 
718 void AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
719   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
720       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
721       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
722       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
723       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
724       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
725       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
726       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
727     // The MCInst has this field that is not directly encoded in the
728     // instruction.
729     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
730   }
731 }
732 
733 void AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
734   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
735       STI.hasFeature(AMDGPU::FeatureGFX10)) {
736     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
737       // VOPC - insert clamp
738       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
739   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
740     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
741     if (SDst != -1) {
742       // VOPC - insert VCC register as sdst
743       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
744                            AMDGPU::OpName::sdst);
745     } else {
746       // VOP1/2 - insert omod if present in instruction
747       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
748     }
749   }
750 }
751 
752 struct VOPModifiers {
753   unsigned OpSel = 0;
754   unsigned OpSelHi = 0;
755   unsigned NegLo = 0;
756   unsigned NegHi = 0;
757 };
758 
759 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
760 // Note that these values do not affect disassembler output,
761 // so this is only necessary for consistency with src_modifiers.
762 static VOPModifiers collectVOPModifiers(const MCInst &MI,
763                                         bool IsVOP3P = false) {
764   VOPModifiers Modifiers;
765   unsigned Opc = MI.getOpcode();
766   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
767                         AMDGPU::OpName::src1_modifiers,
768                         AMDGPU::OpName::src2_modifiers};
769   for (int J = 0; J < 3; ++J) {
770     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
771     if (OpIdx == -1)
772       continue;
773 
774     unsigned Val = MI.getOperand(OpIdx).getImm();
775 
776     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
777     if (IsVOP3P) {
778       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
779       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
780       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
781     } else if (J == 0) {
782       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
783     }
784   }
785 
786   return Modifiers;
787 }
788 
789 // Instructions decode the op_sel/suffix bits into the src_modifier
790 // operands. Copy those bits into the src operands for true16 VGPRs.
791 void AMDGPUDisassembler::convertTrue16OpSel(MCInst &MI) const {
792   const unsigned Opc = MI.getOpcode();
793   const MCRegisterClass &ConversionRC =
794       MRI.getRegClass(AMDGPU::VGPR_16RegClassID);
795   constexpr std::array<std::tuple<int, int, unsigned>, 4> OpAndOpMods = {
796       {{AMDGPU::OpName::src0, AMDGPU::OpName::src0_modifiers,
797         SISrcMods::OP_SEL_0},
798        {AMDGPU::OpName::src1, AMDGPU::OpName::src1_modifiers,
799         SISrcMods::OP_SEL_0},
800        {AMDGPU::OpName::src2, AMDGPU::OpName::src2_modifiers,
801         SISrcMods::OP_SEL_0},
802        {AMDGPU::OpName::vdst, AMDGPU::OpName::src0_modifiers,
803         SISrcMods::DST_OP_SEL}}};
804   for (const auto &[OpName, OpModsName, OpSelMask] : OpAndOpMods) {
805     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, OpName);
806     int OpModsIdx = AMDGPU::getNamedOperandIdx(Opc, OpModsName);
807     if (OpIdx == -1 || OpModsIdx == -1)
808       continue;
809     MCOperand &Op = MI.getOperand(OpIdx);
810     if (!Op.isReg())
811       continue;
812     if (!ConversionRC.contains(Op.getReg()))
813       continue;
814     unsigned OpEnc = MRI.getEncodingValue(Op.getReg());
815     const MCOperand &OpMods = MI.getOperand(OpModsIdx);
816     unsigned ModVal = OpMods.getImm();
817     if (ModVal & OpSelMask) { // isHi
818       unsigned RegIdx = OpEnc & AMDGPU::HWEncoding::REG_IDX_MASK;
819       Op.setReg(ConversionRC.getRegister(RegIdx * 2 + 1));
820     }
821   }
822 }
823 
824 // MAC opcodes have special old and src2 operands.
825 // src2 is tied to dst, while old is not tied (but assumed to be).
826 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
827   constexpr int DST_IDX = 0;
828   auto Opcode = MI.getOpcode();
829   const auto &Desc = MCII->get(Opcode);
830   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
831 
832   if (OldIdx != -1 && Desc.getOperandConstraint(
833                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
834     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
835     assert(Desc.getOperandConstraint(
836                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
837                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
838     (void)DST_IDX;
839     return true;
840   }
841 
842   return false;
843 }
844 
845 // Create dummy old operand and insert dummy unused src2_modifiers
846 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
847   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
848   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
849   insertNamedMCOperand(MI, MCOperand::createImm(0),
850                        AMDGPU::OpName::src2_modifiers);
851 }
852 
853 void AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
854   unsigned Opc = MI.getOpcode();
855 
856   int VDstInIdx =
857       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
858   if (VDstInIdx != -1)
859     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
860 
861   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp8_gfx12 ||
862       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp8_gfx12)
863     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
864 
865   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
866   if (MI.getNumOperands() < DescNumOps &&
867       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
868     convertTrue16OpSel(MI);
869     auto Mods = collectVOPModifiers(MI);
870     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
871                          AMDGPU::OpName::op_sel);
872   } else {
873     // Insert dummy unused src modifiers.
874     if (MI.getNumOperands() < DescNumOps &&
875         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
876       insertNamedMCOperand(MI, MCOperand::createImm(0),
877                            AMDGPU::OpName::src0_modifiers);
878 
879     if (MI.getNumOperands() < DescNumOps &&
880         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
881       insertNamedMCOperand(MI, MCOperand::createImm(0),
882                            AMDGPU::OpName::src1_modifiers);
883   }
884 }
885 
886 void AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
887   convertTrue16OpSel(MI);
888 
889   int VDstInIdx =
890       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
891   if (VDstInIdx != -1)
892     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
893 
894   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp_gfx12 ||
895       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp_gfx12)
896     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
897 
898   unsigned Opc = MI.getOpcode();
899   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
900   if (MI.getNumOperands() < DescNumOps &&
901       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
902     auto Mods = collectVOPModifiers(MI);
903     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
904                          AMDGPU::OpName::op_sel);
905   }
906 }
907 
908 // Note that before gfx10, the MIMG encoding provided no information about
909 // VADDR size. Consequently, decoded instructions always show address as if it
910 // has 1 dword, which could be not really so.
911 void AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
912   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
913 
914   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
915                                            AMDGPU::OpName::vdst);
916 
917   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
918                                             AMDGPU::OpName::vdata);
919   int VAddr0Idx =
920       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
921   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
922                                                 : AMDGPU::OpName::rsrc;
923   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
924   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
925                                             AMDGPU::OpName::dmask);
926 
927   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
928                                             AMDGPU::OpName::tfe);
929   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
930                                             AMDGPU::OpName::d16);
931 
932   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
933   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
934       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
935 
936   assert(VDataIdx != -1);
937   if (BaseOpcode->BVH) {
938     // Add A16 operand for intersect_ray instructions
939     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
940     return;
941   }
942 
943   bool IsAtomic = (VDstIdx != -1);
944   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
945   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
946   bool IsNSA = false;
947   bool IsPartialNSA = false;
948   unsigned AddrSize = Info->VAddrDwords;
949 
950   if (isGFX10Plus()) {
951     unsigned DimIdx =
952         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
953     int A16Idx =
954         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
955     const AMDGPU::MIMGDimInfo *Dim =
956         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
957     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
958 
959     AddrSize =
960         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
961 
962     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
963     // VIMAGE insts other than BVH never use vaddr4.
964     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
965             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
966             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
967     if (!IsNSA) {
968       if (!IsVSample && AddrSize > 12)
969         AddrSize = 16;
970     } else {
971       if (AddrSize > Info->VAddrDwords) {
972         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
973           // The NSA encoding does not contain enough operands for the
974           // combination of base opcode / dimension. Should this be an error?
975           return;
976         }
977         IsPartialNSA = true;
978       }
979     }
980   }
981 
982   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
983   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
984 
985   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
986   if (D16 && AMDGPU::hasPackedD16(STI)) {
987     DstSize = (DstSize + 1) / 2;
988   }
989 
990   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
991     DstSize += 1;
992 
993   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
994     return;
995 
996   int NewOpcode =
997       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
998   if (NewOpcode == -1)
999     return;
1000 
1001   // Widen the register to the correct number of enabled channels.
1002   unsigned NewVdata = AMDGPU::NoRegister;
1003   if (DstSize != Info->VDataDwords) {
1004     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1005 
1006     // Get first subregister of VData
1007     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1008     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1009     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1010 
1011     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1012                                        &MRI.getRegClass(DataRCID));
1013     if (NewVdata == AMDGPU::NoRegister) {
1014       // It's possible to encode this such that the low register + enabled
1015       // components exceeds the register count.
1016       return;
1017     }
1018   }
1019 
1020   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1021   // If using partial NSA on GFX11+ widen last address register.
1022   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1023   unsigned NewVAddrSA = AMDGPU::NoRegister;
1024   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1025       AddrSize != Info->VAddrDwords) {
1026     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1027     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1028     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1029 
1030     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1031     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1032                                         &MRI.getRegClass(AddrRCID));
1033     if (!NewVAddrSA)
1034       return;
1035   }
1036 
1037   MI.setOpcode(NewOpcode);
1038 
1039   if (NewVdata != AMDGPU::NoRegister) {
1040     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1041 
1042     if (IsAtomic) {
1043       // Atomic operations have an additional operand (a copy of data)
1044       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1045     }
1046   }
1047 
1048   if (NewVAddrSA) {
1049     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1050   } else if (IsNSA) {
1051     assert(AddrSize <= Info->VAddrDwords);
1052     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1053              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1054   }
1055 }
1056 
1057 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1058 // decoder only adds to src_modifiers, so manually add the bits to the other
1059 // operands.
1060 void AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1061   unsigned Opc = MI.getOpcode();
1062   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1063   auto Mods = collectVOPModifiers(MI, true);
1064 
1065   if (MI.getNumOperands() < DescNumOps &&
1066       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1067     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1068 
1069   if (MI.getNumOperands() < DescNumOps &&
1070       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1071     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1072                          AMDGPU::OpName::op_sel);
1073   if (MI.getNumOperands() < DescNumOps &&
1074       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1075     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1076                          AMDGPU::OpName::op_sel_hi);
1077   if (MI.getNumOperands() < DescNumOps &&
1078       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1079     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1080                          AMDGPU::OpName::neg_lo);
1081   if (MI.getNumOperands() < DescNumOps &&
1082       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1083     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1084                          AMDGPU::OpName::neg_hi);
1085 }
1086 
1087 // Create dummy old operand and insert optional operands
1088 void AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1089   unsigned Opc = MI.getOpcode();
1090   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1091 
1092   if (MI.getNumOperands() < DescNumOps &&
1093       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1094     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1095 
1096   if (MI.getNumOperands() < DescNumOps &&
1097       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1098     insertNamedMCOperand(MI, MCOperand::createImm(0),
1099                          AMDGPU::OpName::src0_modifiers);
1100 
1101   if (MI.getNumOperands() < DescNumOps &&
1102       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1103     insertNamedMCOperand(MI, MCOperand::createImm(0),
1104                          AMDGPU::OpName::src1_modifiers);
1105 }
1106 
1107 void AMDGPUDisassembler::convertFMAanyK(MCInst &MI, int ImmLitIdx) const {
1108   assert(HasLiteral && "Should have decoded a literal");
1109   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1110   unsigned DescNumOps = Desc.getNumOperands();
1111   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1112                        AMDGPU::OpName::immDeferred);
1113   assert(DescNumOps == MI.getNumOperands());
1114   for (unsigned I = 0; I < DescNumOps; ++I) {
1115     auto &Op = MI.getOperand(I);
1116     auto OpType = Desc.operands()[I].OperandType;
1117     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1118                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1119     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1120         IsDeferredOp)
1121       Op.setImm(Literal);
1122   }
1123 }
1124 
1125 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1126   return getContext().getRegisterInfo()->
1127     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1128 }
1129 
1130 inline
1131 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1132                                          const Twine& ErrMsg) const {
1133   *CommentStream << "Error: " + ErrMsg;
1134 
1135   // ToDo: add support for error operands to MCInst.h
1136   // return MCOperand::createError(V);
1137   return MCOperand();
1138 }
1139 
1140 inline
1141 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1142   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1143 }
1144 
1145 inline
1146 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1147                                                unsigned Val) const {
1148   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1149   if (Val >= RegCl.getNumRegs())
1150     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1151                            ": unknown register " + Twine(Val));
1152   return createRegOperand(RegCl.getRegister(Val));
1153 }
1154 
1155 inline
1156 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1157                                                 unsigned Val) const {
1158   // ToDo: SI/CI have 104 SGPRs, VI - 102
1159   // Valery: here we accepting as much as we can, let assembler sort it out
1160   int shift = 0;
1161   switch (SRegClassID) {
1162   case AMDGPU::SGPR_32RegClassID:
1163   case AMDGPU::TTMP_32RegClassID:
1164     break;
1165   case AMDGPU::SGPR_64RegClassID:
1166   case AMDGPU::TTMP_64RegClassID:
1167     shift = 1;
1168     break;
1169   case AMDGPU::SGPR_96RegClassID:
1170   case AMDGPU::TTMP_96RegClassID:
1171   case AMDGPU::SGPR_128RegClassID:
1172   case AMDGPU::TTMP_128RegClassID:
1173   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1174   // this bundle?
1175   case AMDGPU::SGPR_256RegClassID:
1176   case AMDGPU::TTMP_256RegClassID:
1177     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1178   // this bundle?
1179   case AMDGPU::SGPR_288RegClassID:
1180   case AMDGPU::TTMP_288RegClassID:
1181   case AMDGPU::SGPR_320RegClassID:
1182   case AMDGPU::TTMP_320RegClassID:
1183   case AMDGPU::SGPR_352RegClassID:
1184   case AMDGPU::TTMP_352RegClassID:
1185   case AMDGPU::SGPR_384RegClassID:
1186   case AMDGPU::TTMP_384RegClassID:
1187   case AMDGPU::SGPR_512RegClassID:
1188   case AMDGPU::TTMP_512RegClassID:
1189     shift = 2;
1190     break;
1191   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1192   // this bundle?
1193   default:
1194     llvm_unreachable("unhandled register class");
1195   }
1196 
1197   if (Val % (1 << shift)) {
1198     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1199                    << ": scalar reg isn't aligned " << Val;
1200   }
1201 
1202   return createRegOperand(SRegClassID, Val >> shift);
1203 }
1204 
1205 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1206                                                   bool IsHi) const {
1207   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1208   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1209 }
1210 
1211 // Decode Literals for insts which always have a literal in the encoding
1212 MCOperand
1213 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1214   if (HasLiteral) {
1215     assert(
1216         AMDGPU::hasVOPD(STI) &&
1217         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1218     if (Literal != Val)
1219       return errOperand(Val, "More than one unique literal is illegal");
1220   }
1221   HasLiteral = true;
1222   Literal = Val;
1223   return MCOperand::createImm(Literal);
1224 }
1225 
1226 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1227   // For now all literal constants are supposed to be unsigned integer
1228   // ToDo: deal with signed/unsigned 64-bit integer constants
1229   // ToDo: deal with float/double constants
1230   if (!HasLiteral) {
1231     if (Bytes.size() < 4) {
1232       return errOperand(0, "cannot read literal, inst bytes left " +
1233                         Twine(Bytes.size()));
1234     }
1235     HasLiteral = true;
1236     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1237     if (ExtendFP64)
1238       Literal64 <<= 32;
1239   }
1240   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1241 }
1242 
1243 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1244   using namespace AMDGPU::EncValues;
1245 
1246   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1247   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1248     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1249     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1250       // Cast prevents negative overflow.
1251 }
1252 
1253 static int64_t getInlineImmVal32(unsigned Imm) {
1254   switch (Imm) {
1255   case 240:
1256     return llvm::bit_cast<uint32_t>(0.5f);
1257   case 241:
1258     return llvm::bit_cast<uint32_t>(-0.5f);
1259   case 242:
1260     return llvm::bit_cast<uint32_t>(1.0f);
1261   case 243:
1262     return llvm::bit_cast<uint32_t>(-1.0f);
1263   case 244:
1264     return llvm::bit_cast<uint32_t>(2.0f);
1265   case 245:
1266     return llvm::bit_cast<uint32_t>(-2.0f);
1267   case 246:
1268     return llvm::bit_cast<uint32_t>(4.0f);
1269   case 247:
1270     return llvm::bit_cast<uint32_t>(-4.0f);
1271   case 248: // 1 / (2 * PI)
1272     return 0x3e22f983;
1273   default:
1274     llvm_unreachable("invalid fp inline imm");
1275   }
1276 }
1277 
1278 static int64_t getInlineImmVal64(unsigned Imm) {
1279   switch (Imm) {
1280   case 240:
1281     return llvm::bit_cast<uint64_t>(0.5);
1282   case 241:
1283     return llvm::bit_cast<uint64_t>(-0.5);
1284   case 242:
1285     return llvm::bit_cast<uint64_t>(1.0);
1286   case 243:
1287     return llvm::bit_cast<uint64_t>(-1.0);
1288   case 244:
1289     return llvm::bit_cast<uint64_t>(2.0);
1290   case 245:
1291     return llvm::bit_cast<uint64_t>(-2.0);
1292   case 246:
1293     return llvm::bit_cast<uint64_t>(4.0);
1294   case 247:
1295     return llvm::bit_cast<uint64_t>(-4.0);
1296   case 248: // 1 / (2 * PI)
1297     return 0x3fc45f306dc9c882;
1298   default:
1299     llvm_unreachable("invalid fp inline imm");
1300   }
1301 }
1302 
1303 static int64_t getInlineImmValF16(unsigned Imm) {
1304   switch (Imm) {
1305   case 240:
1306     return 0x3800;
1307   case 241:
1308     return 0xB800;
1309   case 242:
1310     return 0x3C00;
1311   case 243:
1312     return 0xBC00;
1313   case 244:
1314     return 0x4000;
1315   case 245:
1316     return 0xC000;
1317   case 246:
1318     return 0x4400;
1319   case 247:
1320     return 0xC400;
1321   case 248: // 1 / (2 * PI)
1322     return 0x3118;
1323   default:
1324     llvm_unreachable("invalid fp inline imm");
1325   }
1326 }
1327 
1328 static int64_t getInlineImmValBF16(unsigned Imm) {
1329   switch (Imm) {
1330   case 240:
1331     return 0x3F00;
1332   case 241:
1333     return 0xBF00;
1334   case 242:
1335     return 0x3F80;
1336   case 243:
1337     return 0xBF80;
1338   case 244:
1339     return 0x4000;
1340   case 245:
1341     return 0xC000;
1342   case 246:
1343     return 0x4080;
1344   case 247:
1345     return 0xC080;
1346   case 248: // 1 / (2 * PI)
1347     return 0x3E22;
1348   default:
1349     llvm_unreachable("invalid fp inline imm");
1350   }
1351 }
1352 
1353 static int64_t getInlineImmVal16(unsigned Imm, AMDGPU::OperandSemantics Sema) {
1354   return (Sema == AMDGPU::OperandSemantics::BF16) ? getInlineImmValBF16(Imm)
1355                                                   : getInlineImmValF16(Imm);
1356 }
1357 
1358 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm,
1359                                             AMDGPU::OperandSemantics Sema) {
1360   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN &&
1361          Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1362 
1363   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1364   // ImmWidth 0 is a default case where operand should not allow immediates.
1365   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1366   // use it to print verbose error message.
1367   switch (ImmWidth) {
1368   case 0:
1369   case 32:
1370     return MCOperand::createImm(getInlineImmVal32(Imm));
1371   case 64:
1372     return MCOperand::createImm(getInlineImmVal64(Imm));
1373   case 16:
1374     return MCOperand::createImm(getInlineImmVal16(Imm, Sema));
1375   default:
1376     llvm_unreachable("implement me");
1377   }
1378 }
1379 
1380 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1381   using namespace AMDGPU;
1382 
1383   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1384   switch (Width) {
1385   default: // fall
1386   case OPW32:
1387   case OPW16:
1388   case OPWV216:
1389     return VGPR_32RegClassID;
1390   case OPW64:
1391   case OPWV232: return VReg_64RegClassID;
1392   case OPW96: return VReg_96RegClassID;
1393   case OPW128: return VReg_128RegClassID;
1394   case OPW160: return VReg_160RegClassID;
1395   case OPW256: return VReg_256RegClassID;
1396   case OPW288: return VReg_288RegClassID;
1397   case OPW320: return VReg_320RegClassID;
1398   case OPW352: return VReg_352RegClassID;
1399   case OPW384: return VReg_384RegClassID;
1400   case OPW512: return VReg_512RegClassID;
1401   case OPW1024: return VReg_1024RegClassID;
1402   }
1403 }
1404 
1405 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1406   using namespace AMDGPU;
1407 
1408   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1409   switch (Width) {
1410   default: // fall
1411   case OPW32:
1412   case OPW16:
1413   case OPWV216:
1414     return AGPR_32RegClassID;
1415   case OPW64:
1416   case OPWV232: return AReg_64RegClassID;
1417   case OPW96: return AReg_96RegClassID;
1418   case OPW128: return AReg_128RegClassID;
1419   case OPW160: return AReg_160RegClassID;
1420   case OPW256: return AReg_256RegClassID;
1421   case OPW288: return AReg_288RegClassID;
1422   case OPW320: return AReg_320RegClassID;
1423   case OPW352: return AReg_352RegClassID;
1424   case OPW384: return AReg_384RegClassID;
1425   case OPW512: return AReg_512RegClassID;
1426   case OPW1024: return AReg_1024RegClassID;
1427   }
1428 }
1429 
1430 
1431 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1432   using namespace AMDGPU;
1433 
1434   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1435   switch (Width) {
1436   default: // fall
1437   case OPW32:
1438   case OPW16:
1439   case OPWV216:
1440     return SGPR_32RegClassID;
1441   case OPW64:
1442   case OPWV232: return SGPR_64RegClassID;
1443   case OPW96: return SGPR_96RegClassID;
1444   case OPW128: return SGPR_128RegClassID;
1445   case OPW160: return SGPR_160RegClassID;
1446   case OPW256: return SGPR_256RegClassID;
1447   case OPW288: return SGPR_288RegClassID;
1448   case OPW320: return SGPR_320RegClassID;
1449   case OPW352: return SGPR_352RegClassID;
1450   case OPW384: return SGPR_384RegClassID;
1451   case OPW512: return SGPR_512RegClassID;
1452   }
1453 }
1454 
1455 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1456   using namespace AMDGPU;
1457 
1458   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1459   switch (Width) {
1460   default: // fall
1461   case OPW32:
1462   case OPW16:
1463   case OPWV216:
1464     return TTMP_32RegClassID;
1465   case OPW64:
1466   case OPWV232: return TTMP_64RegClassID;
1467   case OPW128: return TTMP_128RegClassID;
1468   case OPW256: return TTMP_256RegClassID;
1469   case OPW288: return TTMP_288RegClassID;
1470   case OPW320: return TTMP_320RegClassID;
1471   case OPW352: return TTMP_352RegClassID;
1472   case OPW384: return TTMP_384RegClassID;
1473   case OPW512: return TTMP_512RegClassID;
1474   }
1475 }
1476 
1477 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1478   using namespace AMDGPU::EncValues;
1479 
1480   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1481   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1482 
1483   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1484 }
1485 
1486 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1487                                           bool MandatoryLiteral,
1488                                           unsigned ImmWidth,
1489                                           AMDGPU::OperandSemantics Sema) const {
1490   using namespace AMDGPU::EncValues;
1491 
1492   assert(Val < 1024); // enum10
1493 
1494   bool IsAGPR = Val & 512;
1495   Val &= 511;
1496 
1497   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1498     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1499                                    : getVgprClassId(Width), Val - VGPR_MIN);
1500   }
1501   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1502                             Sema);
1503 }
1504 
1505 MCOperand
1506 AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, unsigned Val,
1507                                        bool MandatoryLiteral, unsigned ImmWidth,
1508                                        AMDGPU::OperandSemantics Sema) const {
1509   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1510   // decoded earlier.
1511   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1512   using namespace AMDGPU::EncValues;
1513 
1514   if (Val <= SGPR_MAX) {
1515     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1516     static_assert(SGPR_MIN == 0);
1517     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1518   }
1519 
1520   int TTmpIdx = getTTmpIdx(Val);
1521   if (TTmpIdx >= 0) {
1522     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1523   }
1524 
1525   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1526     return decodeIntImmed(Val);
1527 
1528   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1529     return decodeFPImmed(ImmWidth, Val, Sema);
1530 
1531   if (Val == LITERAL_CONST) {
1532     if (MandatoryLiteral)
1533       // Keep a sentinel value for deferred setting
1534       return MCOperand::createImm(LITERAL_CONST);
1535     else
1536       return decodeLiteralConstant(Sema == AMDGPU::OperandSemantics::FP64);
1537   }
1538 
1539   switch (Width) {
1540   case OPW32:
1541   case OPW16:
1542   case OPWV216:
1543     return decodeSpecialReg32(Val);
1544   case OPW64:
1545   case OPWV232:
1546     return decodeSpecialReg64(Val);
1547   default:
1548     llvm_unreachable("unexpected immediate type");
1549   }
1550 }
1551 
1552 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1553 // opposite of bit 0 of DstX.
1554 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1555                                                unsigned Val) const {
1556   int VDstXInd =
1557       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1558   assert(VDstXInd != -1);
1559   assert(Inst.getOperand(VDstXInd).isReg());
1560   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1561   Val |= ~XDstReg & 1;
1562   auto Width = llvm::AMDGPUDisassembler::OPW32;
1563   return createRegOperand(getVgprClassId(Width), Val);
1564 }
1565 
1566 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1567   using namespace AMDGPU;
1568 
1569   switch (Val) {
1570   // clang-format off
1571   case 102: return createRegOperand(FLAT_SCR_LO);
1572   case 103: return createRegOperand(FLAT_SCR_HI);
1573   case 104: return createRegOperand(XNACK_MASK_LO);
1574   case 105: return createRegOperand(XNACK_MASK_HI);
1575   case 106: return createRegOperand(VCC_LO);
1576   case 107: return createRegOperand(VCC_HI);
1577   case 108: return createRegOperand(TBA_LO);
1578   case 109: return createRegOperand(TBA_HI);
1579   case 110: return createRegOperand(TMA_LO);
1580   case 111: return createRegOperand(TMA_HI);
1581   case 124:
1582     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1583   case 125:
1584     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1585   case 126: return createRegOperand(EXEC_LO);
1586   case 127: return createRegOperand(EXEC_HI);
1587   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1588   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1589   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1590   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1591   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1592   case 251: return createRegOperand(SRC_VCCZ);
1593   case 252: return createRegOperand(SRC_EXECZ);
1594   case 253: return createRegOperand(SRC_SCC);
1595   case 254: return createRegOperand(LDS_DIRECT);
1596   default: break;
1597     // clang-format on
1598   }
1599   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1600 }
1601 
1602 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1603   using namespace AMDGPU;
1604 
1605   switch (Val) {
1606   case 102: return createRegOperand(FLAT_SCR);
1607   case 104: return createRegOperand(XNACK_MASK);
1608   case 106: return createRegOperand(VCC);
1609   case 108: return createRegOperand(TBA);
1610   case 110: return createRegOperand(TMA);
1611   case 124:
1612     if (isGFX11Plus())
1613       return createRegOperand(SGPR_NULL);
1614     break;
1615   case 125:
1616     if (!isGFX11Plus())
1617       return createRegOperand(SGPR_NULL);
1618     break;
1619   case 126: return createRegOperand(EXEC);
1620   case 235: return createRegOperand(SRC_SHARED_BASE);
1621   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1622   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1623   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1624   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1625   case 251: return createRegOperand(SRC_VCCZ);
1626   case 252: return createRegOperand(SRC_EXECZ);
1627   case 253: return createRegOperand(SRC_SCC);
1628   default: break;
1629   }
1630   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1631 }
1632 
1633 MCOperand
1634 AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, const unsigned Val,
1635                                   unsigned ImmWidth,
1636                                   AMDGPU::OperandSemantics Sema) const {
1637   using namespace AMDGPU::SDWA;
1638   using namespace AMDGPU::EncValues;
1639 
1640   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1641       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1642     // XXX: cast to int is needed to avoid stupid warning:
1643     // compare with unsigned is always true
1644     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1645         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1646       return createRegOperand(getVgprClassId(Width),
1647                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1648     }
1649     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1650         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1651                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1652       return createSRegOperand(getSgprClassId(Width),
1653                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1654     }
1655     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1656         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1657       return createSRegOperand(getTtmpClassId(Width),
1658                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1659     }
1660 
1661     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1662 
1663     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1664       return decodeIntImmed(SVal);
1665 
1666     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1667       return decodeFPImmed(ImmWidth, SVal, Sema);
1668 
1669     return decodeSpecialReg32(SVal);
1670   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1671     return createRegOperand(getVgprClassId(Width), Val);
1672   }
1673   llvm_unreachable("unsupported target");
1674 }
1675 
1676 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1677   return decodeSDWASrc(OPW16, Val, 16, AMDGPU::OperandSemantics::FP16);
1678 }
1679 
1680 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1681   return decodeSDWASrc(OPW32, Val, 32, AMDGPU::OperandSemantics::FP32);
1682 }
1683 
1684 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1685   using namespace AMDGPU::SDWA;
1686 
1687   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1688           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1689          "SDWAVopcDst should be present only on GFX9+");
1690 
1691   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1692 
1693   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1694     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1695 
1696     int TTmpIdx = getTTmpIdx(Val);
1697     if (TTmpIdx >= 0) {
1698       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1699       return createSRegOperand(TTmpClsId, TTmpIdx);
1700     } else if (Val > SGPR_MAX) {
1701       return IsWave64 ? decodeSpecialReg64(Val)
1702                       : decodeSpecialReg32(Val);
1703     } else {
1704       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1705     }
1706   } else {
1707     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1708   }
1709 }
1710 
1711 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1712   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1713              ? decodeSrcOp(OPW64, Val)
1714              : decodeSrcOp(OPW32, Val);
1715 }
1716 
1717 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1718   return decodeSrcOp(OPW32, Val);
1719 }
1720 
1721 MCOperand AMDGPUDisassembler::decodeDpp8FI(unsigned Val) const {
1722   if (Val != AMDGPU::DPP::DPP8_FI_0 && Val != AMDGPU::DPP::DPP8_FI_1)
1723     return MCOperand();
1724   return MCOperand::createImm(Val);
1725 }
1726 
1727 bool AMDGPUDisassembler::isVI() const {
1728   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1729 }
1730 
1731 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1732 
1733 bool AMDGPUDisassembler::isGFX90A() const {
1734   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1735 }
1736 
1737 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1738 
1739 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1740 
1741 bool AMDGPUDisassembler::isGFX10Plus() const {
1742   return AMDGPU::isGFX10Plus(STI);
1743 }
1744 
1745 bool AMDGPUDisassembler::isGFX11() const {
1746   return STI.hasFeature(AMDGPU::FeatureGFX11);
1747 }
1748 
1749 bool AMDGPUDisassembler::isGFX11Plus() const {
1750   return AMDGPU::isGFX11Plus(STI);
1751 }
1752 
1753 bool AMDGPUDisassembler::isGFX12Plus() const {
1754   return AMDGPU::isGFX12Plus(STI);
1755 }
1756 
1757 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1758   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1759 }
1760 
1761 bool AMDGPUDisassembler::hasKernargPreload() const {
1762   return AMDGPU::hasKernargPreload(STI);
1763 }
1764 
1765 //===----------------------------------------------------------------------===//
1766 // AMDGPU specific symbol handling
1767 //===----------------------------------------------------------------------===//
1768 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1769 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1770   do {                                                                         \
1771     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1772   } while (0)
1773 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1774   do {                                                                         \
1775     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1776              << GET_FIELD(MASK) << '\n';                                       \
1777   } while (0)
1778 
1779 // NOLINTNEXTLINE(readability-identifier-naming)
1780 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1781     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1782   using namespace amdhsa;
1783   StringRef Indent = "\t";
1784 
1785   // We cannot accurately backward compute #VGPRs used from
1786   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1787   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1788   // simply calculate the inverse of what the assembler does.
1789 
1790   uint32_t GranulatedWorkitemVGPRCount =
1791       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1792 
1793   uint32_t NextFreeVGPR =
1794       (GranulatedWorkitemVGPRCount + 1) *
1795       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1796 
1797   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1798 
1799   // We cannot backward compute values used to calculate
1800   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1801   // directives can't be computed:
1802   // .amdhsa_reserve_vcc
1803   // .amdhsa_reserve_flat_scratch
1804   // .amdhsa_reserve_xnack_mask
1805   // They take their respective default values if not specified in the assembly.
1806   //
1807   // GRANULATED_WAVEFRONT_SGPR_COUNT
1808   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1809   //
1810   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1811   // are set to 0. So while disassembling we consider that:
1812   //
1813   // GRANULATED_WAVEFRONT_SGPR_COUNT
1814   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1815   //
1816   // The disassembler cannot recover the original values of those 3 directives.
1817 
1818   uint32_t GranulatedWavefrontSGPRCount =
1819       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1820 
1821   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1822     return MCDisassembler::Fail;
1823 
1824   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1825                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1826 
1827   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1828   if (!hasArchitectedFlatScratch())
1829     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1830   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1831   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1832 
1833   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1834     return MCDisassembler::Fail;
1835 
1836   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1837                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1838   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1839                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1840   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1841                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1842   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1843                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1844 
1845   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1846     return MCDisassembler::Fail;
1847 
1848   if (!isGFX12Plus())
1849     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1850                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1851 
1852   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1853     return MCDisassembler::Fail;
1854 
1855   if (!isGFX12Plus())
1856     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1857                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1858 
1859   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1860     return MCDisassembler::Fail;
1861 
1862   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1863     return MCDisassembler::Fail;
1864 
1865   if (isGFX9Plus())
1866     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1867 
1868   if (!isGFX9Plus())
1869     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1870       return MCDisassembler::Fail;
1871   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1872     return MCDisassembler::Fail;
1873   if (!isGFX10Plus())
1874     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1875       return MCDisassembler::Fail;
1876 
1877   if (isGFX10Plus()) {
1878     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1879                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1880     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1881     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1882   }
1883 
1884   if (isGFX12Plus())
1885     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1886                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1887 
1888   return MCDisassembler::Success;
1889 }
1890 
1891 // NOLINTNEXTLINE(readability-identifier-naming)
1892 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1893     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1894   using namespace amdhsa;
1895   StringRef Indent = "\t";
1896   if (hasArchitectedFlatScratch())
1897     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1898                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1899   else
1900     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1901                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1902   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1903                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1904   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1905                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1906   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1907                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1908   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1909                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1910   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1911                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1912 
1913   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1914     return MCDisassembler::Fail;
1915 
1916   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1917     return MCDisassembler::Fail;
1918 
1919   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1920     return MCDisassembler::Fail;
1921 
1922   PRINT_DIRECTIVE(
1923       ".amdhsa_exception_fp_ieee_invalid_op",
1924       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1925   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1926                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1927   PRINT_DIRECTIVE(
1928       ".amdhsa_exception_fp_ieee_div_zero",
1929       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1930   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1931                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1932   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1933                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1934   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1935                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1936   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1937                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1938 
1939   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1940     return MCDisassembler::Fail;
1941 
1942   return MCDisassembler::Success;
1943 }
1944 
1945 // NOLINTNEXTLINE(readability-identifier-naming)
1946 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1947     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1948   using namespace amdhsa;
1949   StringRef Indent = "\t";
1950   if (isGFX90A()) {
1951     KdStream << Indent << ".amdhsa_accum_offset "
1952              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1953              << '\n';
1954     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1955       return MCDisassembler::Fail;
1956     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1957     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
1958       return MCDisassembler::Fail;
1959   } else if (isGFX10Plus()) {
1960     // Bits [0-3].
1961     if (!isGFX12Plus()) {
1962       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
1963         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
1964                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
1965       } else {
1966         PRINT_PSEUDO_DIRECTIVE_COMMENT(
1967             "SHARED_VGPR_COUNT",
1968             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
1969       }
1970     } else {
1971       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0)
1972         return MCDisassembler::Fail;
1973     }
1974 
1975     // Bits [4-11].
1976     if (isGFX11()) {
1977       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
1978                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
1979       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
1980                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
1981       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
1982                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
1983     } else if (isGFX12Plus()) {
1984       PRINT_PSEUDO_DIRECTIVE_COMMENT(
1985           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
1986     } else {
1987       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1)
1988         return MCDisassembler::Fail;
1989     }
1990 
1991     // Bits [12].
1992     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2)
1993       return MCDisassembler::Fail;
1994 
1995     // Bits [13].
1996     if (isGFX12Plus()) {
1997       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
1998                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
1999     } else {
2000       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3)
2001         return MCDisassembler::Fail;
2002     }
2003 
2004     // Bits [14-30].
2005     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4)
2006       return MCDisassembler::Fail;
2007 
2008     // Bits [31].
2009     if (isGFX11Plus()) {
2010       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2011                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2012     } else {
2013       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5)
2014         return MCDisassembler::Fail;
2015     }
2016   } else if (FourByteBuffer) {
2017     return MCDisassembler::Fail;
2018   }
2019   return MCDisassembler::Success;
2020 }
2021 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2022 #undef PRINT_DIRECTIVE
2023 #undef GET_FIELD
2024 
2025 MCDisassembler::DecodeStatus
2026 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2027     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2028     raw_string_ostream &KdStream) const {
2029 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2030   do {                                                                         \
2031     KdStream << Indent << DIRECTIVE " "                                        \
2032              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2033   } while (0)
2034 
2035   uint16_t TwoByteBuffer = 0;
2036   uint32_t FourByteBuffer = 0;
2037 
2038   StringRef ReservedBytes;
2039   StringRef Indent = "\t";
2040 
2041   assert(Bytes.size() == 64);
2042   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2043 
2044   switch (Cursor.tell()) {
2045   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2046     FourByteBuffer = DE.getU32(Cursor);
2047     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2048              << '\n';
2049     return MCDisassembler::Success;
2050 
2051   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2052     FourByteBuffer = DE.getU32(Cursor);
2053     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2054              << FourByteBuffer << '\n';
2055     return MCDisassembler::Success;
2056 
2057   case amdhsa::KERNARG_SIZE_OFFSET:
2058     FourByteBuffer = DE.getU32(Cursor);
2059     KdStream << Indent << ".amdhsa_kernarg_size "
2060              << FourByteBuffer << '\n';
2061     return MCDisassembler::Success;
2062 
2063   case amdhsa::RESERVED0_OFFSET:
2064     // 4 reserved bytes, must be 0.
2065     ReservedBytes = DE.getBytes(Cursor, 4);
2066     for (int I = 0; I < 4; ++I) {
2067       if (ReservedBytes[I] != 0) {
2068         return MCDisassembler::Fail;
2069       }
2070     }
2071     return MCDisassembler::Success;
2072 
2073   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2074     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2075     // So far no directive controls this for Code Object V3, so simply skip for
2076     // disassembly.
2077     DE.skip(Cursor, 8);
2078     return MCDisassembler::Success;
2079 
2080   case amdhsa::RESERVED1_OFFSET:
2081     // 20 reserved bytes, must be 0.
2082     ReservedBytes = DE.getBytes(Cursor, 20);
2083     for (int I = 0; I < 20; ++I) {
2084       if (ReservedBytes[I] != 0) {
2085         return MCDisassembler::Fail;
2086       }
2087     }
2088     return MCDisassembler::Success;
2089 
2090   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2091     FourByteBuffer = DE.getU32(Cursor);
2092     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2093 
2094   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2095     FourByteBuffer = DE.getU32(Cursor);
2096     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2097 
2098   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2099     FourByteBuffer = DE.getU32(Cursor);
2100     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2101 
2102   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2103     using namespace amdhsa;
2104     TwoByteBuffer = DE.getU16(Cursor);
2105 
2106     if (!hasArchitectedFlatScratch())
2107       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2108                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2109     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2110                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2111     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2112                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2113     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2114                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2115     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2116                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2117     if (!hasArchitectedFlatScratch())
2118       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2119                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2120     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2121                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2122 
2123     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2124       return MCDisassembler::Fail;
2125 
2126     // Reserved for GFX9
2127     if (isGFX9() &&
2128         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2129       return MCDisassembler::Fail;
2130     } else if (isGFX10Plus()) {
2131       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2132                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2133     }
2134 
2135     if (CodeObjectVersion >= AMDGPU::AMDHSA_COV5)
2136       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2137                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2138 
2139     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2140       return MCDisassembler::Fail;
2141 
2142     return MCDisassembler::Success;
2143 
2144   case amdhsa::KERNARG_PRELOAD_OFFSET:
2145     using namespace amdhsa;
2146     TwoByteBuffer = DE.getU16(Cursor);
2147     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2148       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2149                       KERNARG_PRELOAD_SPEC_LENGTH);
2150     }
2151 
2152     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2153       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2154                       KERNARG_PRELOAD_SPEC_OFFSET);
2155     }
2156     return MCDisassembler::Success;
2157 
2158   case amdhsa::RESERVED3_OFFSET:
2159     // 4 bytes from here are reserved, must be 0.
2160     ReservedBytes = DE.getBytes(Cursor, 4);
2161     for (int I = 0; I < 4; ++I) {
2162       if (ReservedBytes[I] != 0)
2163         return MCDisassembler::Fail;
2164     }
2165     return MCDisassembler::Success;
2166 
2167   default:
2168     llvm_unreachable("Unhandled index. Case statements cover everything.");
2169     return MCDisassembler::Fail;
2170   }
2171 #undef PRINT_DIRECTIVE
2172 }
2173 
2174 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2175     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2176   // CP microcode requires the kernel descriptor to be 64 aligned.
2177   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2178     return MCDisassembler::Fail;
2179 
2180   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2181   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2182   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2183   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2184   // when required.
2185   if (isGFX10Plus()) {
2186     uint16_t KernelCodeProperties =
2187         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2188                                 llvm::endianness::little);
2189     EnableWavefrontSize32 =
2190         AMDHSA_BITS_GET(KernelCodeProperties,
2191                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2192   }
2193 
2194   std::string Kd;
2195   raw_string_ostream KdStream(Kd);
2196   KdStream << ".amdhsa_kernel " << KdName << '\n';
2197 
2198   DataExtractor::Cursor C(0);
2199   while (C && C.tell() < Bytes.size()) {
2200     MCDisassembler::DecodeStatus Status =
2201         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2202 
2203     cantFail(C.takeError());
2204 
2205     if (Status == MCDisassembler::Fail)
2206       return MCDisassembler::Fail;
2207   }
2208   KdStream << ".end_amdhsa_kernel\n";
2209   outs() << KdStream.str();
2210   return MCDisassembler::Success;
2211 }
2212 
2213 std::optional<MCDisassembler::DecodeStatus>
2214 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2215                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2216                                   raw_ostream &CStream) const {
2217   // Right now only kernel descriptor needs to be handled.
2218   // We ignore all other symbols for target specific handling.
2219   // TODO:
2220   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2221   // Object V2 and V3 when symbols are marked protected.
2222 
2223   // amd_kernel_code_t for Code Object V2.
2224   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2225     Size = 256;
2226     return MCDisassembler::Fail;
2227   }
2228 
2229   // Code Object V3 kernel descriptors.
2230   StringRef Name = Symbol.Name;
2231   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2232     Size = 64; // Size = 64 regardless of success or failure.
2233     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2234   }
2235   return std::nullopt;
2236 }
2237 
2238 //===----------------------------------------------------------------------===//
2239 // AMDGPUSymbolizer
2240 //===----------------------------------------------------------------------===//
2241 
2242 // Try to find symbol name for specified label
2243 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2244     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2245     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2246     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2247 
2248   if (!IsBranch) {
2249     return false;
2250   }
2251 
2252   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2253   if (!Symbols)
2254     return false;
2255 
2256   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2257     return Val.Addr == static_cast<uint64_t>(Value) &&
2258            Val.Type == ELF::STT_NOTYPE;
2259   });
2260   if (Result != Symbols->end()) {
2261     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2262     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2263     Inst.addOperand(MCOperand::createExpr(Add));
2264     return true;
2265   }
2266   // Add to list of referenced addresses, so caller can synthesize a label.
2267   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2268   return false;
2269 }
2270 
2271 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2272                                                        int64_t Value,
2273                                                        uint64_t Address) {
2274   llvm_unreachable("unimplemented");
2275 }
2276 
2277 //===----------------------------------------------------------------------===//
2278 // Initialization
2279 //===----------------------------------------------------------------------===//
2280 
2281 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2282                               LLVMOpInfoCallback /*GetOpInfo*/,
2283                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2284                               void *DisInfo,
2285                               MCContext *Ctx,
2286                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2287   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2288 }
2289 
2290 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2291                                                 const MCSubtargetInfo &STI,
2292                                                 MCContext &Ctx) {
2293   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2294 }
2295 
2296 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2297   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2298                                          createAMDGPUDisassembler);
2299   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2300                                        createAMDGPUSymbolizer);
2301 }
2302