xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 32ca9bd7b5b83a4bc84ed611e3744f20cf62dba6)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCDecoderOps.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/TargetRegistry.h"
33 #include "llvm/Support/AMDHSAKernelDescriptor.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "amdgpu-disassembler"
38 
39 #define SGPR_MAX                                                               \
40   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
41                  : AMDGPU::EncValues::SGPR_MAX_SI)
42 
43 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
44 
45 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
46                                        MCContext &Ctx,
47                                        MCInstrInfo const *MCII) :
48   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
49   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
50 
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
95     Offset = Imm & 0xFFFFF;
96   } else {                    // GFX9+ supports 21-bit signed offsets.
97     Offset = SignExtend64<21>(Imm);
98   }
99   return addOperand(Inst, MCOperand::createImm(Offset));
100 }
101 
102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
103                                   const MCDisassembler *Decoder) {
104   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
105   return addOperand(Inst, DAsm->decodeBoolReg(Val));
106 }
107 
108 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
109   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
110                                         uint64_t /*Addr*/,                     \
111                                         const MCDisassembler *Decoder) {       \
112     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
113     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
114   }
115 
116 #define DECODE_OPERAND_REG(RegClass) \
117 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
118 
119 DECODE_OPERAND_REG(VGPR_32)
120 DECODE_OPERAND_REG(VRegOrLds_32)
121 DECODE_OPERAND_REG(VS_32)
122 DECODE_OPERAND_REG(VS_64)
123 DECODE_OPERAND_REG(VS_128)
124 
125 DECODE_OPERAND_REG(VReg_64)
126 DECODE_OPERAND_REG(VReg_96)
127 DECODE_OPERAND_REG(VReg_128)
128 DECODE_OPERAND_REG(VReg_256)
129 DECODE_OPERAND_REG(VReg_512)
130 DECODE_OPERAND_REG(VReg_1024)
131 
132 DECODE_OPERAND_REG(SReg_32)
133 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
134 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
135 DECODE_OPERAND_REG(SRegOrLds_32)
136 DECODE_OPERAND_REG(SReg_64)
137 DECODE_OPERAND_REG(SReg_64_XEXEC)
138 DECODE_OPERAND_REG(SReg_128)
139 DECODE_OPERAND_REG(SReg_256)
140 DECODE_OPERAND_REG(SReg_512)
141 
142 DECODE_OPERAND_REG(AGPR_32)
143 DECODE_OPERAND_REG(AReg_64)
144 DECODE_OPERAND_REG(AReg_128)
145 DECODE_OPERAND_REG(AReg_256)
146 DECODE_OPERAND_REG(AReg_512)
147 DECODE_OPERAND_REG(AReg_1024)
148 DECODE_OPERAND_REG(AV_32)
149 DECODE_OPERAND_REG(AV_64)
150 DECODE_OPERAND_REG(AV_128)
151 DECODE_OPERAND_REG(AVDst_128)
152 DECODE_OPERAND_REG(AVDst_512)
153 
154 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
155                                          uint64_t Addr,
156                                          const MCDisassembler *Decoder) {
157   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
158   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
159 }
160 
161 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
162                                            uint64_t Addr,
163                                            const MCDisassembler *Decoder) {
164   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
165   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
166 }
167 
168 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
169                                            uint64_t Addr,
170                                            const MCDisassembler *Decoder) {
171   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
172   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
173 }
174 
175 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
176                                         uint64_t Addr,
177                                         const MCDisassembler *Decoder) {
178   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
179   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
180 }
181 
182 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
183                                         uint64_t Addr,
184                                         const MCDisassembler *Decoder) {
185   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
186   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
187 }
188 
189 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
190                                           uint64_t Addr,
191                                           const MCDisassembler *Decoder) {
192   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
193   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
194 }
195 
196 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
197                                            uint64_t Addr,
198                                            const MCDisassembler *Decoder) {
199   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
200   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
201 }
202 
203 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
204                                            uint64_t Addr,
205                                            const MCDisassembler *Decoder) {
206   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
207   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
208 }
209 
210 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
211                                            uint64_t Addr,
212                                            const MCDisassembler *Decoder) {
213   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
214   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
215 }
216 
217 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
218                                             uint64_t Addr,
219                                             const MCDisassembler *Decoder) {
220   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
221   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
222 }
223 
224 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
225                                           uint64_t Addr,
226                                           const MCDisassembler *Decoder) {
227   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
228   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
229 }
230 
231 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
232                                            uint64_t Addr,
233                                            const MCDisassembler *Decoder) {
234   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
235   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
236 }
237 
238 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
239                                            uint64_t Addr,
240                                            const MCDisassembler *Decoder) {
241   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
242   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
243 }
244 
245 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
246                                            uint64_t Addr,
247                                            const MCDisassembler *Decoder) {
248   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
249   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
250 }
251 
252 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
253                                             uint64_t Addr,
254                                             const MCDisassembler *Decoder) {
255   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
256   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
257 }
258 
259 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
260                                           uint64_t Addr,
261                                           const MCDisassembler *Decoder) {
262   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
263   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
264 }
265 
266 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
267                                           uint64_t Addr,
268                                           const MCDisassembler *Decoder) {
269   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
270   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
271 }
272 
273 static DecodeStatus
274 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
275                              const MCDisassembler *Decoder) {
276   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
277   return addOperand(
278       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
279 }
280 
281 static DecodeStatus
282 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
283                              const MCDisassembler *Decoder) {
284   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
285   return addOperand(
286       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
287 }
288 
289 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
290                           const MCRegisterInfo *MRI) {
291   if (OpIdx < 0)
292     return false;
293 
294   const MCOperand &Op = Inst.getOperand(OpIdx);
295   if (!Op.isReg())
296     return false;
297 
298   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
299   auto Reg = Sub ? Sub : Op.getReg();
300   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
301 }
302 
303 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
304                                              AMDGPUDisassembler::OpWidthTy Opw,
305                                              const MCDisassembler *Decoder) {
306   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
307   if (!DAsm->isGFX90A()) {
308     Imm &= 511;
309   } else {
310     // If atomic has both vdata and vdst their register classes are tied.
311     // The bit is decoded along with the vdst, first operand. We need to
312     // change register class to AGPR if vdst was AGPR.
313     // If a DS instruction has both data0 and data1 their register classes
314     // are also tied.
315     unsigned Opc = Inst.getOpcode();
316     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
317     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
318                                                         : AMDGPU::OpName::vdata;
319     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
320     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
321     if ((int)Inst.getNumOperands() == DataIdx) {
322       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
323       if (IsAGPROperand(Inst, DstIdx, MRI))
324         Imm |= 512;
325     }
326 
327     if (TSFlags & SIInstrFlags::DS) {
328       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
329       if ((int)Inst.getNumOperands() == Data2Idx &&
330           IsAGPROperand(Inst, DataIdx, MRI))
331         Imm |= 512;
332     }
333   }
334   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
335 }
336 
337 static DecodeStatus
338 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
339                              const MCDisassembler *Decoder) {
340   return decodeOperand_AVLdSt_Any(Inst, Imm,
341                                   AMDGPUDisassembler::OPW32, Decoder);
342 }
343 
344 static DecodeStatus
345 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
346                              const MCDisassembler *Decoder) {
347   return decodeOperand_AVLdSt_Any(Inst, Imm,
348                                   AMDGPUDisassembler::OPW64, Decoder);
349 }
350 
351 static DecodeStatus
352 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
353                              const MCDisassembler *Decoder) {
354   return decodeOperand_AVLdSt_Any(Inst, Imm,
355                                   AMDGPUDisassembler::OPW96, Decoder);
356 }
357 
358 static DecodeStatus
359 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
360                               const MCDisassembler *Decoder) {
361   return decodeOperand_AVLdSt_Any(Inst, Imm,
362                                   AMDGPUDisassembler::OPW128, Decoder);
363 }
364 
365 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
366                                           uint64_t Addr,
367                                           const MCDisassembler *Decoder) {
368   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
369   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
370 }
371 
372 #define DECODE_SDWA(DecName) \
373 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
374 
375 DECODE_SDWA(Src32)
376 DECODE_SDWA(Src16)
377 DECODE_SDWA(VopcDst)
378 
379 #include "AMDGPUGenDisassemblerTables.inc"
380 
381 //===----------------------------------------------------------------------===//
382 //
383 //===----------------------------------------------------------------------===//
384 
385 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
386   assert(Bytes.size() >= sizeof(T));
387   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
388   Bytes = Bytes.slice(sizeof(T));
389   return Res;
390 }
391 
392 // The disassembler is greedy, so we need to check FI operand value to
393 // not parse a dpp if the correct literal is not set. For dpp16 the
394 // autogenerated decoder checks the dpp literal
395 static bool isValidDPP8(const MCInst &MI) {
396   using namespace llvm::AMDGPU::DPP;
397   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
398   assert(FiIdx != -1);
399   if ((unsigned)FiIdx >= MI.getNumOperands())
400     return false;
401   unsigned Fi = MI.getOperand(FiIdx).getImm();
402   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
403 }
404 
405 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
406                                                 ArrayRef<uint8_t> Bytes_,
407                                                 uint64_t Address,
408                                                 raw_ostream &CS) const {
409   CommentStream = &CS;
410   bool IsSDWA = false;
411 
412   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
413   Bytes = Bytes_.slice(0, MaxInstBytesNum);
414 
415   DecodeStatus Res = MCDisassembler::Fail;
416   do {
417     // ToDo: better to switch encoding length using some bit predicate
418     // but it is unknown yet, so try all we can
419 
420     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
421     // encodings
422     if (Bytes.size() >= 8) {
423       const uint64_t QW = eatBytes<uint64_t>(Bytes);
424 
425       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
426         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
427         if (Res) {
428           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
429               == -1)
430             break;
431           if (convertDPP8Inst(MI) == MCDisassembler::Success)
432             break;
433           MI = MCInst(); // clear
434         }
435       }
436 
437       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
438       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
439         break;
440 
441       MI = MCInst(); // clear
442 
443       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
444       if (Res) break;
445 
446       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
447       if (Res) { IsSDWA = true;  break; }
448 
449       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
450       if (Res) { IsSDWA = true;  break; }
451 
452       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
453       if (Res) { IsSDWA = true;  break; }
454 
455       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
456         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
457         if (Res)
458           break;
459       }
460 
461       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
462       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
463       // table first so we print the correct name.
464       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
465         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
466         if (Res)
467           break;
468       }
469     }
470 
471     // Reinitialize Bytes as DPP64 could have eaten too much
472     Bytes = Bytes_.slice(0, MaxInstBytesNum);
473 
474     // Try decode 32-bit instruction
475     if (Bytes.size() < 4) break;
476     const uint32_t DW = eatBytes<uint32_t>(Bytes);
477     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
478     if (Res) break;
479 
480     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
481     if (Res) break;
482 
483     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
484     if (Res) break;
485 
486     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
487       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
488       if (Res)
489         break;
490     }
491 
492     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
493       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
494       if (Res) break;
495     }
496 
497     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
498     if (Res) break;
499 
500     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
501     if (Res) break;
502 
503     if (Bytes.size() < 4) break;
504     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
505 
506     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
507       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
508       if (Res)
509         break;
510     }
511 
512     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
513     if (Res) break;
514 
515     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
516     if (Res) break;
517 
518     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
519     if (Res) break;
520 
521     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
522     if (Res) break;
523 
524     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
525   } while (false);
526 
527   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
528               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
529               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
530               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
531               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
532               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
533               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
534               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
535               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
536               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
537               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
538     // Insert dummy unused src2_modifiers.
539     insertNamedMCOperand(MI, MCOperand::createImm(0),
540                          AMDGPU::OpName::src2_modifiers);
541   }
542 
543   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
544           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
545     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
546                                              AMDGPU::OpName::cpol);
547     if (CPolPos != -1) {
548       unsigned CPol =
549           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
550               AMDGPU::CPol::GLC : 0;
551       if (MI.getNumOperands() <= (unsigned)CPolPos) {
552         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
553                              AMDGPU::OpName::cpol);
554       } else if (CPol) {
555         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
556       }
557     }
558   }
559 
560   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
561               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
562              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
563     // GFX90A lost TFE, its place is occupied by ACC.
564     int TFEOpIdx =
565         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
566     if (TFEOpIdx != -1) {
567       auto TFEIter = MI.begin();
568       std::advance(TFEIter, TFEOpIdx);
569       MI.insert(TFEIter, MCOperand::createImm(0));
570     }
571   }
572 
573   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
574               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
575     int SWZOpIdx =
576         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
577     if (SWZOpIdx != -1) {
578       auto SWZIter = MI.begin();
579       std::advance(SWZIter, SWZOpIdx);
580       MI.insert(SWZIter, MCOperand::createImm(0));
581     }
582   }
583 
584   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
585     int VAddr0Idx =
586         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
587     int RsrcIdx =
588         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
589     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
590     if (VAddr0Idx >= 0 && NSAArgs > 0) {
591       unsigned NSAWords = (NSAArgs + 3) / 4;
592       if (Bytes.size() < 4 * NSAWords) {
593         Res = MCDisassembler::Fail;
594       } else {
595         for (unsigned i = 0; i < NSAArgs; ++i) {
596           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
597                     decodeOperand_VGPR_32(Bytes[i]));
598         }
599         Bytes = Bytes.slice(4 * NSAWords);
600       }
601     }
602 
603     if (Res)
604       Res = convertMIMGInst(MI);
605   }
606 
607   if (Res && IsSDWA)
608     Res = convertSDWAInst(MI);
609 
610   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
611                                               AMDGPU::OpName::vdst_in);
612   if (VDstIn_Idx != -1) {
613     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
614                            MCOI::OperandConstraint::TIED_TO);
615     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
616          !MI.getOperand(VDstIn_Idx).isReg() ||
617          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
618       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
619         MI.erase(&MI.getOperand(VDstIn_Idx));
620       insertNamedMCOperand(MI,
621         MCOperand::createReg(MI.getOperand(Tied).getReg()),
622         AMDGPU::OpName::vdst_in);
623     }
624   }
625 
626   int ImmLitIdx =
627       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
628   if (Res && ImmLitIdx != -1)
629     Res = convertFMAanyK(MI, ImmLitIdx);
630 
631   // if the opcode was not recognized we'll assume a Size of 4 bytes
632   // (unless there are fewer bytes left)
633   Size = Res ? (MaxInstBytesNum - Bytes.size())
634              : std::min((size_t)4, Bytes_.size());
635   return Res;
636 }
637 
638 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
639   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
640       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
641     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
642       // VOPC - insert clamp
643       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
644   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
645     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
646     if (SDst != -1) {
647       // VOPC - insert VCC register as sdst
648       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
649                            AMDGPU::OpName::sdst);
650     } else {
651       // VOP1/2 - insert omod if present in instruction
652       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
653     }
654   }
655   return MCDisassembler::Success;
656 }
657 
658 // We must check FI == literal to reject not genuine dpp8 insts, and we must
659 // first add optional MI operands to check FI
660 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
661   unsigned Opc = MI.getOpcode();
662   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
663 
664   // Insert dummy unused src modifiers.
665   if (MI.getNumOperands() < DescNumOps &&
666       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
667     insertNamedMCOperand(MI, MCOperand::createImm(0),
668                          AMDGPU::OpName::src0_modifiers);
669 
670   if (MI.getNumOperands() < DescNumOps &&
671       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
672     insertNamedMCOperand(MI, MCOperand::createImm(0),
673                          AMDGPU::OpName::src1_modifiers);
674 
675   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
676 }
677 
678 // Note that before gfx10, the MIMG encoding provided no information about
679 // VADDR size. Consequently, decoded instructions always show address as if it
680 // has 1 dword, which could be not really so.
681 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
682 
683   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
684                                            AMDGPU::OpName::vdst);
685 
686   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
687                                             AMDGPU::OpName::vdata);
688   int VAddr0Idx =
689       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
690   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
691                                             AMDGPU::OpName::dmask);
692 
693   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
694                                             AMDGPU::OpName::tfe);
695   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
696                                             AMDGPU::OpName::d16);
697 
698   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
699   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
700       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
701 
702   assert(VDataIdx != -1);
703   if (BaseOpcode->BVH) {
704     // Add A16 operand for intersect_ray instructions
705     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
706       addOperand(MI, MCOperand::createImm(1));
707     }
708     return MCDisassembler::Success;
709   }
710 
711   bool IsAtomic = (VDstIdx != -1);
712   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
713   bool IsNSA = false;
714   unsigned AddrSize = Info->VAddrDwords;
715 
716   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
717     unsigned DimIdx =
718         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
719     int A16Idx =
720         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
721     const AMDGPU::MIMGDimInfo *Dim =
722         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
723     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
724 
725     AddrSize =
726         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
727 
728     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
729     if (!IsNSA) {
730       if (AddrSize > 8)
731         AddrSize = 16;
732     } else {
733       if (AddrSize > Info->VAddrDwords) {
734         // The NSA encoding does not contain enough operands for the combination
735         // of base opcode / dimension. Should this be an error?
736         return MCDisassembler::Success;
737       }
738     }
739   }
740 
741   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
742   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
743 
744   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
745   if (D16 && AMDGPU::hasPackedD16(STI)) {
746     DstSize = (DstSize + 1) / 2;
747   }
748 
749   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
750     DstSize += 1;
751 
752   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
753     return MCDisassembler::Success;
754 
755   int NewOpcode =
756       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
757   if (NewOpcode == -1)
758     return MCDisassembler::Success;
759 
760   // Widen the register to the correct number of enabled channels.
761   unsigned NewVdata = AMDGPU::NoRegister;
762   if (DstSize != Info->VDataDwords) {
763     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
764 
765     // Get first subregister of VData
766     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
767     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
768     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
769 
770     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
771                                        &MRI.getRegClass(DataRCID));
772     if (NewVdata == AMDGPU::NoRegister) {
773       // It's possible to encode this such that the low register + enabled
774       // components exceeds the register count.
775       return MCDisassembler::Success;
776     }
777   }
778 
779   unsigned NewVAddr0 = AMDGPU::NoRegister;
780   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
781       AddrSize != Info->VAddrDwords) {
782     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
783     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
784     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
785 
786     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
787     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
788                                         &MRI.getRegClass(AddrRCID));
789     if (NewVAddr0 == AMDGPU::NoRegister)
790       return MCDisassembler::Success;
791   }
792 
793   MI.setOpcode(NewOpcode);
794 
795   if (NewVdata != AMDGPU::NoRegister) {
796     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
797 
798     if (IsAtomic) {
799       // Atomic operations have an additional operand (a copy of data)
800       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
801     }
802   }
803 
804   if (NewVAddr0 != AMDGPU::NoRegister) {
805     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
806   } else if (IsNSA) {
807     assert(AddrSize <= Info->VAddrDwords);
808     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
809              MI.begin() + VAddr0Idx + Info->VAddrDwords);
810   }
811 
812   return MCDisassembler::Success;
813 }
814 
815 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
816                                                 int ImmLitIdx) const {
817   assert(HasLiteral && "Should have decoded a literal");
818   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
819   unsigned DescNumOps = Desc.getNumOperands();
820   assert(DescNumOps == MI.getNumOperands());
821   for (unsigned I = 0; I < DescNumOps; ++I) {
822     auto &Op = MI.getOperand(I);
823     auto OpType = Desc.OpInfo[I].OperandType;
824     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
825                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
826     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
827         IsDeferredOp)
828       Op.setImm(Literal);
829   }
830   return MCDisassembler::Success;
831 }
832 
833 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
834   return getContext().getRegisterInfo()->
835     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
836 }
837 
838 inline
839 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
840                                          const Twine& ErrMsg) const {
841   *CommentStream << "Error: " + ErrMsg;
842 
843   // ToDo: add support for error operands to MCInst.h
844   // return MCOperand::createError(V);
845   return MCOperand();
846 }
847 
848 inline
849 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
850   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
851 }
852 
853 inline
854 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
855                                                unsigned Val) const {
856   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
857   if (Val >= RegCl.getNumRegs())
858     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
859                            ": unknown register " + Twine(Val));
860   return createRegOperand(RegCl.getRegister(Val));
861 }
862 
863 inline
864 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
865                                                 unsigned Val) const {
866   // ToDo: SI/CI have 104 SGPRs, VI - 102
867   // Valery: here we accepting as much as we can, let assembler sort it out
868   int shift = 0;
869   switch (SRegClassID) {
870   case AMDGPU::SGPR_32RegClassID:
871   case AMDGPU::TTMP_32RegClassID:
872     break;
873   case AMDGPU::SGPR_64RegClassID:
874   case AMDGPU::TTMP_64RegClassID:
875     shift = 1;
876     break;
877   case AMDGPU::SGPR_128RegClassID:
878   case AMDGPU::TTMP_128RegClassID:
879   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
880   // this bundle?
881   case AMDGPU::SGPR_256RegClassID:
882   case AMDGPU::TTMP_256RegClassID:
883     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
884   // this bundle?
885   case AMDGPU::SGPR_512RegClassID:
886   case AMDGPU::TTMP_512RegClassID:
887     shift = 2;
888     break;
889   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
890   // this bundle?
891   default:
892     llvm_unreachable("unhandled register class");
893   }
894 
895   if (Val % (1 << shift)) {
896     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
897                    << ": scalar reg isn't aligned " << Val;
898   }
899 
900   return createRegOperand(SRegClassID, Val >> shift);
901 }
902 
903 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
904   return decodeSrcOp(OPW32, Val);
905 }
906 
907 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
908   return decodeSrcOp(OPW64, Val);
909 }
910 
911 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
912   return decodeSrcOp(OPW128, Val);
913 }
914 
915 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
916   return decodeSrcOp(OPW16, Val);
917 }
918 
919 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
920   return decodeSrcOp(OPWV216, Val);
921 }
922 
923 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
924   return decodeSrcOp(OPWV232, Val);
925 }
926 
927 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
928   // Some instructions have operand restrictions beyond what the encoding
929   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
930   // high bit.
931   Val &= 255;
932 
933   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
934 }
935 
936 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
937   return decodeSrcOp(OPW32, Val);
938 }
939 
940 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
941   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
942 }
943 
944 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
945   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
946 }
947 
948 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
949   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
950 }
951 
952 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
953   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
954 }
955 
956 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
957   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
958 }
959 
960 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
961   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
962 }
963 
964 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
965   return decodeSrcOp(OPW32, Val);
966 }
967 
968 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
969   return decodeSrcOp(OPW64, Val);
970 }
971 
972 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
973   return decodeSrcOp(OPW128, Val);
974 }
975 
976 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
977   using namespace AMDGPU::EncValues;
978   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
979   return decodeSrcOp(OPW128, Val | IS_VGPR);
980 }
981 
982 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
983   using namespace AMDGPU::EncValues;
984   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
985   return decodeSrcOp(OPW512, Val | IS_VGPR);
986 }
987 
988 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
989   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
990 }
991 
992 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
993   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
994 }
995 
996 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
997   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
998 }
999 
1000 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1001   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1002 }
1003 
1004 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1005   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1006 }
1007 
1008 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1009   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1010 }
1011 
1012 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1013   // table-gen generated disassembler doesn't care about operand types
1014   // leaving only registry class so SSrc_32 operand turns into SReg_32
1015   // and therefore we accept immediates and literals here as well
1016   return decodeSrcOp(OPW32, Val);
1017 }
1018 
1019 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1020   unsigned Val) const {
1021   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1022   return decodeOperand_SReg_32(Val);
1023 }
1024 
1025 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1026   unsigned Val) const {
1027   // SReg_32_XM0 is SReg_32 without EXEC_HI
1028   return decodeOperand_SReg_32(Val);
1029 }
1030 
1031 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1032   // table-gen generated disassembler doesn't care about operand types
1033   // leaving only registry class so SSrc_32 operand turns into SReg_32
1034   // and therefore we accept immediates and literals here as well
1035   return decodeSrcOp(OPW32, Val);
1036 }
1037 
1038 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1039   return decodeSrcOp(OPW64, Val);
1040 }
1041 
1042 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1043   return decodeSrcOp(OPW64, Val);
1044 }
1045 
1046 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1047   return decodeSrcOp(OPW128, Val);
1048 }
1049 
1050 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1051   return decodeDstOp(OPW256, Val);
1052 }
1053 
1054 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1055   return decodeDstOp(OPW512, Val);
1056 }
1057 
1058 // Decode Literals for insts which always have a literal in the encoding
1059 MCOperand
1060 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1061   if (HasLiteral) {
1062     if (Literal != Val)
1063       return errOperand(Val, "More than one unique literal is illegal");
1064   }
1065   HasLiteral = true;
1066   Literal = Val;
1067   return MCOperand::createImm(Literal);
1068 }
1069 
1070 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1071   // For now all literal constants are supposed to be unsigned integer
1072   // ToDo: deal with signed/unsigned 64-bit integer constants
1073   // ToDo: deal with float/double constants
1074   if (!HasLiteral) {
1075     if (Bytes.size() < 4) {
1076       return errOperand(0, "cannot read literal, inst bytes left " +
1077                         Twine(Bytes.size()));
1078     }
1079     HasLiteral = true;
1080     Literal = eatBytes<uint32_t>(Bytes);
1081   }
1082   return MCOperand::createImm(Literal);
1083 }
1084 
1085 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1086   using namespace AMDGPU::EncValues;
1087 
1088   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1089   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1090     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1091     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1092       // Cast prevents negative overflow.
1093 }
1094 
1095 static int64_t getInlineImmVal32(unsigned Imm) {
1096   switch (Imm) {
1097   case 240:
1098     return FloatToBits(0.5f);
1099   case 241:
1100     return FloatToBits(-0.5f);
1101   case 242:
1102     return FloatToBits(1.0f);
1103   case 243:
1104     return FloatToBits(-1.0f);
1105   case 244:
1106     return FloatToBits(2.0f);
1107   case 245:
1108     return FloatToBits(-2.0f);
1109   case 246:
1110     return FloatToBits(4.0f);
1111   case 247:
1112     return FloatToBits(-4.0f);
1113   case 248: // 1 / (2 * PI)
1114     return 0x3e22f983;
1115   default:
1116     llvm_unreachable("invalid fp inline imm");
1117   }
1118 }
1119 
1120 static int64_t getInlineImmVal64(unsigned Imm) {
1121   switch (Imm) {
1122   case 240:
1123     return DoubleToBits(0.5);
1124   case 241:
1125     return DoubleToBits(-0.5);
1126   case 242:
1127     return DoubleToBits(1.0);
1128   case 243:
1129     return DoubleToBits(-1.0);
1130   case 244:
1131     return DoubleToBits(2.0);
1132   case 245:
1133     return DoubleToBits(-2.0);
1134   case 246:
1135     return DoubleToBits(4.0);
1136   case 247:
1137     return DoubleToBits(-4.0);
1138   case 248: // 1 / (2 * PI)
1139     return 0x3fc45f306dc9c882;
1140   default:
1141     llvm_unreachable("invalid fp inline imm");
1142   }
1143 }
1144 
1145 static int64_t getInlineImmVal16(unsigned Imm) {
1146   switch (Imm) {
1147   case 240:
1148     return 0x3800;
1149   case 241:
1150     return 0xB800;
1151   case 242:
1152     return 0x3C00;
1153   case 243:
1154     return 0xBC00;
1155   case 244:
1156     return 0x4000;
1157   case 245:
1158     return 0xC000;
1159   case 246:
1160     return 0x4400;
1161   case 247:
1162     return 0xC400;
1163   case 248: // 1 / (2 * PI)
1164     return 0x3118;
1165   default:
1166     llvm_unreachable("invalid fp inline imm");
1167   }
1168 }
1169 
1170 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1171   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1172       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1173 
1174   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1175   switch (Width) {
1176   case OPW32:
1177   case OPW128: // splat constants
1178   case OPW512:
1179   case OPW1024:
1180   case OPWV232:
1181     return MCOperand::createImm(getInlineImmVal32(Imm));
1182   case OPW64:
1183   case OPW256:
1184     return MCOperand::createImm(getInlineImmVal64(Imm));
1185   case OPW16:
1186   case OPWV216:
1187     return MCOperand::createImm(getInlineImmVal16(Imm));
1188   default:
1189     llvm_unreachable("implement me");
1190   }
1191 }
1192 
1193 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1194   using namespace AMDGPU;
1195 
1196   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1197   switch (Width) {
1198   default: // fall
1199   case OPW32:
1200   case OPW16:
1201   case OPWV216:
1202     return VGPR_32RegClassID;
1203   case OPW64:
1204   case OPWV232: return VReg_64RegClassID;
1205   case OPW96: return VReg_96RegClassID;
1206   case OPW128: return VReg_128RegClassID;
1207   case OPW160: return VReg_160RegClassID;
1208   case OPW256: return VReg_256RegClassID;
1209   case OPW512: return VReg_512RegClassID;
1210   case OPW1024: return VReg_1024RegClassID;
1211   }
1212 }
1213 
1214 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1215   using namespace AMDGPU;
1216 
1217   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1218   switch (Width) {
1219   default: // fall
1220   case OPW32:
1221   case OPW16:
1222   case OPWV216:
1223     return AGPR_32RegClassID;
1224   case OPW64:
1225   case OPWV232: return AReg_64RegClassID;
1226   case OPW96: return AReg_96RegClassID;
1227   case OPW128: return AReg_128RegClassID;
1228   case OPW160: return AReg_160RegClassID;
1229   case OPW256: return AReg_256RegClassID;
1230   case OPW512: return AReg_512RegClassID;
1231   case OPW1024: return AReg_1024RegClassID;
1232   }
1233 }
1234 
1235 
1236 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1237   using namespace AMDGPU;
1238 
1239   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1240   switch (Width) {
1241   default: // fall
1242   case OPW32:
1243   case OPW16:
1244   case OPWV216:
1245     return SGPR_32RegClassID;
1246   case OPW64:
1247   case OPWV232: return SGPR_64RegClassID;
1248   case OPW96: return SGPR_96RegClassID;
1249   case OPW128: return SGPR_128RegClassID;
1250   case OPW160: return SGPR_160RegClassID;
1251   case OPW256: return SGPR_256RegClassID;
1252   case OPW512: return SGPR_512RegClassID;
1253   }
1254 }
1255 
1256 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1257   using namespace AMDGPU;
1258 
1259   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1260   switch (Width) {
1261   default: // fall
1262   case OPW32:
1263   case OPW16:
1264   case OPWV216:
1265     return TTMP_32RegClassID;
1266   case OPW64:
1267   case OPWV232: return TTMP_64RegClassID;
1268   case OPW128: return TTMP_128RegClassID;
1269   case OPW256: return TTMP_256RegClassID;
1270   case OPW512: return TTMP_512RegClassID;
1271   }
1272 }
1273 
1274 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1275   using namespace AMDGPU::EncValues;
1276 
1277   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1278   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1279 
1280   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1281 }
1282 
1283 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1284                                           bool MandatoryLiteral) const {
1285   using namespace AMDGPU::EncValues;
1286 
1287   assert(Val < 1024); // enum10
1288 
1289   bool IsAGPR = Val & 512;
1290   Val &= 511;
1291 
1292   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1293     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1294                                    : getVgprClassId(Width), Val - VGPR_MIN);
1295   }
1296   if (Val <= SGPR_MAX) {
1297     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1298     static_assert(SGPR_MIN == 0, "");
1299     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1300   }
1301 
1302   int TTmpIdx = getTTmpIdx(Val);
1303   if (TTmpIdx >= 0) {
1304     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1305   }
1306 
1307   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1308     return decodeIntImmed(Val);
1309 
1310   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1311     return decodeFPImmed(Width, Val);
1312 
1313   if (Val == LITERAL_CONST) {
1314     if (MandatoryLiteral)
1315       // Keep a sentinel value for deferred setting
1316       return MCOperand::createImm(LITERAL_CONST);
1317     else
1318       return decodeLiteralConstant();
1319   }
1320 
1321   switch (Width) {
1322   case OPW32:
1323   case OPW16:
1324   case OPWV216:
1325     return decodeSpecialReg32(Val);
1326   case OPW64:
1327   case OPWV232:
1328     return decodeSpecialReg64(Val);
1329   default:
1330     llvm_unreachable("unexpected immediate type");
1331   }
1332 }
1333 
1334 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1335   using namespace AMDGPU::EncValues;
1336 
1337   assert(Val < 128);
1338   assert(Width == OPW256 || Width == OPW512);
1339 
1340   if (Val <= SGPR_MAX) {
1341     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1342     static_assert(SGPR_MIN == 0, "");
1343     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1344   }
1345 
1346   int TTmpIdx = getTTmpIdx(Val);
1347   if (TTmpIdx >= 0) {
1348     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1349   }
1350 
1351   llvm_unreachable("unknown dst register");
1352 }
1353 
1354 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1355   using namespace AMDGPU;
1356 
1357   switch (Val) {
1358   case 102: return createRegOperand(FLAT_SCR_LO);
1359   case 103: return createRegOperand(FLAT_SCR_HI);
1360   case 104: return createRegOperand(XNACK_MASK_LO);
1361   case 105: return createRegOperand(XNACK_MASK_HI);
1362   case 106: return createRegOperand(VCC_LO);
1363   case 107: return createRegOperand(VCC_HI);
1364   case 108: return createRegOperand(TBA_LO);
1365   case 109: return createRegOperand(TBA_HI);
1366   case 110: return createRegOperand(TMA_LO);
1367   case 111: return createRegOperand(TMA_HI);
1368   case 124:
1369     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1370   case 125:
1371     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1372   case 126: return createRegOperand(EXEC_LO);
1373   case 127: return createRegOperand(EXEC_HI);
1374   case 235: return createRegOperand(SRC_SHARED_BASE);
1375   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1376   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1377   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1378   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1379   case 251: return createRegOperand(SRC_VCCZ);
1380   case 252: return createRegOperand(SRC_EXECZ);
1381   case 253: return createRegOperand(SRC_SCC);
1382   case 254: return createRegOperand(LDS_DIRECT);
1383   default: break;
1384   }
1385   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1386 }
1387 
1388 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1389   using namespace AMDGPU;
1390 
1391   switch (Val) {
1392   case 102: return createRegOperand(FLAT_SCR);
1393   case 104: return createRegOperand(XNACK_MASK);
1394   case 106: return createRegOperand(VCC);
1395   case 108: return createRegOperand(TBA);
1396   case 110: return createRegOperand(TMA);
1397   case 124:
1398     if (isGFX11Plus())
1399       return createRegOperand(SGPR_NULL);
1400     break;
1401   case 125:
1402     if (!isGFX11Plus())
1403       return createRegOperand(SGPR_NULL);
1404     break;
1405   case 126: return createRegOperand(EXEC);
1406   case 235: return createRegOperand(SRC_SHARED_BASE);
1407   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1408   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1409   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1410   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1411   case 251: return createRegOperand(SRC_VCCZ);
1412   case 252: return createRegOperand(SRC_EXECZ);
1413   case 253: return createRegOperand(SRC_SCC);
1414   default: break;
1415   }
1416   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1417 }
1418 
1419 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1420                                             const unsigned Val) const {
1421   using namespace AMDGPU::SDWA;
1422   using namespace AMDGPU::EncValues;
1423 
1424   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1425       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1426     // XXX: cast to int is needed to avoid stupid warning:
1427     // compare with unsigned is always true
1428     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1429         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1430       return createRegOperand(getVgprClassId(Width),
1431                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1432     }
1433     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1434         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1435                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1436       return createSRegOperand(getSgprClassId(Width),
1437                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1438     }
1439     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1440         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1441       return createSRegOperand(getTtmpClassId(Width),
1442                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1443     }
1444 
1445     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1446 
1447     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1448       return decodeIntImmed(SVal);
1449 
1450     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1451       return decodeFPImmed(Width, SVal);
1452 
1453     return decodeSpecialReg32(SVal);
1454   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1455     return createRegOperand(getVgprClassId(Width), Val);
1456   }
1457   llvm_unreachable("unsupported target");
1458 }
1459 
1460 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1461   return decodeSDWASrc(OPW16, Val);
1462 }
1463 
1464 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1465   return decodeSDWASrc(OPW32, Val);
1466 }
1467 
1468 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1469   using namespace AMDGPU::SDWA;
1470 
1471   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1472           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1473          "SDWAVopcDst should be present only on GFX9+");
1474 
1475   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1476 
1477   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1478     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1479 
1480     int TTmpIdx = getTTmpIdx(Val);
1481     if (TTmpIdx >= 0) {
1482       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1483       return createSRegOperand(TTmpClsId, TTmpIdx);
1484     } else if (Val > SGPR_MAX) {
1485       return IsWave64 ? decodeSpecialReg64(Val)
1486                       : decodeSpecialReg32(Val);
1487     } else {
1488       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1489     }
1490   } else {
1491     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1492   }
1493 }
1494 
1495 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1496   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1497     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1498 }
1499 
1500 bool AMDGPUDisassembler::isVI() const {
1501   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1502 }
1503 
1504 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1505 
1506 bool AMDGPUDisassembler::isGFX90A() const {
1507   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1508 }
1509 
1510 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1511 
1512 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1513 
1514 bool AMDGPUDisassembler::isGFX10Plus() const {
1515   return AMDGPU::isGFX10Plus(STI);
1516 }
1517 
1518 bool AMDGPUDisassembler::isGFX11() const {
1519   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1520 }
1521 
1522 bool AMDGPUDisassembler::isGFX11Plus() const {
1523   return AMDGPU::isGFX11Plus(STI);
1524 }
1525 
1526 
1527 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1528   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1529 }
1530 
1531 //===----------------------------------------------------------------------===//
1532 // AMDGPU specific symbol handling
1533 //===----------------------------------------------------------------------===//
1534 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1535   do {                                                                         \
1536     KdStream << Indent << DIRECTIVE " "                                        \
1537              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1538   } while (0)
1539 
1540 // NOLINTNEXTLINE(readability-identifier-naming)
1541 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1542     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1543   using namespace amdhsa;
1544   StringRef Indent = "\t";
1545 
1546   // We cannot accurately backward compute #VGPRs used from
1547   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1548   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1549   // simply calculate the inverse of what the assembler does.
1550 
1551   uint32_t GranulatedWorkitemVGPRCount =
1552       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1553       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1554 
1555   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1556                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1557 
1558   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1559 
1560   // We cannot backward compute values used to calculate
1561   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1562   // directives can't be computed:
1563   // .amdhsa_reserve_vcc
1564   // .amdhsa_reserve_flat_scratch
1565   // .amdhsa_reserve_xnack_mask
1566   // They take their respective default values if not specified in the assembly.
1567   //
1568   // GRANULATED_WAVEFRONT_SGPR_COUNT
1569   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1570   //
1571   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1572   // are set to 0. So while disassembling we consider that:
1573   //
1574   // GRANULATED_WAVEFRONT_SGPR_COUNT
1575   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1576   //
1577   // The disassembler cannot recover the original values of those 3 directives.
1578 
1579   uint32_t GranulatedWavefrontSGPRCount =
1580       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1581       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1582 
1583   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1584     return MCDisassembler::Fail;
1585 
1586   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1587                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1588 
1589   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1590   if (!hasArchitectedFlatScratch())
1591     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1592   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1593   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1594 
1595   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1596     return MCDisassembler::Fail;
1597 
1598   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1599                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1600   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1601                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1602   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1603                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1604   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1605                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1606 
1607   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1608     return MCDisassembler::Fail;
1609 
1610   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1611 
1612   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1613     return MCDisassembler::Fail;
1614 
1615   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1616 
1617   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1618     return MCDisassembler::Fail;
1619 
1620   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1621     return MCDisassembler::Fail;
1622 
1623   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1624 
1625   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1626     return MCDisassembler::Fail;
1627 
1628   if (isGFX10Plus()) {
1629     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1630                     COMPUTE_PGM_RSRC1_WGP_MODE);
1631     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1632     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1633   }
1634   return MCDisassembler::Success;
1635 }
1636 
1637 // NOLINTNEXTLINE(readability-identifier-naming)
1638 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1639     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1640   using namespace amdhsa;
1641   StringRef Indent = "\t";
1642   if (hasArchitectedFlatScratch())
1643     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1644                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1645   else
1646     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1647                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1648   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1649                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1650   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1651                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1652   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1653                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1654   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1655                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1656   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1657                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1658 
1659   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1660     return MCDisassembler::Fail;
1661 
1662   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1663     return MCDisassembler::Fail;
1664 
1665   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1666     return MCDisassembler::Fail;
1667 
1668   PRINT_DIRECTIVE(
1669       ".amdhsa_exception_fp_ieee_invalid_op",
1670       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1671   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1672                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1673   PRINT_DIRECTIVE(
1674       ".amdhsa_exception_fp_ieee_div_zero",
1675       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1676   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1677                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1678   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1679                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1680   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1681                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1682   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1683                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1684 
1685   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1686     return MCDisassembler::Fail;
1687 
1688   return MCDisassembler::Success;
1689 }
1690 
1691 #undef PRINT_DIRECTIVE
1692 
1693 MCDisassembler::DecodeStatus
1694 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1695     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1696     raw_string_ostream &KdStream) const {
1697 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1698   do {                                                                         \
1699     KdStream << Indent << DIRECTIVE " "                                        \
1700              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1701   } while (0)
1702 
1703   uint16_t TwoByteBuffer = 0;
1704   uint32_t FourByteBuffer = 0;
1705 
1706   StringRef ReservedBytes;
1707   StringRef Indent = "\t";
1708 
1709   assert(Bytes.size() == 64);
1710   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1711 
1712   switch (Cursor.tell()) {
1713   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1714     FourByteBuffer = DE.getU32(Cursor);
1715     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1716              << '\n';
1717     return MCDisassembler::Success;
1718 
1719   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1720     FourByteBuffer = DE.getU32(Cursor);
1721     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1722              << FourByteBuffer << '\n';
1723     return MCDisassembler::Success;
1724 
1725   case amdhsa::KERNARG_SIZE_OFFSET:
1726     FourByteBuffer = DE.getU32(Cursor);
1727     KdStream << Indent << ".amdhsa_kernarg_size "
1728              << FourByteBuffer << '\n';
1729     return MCDisassembler::Success;
1730 
1731   case amdhsa::RESERVED0_OFFSET:
1732     // 4 reserved bytes, must be 0.
1733     ReservedBytes = DE.getBytes(Cursor, 4);
1734     for (int I = 0; I < 4; ++I) {
1735       if (ReservedBytes[I] != 0) {
1736         return MCDisassembler::Fail;
1737       }
1738     }
1739     return MCDisassembler::Success;
1740 
1741   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1742     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1743     // So far no directive controls this for Code Object V3, so simply skip for
1744     // disassembly.
1745     DE.skip(Cursor, 8);
1746     return MCDisassembler::Success;
1747 
1748   case amdhsa::RESERVED1_OFFSET:
1749     // 20 reserved bytes, must be 0.
1750     ReservedBytes = DE.getBytes(Cursor, 20);
1751     for (int I = 0; I < 20; ++I) {
1752       if (ReservedBytes[I] != 0) {
1753         return MCDisassembler::Fail;
1754       }
1755     }
1756     return MCDisassembler::Success;
1757 
1758   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1759     // COMPUTE_PGM_RSRC3
1760     //  - Only set for GFX10, GFX6-9 have this to be 0.
1761     //  - Currently no directives directly control this.
1762     FourByteBuffer = DE.getU32(Cursor);
1763     if (!isGFX10Plus() && FourByteBuffer) {
1764       return MCDisassembler::Fail;
1765     }
1766     return MCDisassembler::Success;
1767 
1768   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1769     FourByteBuffer = DE.getU32(Cursor);
1770     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1771         MCDisassembler::Fail) {
1772       return MCDisassembler::Fail;
1773     }
1774     return MCDisassembler::Success;
1775 
1776   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1777     FourByteBuffer = DE.getU32(Cursor);
1778     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1779         MCDisassembler::Fail) {
1780       return MCDisassembler::Fail;
1781     }
1782     return MCDisassembler::Success;
1783 
1784   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1785     using namespace amdhsa;
1786     TwoByteBuffer = DE.getU16(Cursor);
1787 
1788     if (!hasArchitectedFlatScratch())
1789       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1790                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1791     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1792                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1793     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1794                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1795     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1796                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1797     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1798                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1799     if (!hasArchitectedFlatScratch())
1800       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1801                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1802     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1803                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1804 
1805     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1806       return MCDisassembler::Fail;
1807 
1808     // Reserved for GFX9
1809     if (isGFX9() &&
1810         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1811       return MCDisassembler::Fail;
1812     } else if (isGFX10Plus()) {
1813       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1814                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1815     }
1816 
1817     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1818       return MCDisassembler::Fail;
1819 
1820     return MCDisassembler::Success;
1821 
1822   case amdhsa::RESERVED2_OFFSET:
1823     // 6 bytes from here are reserved, must be 0.
1824     ReservedBytes = DE.getBytes(Cursor, 6);
1825     for (int I = 0; I < 6; ++I) {
1826       if (ReservedBytes[I] != 0)
1827         return MCDisassembler::Fail;
1828     }
1829     return MCDisassembler::Success;
1830 
1831   default:
1832     llvm_unreachable("Unhandled index. Case statements cover everything.");
1833     return MCDisassembler::Fail;
1834   }
1835 #undef PRINT_DIRECTIVE
1836 }
1837 
1838 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1839     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1840   // CP microcode requires the kernel descriptor to be 64 aligned.
1841   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1842     return MCDisassembler::Fail;
1843 
1844   std::string Kd;
1845   raw_string_ostream KdStream(Kd);
1846   KdStream << ".amdhsa_kernel " << KdName << '\n';
1847 
1848   DataExtractor::Cursor C(0);
1849   while (C && C.tell() < Bytes.size()) {
1850     MCDisassembler::DecodeStatus Status =
1851         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1852 
1853     cantFail(C.takeError());
1854 
1855     if (Status == MCDisassembler::Fail)
1856       return MCDisassembler::Fail;
1857   }
1858   KdStream << ".end_amdhsa_kernel\n";
1859   outs() << KdStream.str();
1860   return MCDisassembler::Success;
1861 }
1862 
1863 Optional<MCDisassembler::DecodeStatus>
1864 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1865                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1866                                   raw_ostream &CStream) const {
1867   // Right now only kernel descriptor needs to be handled.
1868   // We ignore all other symbols for target specific handling.
1869   // TODO:
1870   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1871   // Object V2 and V3 when symbols are marked protected.
1872 
1873   // amd_kernel_code_t for Code Object V2.
1874   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1875     Size = 256;
1876     return MCDisassembler::Fail;
1877   }
1878 
1879   // Code Object V3 kernel descriptors.
1880   StringRef Name = Symbol.Name;
1881   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1882     Size = 64; // Size = 64 regardless of success or failure.
1883     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1884   }
1885   return None;
1886 }
1887 
1888 //===----------------------------------------------------------------------===//
1889 // AMDGPUSymbolizer
1890 //===----------------------------------------------------------------------===//
1891 
1892 // Try to find symbol name for specified label
1893 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1894                                 raw_ostream &/*cStream*/, int64_t Value,
1895                                 uint64_t /*Address*/, bool IsBranch,
1896                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1897 
1898   if (!IsBranch) {
1899     return false;
1900   }
1901 
1902   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1903   if (!Symbols)
1904     return false;
1905 
1906   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1907     return Val.Addr == static_cast<uint64_t>(Value) &&
1908            Val.Type == ELF::STT_NOTYPE;
1909   });
1910   if (Result != Symbols->end()) {
1911     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1912     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1913     Inst.addOperand(MCOperand::createExpr(Add));
1914     return true;
1915   }
1916   // Add to list of referenced addresses, so caller can synthesize a label.
1917   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1918   return false;
1919 }
1920 
1921 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1922                                                        int64_t Value,
1923                                                        uint64_t Address) {
1924   llvm_unreachable("unimplemented");
1925 }
1926 
1927 //===----------------------------------------------------------------------===//
1928 // Initialization
1929 //===----------------------------------------------------------------------===//
1930 
1931 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1932                               LLVMOpInfoCallback /*GetOpInfo*/,
1933                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1934                               void *DisInfo,
1935                               MCContext *Ctx,
1936                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1937   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1938 }
1939 
1940 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1941                                                 const MCSubtargetInfo &STI,
1942                                                 MCContext &Ctx) {
1943   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1944 }
1945 
1946 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1947   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1948                                          createAMDGPUDisassembler);
1949   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1950                                        createAMDGPUSymbolizer);
1951 }
1952