xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 32aa35b50406165b395a5033daf2eacf57a439eb)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VRegOrLds_32)
123 DECODE_OPERAND_REG(VS_32)
124 DECODE_OPERAND_REG(VS_64)
125 DECODE_OPERAND_REG(VS_128)
126 
127 DECODE_OPERAND_REG(VReg_64)
128 DECODE_OPERAND_REG(VReg_96)
129 DECODE_OPERAND_REG(VReg_128)
130 DECODE_OPERAND_REG(VReg_256)
131 DECODE_OPERAND_REG(VReg_512)
132 DECODE_OPERAND_REG(VReg_1024)
133 
134 DECODE_OPERAND_REG(SReg_32)
135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
137 DECODE_OPERAND_REG(SRegOrLds_32)
138 DECODE_OPERAND_REG(SReg_64)
139 DECODE_OPERAND_REG(SReg_64_XEXEC)
140 DECODE_OPERAND_REG(SReg_128)
141 DECODE_OPERAND_REG(SReg_256)
142 DECODE_OPERAND_REG(SReg_512)
143 
144 DECODE_OPERAND_REG(AGPR_32)
145 DECODE_OPERAND_REG(AReg_64)
146 DECODE_OPERAND_REG(AReg_128)
147 DECODE_OPERAND_REG(AReg_256)
148 DECODE_OPERAND_REG(AReg_512)
149 DECODE_OPERAND_REG(AReg_1024)
150 DECODE_OPERAND_REG(AV_32)
151 DECODE_OPERAND_REG(AV_64)
152 DECODE_OPERAND_REG(AV_128)
153 DECODE_OPERAND_REG(AVDst_128)
154 DECODE_OPERAND_REG(AVDst_512)
155 
156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
157                                          uint64_t Addr,
158                                          const MCDisassembler *Decoder) {
159   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
161 }
162 
163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
164                                            uint64_t Addr,
165                                            const MCDisassembler *Decoder) {
166   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
167   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
168 }
169 
170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
171                                            uint64_t Addr,
172                                            const MCDisassembler *Decoder) {
173   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
175 }
176 
177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
178                                         uint64_t Addr,
179                                         const MCDisassembler *Decoder) {
180   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
182 }
183 
184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
185                                         uint64_t Addr,
186                                         const MCDisassembler *Decoder) {
187   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190 
191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
192                                           uint64_t Addr,
193                                           const MCDisassembler *Decoder) {
194   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
195   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
196 }
197 
198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
199                                            uint64_t Addr,
200                                            const MCDisassembler *Decoder) {
201   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
202   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
203 }
204 
205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
206                                            uint64_t Addr,
207                                            const MCDisassembler *Decoder) {
208   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
209   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
210 }
211 
212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
213                                            uint64_t Addr,
214                                            const MCDisassembler *Decoder) {
215   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218 
219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
220                                             uint64_t Addr,
221                                             const MCDisassembler *Decoder) {
222   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
223   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
224 }
225 
226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
227                                           uint64_t Addr,
228                                           const MCDisassembler *Decoder) {
229   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
231 }
232 
233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
234                                            uint64_t Addr,
235                                            const MCDisassembler *Decoder) {
236   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
237   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
238 }
239 
240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
241                                            uint64_t Addr,
242                                            const MCDisassembler *Decoder) {
243   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
245 }
246 
247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
248                                            uint64_t Addr,
249                                            const MCDisassembler *Decoder) {
250   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
251   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
252 }
253 
254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
255                                             uint64_t Addr,
256                                             const MCDisassembler *Decoder) {
257   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
258   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
259 }
260 
261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
262                                           uint64_t Addr,
263                                           const MCDisassembler *Decoder) {
264   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
265   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
266 }
267 
268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
269                                           uint64_t Addr,
270                                           const MCDisassembler *Decoder) {
271   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
272   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
273 }
274 
275 static DecodeStatus
276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
277                              const MCDisassembler *Decoder) {
278   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
279   return addOperand(
280       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
281 }
282 
283 static DecodeStatus
284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
285                              const MCDisassembler *Decoder) {
286   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(
288       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
289 }
290 
291 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
292                                           uint64_t Addr, const void *Decoder) {
293   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
294   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
295 }
296 
297 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
298                           const MCRegisterInfo *MRI) {
299   if (OpIdx < 0)
300     return false;
301 
302   const MCOperand &Op = Inst.getOperand(OpIdx);
303   if (!Op.isReg())
304     return false;
305 
306   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
307   auto Reg = Sub ? Sub : Op.getReg();
308   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
309 }
310 
311 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
312                                              AMDGPUDisassembler::OpWidthTy Opw,
313                                              const MCDisassembler *Decoder) {
314   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
315   if (!DAsm->isGFX90A()) {
316     Imm &= 511;
317   } else {
318     // If atomic has both vdata and vdst their register classes are tied.
319     // The bit is decoded along with the vdst, first operand. We need to
320     // change register class to AGPR if vdst was AGPR.
321     // If a DS instruction has both data0 and data1 their register classes
322     // are also tied.
323     unsigned Opc = Inst.getOpcode();
324     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
325     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
326                                                         : AMDGPU::OpName::vdata;
327     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
328     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
329     if ((int)Inst.getNumOperands() == DataIdx) {
330       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
331       if (IsAGPROperand(Inst, DstIdx, MRI))
332         Imm |= 512;
333     }
334 
335     if (TSFlags & SIInstrFlags::DS) {
336       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
337       if ((int)Inst.getNumOperands() == Data2Idx &&
338           IsAGPROperand(Inst, DataIdx, MRI))
339         Imm |= 512;
340     }
341   }
342   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
343 }
344 
345 static DecodeStatus
346 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
347                              const MCDisassembler *Decoder) {
348   return decodeOperand_AVLdSt_Any(Inst, Imm,
349                                   AMDGPUDisassembler::OPW32, Decoder);
350 }
351 
352 static DecodeStatus
353 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
354                              const MCDisassembler *Decoder) {
355   return decodeOperand_AVLdSt_Any(Inst, Imm,
356                                   AMDGPUDisassembler::OPW64, Decoder);
357 }
358 
359 static DecodeStatus
360 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
361                              const MCDisassembler *Decoder) {
362   return decodeOperand_AVLdSt_Any(Inst, Imm,
363                                   AMDGPUDisassembler::OPW96, Decoder);
364 }
365 
366 static DecodeStatus
367 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
368                               const MCDisassembler *Decoder) {
369   return decodeOperand_AVLdSt_Any(Inst, Imm,
370                                   AMDGPUDisassembler::OPW128, Decoder);
371 }
372 
373 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
374                                           uint64_t Addr,
375                                           const MCDisassembler *Decoder) {
376   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
377   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
378 }
379 
380 #define DECODE_SDWA(DecName) \
381 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
382 
383 DECODE_SDWA(Src32)
384 DECODE_SDWA(Src16)
385 DECODE_SDWA(VopcDst)
386 
387 #include "AMDGPUGenDisassemblerTables.inc"
388 
389 //===----------------------------------------------------------------------===//
390 //
391 //===----------------------------------------------------------------------===//
392 
393 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
394   assert(Bytes.size() >= sizeof(T));
395   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
396   Bytes = Bytes.slice(sizeof(T));
397   return Res;
398 }
399 
400 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
401   assert(Bytes.size() >= 12);
402   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
403       Bytes.data());
404   Bytes = Bytes.slice(8);
405   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
406       Bytes.data());
407   Bytes = Bytes.slice(4);
408   return DecoderUInt128(Lo, Hi);
409 }
410 
411 // The disassembler is greedy, so we need to check FI operand value to
412 // not parse a dpp if the correct literal is not set. For dpp16 the
413 // autogenerated decoder checks the dpp literal
414 static bool isValidDPP8(const MCInst &MI) {
415   using namespace llvm::AMDGPU::DPP;
416   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
417   assert(FiIdx != -1);
418   if ((unsigned)FiIdx >= MI.getNumOperands())
419     return false;
420   unsigned Fi = MI.getOperand(FiIdx).getImm();
421   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
422 }
423 
424 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
425                                                 ArrayRef<uint8_t> Bytes_,
426                                                 uint64_t Address,
427                                                 raw_ostream &CS) const {
428   CommentStream = &CS;
429   bool IsSDWA = false;
430 
431   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
432   Bytes = Bytes_.slice(0, MaxInstBytesNum);
433 
434   DecodeStatus Res = MCDisassembler::Fail;
435   do {
436     // ToDo: better to switch encoding length using some bit predicate
437     // but it is unknown yet, so try all we can
438 
439     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
440     // encodings
441     if (isGFX11Plus() && Bytes.size() >= 12 ) {
442       DecoderUInt128 DecW = eat12Bytes(Bytes);
443       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
444                                           Address);
445       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
446         break;
447       MI = MCInst(); // clear
448       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
449                                           Address);
450       if (Res) {
451         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
452           convertVOP3PDPPInst(MI);
453         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
454           convertVOPCDPPInst(MI); // Special VOP3 case
455         else {
456           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
457           convertVOP3DPPInst(MI); // Regular VOP3 case
458         }
459         break;
460       }
461       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
462       if (Res)
463         break;
464     }
465     // Reinitialize Bytes
466     Bytes = Bytes_.slice(0, MaxInstBytesNum);
467 
468     if (Bytes.size() >= 8) {
469       const uint64_t QW = eatBytes<uint64_t>(Bytes);
470 
471       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
472         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
473         if (Res) {
474           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
475               == -1)
476             break;
477           if (convertDPP8Inst(MI) == MCDisassembler::Success)
478             break;
479           MI = MCInst(); // clear
480         }
481       }
482 
483       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
484       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
485         break;
486       MI = MCInst(); // clear
487 
488       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
489       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
490         break;
491       MI = MCInst(); // clear
492 
493       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
494       if (Res) break;
495 
496       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
497       if (Res) {
498         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
499           convertVOPCDPPInst(MI);
500         break;
501       }
502 
503       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
504       if (Res) { IsSDWA = true;  break; }
505 
506       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
507       if (Res) { IsSDWA = true;  break; }
508 
509       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
510       if (Res) { IsSDWA = true;  break; }
511 
512       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
513         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
514         if (Res)
515           break;
516       }
517 
518       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
519       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
520       // table first so we print the correct name.
521       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
522         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
523         if (Res)
524           break;
525       }
526     }
527 
528     // Reinitialize Bytes as DPP64 could have eaten too much
529     Bytes = Bytes_.slice(0, MaxInstBytesNum);
530 
531     // Try decode 32-bit instruction
532     if (Bytes.size() < 4) break;
533     const uint32_t DW = eatBytes<uint32_t>(Bytes);
534     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
535     if (Res) break;
536 
537     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
538     if (Res) break;
539 
540     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
541     if (Res) break;
542 
543     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
544       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
545       if (Res)
546         break;
547     }
548 
549     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
550       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
551       if (Res) break;
552     }
553 
554     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
555     if (Res) break;
556 
557     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
558     if (Res) break;
559 
560     if (Bytes.size() < 4) break;
561     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
562 
563     if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) {
564       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address);
565       if (Res)
566         break;
567     }
568 
569     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
570       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
571       if (Res)
572         break;
573     }
574 
575     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
576     if (Res) break;
577 
578     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
579     if (Res) break;
580 
581     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
582     if (Res) break;
583 
584     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
585     if (Res) break;
586 
587     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
588     if (Res)
589       break;
590 
591     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
592   } while (false);
593 
594   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
595               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
596               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
597               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
598               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
599               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
600               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
601               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
602               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
603               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
604               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
605               MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
606               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
607               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx11)) {
608     // Insert dummy unused src2_modifiers.
609     insertNamedMCOperand(MI, MCOperand::createImm(0),
610                          AMDGPU::OpName::src2_modifiers);
611   }
612 
613   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
614           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
615     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
616                                              AMDGPU::OpName::cpol);
617     if (CPolPos != -1) {
618       unsigned CPol =
619           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
620               AMDGPU::CPol::GLC : 0;
621       if (MI.getNumOperands() <= (unsigned)CPolPos) {
622         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
623                              AMDGPU::OpName::cpol);
624       } else if (CPol) {
625         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
626       }
627     }
628   }
629 
630   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
631               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
632              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
633     // GFX90A lost TFE, its place is occupied by ACC.
634     int TFEOpIdx =
635         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
636     if (TFEOpIdx != -1) {
637       auto TFEIter = MI.begin();
638       std::advance(TFEIter, TFEOpIdx);
639       MI.insert(TFEIter, MCOperand::createImm(0));
640     }
641   }
642 
643   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
644               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
645     int SWZOpIdx =
646         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
647     if (SWZOpIdx != -1) {
648       auto SWZIter = MI.begin();
649       std::advance(SWZIter, SWZOpIdx);
650       MI.insert(SWZIter, MCOperand::createImm(0));
651     }
652   }
653 
654   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
655     int VAddr0Idx =
656         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
657     int RsrcIdx =
658         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
659     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
660     if (VAddr0Idx >= 0 && NSAArgs > 0) {
661       unsigned NSAWords = (NSAArgs + 3) / 4;
662       if (Bytes.size() < 4 * NSAWords) {
663         Res = MCDisassembler::Fail;
664       } else {
665         for (unsigned i = 0; i < NSAArgs; ++i) {
666           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
667           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
668           MI.insert(MI.begin() + VAddrIdx,
669                     createRegOperand(VAddrRCID, Bytes[i]));
670         }
671         Bytes = Bytes.slice(4 * NSAWords);
672       }
673     }
674 
675     if (Res)
676       Res = convertMIMGInst(MI);
677   }
678 
679   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
680     Res = convertEXPInst(MI);
681 
682   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
683     Res = convertVINTERPInst(MI);
684 
685   if (Res && IsSDWA)
686     Res = convertSDWAInst(MI);
687 
688   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
689                                               AMDGPU::OpName::vdst_in);
690   if (VDstIn_Idx != -1) {
691     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
692                            MCOI::OperandConstraint::TIED_TO);
693     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
694          !MI.getOperand(VDstIn_Idx).isReg() ||
695          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
696       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
697         MI.erase(&MI.getOperand(VDstIn_Idx));
698       insertNamedMCOperand(MI,
699         MCOperand::createReg(MI.getOperand(Tied).getReg()),
700         AMDGPU::OpName::vdst_in);
701     }
702   }
703 
704   int ImmLitIdx =
705       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
706   if (Res && ImmLitIdx != -1)
707     Res = convertFMAanyK(MI, ImmLitIdx);
708 
709   // if the opcode was not recognized we'll assume a Size of 4 bytes
710   // (unless there are fewer bytes left)
711   Size = Res ? (MaxInstBytesNum - Bytes.size())
712              : std::min((size_t)4, Bytes_.size());
713   return Res;
714 }
715 
716 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
717   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
718     // The MCInst still has these fields even though they are no longer encoded
719     // in the GFX11 instruction.
720     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
721     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
722   }
723   return MCDisassembler::Success;
724 }
725 
726 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
727   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
728       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
729       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
730       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
731     // The MCInst has this field that is not directly encoded in the
732     // instruction.
733     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
734   }
735   return MCDisassembler::Success;
736 }
737 
738 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
739   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
740       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
741     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
742       // VOPC - insert clamp
743       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
744   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
745     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
746     if (SDst != -1) {
747       // VOPC - insert VCC register as sdst
748       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
749                            AMDGPU::OpName::sdst);
750     } else {
751       // VOP1/2 - insert omod if present in instruction
752       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
753     }
754   }
755   return MCDisassembler::Success;
756 }
757 
758 struct VOPModifiers {
759   unsigned OpSel = 0;
760   unsigned OpSelHi = 0;
761   unsigned NegLo = 0;
762   unsigned NegHi = 0;
763 };
764 
765 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
766 // Note that these values do not affect disassembler output,
767 // so this is only necessary for consistency with src_modifiers.
768 static VOPModifiers collectVOPModifiers(const MCInst &MI,
769                                         bool IsVOP3P = false) {
770   VOPModifiers Modifiers;
771   unsigned Opc = MI.getOpcode();
772   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
773                         AMDGPU::OpName::src1_modifiers,
774                         AMDGPU::OpName::src2_modifiers};
775   for (int J = 0; J < 3; ++J) {
776     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
777     if (OpIdx == -1)
778       continue;
779 
780     unsigned Val = MI.getOperand(OpIdx).getImm();
781 
782     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
783     if (IsVOP3P) {
784       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
785       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
786       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
787     } else if (J == 0) {
788       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
789     }
790   }
791 
792   return Modifiers;
793 }
794 
795 // We must check FI == literal to reject not genuine dpp8 insts, and we must
796 // first add optional MI operands to check FI
797 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
798   unsigned Opc = MI.getOpcode();
799   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
800   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
801     convertVOP3PDPPInst(MI);
802   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
803              AMDGPU::isVOPC64DPP(Opc)) {
804     convertVOPCDPPInst(MI);
805   } else if (MI.getNumOperands() < DescNumOps &&
806              AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1) {
807     auto Mods = collectVOPModifiers(MI);
808     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
809                          AMDGPU::OpName::op_sel);
810   } else {
811     // Insert dummy unused src modifiers.
812     if (MI.getNumOperands() < DescNumOps &&
813         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
814       insertNamedMCOperand(MI, MCOperand::createImm(0),
815                            AMDGPU::OpName::src0_modifiers);
816 
817     if (MI.getNumOperands() < DescNumOps &&
818         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
819       insertNamedMCOperand(MI, MCOperand::createImm(0),
820                            AMDGPU::OpName::src1_modifiers);
821   }
822   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
823 }
824 
825 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
826   unsigned Opc = MI.getOpcode();
827   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
828   if (MI.getNumOperands() < DescNumOps &&
829       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1) {
830     auto Mods = collectVOPModifiers(MI);
831     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
832                          AMDGPU::OpName::op_sel);
833   }
834   return MCDisassembler::Success;
835 }
836 
837 // Note that before gfx10, the MIMG encoding provided no information about
838 // VADDR size. Consequently, decoded instructions always show address as if it
839 // has 1 dword, which could be not really so.
840 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
841 
842   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
843                                            AMDGPU::OpName::vdst);
844 
845   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
846                                             AMDGPU::OpName::vdata);
847   int VAddr0Idx =
848       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
849   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
850                                             AMDGPU::OpName::dmask);
851 
852   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
853                                             AMDGPU::OpName::tfe);
854   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
855                                             AMDGPU::OpName::d16);
856 
857   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
858   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
859       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
860 
861   assert(VDataIdx != -1);
862   if (BaseOpcode->BVH) {
863     // Add A16 operand for intersect_ray instructions
864     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
865       addOperand(MI, MCOperand::createImm(1));
866     }
867     return MCDisassembler::Success;
868   }
869 
870   bool IsAtomic = (VDstIdx != -1);
871   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
872   bool IsNSA = false;
873   unsigned AddrSize = Info->VAddrDwords;
874 
875   if (isGFX10Plus()) {
876     unsigned DimIdx =
877         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
878     int A16Idx =
879         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
880     const AMDGPU::MIMGDimInfo *Dim =
881         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
882     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
883 
884     AddrSize =
885         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
886 
887     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
888             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
889     if (!IsNSA) {
890       if (AddrSize > 8)
891         AddrSize = 16;
892     } else {
893       if (AddrSize > Info->VAddrDwords) {
894         // The NSA encoding does not contain enough operands for the combination
895         // of base opcode / dimension. Should this be an error?
896         return MCDisassembler::Success;
897       }
898     }
899   }
900 
901   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
902   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
903 
904   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
905   if (D16 && AMDGPU::hasPackedD16(STI)) {
906     DstSize = (DstSize + 1) / 2;
907   }
908 
909   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
910     DstSize += 1;
911 
912   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
913     return MCDisassembler::Success;
914 
915   int NewOpcode =
916       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
917   if (NewOpcode == -1)
918     return MCDisassembler::Success;
919 
920   // Widen the register to the correct number of enabled channels.
921   unsigned NewVdata = AMDGPU::NoRegister;
922   if (DstSize != Info->VDataDwords) {
923     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
924 
925     // Get first subregister of VData
926     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
927     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
928     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
929 
930     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
931                                        &MRI.getRegClass(DataRCID));
932     if (NewVdata == AMDGPU::NoRegister) {
933       // It's possible to encode this such that the low register + enabled
934       // components exceeds the register count.
935       return MCDisassembler::Success;
936     }
937   }
938 
939   // If not using NSA on GFX10+, widen address register to correct size.
940   unsigned NewVAddr0 = AMDGPU::NoRegister;
941   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
942     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
943     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
944     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
945 
946     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
947     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
948                                         &MRI.getRegClass(AddrRCID));
949     if (NewVAddr0 == AMDGPU::NoRegister)
950       return MCDisassembler::Success;
951   }
952 
953   MI.setOpcode(NewOpcode);
954 
955   if (NewVdata != AMDGPU::NoRegister) {
956     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
957 
958     if (IsAtomic) {
959       // Atomic operations have an additional operand (a copy of data)
960       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
961     }
962   }
963 
964   if (NewVAddr0 != AMDGPU::NoRegister) {
965     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
966   } else if (IsNSA) {
967     assert(AddrSize <= Info->VAddrDwords);
968     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
969              MI.begin() + VAddr0Idx + Info->VAddrDwords);
970   }
971 
972   return MCDisassembler::Success;
973 }
974 
975 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
976 // decoder only adds to src_modifiers, so manually add the bits to the other
977 // operands.
978 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
979   unsigned Opc = MI.getOpcode();
980   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
981   auto Mods = collectVOPModifiers(MI, true);
982 
983   if (MI.getNumOperands() < DescNumOps &&
984       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1)
985     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
986 
987   if (MI.getNumOperands() < DescNumOps &&
988       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1)
989     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
990                          AMDGPU::OpName::op_sel);
991   if (MI.getNumOperands() < DescNumOps &&
992       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1)
993     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
994                          AMDGPU::OpName::op_sel_hi);
995   if (MI.getNumOperands() < DescNumOps &&
996       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1)
997     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
998                          AMDGPU::OpName::neg_lo);
999   if (MI.getNumOperands() < DescNumOps &&
1000       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1)
1001     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1002                          AMDGPU::OpName::neg_hi);
1003 
1004   return MCDisassembler::Success;
1005 }
1006 
1007 // Create dummy old operand and insert optional operands
1008 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1009   unsigned Opc = MI.getOpcode();
1010   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1011 
1012   if (MI.getNumOperands() < DescNumOps &&
1013       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::old) != -1)
1014     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1015 
1016   if (MI.getNumOperands() < DescNumOps &&
1017       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
1018     insertNamedMCOperand(MI, MCOperand::createImm(0),
1019                          AMDGPU::OpName::src0_modifiers);
1020 
1021   if (MI.getNumOperands() < DescNumOps &&
1022       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
1023     insertNamedMCOperand(MI, MCOperand::createImm(0),
1024                          AMDGPU::OpName::src1_modifiers);
1025   return MCDisassembler::Success;
1026 }
1027 
1028 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1029                                                 int ImmLitIdx) const {
1030   assert(HasLiteral && "Should have decoded a literal");
1031   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1032   unsigned DescNumOps = Desc.getNumOperands();
1033   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1034                        AMDGPU::OpName::immDeferred);
1035   assert(DescNumOps == MI.getNumOperands());
1036   for (unsigned I = 0; I < DescNumOps; ++I) {
1037     auto &Op = MI.getOperand(I);
1038     auto OpType = Desc.OpInfo[I].OperandType;
1039     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1040                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1041     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1042         IsDeferredOp)
1043       Op.setImm(Literal);
1044   }
1045   return MCDisassembler::Success;
1046 }
1047 
1048 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1049   return getContext().getRegisterInfo()->
1050     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1051 }
1052 
1053 inline
1054 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1055                                          const Twine& ErrMsg) const {
1056   *CommentStream << "Error: " + ErrMsg;
1057 
1058   // ToDo: add support for error operands to MCInst.h
1059   // return MCOperand::createError(V);
1060   return MCOperand();
1061 }
1062 
1063 inline
1064 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1065   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1066 }
1067 
1068 inline
1069 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1070                                                unsigned Val) const {
1071   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1072   if (Val >= RegCl.getNumRegs())
1073     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1074                            ": unknown register " + Twine(Val));
1075   return createRegOperand(RegCl.getRegister(Val));
1076 }
1077 
1078 inline
1079 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1080                                                 unsigned Val) const {
1081   // ToDo: SI/CI have 104 SGPRs, VI - 102
1082   // Valery: here we accepting as much as we can, let assembler sort it out
1083   int shift = 0;
1084   switch (SRegClassID) {
1085   case AMDGPU::SGPR_32RegClassID:
1086   case AMDGPU::TTMP_32RegClassID:
1087     break;
1088   case AMDGPU::SGPR_64RegClassID:
1089   case AMDGPU::TTMP_64RegClassID:
1090     shift = 1;
1091     break;
1092   case AMDGPU::SGPR_128RegClassID:
1093   case AMDGPU::TTMP_128RegClassID:
1094   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1095   // this bundle?
1096   case AMDGPU::SGPR_256RegClassID:
1097   case AMDGPU::TTMP_256RegClassID:
1098     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1099   // this bundle?
1100   case AMDGPU::SGPR_512RegClassID:
1101   case AMDGPU::TTMP_512RegClassID:
1102     shift = 2;
1103     break;
1104   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1105   // this bundle?
1106   default:
1107     llvm_unreachable("unhandled register class");
1108   }
1109 
1110   if (Val % (1 << shift)) {
1111     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1112                    << ": scalar reg isn't aligned " << Val;
1113   }
1114 
1115   return createRegOperand(SRegClassID, Val >> shift);
1116 }
1117 
1118 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1119   return decodeSrcOp(OPW32, Val);
1120 }
1121 
1122 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1123   return decodeSrcOp(OPW64, Val);
1124 }
1125 
1126 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1127   return decodeSrcOp(OPW128, Val);
1128 }
1129 
1130 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1131   return decodeSrcOp(OPW16, Val);
1132 }
1133 
1134 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1135   return decodeSrcOp(OPWV216, Val);
1136 }
1137 
1138 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1139   return decodeSrcOp(OPWV232, Val);
1140 }
1141 
1142 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1143   // Some instructions have operand restrictions beyond what the encoding
1144   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1145   // high bit.
1146   Val &= 255;
1147 
1148   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1149 }
1150 
1151 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1152   return decodeSrcOp(OPW32, Val);
1153 }
1154 
1155 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1156   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1157 }
1158 
1159 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1160   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1161 }
1162 
1163 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1164   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1165 }
1166 
1167 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1168   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1169 }
1170 
1171 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1172   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1173 }
1174 
1175 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1176   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1177 }
1178 
1179 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1180   return decodeSrcOp(OPW32, Val);
1181 }
1182 
1183 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1184   return decodeSrcOp(OPW64, Val);
1185 }
1186 
1187 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1188   return decodeSrcOp(OPW128, Val);
1189 }
1190 
1191 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1192   using namespace AMDGPU::EncValues;
1193   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1194   return decodeSrcOp(OPW128, Val | IS_VGPR);
1195 }
1196 
1197 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1198   using namespace AMDGPU::EncValues;
1199   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1200   return decodeSrcOp(OPW512, Val | IS_VGPR);
1201 }
1202 
1203 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1204   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1205 }
1206 
1207 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1208   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1209 }
1210 
1211 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1212   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1213 }
1214 
1215 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1216   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1217 }
1218 
1219 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1220   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1221 }
1222 
1223 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1224   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1225 }
1226 
1227 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1228   // table-gen generated disassembler doesn't care about operand types
1229   // leaving only registry class so SSrc_32 operand turns into SReg_32
1230   // and therefore we accept immediates and literals here as well
1231   return decodeSrcOp(OPW32, Val);
1232 }
1233 
1234 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1235   unsigned Val) const {
1236   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1237   return decodeOperand_SReg_32(Val);
1238 }
1239 
1240 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1241   unsigned Val) const {
1242   // SReg_32_XM0 is SReg_32 without EXEC_HI
1243   return decodeOperand_SReg_32(Val);
1244 }
1245 
1246 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1247   // table-gen generated disassembler doesn't care about operand types
1248   // leaving only registry class so SSrc_32 operand turns into SReg_32
1249   // and therefore we accept immediates and literals here as well
1250   return decodeSrcOp(OPW32, Val);
1251 }
1252 
1253 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1254   return decodeSrcOp(OPW64, Val);
1255 }
1256 
1257 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1258   return decodeSrcOp(OPW64, Val);
1259 }
1260 
1261 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1262   return decodeSrcOp(OPW128, Val);
1263 }
1264 
1265 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1266   return decodeDstOp(OPW256, Val);
1267 }
1268 
1269 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1270   return decodeDstOp(OPW512, Val);
1271 }
1272 
1273 // Decode Literals for insts which always have a literal in the encoding
1274 MCOperand
1275 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1276   if (HasLiteral) {
1277     assert(
1278         AMDGPU::hasVOPD(STI) &&
1279         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1280     if (Literal != Val)
1281       return errOperand(Val, "More than one unique literal is illegal");
1282   }
1283   HasLiteral = true;
1284   Literal = Val;
1285   return MCOperand::createImm(Literal);
1286 }
1287 
1288 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1289   // For now all literal constants are supposed to be unsigned integer
1290   // ToDo: deal with signed/unsigned 64-bit integer constants
1291   // ToDo: deal with float/double constants
1292   if (!HasLiteral) {
1293     if (Bytes.size() < 4) {
1294       return errOperand(0, "cannot read literal, inst bytes left " +
1295                         Twine(Bytes.size()));
1296     }
1297     HasLiteral = true;
1298     Literal = eatBytes<uint32_t>(Bytes);
1299   }
1300   return MCOperand::createImm(Literal);
1301 }
1302 
1303 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1304   using namespace AMDGPU::EncValues;
1305 
1306   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1307   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1308     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1309     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1310       // Cast prevents negative overflow.
1311 }
1312 
1313 static int64_t getInlineImmVal32(unsigned Imm) {
1314   switch (Imm) {
1315   case 240:
1316     return FloatToBits(0.5f);
1317   case 241:
1318     return FloatToBits(-0.5f);
1319   case 242:
1320     return FloatToBits(1.0f);
1321   case 243:
1322     return FloatToBits(-1.0f);
1323   case 244:
1324     return FloatToBits(2.0f);
1325   case 245:
1326     return FloatToBits(-2.0f);
1327   case 246:
1328     return FloatToBits(4.0f);
1329   case 247:
1330     return FloatToBits(-4.0f);
1331   case 248: // 1 / (2 * PI)
1332     return 0x3e22f983;
1333   default:
1334     llvm_unreachable("invalid fp inline imm");
1335   }
1336 }
1337 
1338 static int64_t getInlineImmVal64(unsigned Imm) {
1339   switch (Imm) {
1340   case 240:
1341     return DoubleToBits(0.5);
1342   case 241:
1343     return DoubleToBits(-0.5);
1344   case 242:
1345     return DoubleToBits(1.0);
1346   case 243:
1347     return DoubleToBits(-1.0);
1348   case 244:
1349     return DoubleToBits(2.0);
1350   case 245:
1351     return DoubleToBits(-2.0);
1352   case 246:
1353     return DoubleToBits(4.0);
1354   case 247:
1355     return DoubleToBits(-4.0);
1356   case 248: // 1 / (2 * PI)
1357     return 0x3fc45f306dc9c882;
1358   default:
1359     llvm_unreachable("invalid fp inline imm");
1360   }
1361 }
1362 
1363 static int64_t getInlineImmVal16(unsigned Imm) {
1364   switch (Imm) {
1365   case 240:
1366     return 0x3800;
1367   case 241:
1368     return 0xB800;
1369   case 242:
1370     return 0x3C00;
1371   case 243:
1372     return 0xBC00;
1373   case 244:
1374     return 0x4000;
1375   case 245:
1376     return 0xC000;
1377   case 246:
1378     return 0x4400;
1379   case 247:
1380     return 0xC400;
1381   case 248: // 1 / (2 * PI)
1382     return 0x3118;
1383   default:
1384     llvm_unreachable("invalid fp inline imm");
1385   }
1386 }
1387 
1388 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1389   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1390       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1391 
1392   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1393   switch (Width) {
1394   case OPW32:
1395   case OPW128: // splat constants
1396   case OPW512:
1397   case OPW1024:
1398   case OPWV232:
1399     return MCOperand::createImm(getInlineImmVal32(Imm));
1400   case OPW64:
1401   case OPW256:
1402     return MCOperand::createImm(getInlineImmVal64(Imm));
1403   case OPW16:
1404   case OPWV216:
1405     return MCOperand::createImm(getInlineImmVal16(Imm));
1406   default:
1407     llvm_unreachable("implement me");
1408   }
1409 }
1410 
1411 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1412   using namespace AMDGPU;
1413 
1414   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1415   switch (Width) {
1416   default: // fall
1417   case OPW32:
1418   case OPW16:
1419   case OPWV216:
1420     return VGPR_32RegClassID;
1421   case OPW64:
1422   case OPWV232: return VReg_64RegClassID;
1423   case OPW96: return VReg_96RegClassID;
1424   case OPW128: return VReg_128RegClassID;
1425   case OPW160: return VReg_160RegClassID;
1426   case OPW256: return VReg_256RegClassID;
1427   case OPW512: return VReg_512RegClassID;
1428   case OPW1024: return VReg_1024RegClassID;
1429   }
1430 }
1431 
1432 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1433   using namespace AMDGPU;
1434 
1435   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1436   switch (Width) {
1437   default: // fall
1438   case OPW32:
1439   case OPW16:
1440   case OPWV216:
1441     return AGPR_32RegClassID;
1442   case OPW64:
1443   case OPWV232: return AReg_64RegClassID;
1444   case OPW96: return AReg_96RegClassID;
1445   case OPW128: return AReg_128RegClassID;
1446   case OPW160: return AReg_160RegClassID;
1447   case OPW256: return AReg_256RegClassID;
1448   case OPW512: return AReg_512RegClassID;
1449   case OPW1024: return AReg_1024RegClassID;
1450   }
1451 }
1452 
1453 
1454 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1455   using namespace AMDGPU;
1456 
1457   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1458   switch (Width) {
1459   default: // fall
1460   case OPW32:
1461   case OPW16:
1462   case OPWV216:
1463     return SGPR_32RegClassID;
1464   case OPW64:
1465   case OPWV232: return SGPR_64RegClassID;
1466   case OPW96: return SGPR_96RegClassID;
1467   case OPW128: return SGPR_128RegClassID;
1468   case OPW160: return SGPR_160RegClassID;
1469   case OPW256: return SGPR_256RegClassID;
1470   case OPW512: return SGPR_512RegClassID;
1471   }
1472 }
1473 
1474 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1475   using namespace AMDGPU;
1476 
1477   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1478   switch (Width) {
1479   default: // fall
1480   case OPW32:
1481   case OPW16:
1482   case OPWV216:
1483     return TTMP_32RegClassID;
1484   case OPW64:
1485   case OPWV232: return TTMP_64RegClassID;
1486   case OPW128: return TTMP_128RegClassID;
1487   case OPW256: return TTMP_256RegClassID;
1488   case OPW512: return TTMP_512RegClassID;
1489   }
1490 }
1491 
1492 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1493   using namespace AMDGPU::EncValues;
1494 
1495   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1496   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1497 
1498   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1499 }
1500 
1501 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1502                                           bool MandatoryLiteral) const {
1503   using namespace AMDGPU::EncValues;
1504 
1505   assert(Val < 1024); // enum10
1506 
1507   bool IsAGPR = Val & 512;
1508   Val &= 511;
1509 
1510   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1511     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1512                                    : getVgprClassId(Width), Val - VGPR_MIN);
1513   }
1514   if (Val <= SGPR_MAX) {
1515     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1516     static_assert(SGPR_MIN == 0);
1517     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1518   }
1519 
1520   int TTmpIdx = getTTmpIdx(Val);
1521   if (TTmpIdx >= 0) {
1522     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1523   }
1524 
1525   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1526     return decodeIntImmed(Val);
1527 
1528   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1529     return decodeFPImmed(Width, Val);
1530 
1531   if (Val == LITERAL_CONST) {
1532     if (MandatoryLiteral)
1533       // Keep a sentinel value for deferred setting
1534       return MCOperand::createImm(LITERAL_CONST);
1535     else
1536       return decodeLiteralConstant();
1537   }
1538 
1539   switch (Width) {
1540   case OPW32:
1541   case OPW16:
1542   case OPWV216:
1543     return decodeSpecialReg32(Val);
1544   case OPW64:
1545   case OPWV232:
1546     return decodeSpecialReg64(Val);
1547   default:
1548     llvm_unreachable("unexpected immediate type");
1549   }
1550 }
1551 
1552 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1553   using namespace AMDGPU::EncValues;
1554 
1555   assert(Val < 128);
1556   assert(Width == OPW256 || Width == OPW512);
1557 
1558   if (Val <= SGPR_MAX) {
1559     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1560     static_assert(SGPR_MIN == 0);
1561     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1562   }
1563 
1564   int TTmpIdx = getTTmpIdx(Val);
1565   if (TTmpIdx >= 0) {
1566     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1567   }
1568 
1569   llvm_unreachable("unknown dst register");
1570 }
1571 
1572 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1573 // opposite of bit 0 of DstX.
1574 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1575                                                unsigned Val) const {
1576   int VDstXInd =
1577       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1578   assert(VDstXInd != -1);
1579   assert(Inst.getOperand(VDstXInd).isReg());
1580   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1581   Val |= ~XDstReg & 1;
1582   auto Width = llvm::AMDGPUDisassembler::OPW32;
1583   return createRegOperand(getVgprClassId(Width), Val);
1584 }
1585 
1586 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1587   using namespace AMDGPU;
1588 
1589   switch (Val) {
1590   case 102: return createRegOperand(FLAT_SCR_LO);
1591   case 103: return createRegOperand(FLAT_SCR_HI);
1592   case 104: return createRegOperand(XNACK_MASK_LO);
1593   case 105: return createRegOperand(XNACK_MASK_HI);
1594   case 106: return createRegOperand(VCC_LO);
1595   case 107: return createRegOperand(VCC_HI);
1596   case 108: return createRegOperand(TBA_LO);
1597   case 109: return createRegOperand(TBA_HI);
1598   case 110: return createRegOperand(TMA_LO);
1599   case 111: return createRegOperand(TMA_HI);
1600   case 124:
1601     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1602   case 125:
1603     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1604   case 126: return createRegOperand(EXEC_LO);
1605   case 127: return createRegOperand(EXEC_HI);
1606   case 235: return createRegOperand(SRC_SHARED_BASE);
1607   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1608   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1609   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1610   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1611   case 251: return createRegOperand(SRC_VCCZ);
1612   case 252: return createRegOperand(SRC_EXECZ);
1613   case 253: return createRegOperand(SRC_SCC);
1614   case 254: return createRegOperand(LDS_DIRECT);
1615   default: break;
1616   }
1617   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1618 }
1619 
1620 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1621   using namespace AMDGPU;
1622 
1623   switch (Val) {
1624   case 102: return createRegOperand(FLAT_SCR);
1625   case 104: return createRegOperand(XNACK_MASK);
1626   case 106: return createRegOperand(VCC);
1627   case 108: return createRegOperand(TBA);
1628   case 110: return createRegOperand(TMA);
1629   case 124:
1630     if (isGFX11Plus())
1631       return createRegOperand(SGPR_NULL);
1632     break;
1633   case 125:
1634     if (!isGFX11Plus())
1635       return createRegOperand(SGPR_NULL);
1636     break;
1637   case 126: return createRegOperand(EXEC);
1638   case 235: return createRegOperand(SRC_SHARED_BASE);
1639   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1640   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1641   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1642   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1643   case 251: return createRegOperand(SRC_VCCZ);
1644   case 252: return createRegOperand(SRC_EXECZ);
1645   case 253: return createRegOperand(SRC_SCC);
1646   default: break;
1647   }
1648   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1649 }
1650 
1651 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1652                                             const unsigned Val) const {
1653   using namespace AMDGPU::SDWA;
1654   using namespace AMDGPU::EncValues;
1655 
1656   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1657       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1658     // XXX: cast to int is needed to avoid stupid warning:
1659     // compare with unsigned is always true
1660     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1661         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1662       return createRegOperand(getVgprClassId(Width),
1663                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1664     }
1665     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1666         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1667                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1668       return createSRegOperand(getSgprClassId(Width),
1669                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1670     }
1671     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1672         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1673       return createSRegOperand(getTtmpClassId(Width),
1674                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1675     }
1676 
1677     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1678 
1679     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1680       return decodeIntImmed(SVal);
1681 
1682     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1683       return decodeFPImmed(Width, SVal);
1684 
1685     return decodeSpecialReg32(SVal);
1686   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1687     return createRegOperand(getVgprClassId(Width), Val);
1688   }
1689   llvm_unreachable("unsupported target");
1690 }
1691 
1692 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1693   return decodeSDWASrc(OPW16, Val);
1694 }
1695 
1696 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1697   return decodeSDWASrc(OPW32, Val);
1698 }
1699 
1700 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1701   using namespace AMDGPU::SDWA;
1702 
1703   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1704           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1705          "SDWAVopcDst should be present only on GFX9+");
1706 
1707   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1708 
1709   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1710     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1711 
1712     int TTmpIdx = getTTmpIdx(Val);
1713     if (TTmpIdx >= 0) {
1714       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1715       return createSRegOperand(TTmpClsId, TTmpIdx);
1716     } else if (Val > SGPR_MAX) {
1717       return IsWave64 ? decodeSpecialReg64(Val)
1718                       : decodeSpecialReg32(Val);
1719     } else {
1720       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1721     }
1722   } else {
1723     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1724   }
1725 }
1726 
1727 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1728   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1729     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1730 }
1731 
1732 bool AMDGPUDisassembler::isVI() const {
1733   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1734 }
1735 
1736 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1737 
1738 bool AMDGPUDisassembler::isGFX90A() const {
1739   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1740 }
1741 
1742 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1743 
1744 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1745 
1746 bool AMDGPUDisassembler::isGFX10Plus() const {
1747   return AMDGPU::isGFX10Plus(STI);
1748 }
1749 
1750 bool AMDGPUDisassembler::isGFX11() const {
1751   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1752 }
1753 
1754 bool AMDGPUDisassembler::isGFX11Plus() const {
1755   return AMDGPU::isGFX11Plus(STI);
1756 }
1757 
1758 
1759 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1760   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1761 }
1762 
1763 //===----------------------------------------------------------------------===//
1764 // AMDGPU specific symbol handling
1765 //===----------------------------------------------------------------------===//
1766 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1767   do {                                                                         \
1768     KdStream << Indent << DIRECTIVE " "                                        \
1769              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1770   } while (0)
1771 
1772 // NOLINTNEXTLINE(readability-identifier-naming)
1773 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1774     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1775   using namespace amdhsa;
1776   StringRef Indent = "\t";
1777 
1778   // We cannot accurately backward compute #VGPRs used from
1779   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1780   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1781   // simply calculate the inverse of what the assembler does.
1782 
1783   uint32_t GranulatedWorkitemVGPRCount =
1784       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1785       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1786 
1787   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1788                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1789 
1790   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1791 
1792   // We cannot backward compute values used to calculate
1793   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1794   // directives can't be computed:
1795   // .amdhsa_reserve_vcc
1796   // .amdhsa_reserve_flat_scratch
1797   // .amdhsa_reserve_xnack_mask
1798   // They take their respective default values if not specified in the assembly.
1799   //
1800   // GRANULATED_WAVEFRONT_SGPR_COUNT
1801   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1802   //
1803   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1804   // are set to 0. So while disassembling we consider that:
1805   //
1806   // GRANULATED_WAVEFRONT_SGPR_COUNT
1807   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1808   //
1809   // The disassembler cannot recover the original values of those 3 directives.
1810 
1811   uint32_t GranulatedWavefrontSGPRCount =
1812       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1813       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1814 
1815   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1816     return MCDisassembler::Fail;
1817 
1818   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1819                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1820 
1821   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1822   if (!hasArchitectedFlatScratch())
1823     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1824   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1825   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1826 
1827   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1828     return MCDisassembler::Fail;
1829 
1830   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1831                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1832   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1833                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1834   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1835                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1836   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1837                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1838 
1839   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1840     return MCDisassembler::Fail;
1841 
1842   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1843 
1844   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1845     return MCDisassembler::Fail;
1846 
1847   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1848 
1849   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1850     return MCDisassembler::Fail;
1851 
1852   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1853     return MCDisassembler::Fail;
1854 
1855   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1856 
1857   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1858     return MCDisassembler::Fail;
1859 
1860   if (isGFX10Plus()) {
1861     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1862                     COMPUTE_PGM_RSRC1_WGP_MODE);
1863     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1864     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1865   }
1866   return MCDisassembler::Success;
1867 }
1868 
1869 // NOLINTNEXTLINE(readability-identifier-naming)
1870 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1871     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1872   using namespace amdhsa;
1873   StringRef Indent = "\t";
1874   if (hasArchitectedFlatScratch())
1875     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1876                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1877   else
1878     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1879                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1880   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1881                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1882   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1883                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1884   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1885                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1886   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1887                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1888   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1889                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1890 
1891   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1892     return MCDisassembler::Fail;
1893 
1894   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1895     return MCDisassembler::Fail;
1896 
1897   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1898     return MCDisassembler::Fail;
1899 
1900   PRINT_DIRECTIVE(
1901       ".amdhsa_exception_fp_ieee_invalid_op",
1902       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1903   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1904                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1905   PRINT_DIRECTIVE(
1906       ".amdhsa_exception_fp_ieee_div_zero",
1907       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1908   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1909                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1910   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1911                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1912   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1913                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1914   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1915                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1916 
1917   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1918     return MCDisassembler::Fail;
1919 
1920   return MCDisassembler::Success;
1921 }
1922 
1923 #undef PRINT_DIRECTIVE
1924 
1925 MCDisassembler::DecodeStatus
1926 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1927     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1928     raw_string_ostream &KdStream) const {
1929 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1930   do {                                                                         \
1931     KdStream << Indent << DIRECTIVE " "                                        \
1932              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1933   } while (0)
1934 
1935   uint16_t TwoByteBuffer = 0;
1936   uint32_t FourByteBuffer = 0;
1937 
1938   StringRef ReservedBytes;
1939   StringRef Indent = "\t";
1940 
1941   assert(Bytes.size() == 64);
1942   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1943 
1944   switch (Cursor.tell()) {
1945   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1946     FourByteBuffer = DE.getU32(Cursor);
1947     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1948              << '\n';
1949     return MCDisassembler::Success;
1950 
1951   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1952     FourByteBuffer = DE.getU32(Cursor);
1953     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1954              << FourByteBuffer << '\n';
1955     return MCDisassembler::Success;
1956 
1957   case amdhsa::KERNARG_SIZE_OFFSET:
1958     FourByteBuffer = DE.getU32(Cursor);
1959     KdStream << Indent << ".amdhsa_kernarg_size "
1960              << FourByteBuffer << '\n';
1961     return MCDisassembler::Success;
1962 
1963   case amdhsa::RESERVED0_OFFSET:
1964     // 4 reserved bytes, must be 0.
1965     ReservedBytes = DE.getBytes(Cursor, 4);
1966     for (int I = 0; I < 4; ++I) {
1967       if (ReservedBytes[I] != 0) {
1968         return MCDisassembler::Fail;
1969       }
1970     }
1971     return MCDisassembler::Success;
1972 
1973   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1974     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1975     // So far no directive controls this for Code Object V3, so simply skip for
1976     // disassembly.
1977     DE.skip(Cursor, 8);
1978     return MCDisassembler::Success;
1979 
1980   case amdhsa::RESERVED1_OFFSET:
1981     // 20 reserved bytes, must be 0.
1982     ReservedBytes = DE.getBytes(Cursor, 20);
1983     for (int I = 0; I < 20; ++I) {
1984       if (ReservedBytes[I] != 0) {
1985         return MCDisassembler::Fail;
1986       }
1987     }
1988     return MCDisassembler::Success;
1989 
1990   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1991     // COMPUTE_PGM_RSRC3
1992     //  - Only set for GFX10, GFX6-9 have this to be 0.
1993     //  - Currently no directives directly control this.
1994     FourByteBuffer = DE.getU32(Cursor);
1995     if (!isGFX10Plus() && FourByteBuffer) {
1996       return MCDisassembler::Fail;
1997     }
1998     return MCDisassembler::Success;
1999 
2000   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2001     FourByteBuffer = DE.getU32(Cursor);
2002     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
2003         MCDisassembler::Fail) {
2004       return MCDisassembler::Fail;
2005     }
2006     return MCDisassembler::Success;
2007 
2008   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2009     FourByteBuffer = DE.getU32(Cursor);
2010     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
2011         MCDisassembler::Fail) {
2012       return MCDisassembler::Fail;
2013     }
2014     return MCDisassembler::Success;
2015 
2016   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2017     using namespace amdhsa;
2018     TwoByteBuffer = DE.getU16(Cursor);
2019 
2020     if (!hasArchitectedFlatScratch())
2021       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2022                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2023     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2024                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2025     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2026                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2027     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2028                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2029     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2030                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2031     if (!hasArchitectedFlatScratch())
2032       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2033                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2034     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2035                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2036 
2037     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2038       return MCDisassembler::Fail;
2039 
2040     // Reserved for GFX9
2041     if (isGFX9() &&
2042         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2043       return MCDisassembler::Fail;
2044     } else if (isGFX10Plus()) {
2045       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2046                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2047     }
2048 
2049     PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2050                     KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2051 
2052     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2053       return MCDisassembler::Fail;
2054 
2055     return MCDisassembler::Success;
2056 
2057   case amdhsa::RESERVED2_OFFSET:
2058     // 6 bytes from here are reserved, must be 0.
2059     ReservedBytes = DE.getBytes(Cursor, 6);
2060     for (int I = 0; I < 6; ++I) {
2061       if (ReservedBytes[I] != 0)
2062         return MCDisassembler::Fail;
2063     }
2064     return MCDisassembler::Success;
2065 
2066   default:
2067     llvm_unreachable("Unhandled index. Case statements cover everything.");
2068     return MCDisassembler::Fail;
2069   }
2070 #undef PRINT_DIRECTIVE
2071 }
2072 
2073 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2074     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2075   // CP microcode requires the kernel descriptor to be 64 aligned.
2076   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2077     return MCDisassembler::Fail;
2078 
2079   std::string Kd;
2080   raw_string_ostream KdStream(Kd);
2081   KdStream << ".amdhsa_kernel " << KdName << '\n';
2082 
2083   DataExtractor::Cursor C(0);
2084   while (C && C.tell() < Bytes.size()) {
2085     MCDisassembler::DecodeStatus Status =
2086         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2087 
2088     cantFail(C.takeError());
2089 
2090     if (Status == MCDisassembler::Fail)
2091       return MCDisassembler::Fail;
2092   }
2093   KdStream << ".end_amdhsa_kernel\n";
2094   outs() << KdStream.str();
2095   return MCDisassembler::Success;
2096 }
2097 
2098 Optional<MCDisassembler::DecodeStatus>
2099 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2100                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2101                                   raw_ostream &CStream) const {
2102   // Right now only kernel descriptor needs to be handled.
2103   // We ignore all other symbols for target specific handling.
2104   // TODO:
2105   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2106   // Object V2 and V3 when symbols are marked protected.
2107 
2108   // amd_kernel_code_t for Code Object V2.
2109   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2110     Size = 256;
2111     return MCDisassembler::Fail;
2112   }
2113 
2114   // Code Object V3 kernel descriptors.
2115   StringRef Name = Symbol.Name;
2116   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2117     Size = 64; // Size = 64 regardless of success or failure.
2118     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2119   }
2120   return None;
2121 }
2122 
2123 //===----------------------------------------------------------------------===//
2124 // AMDGPUSymbolizer
2125 //===----------------------------------------------------------------------===//
2126 
2127 // Try to find symbol name for specified label
2128 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2129     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2130     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2131     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2132 
2133   if (!IsBranch) {
2134     return false;
2135   }
2136 
2137   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2138   if (!Symbols)
2139     return false;
2140 
2141   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2142     return Val.Addr == static_cast<uint64_t>(Value) &&
2143            Val.Type == ELF::STT_NOTYPE;
2144   });
2145   if (Result != Symbols->end()) {
2146     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2147     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2148     Inst.addOperand(MCOperand::createExpr(Add));
2149     return true;
2150   }
2151   // Add to list of referenced addresses, so caller can synthesize a label.
2152   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2153   return false;
2154 }
2155 
2156 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2157                                                        int64_t Value,
2158                                                        uint64_t Address) {
2159   llvm_unreachable("unimplemented");
2160 }
2161 
2162 //===----------------------------------------------------------------------===//
2163 // Initialization
2164 //===----------------------------------------------------------------------===//
2165 
2166 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2167                               LLVMOpInfoCallback /*GetOpInfo*/,
2168                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2169                               void *DisInfo,
2170                               MCContext *Ctx,
2171                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2172   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2173 }
2174 
2175 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2176                                                 const MCSubtargetInfo &STI,
2177                                                 MCContext &Ctx) {
2178   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2179 }
2180 
2181 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2182   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2183                                          createAMDGPUDisassembler);
2184   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2185                                        createAMDGPUSymbolizer);
2186 }
2187