xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 2e81ac25b4e2bfdc71aac19a911525a7f35680be)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
95     Offset = SignExtend64<24>(Imm);
96   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else { // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
111                                        uint64_t Addr,
112                                        const MCDisassembler *Decoder) {
113   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
114   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
115 }
116 
117 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
118   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
119                                         uint64_t /*Addr*/,                     \
120                                         const MCDisassembler *Decoder) {       \
121     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
122     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
123   }
124 
125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
126 // number of register. Used by VGPR only and AGPR only operands.
127 #define DECODE_OPERAND_REG_8(RegClass)                                         \
128   static DecodeStatus Decode##RegClass##RegisterClass(                         \
129       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
130       const MCDisassembler *Decoder) {                                         \
131     assert(Imm < (1 << 8) && "8-bit encoding");                                \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(                                                         \
134         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
135   }
136 
137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
138                      ImmWidth)                                                 \
139   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
140                            const MCDisassembler *Decoder) {                    \
141     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
142     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
143     return addOperand(Inst,                                                    \
144                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
145                                         MandatoryLiteral, ImmWidth));          \
146   }
147 
148 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
149 // get register class. Used by SGPR only operands.
150 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
151   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
152 
153 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
154 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
155 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
156 // Used by AV_ register classes (AGPR or VGPR only register operands).
157 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
158   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
159                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
160 
161 // Decoder for Src(9-bit encoding) registers only.
162 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
163   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
164 
165 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
166 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
167 // only.
168 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
169   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
170 
171 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
172 // Imm{9} is acc, registers only.
173 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
174   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
175 
176 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
177 // register from RegClass or immediate. Registers that don't belong to RegClass
178 // will be decoded and InstPrinter will report warning. Immediate will be
179 // decoded into constant of size ImmWidth, should match width of immediate used
180 // by OperandType (important for floating point types).
181 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
182   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
183                false, ImmWidth)
184 
185 #define DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(Name, OpWidth, ImmWidth)         \
186   DECODE_SrcOp(decodeOperand_##Name, 9, OpWidth, Imm, false, ImmWidth)
187 
188 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
189 // and decode using 'enum10' from decodeSrcOp.
190 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
191   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
192                Imm | 512, false, ImmWidth)
193 
194 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
195   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
196                OpWidth, Imm, true, ImmWidth)
197 
198 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
199 // when RegisterClass is used as an operand. Most often used for destination
200 // operands.
201 
202 DECODE_OPERAND_REG_8(VGPR_32)
203 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
204 DECODE_OPERAND_REG_8(VReg_64)
205 DECODE_OPERAND_REG_8(VReg_96)
206 DECODE_OPERAND_REG_8(VReg_128)
207 DECODE_OPERAND_REG_8(VReg_256)
208 DECODE_OPERAND_REG_8(VReg_288)
209 DECODE_OPERAND_REG_8(VReg_352)
210 DECODE_OPERAND_REG_8(VReg_384)
211 DECODE_OPERAND_REG_8(VReg_512)
212 DECODE_OPERAND_REG_8(VReg_1024)
213 
214 DECODE_OPERAND_REG_7(SReg_32, OPW32)
215 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
216 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
217 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
218 DECODE_OPERAND_REG_7(SReg_64, OPW64)
219 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
220 DECODE_OPERAND_REG_7(SReg_96, OPW96)
221 DECODE_OPERAND_REG_7(SReg_128, OPW128)
222 DECODE_OPERAND_REG_7(SReg_256, OPW256)
223 DECODE_OPERAND_REG_7(SReg_512, OPW512)
224 
225 DECODE_OPERAND_REG_8(AGPR_32)
226 DECODE_OPERAND_REG_8(AReg_64)
227 DECODE_OPERAND_REG_8(AReg_128)
228 DECODE_OPERAND_REG_8(AReg_256)
229 DECODE_OPERAND_REG_8(AReg_512)
230 DECODE_OPERAND_REG_8(AReg_1024)
231 
232 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
233 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
234 
235 // Decoders for register only source RegisterOperands that use use 9-bit Src
236 // encoding: 'decodeOperand_<RegClass>'.
237 
238 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
239 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
240 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
241 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
242 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
243 
244 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
245 
246 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
247 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
248 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
249 
250 // Decoders for register or immediate RegisterOperands that use 9-bit Src
251 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
252 
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
254 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
255 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
256 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
257 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
258 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
259 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
260 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
261 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
262 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
263 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 32)
264 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 16)
265 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
266 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 16)
267 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
268 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 32)
269 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
270 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
271 
272 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2I16, OPW32, 32)
273 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2F16, OPW32, 16)
274 
275 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
276 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
277 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
278 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
279 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
280 
281 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
282 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
283 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
284 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
285 
286 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
287                                                uint64_t /*Addr*/,
288                                                const MCDisassembler *Decoder) {
289   assert(isUInt<10>(Imm) && "10-bit encoding expected");
290   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
291 
292   bool IsHi = Imm & (1 << 9);
293   unsigned RegIdx = Imm & 0xff;
294   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
295   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
296 }
297 
298 static DecodeStatus
299 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
300                                  const MCDisassembler *Decoder) {
301   assert(isUInt<8>(Imm) && "8-bit encoding expected");
302 
303   bool IsHi = Imm & (1 << 7);
304   unsigned RegIdx = Imm & 0x7f;
305   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
306   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
307 }
308 
309 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
310                                                 uint64_t /*Addr*/,
311                                                 const MCDisassembler *Decoder) {
312   assert(isUInt<9>(Imm) && "9-bit encoding expected");
313 
314   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
315   bool IsVGPR = Imm & (1 << 8);
316   if (IsVGPR) {
317     bool IsHi = Imm & (1 << 7);
318     unsigned RegIdx = Imm & 0x7f;
319     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
320   }
321   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
322                                                    Imm & 0xFF, false, 16));
323 }
324 
325 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
326                                           uint64_t /*Addr*/,
327                                           const MCDisassembler *Decoder) {
328   assert(isUInt<10>(Imm) && "10-bit encoding expected");
329 
330   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
331   bool IsVGPR = Imm & (1 << 8);
332   if (IsVGPR) {
333     bool IsHi = Imm & (1 << 9);
334     unsigned RegIdx = Imm & 0xff;
335     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
336   }
337   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
338                                                    Imm & 0xFF, false, 16));
339 }
340 
341 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
342                                          uint64_t Addr,
343                                          const MCDisassembler *Decoder) {
344   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
345   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
346 }
347 
348 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
349                                           uint64_t Addr, const void *Decoder) {
350   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
351   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
352 }
353 
354 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
355                           const MCRegisterInfo *MRI) {
356   if (OpIdx < 0)
357     return false;
358 
359   const MCOperand &Op = Inst.getOperand(OpIdx);
360   if (!Op.isReg())
361     return false;
362 
363   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
364   auto Reg = Sub ? Sub : Op.getReg();
365   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
366 }
367 
368 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
369                                  AMDGPUDisassembler::OpWidthTy Opw,
370                                  const MCDisassembler *Decoder) {
371   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
372   if (!DAsm->isGFX90A()) {
373     Imm &= 511;
374   } else {
375     // If atomic has both vdata and vdst their register classes are tied.
376     // The bit is decoded along with the vdst, first operand. We need to
377     // change register class to AGPR if vdst was AGPR.
378     // If a DS instruction has both data0 and data1 their register classes
379     // are also tied.
380     unsigned Opc = Inst.getOpcode();
381     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
382     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
383                                                         : AMDGPU::OpName::vdata;
384     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
385     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
386     if ((int)Inst.getNumOperands() == DataIdx) {
387       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
388       if (IsAGPROperand(Inst, DstIdx, MRI))
389         Imm |= 512;
390     }
391 
392     if (TSFlags & SIInstrFlags::DS) {
393       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
394       if ((int)Inst.getNumOperands() == Data2Idx &&
395           IsAGPROperand(Inst, DataIdx, MRI))
396         Imm |= 512;
397     }
398   }
399   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
400 }
401 
402 template <AMDGPUDisassembler::OpWidthTy Opw>
403 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
404                                  uint64_t /* Addr */,
405                                  const MCDisassembler *Decoder) {
406   return decodeAVLdSt(Inst, Imm, Opw, Decoder);
407 }
408 
409 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
410                                            uint64_t Addr,
411                                            const MCDisassembler *Decoder) {
412   assert(Imm < (1 << 9) && "9-bit encoding");
413   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
414   return addOperand(
415       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
416 }
417 
418 #define DECODE_SDWA(DecName) \
419 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
420 
421 DECODE_SDWA(Src32)
422 DECODE_SDWA(Src16)
423 DECODE_SDWA(VopcDst)
424 
425 #include "AMDGPUGenDisassemblerTables.inc"
426 
427 //===----------------------------------------------------------------------===//
428 //
429 //===----------------------------------------------------------------------===//
430 
431 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
432   assert(Bytes.size() >= sizeof(T));
433   const auto Res =
434       support::endian::read<T, llvm::endianness::little>(Bytes.data());
435   Bytes = Bytes.slice(sizeof(T));
436   return Res;
437 }
438 
439 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
440   assert(Bytes.size() >= 12);
441   uint64_t Lo =
442       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
443   Bytes = Bytes.slice(8);
444   uint64_t Hi =
445       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
446   Bytes = Bytes.slice(4);
447   return DecoderUInt128(Lo, Hi);
448 }
449 
450 // The disassembler is greedy, so we need to check FI operand value to
451 // not parse a dpp if the correct literal is not set. For dpp16 the
452 // autogenerated decoder checks the dpp literal
453 static bool isValidDPP8(const MCInst &MI) {
454   using namespace llvm::AMDGPU::DPP;
455   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
456   assert(FiIdx != -1);
457   if ((unsigned)FiIdx >= MI.getNumOperands())
458     return false;
459   unsigned Fi = MI.getOperand(FiIdx).getImm();
460   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
461 }
462 
463 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
464                                                 ArrayRef<uint8_t> Bytes_,
465                                                 uint64_t Address,
466                                                 raw_ostream &CS) const {
467   bool IsSDWA = false;
468 
469   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
470   Bytes = Bytes_.slice(0, MaxInstBytesNum);
471 
472   DecodeStatus Res = MCDisassembler::Fail;
473   do {
474     // ToDo: better to switch encoding length using some bit predicate
475     // but it is unknown yet, so try all we can
476 
477     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
478     // encodings
479     if (isGFX11Plus() && Bytes.size() >= 12 ) {
480       DecoderUInt128 DecW = eat12Bytes(Bytes);
481       Res =
482           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
483                         MI, DecW, Address, CS);
484       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
485         break;
486       MI = MCInst(); // clear
487       Res =
488           tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
489                         MI, DecW, Address, CS);
490       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
491         break;
492       MI = MCInst(); // clear
493 
494       const auto convertVOPDPP = [&]() {
495         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) {
496           convertVOP3PDPPInst(MI);
497         } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) {
498           convertVOPCDPPInst(MI); // Special VOP3 case
499         } else {
500           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
501           convertVOP3DPPInst(MI); // Regular VOP3 case
502         }
503       };
504       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
505                           MI, DecW, Address, CS);
506       if (Res) {
507         convertVOPDPP();
508         break;
509       }
510       Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
511                           MI, DecW, Address, CS);
512       if (Res) {
513         convertVOPDPP();
514         break;
515       }
516       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
517       if (Res)
518         break;
519 
520       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
521       if (Res)
522         break;
523 
524       Res = tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS);
525       if (Res)
526         break;
527     }
528     // Reinitialize Bytes
529     Bytes = Bytes_.slice(0, MaxInstBytesNum);
530 
531     if (Bytes.size() >= 8) {
532       const uint64_t QW = eatBytes<uint64_t>(Bytes);
533 
534       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
535         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
536         if (Res) {
537           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
538               == -1)
539             break;
540           if (convertDPP8Inst(MI) == MCDisassembler::Success)
541             break;
542           MI = MCInst(); // clear
543         }
544       }
545 
546       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
547       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
548         break;
549       MI = MCInst(); // clear
550 
551       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
552                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
553       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
554         break;
555       MI = MCInst(); // clear
556 
557       Res = tryDecodeInst(DecoderTableDPP8GFX1264,
558                           DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
559       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
560         break;
561       MI = MCInst(); // clear
562 
563       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
564       if (Res) break;
565 
566       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
567                           MI, QW, Address, CS);
568       if (Res) {
569         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
570           convertVOPCDPPInst(MI);
571         break;
572       }
573 
574       Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
575                           MI, QW, Address, CS);
576       if (Res) {
577         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
578           convertVOPCDPPInst(MI);
579         break;
580       }
581 
582       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
583       if (Res) { IsSDWA = true;  break; }
584 
585       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
586       if (Res) { IsSDWA = true;  break; }
587 
588       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
589       if (Res) { IsSDWA = true;  break; }
590 
591       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
592         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
593         if (Res)
594           break;
595       }
596 
597       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
598       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
599       // table first so we print the correct name.
600       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
601         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
602         if (Res)
603           break;
604       }
605     }
606 
607     // Reinitialize Bytes as DPP64 could have eaten too much
608     Bytes = Bytes_.slice(0, MaxInstBytesNum);
609 
610     // Try decode 32-bit instruction
611     if (Bytes.size() < 4) break;
612     const uint32_t DW = eatBytes<uint32_t>(Bytes);
613     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
614     if (Res) break;
615 
616     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
617     if (Res) break;
618 
619     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
620     if (Res) break;
621 
622     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
623       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
624       if (Res)
625         break;
626     }
627 
628     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
629       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
630       if (Res) break;
631     }
632 
633     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
634     if (Res) break;
635 
636     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
637                         Address, CS);
638     if (Res) break;
639 
640     Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
641                         Address, CS);
642     if (Res)
643       break;
644 
645     if (Bytes.size() < 4) break;
646     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
647 
648     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
649       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
650       if (Res)
651         break;
652     }
653 
654     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
655       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
656       if (Res)
657         break;
658     }
659 
660     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
661     if (Res) break;
662 
663     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
664     if (Res) break;
665 
666     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
667     if (Res) break;
668 
669     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
670     if (Res) break;
671 
672     Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
673                         Address, CS);
674     if (Res)
675       break;
676 
677     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
678                         Address, CS);
679     if (Res)
680       break;
681 
682     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
683     if (Res)
684       break;
685 
686     Res = tryDecodeInst(DecoderTableWMMAGFX1264, MI, QW, Address, CS);
687   } while (false);
688 
689   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
690     // Insert dummy unused src2_modifiers.
691     insertNamedMCOperand(MI, MCOperand::createImm(0),
692                          AMDGPU::OpName::src2_modifiers);
693   }
694 
695   if (Res && (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
696               MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp)) {
697     // Insert dummy unused src2_modifiers.
698     insertNamedMCOperand(MI, MCOperand::createImm(0),
699                          AMDGPU::OpName::src2_modifiers);
700   }
701 
702   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
703       !AMDGPU::hasGDS(STI)) {
704     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
705   }
706 
707   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
708           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
709     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
710                                              AMDGPU::OpName::cpol);
711     if (CPolPos != -1) {
712       unsigned CPol =
713           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
714               AMDGPU::CPol::GLC : 0;
715       if (MI.getNumOperands() <= (unsigned)CPolPos) {
716         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
717                              AMDGPU::OpName::cpol);
718       } else if (CPol) {
719         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
720       }
721     }
722   }
723 
724   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
725               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
726              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
727     // GFX90A lost TFE, its place is occupied by ACC.
728     int TFEOpIdx =
729         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
730     if (TFEOpIdx != -1) {
731       auto TFEIter = MI.begin();
732       std::advance(TFEIter, TFEOpIdx);
733       MI.insert(TFEIter, MCOperand::createImm(0));
734     }
735   }
736 
737   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
738               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
739     int SWZOpIdx =
740         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
741     if (SWZOpIdx != -1) {
742       auto SWZIter = MI.begin();
743       std::advance(SWZIter, SWZOpIdx);
744       MI.insert(SWZIter, MCOperand::createImm(0));
745     }
746   }
747 
748   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
749     int VAddr0Idx =
750         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
751     int RsrcIdx =
752         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
753     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
754     if (VAddr0Idx >= 0 && NSAArgs > 0) {
755       unsigned NSAWords = (NSAArgs + 3) / 4;
756       if (Bytes.size() < 4 * NSAWords) {
757         Res = MCDisassembler::Fail;
758       } else {
759         for (unsigned i = 0; i < NSAArgs; ++i) {
760           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
761           auto VAddrRCID =
762               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
763           MI.insert(MI.begin() + VAddrIdx,
764                     createRegOperand(VAddrRCID, Bytes[i]));
765         }
766         Bytes = Bytes.slice(4 * NSAWords);
767       }
768     }
769 
770     if (Res)
771       Res = convertMIMGInst(MI);
772   }
773 
774   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
775               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
776     Res = convertMIMGInst(MI);
777 
778   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
779     Res = convertEXPInst(MI);
780 
781   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
782     Res = convertVINTERPInst(MI);
783 
784   if (Res && IsSDWA)
785     Res = convertSDWAInst(MI);
786 
787   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
788                                               AMDGPU::OpName::vdst_in);
789   if (VDstIn_Idx != -1) {
790     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
791                            MCOI::OperandConstraint::TIED_TO);
792     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
793          !MI.getOperand(VDstIn_Idx).isReg() ||
794          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
795       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
796         MI.erase(&MI.getOperand(VDstIn_Idx));
797       insertNamedMCOperand(MI,
798         MCOperand::createReg(MI.getOperand(Tied).getReg()),
799         AMDGPU::OpName::vdst_in);
800     }
801   }
802 
803   int ImmLitIdx =
804       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
805   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
806   if (Res && ImmLitIdx != -1 && !IsSOPK)
807     Res = convertFMAanyK(MI, ImmLitIdx);
808 
809   // if the opcode was not recognized we'll assume a Size of 4 bytes
810   // (unless there are fewer bytes left)
811   Size = Res ? (MaxInstBytesNum - Bytes.size())
812              : std::min((size_t)4, Bytes_.size());
813   return Res;
814 }
815 
816 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
817   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
818     // The MCInst still has these fields even though they are no longer encoded
819     // in the GFX11 instruction.
820     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
821     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
822   }
823   return MCDisassembler::Success;
824 }
825 
826 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
827   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
828       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
829       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
830       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
831       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
832       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
833       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
834       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
835     // The MCInst has this field that is not directly encoded in the
836     // instruction.
837     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
838   }
839   return MCDisassembler::Success;
840 }
841 
842 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
843   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
844       STI.hasFeature(AMDGPU::FeatureGFX10)) {
845     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
846       // VOPC - insert clamp
847       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
848   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
849     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
850     if (SDst != -1) {
851       // VOPC - insert VCC register as sdst
852       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
853                            AMDGPU::OpName::sdst);
854     } else {
855       // VOP1/2 - insert omod if present in instruction
856       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
857     }
858   }
859   return MCDisassembler::Success;
860 }
861 
862 struct VOPModifiers {
863   unsigned OpSel = 0;
864   unsigned OpSelHi = 0;
865   unsigned NegLo = 0;
866   unsigned NegHi = 0;
867 };
868 
869 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
870 // Note that these values do not affect disassembler output,
871 // so this is only necessary for consistency with src_modifiers.
872 static VOPModifiers collectVOPModifiers(const MCInst &MI,
873                                         bool IsVOP3P = false) {
874   VOPModifiers Modifiers;
875   unsigned Opc = MI.getOpcode();
876   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
877                         AMDGPU::OpName::src1_modifiers,
878                         AMDGPU::OpName::src2_modifiers};
879   for (int J = 0; J < 3; ++J) {
880     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
881     if (OpIdx == -1)
882       continue;
883 
884     unsigned Val = MI.getOperand(OpIdx).getImm();
885 
886     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
887     if (IsVOP3P) {
888       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
889       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
890       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
891     } else if (J == 0) {
892       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
893     }
894   }
895 
896   return Modifiers;
897 }
898 
899 // MAC opcodes have special old and src2 operands.
900 // src2 is tied to dst, while old is not tied (but assumed to be).
901 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
902   constexpr int DST_IDX = 0;
903   auto Opcode = MI.getOpcode();
904   const auto &Desc = MCII->get(Opcode);
905   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
906 
907   if (OldIdx != -1 && Desc.getOperandConstraint(
908                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
909     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
910     assert(Desc.getOperandConstraint(
911                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
912                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
913     (void)DST_IDX;
914     return true;
915   }
916 
917   return false;
918 }
919 
920 // Create dummy old operand and insert dummy unused src2_modifiers
921 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
922   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
923   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
924   insertNamedMCOperand(MI, MCOperand::createImm(0),
925                        AMDGPU::OpName::src2_modifiers);
926 }
927 
928 // We must check FI == literal to reject not genuine dpp8 insts, and we must
929 // first add optional MI operands to check FI
930 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
931   unsigned Opc = MI.getOpcode();
932 
933   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
934     convertVOP3PDPPInst(MI);
935   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
936              AMDGPU::isVOPC64DPP(Opc)) {
937     convertVOPCDPPInst(MI);
938   } else {
939     if (isMacDPP(MI))
940       convertMacDPPInst(MI);
941 
942     int VDstInIdx =
943         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
944     if (VDstInIdx != -1)
945       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
946 
947     if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp8_gfx12 ||
948         MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp8_gfx12)
949       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
950 
951     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
952     if (MI.getNumOperands() < DescNumOps &&
953         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
954       auto Mods = collectVOPModifiers(MI);
955       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
956                            AMDGPU::OpName::op_sel);
957     } else {
958       // Insert dummy unused src modifiers.
959       if (MI.getNumOperands() < DescNumOps &&
960           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
961         insertNamedMCOperand(MI, MCOperand::createImm(0),
962                              AMDGPU::OpName::src0_modifiers);
963 
964       if (MI.getNumOperands() < DescNumOps &&
965           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
966         insertNamedMCOperand(MI, MCOperand::createImm(0),
967                              AMDGPU::OpName::src1_modifiers);
968     }
969   }
970   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
971 }
972 
973 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
974   if (isMacDPP(MI))
975     convertMacDPPInst(MI);
976 
977   int VDstInIdx =
978       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
979   if (VDstInIdx != -1)
980     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
981 
982   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp_gfx12 ||
983       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp_gfx12)
984     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
985 
986   unsigned Opc = MI.getOpcode();
987   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
988   if (MI.getNumOperands() < DescNumOps &&
989       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
990     auto Mods = collectVOPModifiers(MI);
991     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
992                          AMDGPU::OpName::op_sel);
993   }
994   return MCDisassembler::Success;
995 }
996 
997 // Note that before gfx10, the MIMG encoding provided no information about
998 // VADDR size. Consequently, decoded instructions always show address as if it
999 // has 1 dword, which could be not really so.
1000 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
1001   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
1002 
1003   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1004                                            AMDGPU::OpName::vdst);
1005 
1006   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1007                                             AMDGPU::OpName::vdata);
1008   int VAddr0Idx =
1009       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
1010   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
1011                                                 : AMDGPU::OpName::rsrc;
1012   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
1013   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1014                                             AMDGPU::OpName::dmask);
1015 
1016   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1017                                             AMDGPU::OpName::tfe);
1018   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1019                                             AMDGPU::OpName::d16);
1020 
1021   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
1022   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1023       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
1024 
1025   assert(VDataIdx != -1);
1026   if (BaseOpcode->BVH) {
1027     // Add A16 operand for intersect_ray instructions
1028     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
1029     return MCDisassembler::Success;
1030   }
1031 
1032   bool IsAtomic = (VDstIdx != -1);
1033   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1034   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1035   bool IsNSA = false;
1036   bool IsPartialNSA = false;
1037   unsigned AddrSize = Info->VAddrDwords;
1038 
1039   if (isGFX10Plus()) {
1040     unsigned DimIdx =
1041         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1042     int A16Idx =
1043         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1044     const AMDGPU::MIMGDimInfo *Dim =
1045         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1046     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1047 
1048     AddrSize =
1049         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1050 
1051     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1052     // VIMAGE insts other than BVH never use vaddr4.
1053     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1054             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1055             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1056     if (!IsNSA) {
1057       if (!IsVSample && AddrSize > 12)
1058         AddrSize = 16;
1059     } else {
1060       if (AddrSize > Info->VAddrDwords) {
1061         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1062           // The NSA encoding does not contain enough operands for the
1063           // combination of base opcode / dimension. Should this be an error?
1064           return MCDisassembler::Success;
1065         }
1066         IsPartialNSA = true;
1067       }
1068     }
1069   }
1070 
1071   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1072   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1073 
1074   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1075   if (D16 && AMDGPU::hasPackedD16(STI)) {
1076     DstSize = (DstSize + 1) / 2;
1077   }
1078 
1079   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1080     DstSize += 1;
1081 
1082   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1083     return MCDisassembler::Success;
1084 
1085   int NewOpcode =
1086       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1087   if (NewOpcode == -1)
1088     return MCDisassembler::Success;
1089 
1090   // Widen the register to the correct number of enabled channels.
1091   unsigned NewVdata = AMDGPU::NoRegister;
1092   if (DstSize != Info->VDataDwords) {
1093     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1094 
1095     // Get first subregister of VData
1096     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1097     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1098     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1099 
1100     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1101                                        &MRI.getRegClass(DataRCID));
1102     if (NewVdata == AMDGPU::NoRegister) {
1103       // It's possible to encode this such that the low register + enabled
1104       // components exceeds the register count.
1105       return MCDisassembler::Success;
1106     }
1107   }
1108 
1109   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1110   // If using partial NSA on GFX11+ widen last address register.
1111   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1112   unsigned NewVAddrSA = AMDGPU::NoRegister;
1113   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1114       AddrSize != Info->VAddrDwords) {
1115     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1116     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1117     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1118 
1119     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1120     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1121                                         &MRI.getRegClass(AddrRCID));
1122     if (!NewVAddrSA)
1123       return MCDisassembler::Success;
1124   }
1125 
1126   MI.setOpcode(NewOpcode);
1127 
1128   if (NewVdata != AMDGPU::NoRegister) {
1129     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1130 
1131     if (IsAtomic) {
1132       // Atomic operations have an additional operand (a copy of data)
1133       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1134     }
1135   }
1136 
1137   if (NewVAddrSA) {
1138     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1139   } else if (IsNSA) {
1140     assert(AddrSize <= Info->VAddrDwords);
1141     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1142              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1143   }
1144 
1145   return MCDisassembler::Success;
1146 }
1147 
1148 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1149 // decoder only adds to src_modifiers, so manually add the bits to the other
1150 // operands.
1151 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1152   unsigned Opc = MI.getOpcode();
1153   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1154   auto Mods = collectVOPModifiers(MI, true);
1155 
1156   if (MI.getNumOperands() < DescNumOps &&
1157       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1158     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1159 
1160   if (MI.getNumOperands() < DescNumOps &&
1161       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1162     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1163                          AMDGPU::OpName::op_sel);
1164   if (MI.getNumOperands() < DescNumOps &&
1165       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1166     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1167                          AMDGPU::OpName::op_sel_hi);
1168   if (MI.getNumOperands() < DescNumOps &&
1169       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1170     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1171                          AMDGPU::OpName::neg_lo);
1172   if (MI.getNumOperands() < DescNumOps &&
1173       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1174     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1175                          AMDGPU::OpName::neg_hi);
1176 
1177   return MCDisassembler::Success;
1178 }
1179 
1180 // Create dummy old operand and insert optional operands
1181 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1182   unsigned Opc = MI.getOpcode();
1183   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1184 
1185   if (MI.getNumOperands() < DescNumOps &&
1186       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1187     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1188 
1189   if (MI.getNumOperands() < DescNumOps &&
1190       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1191     insertNamedMCOperand(MI, MCOperand::createImm(0),
1192                          AMDGPU::OpName::src0_modifiers);
1193 
1194   if (MI.getNumOperands() < DescNumOps &&
1195       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1196     insertNamedMCOperand(MI, MCOperand::createImm(0),
1197                          AMDGPU::OpName::src1_modifiers);
1198   return MCDisassembler::Success;
1199 }
1200 
1201 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1202                                                 int ImmLitIdx) const {
1203   assert(HasLiteral && "Should have decoded a literal");
1204   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1205   unsigned DescNumOps = Desc.getNumOperands();
1206   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1207                        AMDGPU::OpName::immDeferred);
1208   assert(DescNumOps == MI.getNumOperands());
1209   for (unsigned I = 0; I < DescNumOps; ++I) {
1210     auto &Op = MI.getOperand(I);
1211     auto OpType = Desc.operands()[I].OperandType;
1212     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1213                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1214     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1215         IsDeferredOp)
1216       Op.setImm(Literal);
1217   }
1218   return MCDisassembler::Success;
1219 }
1220 
1221 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1222   return getContext().getRegisterInfo()->
1223     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1224 }
1225 
1226 inline
1227 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1228                                          const Twine& ErrMsg) const {
1229   *CommentStream << "Error: " + ErrMsg;
1230 
1231   // ToDo: add support for error operands to MCInst.h
1232   // return MCOperand::createError(V);
1233   return MCOperand();
1234 }
1235 
1236 inline
1237 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1238   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1239 }
1240 
1241 inline
1242 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1243                                                unsigned Val) const {
1244   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1245   if (Val >= RegCl.getNumRegs())
1246     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1247                            ": unknown register " + Twine(Val));
1248   return createRegOperand(RegCl.getRegister(Val));
1249 }
1250 
1251 inline
1252 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1253                                                 unsigned Val) const {
1254   // ToDo: SI/CI have 104 SGPRs, VI - 102
1255   // Valery: here we accepting as much as we can, let assembler sort it out
1256   int shift = 0;
1257   switch (SRegClassID) {
1258   case AMDGPU::SGPR_32RegClassID:
1259   case AMDGPU::TTMP_32RegClassID:
1260     break;
1261   case AMDGPU::SGPR_64RegClassID:
1262   case AMDGPU::TTMP_64RegClassID:
1263     shift = 1;
1264     break;
1265   case AMDGPU::SGPR_96RegClassID:
1266   case AMDGPU::TTMP_96RegClassID:
1267   case AMDGPU::SGPR_128RegClassID:
1268   case AMDGPU::TTMP_128RegClassID:
1269   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1270   // this bundle?
1271   case AMDGPU::SGPR_256RegClassID:
1272   case AMDGPU::TTMP_256RegClassID:
1273     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1274   // this bundle?
1275   case AMDGPU::SGPR_288RegClassID:
1276   case AMDGPU::TTMP_288RegClassID:
1277   case AMDGPU::SGPR_320RegClassID:
1278   case AMDGPU::TTMP_320RegClassID:
1279   case AMDGPU::SGPR_352RegClassID:
1280   case AMDGPU::TTMP_352RegClassID:
1281   case AMDGPU::SGPR_384RegClassID:
1282   case AMDGPU::TTMP_384RegClassID:
1283   case AMDGPU::SGPR_512RegClassID:
1284   case AMDGPU::TTMP_512RegClassID:
1285     shift = 2;
1286     break;
1287   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1288   // this bundle?
1289   default:
1290     llvm_unreachable("unhandled register class");
1291   }
1292 
1293   if (Val % (1 << shift)) {
1294     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1295                    << ": scalar reg isn't aligned " << Val;
1296   }
1297 
1298   return createRegOperand(SRegClassID, Val >> shift);
1299 }
1300 
1301 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1302                                                   bool IsHi) const {
1303   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1304   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1305 }
1306 
1307 // Decode Literals for insts which always have a literal in the encoding
1308 MCOperand
1309 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1310   if (HasLiteral) {
1311     assert(
1312         AMDGPU::hasVOPD(STI) &&
1313         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1314     if (Literal != Val)
1315       return errOperand(Val, "More than one unique literal is illegal");
1316   }
1317   HasLiteral = true;
1318   Literal = Val;
1319   return MCOperand::createImm(Literal);
1320 }
1321 
1322 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1323   // For now all literal constants are supposed to be unsigned integer
1324   // ToDo: deal with signed/unsigned 64-bit integer constants
1325   // ToDo: deal with float/double constants
1326   if (!HasLiteral) {
1327     if (Bytes.size() < 4) {
1328       return errOperand(0, "cannot read literal, inst bytes left " +
1329                         Twine(Bytes.size()));
1330     }
1331     HasLiteral = true;
1332     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1333     if (ExtendFP64)
1334       Literal64 <<= 32;
1335   }
1336   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1337 }
1338 
1339 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1340   using namespace AMDGPU::EncValues;
1341 
1342   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1343   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1344     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1345     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1346       // Cast prevents negative overflow.
1347 }
1348 
1349 static int64_t getInlineImmVal32(unsigned Imm) {
1350   switch (Imm) {
1351   case 240:
1352     return llvm::bit_cast<uint32_t>(0.5f);
1353   case 241:
1354     return llvm::bit_cast<uint32_t>(-0.5f);
1355   case 242:
1356     return llvm::bit_cast<uint32_t>(1.0f);
1357   case 243:
1358     return llvm::bit_cast<uint32_t>(-1.0f);
1359   case 244:
1360     return llvm::bit_cast<uint32_t>(2.0f);
1361   case 245:
1362     return llvm::bit_cast<uint32_t>(-2.0f);
1363   case 246:
1364     return llvm::bit_cast<uint32_t>(4.0f);
1365   case 247:
1366     return llvm::bit_cast<uint32_t>(-4.0f);
1367   case 248: // 1 / (2 * PI)
1368     return 0x3e22f983;
1369   default:
1370     llvm_unreachable("invalid fp inline imm");
1371   }
1372 }
1373 
1374 static int64_t getInlineImmVal64(unsigned Imm) {
1375   switch (Imm) {
1376   case 240:
1377     return llvm::bit_cast<uint64_t>(0.5);
1378   case 241:
1379     return llvm::bit_cast<uint64_t>(-0.5);
1380   case 242:
1381     return llvm::bit_cast<uint64_t>(1.0);
1382   case 243:
1383     return llvm::bit_cast<uint64_t>(-1.0);
1384   case 244:
1385     return llvm::bit_cast<uint64_t>(2.0);
1386   case 245:
1387     return llvm::bit_cast<uint64_t>(-2.0);
1388   case 246:
1389     return llvm::bit_cast<uint64_t>(4.0);
1390   case 247:
1391     return llvm::bit_cast<uint64_t>(-4.0);
1392   case 248: // 1 / (2 * PI)
1393     return 0x3fc45f306dc9c882;
1394   default:
1395     llvm_unreachable("invalid fp inline imm");
1396   }
1397 }
1398 
1399 static int64_t getInlineImmVal16(unsigned Imm) {
1400   switch (Imm) {
1401   case 240:
1402     return 0x3800;
1403   case 241:
1404     return 0xB800;
1405   case 242:
1406     return 0x3C00;
1407   case 243:
1408     return 0xBC00;
1409   case 244:
1410     return 0x4000;
1411   case 245:
1412     return 0xC000;
1413   case 246:
1414     return 0x4400;
1415   case 247:
1416     return 0xC400;
1417   case 248: // 1 / (2 * PI)
1418     return 0x3118;
1419   default:
1420     llvm_unreachable("invalid fp inline imm");
1421   }
1422 }
1423 
1424 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1425   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1426       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1427 
1428   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1429   // ImmWidth 0 is a default case where operand should not allow immediates.
1430   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1431   // use it to print verbose error message.
1432   switch (ImmWidth) {
1433   case 0:
1434   case 32:
1435     return MCOperand::createImm(getInlineImmVal32(Imm));
1436   case 64:
1437     return MCOperand::createImm(getInlineImmVal64(Imm));
1438   case 16:
1439     return MCOperand::createImm(getInlineImmVal16(Imm));
1440   default:
1441     llvm_unreachable("implement me");
1442   }
1443 }
1444 
1445 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1446   using namespace AMDGPU;
1447 
1448   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1449   switch (Width) {
1450   default: // fall
1451   case OPW32:
1452   case OPW16:
1453   case OPWV216:
1454     return VGPR_32RegClassID;
1455   case OPW64:
1456   case OPWV232: return VReg_64RegClassID;
1457   case OPW96: return VReg_96RegClassID;
1458   case OPW128: return VReg_128RegClassID;
1459   case OPW160: return VReg_160RegClassID;
1460   case OPW256: return VReg_256RegClassID;
1461   case OPW288: return VReg_288RegClassID;
1462   case OPW320: return VReg_320RegClassID;
1463   case OPW352: return VReg_352RegClassID;
1464   case OPW384: return VReg_384RegClassID;
1465   case OPW512: return VReg_512RegClassID;
1466   case OPW1024: return VReg_1024RegClassID;
1467   }
1468 }
1469 
1470 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1471   using namespace AMDGPU;
1472 
1473   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1474   switch (Width) {
1475   default: // fall
1476   case OPW32:
1477   case OPW16:
1478   case OPWV216:
1479     return AGPR_32RegClassID;
1480   case OPW64:
1481   case OPWV232: return AReg_64RegClassID;
1482   case OPW96: return AReg_96RegClassID;
1483   case OPW128: return AReg_128RegClassID;
1484   case OPW160: return AReg_160RegClassID;
1485   case OPW256: return AReg_256RegClassID;
1486   case OPW288: return AReg_288RegClassID;
1487   case OPW320: return AReg_320RegClassID;
1488   case OPW352: return AReg_352RegClassID;
1489   case OPW384: return AReg_384RegClassID;
1490   case OPW512: return AReg_512RegClassID;
1491   case OPW1024: return AReg_1024RegClassID;
1492   }
1493 }
1494 
1495 
1496 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1497   using namespace AMDGPU;
1498 
1499   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1500   switch (Width) {
1501   default: // fall
1502   case OPW32:
1503   case OPW16:
1504   case OPWV216:
1505     return SGPR_32RegClassID;
1506   case OPW64:
1507   case OPWV232: return SGPR_64RegClassID;
1508   case OPW96: return SGPR_96RegClassID;
1509   case OPW128: return SGPR_128RegClassID;
1510   case OPW160: return SGPR_160RegClassID;
1511   case OPW256: return SGPR_256RegClassID;
1512   case OPW288: return SGPR_288RegClassID;
1513   case OPW320: return SGPR_320RegClassID;
1514   case OPW352: return SGPR_352RegClassID;
1515   case OPW384: return SGPR_384RegClassID;
1516   case OPW512: return SGPR_512RegClassID;
1517   }
1518 }
1519 
1520 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1521   using namespace AMDGPU;
1522 
1523   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1524   switch (Width) {
1525   default: // fall
1526   case OPW32:
1527   case OPW16:
1528   case OPWV216:
1529     return TTMP_32RegClassID;
1530   case OPW64:
1531   case OPWV232: return TTMP_64RegClassID;
1532   case OPW128: return TTMP_128RegClassID;
1533   case OPW256: return TTMP_256RegClassID;
1534   case OPW288: return TTMP_288RegClassID;
1535   case OPW320: return TTMP_320RegClassID;
1536   case OPW352: return TTMP_352RegClassID;
1537   case OPW384: return TTMP_384RegClassID;
1538   case OPW512: return TTMP_512RegClassID;
1539   }
1540 }
1541 
1542 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1543   using namespace AMDGPU::EncValues;
1544 
1545   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1546   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1547 
1548   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1549 }
1550 
1551 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1552                                           bool MandatoryLiteral,
1553                                           unsigned ImmWidth, bool IsFP) const {
1554   using namespace AMDGPU::EncValues;
1555 
1556   assert(Val < 1024); // enum10
1557 
1558   bool IsAGPR = Val & 512;
1559   Val &= 511;
1560 
1561   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1562     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1563                                    : getVgprClassId(Width), Val - VGPR_MIN);
1564   }
1565   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1566                             IsFP);
1567 }
1568 
1569 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1570                                                  unsigned Val,
1571                                                  bool MandatoryLiteral,
1572                                                  unsigned ImmWidth,
1573                                                  bool IsFP) const {
1574   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1575   // decoded earlier.
1576   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1577   using namespace AMDGPU::EncValues;
1578 
1579   if (Val <= SGPR_MAX) {
1580     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1581     static_assert(SGPR_MIN == 0);
1582     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1583   }
1584 
1585   int TTmpIdx = getTTmpIdx(Val);
1586   if (TTmpIdx >= 0) {
1587     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1588   }
1589 
1590   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1591     return decodeIntImmed(Val);
1592 
1593   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1594     return decodeFPImmed(ImmWidth, Val);
1595 
1596   if (Val == LITERAL_CONST) {
1597     if (MandatoryLiteral)
1598       // Keep a sentinel value for deferred setting
1599       return MCOperand::createImm(LITERAL_CONST);
1600     else
1601       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1602   }
1603 
1604   switch (Width) {
1605   case OPW32:
1606   case OPW16:
1607   case OPWV216:
1608     return decodeSpecialReg32(Val);
1609   case OPW64:
1610   case OPWV232:
1611     return decodeSpecialReg64(Val);
1612   default:
1613     llvm_unreachable("unexpected immediate type");
1614   }
1615 }
1616 
1617 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1618 // opposite of bit 0 of DstX.
1619 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1620                                                unsigned Val) const {
1621   int VDstXInd =
1622       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1623   assert(VDstXInd != -1);
1624   assert(Inst.getOperand(VDstXInd).isReg());
1625   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1626   Val |= ~XDstReg & 1;
1627   auto Width = llvm::AMDGPUDisassembler::OPW32;
1628   return createRegOperand(getVgprClassId(Width), Val);
1629 }
1630 
1631 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1632   using namespace AMDGPU;
1633 
1634   switch (Val) {
1635   // clang-format off
1636   case 102: return createRegOperand(FLAT_SCR_LO);
1637   case 103: return createRegOperand(FLAT_SCR_HI);
1638   case 104: return createRegOperand(XNACK_MASK_LO);
1639   case 105: return createRegOperand(XNACK_MASK_HI);
1640   case 106: return createRegOperand(VCC_LO);
1641   case 107: return createRegOperand(VCC_HI);
1642   case 108: return createRegOperand(TBA_LO);
1643   case 109: return createRegOperand(TBA_HI);
1644   case 110: return createRegOperand(TMA_LO);
1645   case 111: return createRegOperand(TMA_HI);
1646   case 124:
1647     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1648   case 125:
1649     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1650   case 126: return createRegOperand(EXEC_LO);
1651   case 127: return createRegOperand(EXEC_HI);
1652   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1653   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1654   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1655   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1656   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1657   case 251: return createRegOperand(SRC_VCCZ);
1658   case 252: return createRegOperand(SRC_EXECZ);
1659   case 253: return createRegOperand(SRC_SCC);
1660   case 254: return createRegOperand(LDS_DIRECT);
1661   default: break;
1662     // clang-format on
1663   }
1664   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1665 }
1666 
1667 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1668   using namespace AMDGPU;
1669 
1670   switch (Val) {
1671   case 102: return createRegOperand(FLAT_SCR);
1672   case 104: return createRegOperand(XNACK_MASK);
1673   case 106: return createRegOperand(VCC);
1674   case 108: return createRegOperand(TBA);
1675   case 110: return createRegOperand(TMA);
1676   case 124:
1677     if (isGFX11Plus())
1678       return createRegOperand(SGPR_NULL);
1679     break;
1680   case 125:
1681     if (!isGFX11Plus())
1682       return createRegOperand(SGPR_NULL);
1683     break;
1684   case 126: return createRegOperand(EXEC);
1685   case 235: return createRegOperand(SRC_SHARED_BASE);
1686   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1687   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1688   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1689   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1690   case 251: return createRegOperand(SRC_VCCZ);
1691   case 252: return createRegOperand(SRC_EXECZ);
1692   case 253: return createRegOperand(SRC_SCC);
1693   default: break;
1694   }
1695   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1696 }
1697 
1698 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1699                                             const unsigned Val,
1700                                             unsigned ImmWidth) const {
1701   using namespace AMDGPU::SDWA;
1702   using namespace AMDGPU::EncValues;
1703 
1704   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1705       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1706     // XXX: cast to int is needed to avoid stupid warning:
1707     // compare with unsigned is always true
1708     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1709         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1710       return createRegOperand(getVgprClassId(Width),
1711                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1712     }
1713     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1714         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1715                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1716       return createSRegOperand(getSgprClassId(Width),
1717                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1718     }
1719     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1720         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1721       return createSRegOperand(getTtmpClassId(Width),
1722                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1723     }
1724 
1725     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1726 
1727     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1728       return decodeIntImmed(SVal);
1729 
1730     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1731       return decodeFPImmed(ImmWidth, SVal);
1732 
1733     return decodeSpecialReg32(SVal);
1734   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1735     return createRegOperand(getVgprClassId(Width), Val);
1736   }
1737   llvm_unreachable("unsupported target");
1738 }
1739 
1740 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1741   return decodeSDWASrc(OPW16, Val, 16);
1742 }
1743 
1744 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1745   return decodeSDWASrc(OPW32, Val, 32);
1746 }
1747 
1748 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1749   using namespace AMDGPU::SDWA;
1750 
1751   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1752           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1753          "SDWAVopcDst should be present only on GFX9+");
1754 
1755   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1756 
1757   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1758     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1759 
1760     int TTmpIdx = getTTmpIdx(Val);
1761     if (TTmpIdx >= 0) {
1762       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1763       return createSRegOperand(TTmpClsId, TTmpIdx);
1764     } else if (Val > SGPR_MAX) {
1765       return IsWave64 ? decodeSpecialReg64(Val)
1766                       : decodeSpecialReg32(Val);
1767     } else {
1768       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1769     }
1770   } else {
1771     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1772   }
1773 }
1774 
1775 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1776   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1777              ? decodeSrcOp(OPW64, Val)
1778              : decodeSrcOp(OPW32, Val);
1779 }
1780 
1781 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1782   return decodeSrcOp(OPW32, Val);
1783 }
1784 
1785 bool AMDGPUDisassembler::isVI() const {
1786   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1787 }
1788 
1789 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1790 
1791 bool AMDGPUDisassembler::isGFX90A() const {
1792   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1793 }
1794 
1795 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1796 
1797 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1798 
1799 bool AMDGPUDisassembler::isGFX10Plus() const {
1800   return AMDGPU::isGFX10Plus(STI);
1801 }
1802 
1803 bool AMDGPUDisassembler::isGFX11() const {
1804   return STI.hasFeature(AMDGPU::FeatureGFX11);
1805 }
1806 
1807 bool AMDGPUDisassembler::isGFX11Plus() const {
1808   return AMDGPU::isGFX11Plus(STI);
1809 }
1810 
1811 bool AMDGPUDisassembler::isGFX12Plus() const {
1812   return AMDGPU::isGFX12Plus(STI);
1813 }
1814 
1815 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1816   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1817 }
1818 
1819 bool AMDGPUDisassembler::hasKernargPreload() const {
1820   return AMDGPU::hasKernargPreload(STI);
1821 }
1822 
1823 //===----------------------------------------------------------------------===//
1824 // AMDGPU specific symbol handling
1825 //===----------------------------------------------------------------------===//
1826 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1827 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1828   do {                                                                         \
1829     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1830   } while (0)
1831 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1832   do {                                                                         \
1833     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1834              << GET_FIELD(MASK) << '\n';                                       \
1835   } while (0)
1836 
1837 // NOLINTNEXTLINE(readability-identifier-naming)
1838 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1839     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1840   using namespace amdhsa;
1841   StringRef Indent = "\t";
1842 
1843   // We cannot accurately backward compute #VGPRs used from
1844   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1845   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1846   // simply calculate the inverse of what the assembler does.
1847 
1848   uint32_t GranulatedWorkitemVGPRCount =
1849       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1850 
1851   uint32_t NextFreeVGPR =
1852       (GranulatedWorkitemVGPRCount + 1) *
1853       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1854 
1855   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1856 
1857   // We cannot backward compute values used to calculate
1858   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1859   // directives can't be computed:
1860   // .amdhsa_reserve_vcc
1861   // .amdhsa_reserve_flat_scratch
1862   // .amdhsa_reserve_xnack_mask
1863   // They take their respective default values if not specified in the assembly.
1864   //
1865   // GRANULATED_WAVEFRONT_SGPR_COUNT
1866   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1867   //
1868   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1869   // are set to 0. So while disassembling we consider that:
1870   //
1871   // GRANULATED_WAVEFRONT_SGPR_COUNT
1872   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1873   //
1874   // The disassembler cannot recover the original values of those 3 directives.
1875 
1876   uint32_t GranulatedWavefrontSGPRCount =
1877       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1878 
1879   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1880     return MCDisassembler::Fail;
1881 
1882   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1883                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1884 
1885   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1886   if (!hasArchitectedFlatScratch())
1887     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1888   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1889   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1890 
1891   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1892     return MCDisassembler::Fail;
1893 
1894   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1895                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1896   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1897                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1898   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1899                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1900   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1901                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1902 
1903   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1904     return MCDisassembler::Fail;
1905 
1906   if (!isGFX12Plus())
1907     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1908                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1909 
1910   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1911     return MCDisassembler::Fail;
1912 
1913   if (!isGFX12Plus())
1914     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1915                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1916 
1917   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1918     return MCDisassembler::Fail;
1919 
1920   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1921     return MCDisassembler::Fail;
1922 
1923   if (isGFX9Plus())
1924     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1925 
1926   if (!isGFX9Plus())
1927     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1928       return MCDisassembler::Fail;
1929   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1930     return MCDisassembler::Fail;
1931   if (!isGFX10Plus())
1932     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1933       return MCDisassembler::Fail;
1934 
1935   if (isGFX10Plus()) {
1936     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1937                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1938     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1939     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1940   }
1941 
1942   if (isGFX12Plus())
1943     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1944                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1945 
1946   return MCDisassembler::Success;
1947 }
1948 
1949 // NOLINTNEXTLINE(readability-identifier-naming)
1950 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1951     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1952   using namespace amdhsa;
1953   StringRef Indent = "\t";
1954   if (hasArchitectedFlatScratch())
1955     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1956                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1957   else
1958     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1959                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1960   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1961                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1962   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1963                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1964   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1965                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1966   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1967                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1968   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1969                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1970 
1971   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1972     return MCDisassembler::Fail;
1973 
1974   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1975     return MCDisassembler::Fail;
1976 
1977   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1978     return MCDisassembler::Fail;
1979 
1980   PRINT_DIRECTIVE(
1981       ".amdhsa_exception_fp_ieee_invalid_op",
1982       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1983   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1984                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1985   PRINT_DIRECTIVE(
1986       ".amdhsa_exception_fp_ieee_div_zero",
1987       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1988   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1989                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1990   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1991                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1992   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1993                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1994   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1995                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1996 
1997   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1998     return MCDisassembler::Fail;
1999 
2000   return MCDisassembler::Success;
2001 }
2002 
2003 // NOLINTNEXTLINE(readability-identifier-naming)
2004 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
2005     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2006   using namespace amdhsa;
2007   StringRef Indent = "\t";
2008   if (isGFX90A()) {
2009     KdStream << Indent << ".amdhsa_accum_offset "
2010              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
2011              << '\n';
2012     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
2013       return MCDisassembler::Fail;
2014     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
2015     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
2016       return MCDisassembler::Fail;
2017   } else if (isGFX10Plus()) {
2018     // Bits [0-3].
2019     if (!isGFX12Plus()) {
2020       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2021         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2022                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2023       } else {
2024         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2025             "SHARED_VGPR_COUNT",
2026             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2027       }
2028     } else {
2029       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0)
2030         return MCDisassembler::Fail;
2031     }
2032 
2033     // Bits [4-11].
2034     if (isGFX11()) {
2035       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2036                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2037       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2038                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2039       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2040                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2041     } else if (isGFX12Plus()) {
2042       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2043           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2044     } else {
2045       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1)
2046         return MCDisassembler::Fail;
2047     }
2048 
2049     // Bits [12].
2050     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2)
2051       return MCDisassembler::Fail;
2052 
2053     // Bits [13].
2054     if (isGFX12Plus()) {
2055       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2056                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2057     } else {
2058       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3)
2059         return MCDisassembler::Fail;
2060     }
2061 
2062     // Bits [14-30].
2063     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4)
2064       return MCDisassembler::Fail;
2065 
2066     // Bits [31].
2067     if (isGFX11Plus()) {
2068       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2069                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2070     } else {
2071       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5)
2072         return MCDisassembler::Fail;
2073     }
2074   } else if (FourByteBuffer) {
2075     return MCDisassembler::Fail;
2076   }
2077   return MCDisassembler::Success;
2078 }
2079 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2080 #undef PRINT_DIRECTIVE
2081 #undef GET_FIELD
2082 
2083 MCDisassembler::DecodeStatus
2084 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2085     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2086     raw_string_ostream &KdStream) const {
2087 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2088   do {                                                                         \
2089     KdStream << Indent << DIRECTIVE " "                                        \
2090              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2091   } while (0)
2092 
2093   uint16_t TwoByteBuffer = 0;
2094   uint32_t FourByteBuffer = 0;
2095 
2096   StringRef ReservedBytes;
2097   StringRef Indent = "\t";
2098 
2099   assert(Bytes.size() == 64);
2100   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2101 
2102   switch (Cursor.tell()) {
2103   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2104     FourByteBuffer = DE.getU32(Cursor);
2105     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2106              << '\n';
2107     return MCDisassembler::Success;
2108 
2109   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2110     FourByteBuffer = DE.getU32(Cursor);
2111     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2112              << FourByteBuffer << '\n';
2113     return MCDisassembler::Success;
2114 
2115   case amdhsa::KERNARG_SIZE_OFFSET:
2116     FourByteBuffer = DE.getU32(Cursor);
2117     KdStream << Indent << ".amdhsa_kernarg_size "
2118              << FourByteBuffer << '\n';
2119     return MCDisassembler::Success;
2120 
2121   case amdhsa::RESERVED0_OFFSET:
2122     // 4 reserved bytes, must be 0.
2123     ReservedBytes = DE.getBytes(Cursor, 4);
2124     for (int I = 0; I < 4; ++I) {
2125       if (ReservedBytes[I] != 0) {
2126         return MCDisassembler::Fail;
2127       }
2128     }
2129     return MCDisassembler::Success;
2130 
2131   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2132     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2133     // So far no directive controls this for Code Object V3, so simply skip for
2134     // disassembly.
2135     DE.skip(Cursor, 8);
2136     return MCDisassembler::Success;
2137 
2138   case amdhsa::RESERVED1_OFFSET:
2139     // 20 reserved bytes, must be 0.
2140     ReservedBytes = DE.getBytes(Cursor, 20);
2141     for (int I = 0; I < 20; ++I) {
2142       if (ReservedBytes[I] != 0) {
2143         return MCDisassembler::Fail;
2144       }
2145     }
2146     return MCDisassembler::Success;
2147 
2148   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2149     FourByteBuffer = DE.getU32(Cursor);
2150     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2151 
2152   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2153     FourByteBuffer = DE.getU32(Cursor);
2154     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2155 
2156   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2157     FourByteBuffer = DE.getU32(Cursor);
2158     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2159 
2160   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2161     using namespace amdhsa;
2162     TwoByteBuffer = DE.getU16(Cursor);
2163 
2164     if (!hasArchitectedFlatScratch())
2165       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2166                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2167     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2168                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2169     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2170                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2171     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2172                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2173     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2174                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2175     if (!hasArchitectedFlatScratch())
2176       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2177                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2178     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2179                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2180 
2181     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2182       return MCDisassembler::Fail;
2183 
2184     // Reserved for GFX9
2185     if (isGFX9() &&
2186         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2187       return MCDisassembler::Fail;
2188     } else if (isGFX10Plus()) {
2189       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2190                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2191     }
2192 
2193     // FIXME: We should be looking at the ELF header ABI version for this.
2194     if (AMDGPU::getDefaultAMDHSACodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2195       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2196                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2197 
2198     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2199       return MCDisassembler::Fail;
2200 
2201     return MCDisassembler::Success;
2202 
2203   case amdhsa::KERNARG_PRELOAD_OFFSET:
2204     using namespace amdhsa;
2205     TwoByteBuffer = DE.getU16(Cursor);
2206     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2207       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2208                       KERNARG_PRELOAD_SPEC_LENGTH);
2209     }
2210 
2211     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2212       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2213                       KERNARG_PRELOAD_SPEC_OFFSET);
2214     }
2215     return MCDisassembler::Success;
2216 
2217   case amdhsa::RESERVED3_OFFSET:
2218     // 4 bytes from here are reserved, must be 0.
2219     ReservedBytes = DE.getBytes(Cursor, 4);
2220     for (int I = 0; I < 4; ++I) {
2221       if (ReservedBytes[I] != 0)
2222         return MCDisassembler::Fail;
2223     }
2224     return MCDisassembler::Success;
2225 
2226   default:
2227     llvm_unreachable("Unhandled index. Case statements cover everything.");
2228     return MCDisassembler::Fail;
2229   }
2230 #undef PRINT_DIRECTIVE
2231 }
2232 
2233 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2234     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2235   // CP microcode requires the kernel descriptor to be 64 aligned.
2236   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2237     return MCDisassembler::Fail;
2238 
2239   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2240   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2241   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2242   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2243   // when required.
2244   if (isGFX10Plus()) {
2245     uint16_t KernelCodeProperties =
2246         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2247                                 llvm::endianness::little);
2248     EnableWavefrontSize32 =
2249         AMDHSA_BITS_GET(KernelCodeProperties,
2250                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2251   }
2252 
2253   std::string Kd;
2254   raw_string_ostream KdStream(Kd);
2255   KdStream << ".amdhsa_kernel " << KdName << '\n';
2256 
2257   DataExtractor::Cursor C(0);
2258   while (C && C.tell() < Bytes.size()) {
2259     MCDisassembler::DecodeStatus Status =
2260         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2261 
2262     cantFail(C.takeError());
2263 
2264     if (Status == MCDisassembler::Fail)
2265       return MCDisassembler::Fail;
2266   }
2267   KdStream << ".end_amdhsa_kernel\n";
2268   outs() << KdStream.str();
2269   return MCDisassembler::Success;
2270 }
2271 
2272 std::optional<MCDisassembler::DecodeStatus>
2273 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2274                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2275                                   raw_ostream &CStream) const {
2276   // Right now only kernel descriptor needs to be handled.
2277   // We ignore all other symbols for target specific handling.
2278   // TODO:
2279   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2280   // Object V2 and V3 when symbols are marked protected.
2281 
2282   // amd_kernel_code_t for Code Object V2.
2283   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2284     Size = 256;
2285     return MCDisassembler::Fail;
2286   }
2287 
2288   // Code Object V3 kernel descriptors.
2289   StringRef Name = Symbol.Name;
2290   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2291     Size = 64; // Size = 64 regardless of success or failure.
2292     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2293   }
2294   return std::nullopt;
2295 }
2296 
2297 //===----------------------------------------------------------------------===//
2298 // AMDGPUSymbolizer
2299 //===----------------------------------------------------------------------===//
2300 
2301 // Try to find symbol name for specified label
2302 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2303     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2304     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2305     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2306 
2307   if (!IsBranch) {
2308     return false;
2309   }
2310 
2311   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2312   if (!Symbols)
2313     return false;
2314 
2315   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2316     return Val.Addr == static_cast<uint64_t>(Value) &&
2317            Val.Type == ELF::STT_NOTYPE;
2318   });
2319   if (Result != Symbols->end()) {
2320     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2321     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2322     Inst.addOperand(MCOperand::createExpr(Add));
2323     return true;
2324   }
2325   // Add to list of referenced addresses, so caller can synthesize a label.
2326   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2327   return false;
2328 }
2329 
2330 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2331                                                        int64_t Value,
2332                                                        uint64_t Address) {
2333   llvm_unreachable("unimplemented");
2334 }
2335 
2336 //===----------------------------------------------------------------------===//
2337 // Initialization
2338 //===----------------------------------------------------------------------===//
2339 
2340 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2341                               LLVMOpInfoCallback /*GetOpInfo*/,
2342                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2343                               void *DisInfo,
2344                               MCContext *Ctx,
2345                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2346   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2347 }
2348 
2349 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2350                                                 const MCSubtargetInfo &STI,
2351                                                 MCContext &Ctx) {
2352   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2353 }
2354 
2355 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2356   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2357                                          createAMDGPUDisassembler);
2358   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2359                                        createAMDGPUSymbolizer);
2360 }
2361