xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 220147d536f35d06c7037185d976ecae9df8f32c)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VGPR_32_Lo128)
123 DECODE_OPERAND_REG(VRegOrLds_32)
124 DECODE_OPERAND_REG(VS_32)
125 DECODE_OPERAND_REG(VS_64)
126 DECODE_OPERAND_REG(VS_128)
127 
128 DECODE_OPERAND_REG(VReg_64)
129 DECODE_OPERAND_REG(VReg_96)
130 DECODE_OPERAND_REG(VReg_128)
131 DECODE_OPERAND_REG(VReg_256)
132 DECODE_OPERAND_REG(VReg_512)
133 DECODE_OPERAND_REG(VReg_1024)
134 
135 DECODE_OPERAND_REG(SReg_32)
136 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
137 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
138 DECODE_OPERAND_REG(SRegOrLds_32)
139 DECODE_OPERAND_REG(SReg_64)
140 DECODE_OPERAND_REG(SReg_64_XEXEC)
141 DECODE_OPERAND_REG(SReg_128)
142 DECODE_OPERAND_REG(SReg_256)
143 DECODE_OPERAND_REG(SReg_512)
144 
145 DECODE_OPERAND_REG(AGPR_32)
146 DECODE_OPERAND_REG(AReg_64)
147 DECODE_OPERAND_REG(AReg_128)
148 DECODE_OPERAND_REG(AReg_256)
149 DECODE_OPERAND_REG(AReg_512)
150 DECODE_OPERAND_REG(AReg_1024)
151 DECODE_OPERAND_REG(AV_32)
152 DECODE_OPERAND_REG(AV_64)
153 DECODE_OPERAND_REG(AV_128)
154 DECODE_OPERAND_REG(AVDst_128)
155 DECODE_OPERAND_REG(AVDst_512)
156 
157 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
158                                          uint64_t Addr,
159                                          const MCDisassembler *Decoder) {
160   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
161   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
162 }
163 
164 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
165                                            uint64_t Addr,
166                                            const MCDisassembler *Decoder) {
167   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
168   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
169 }
170 
171 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
172                                            uint64_t Addr,
173                                            const MCDisassembler *Decoder) {
174   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
175   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
176 }
177 
178 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
179                                         uint64_t Addr,
180                                         const MCDisassembler *Decoder) {
181   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
182   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
183 }
184 
185 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
186                                         uint64_t Addr,
187                                         const MCDisassembler *Decoder) {
188   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
189   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
190 }
191 
192 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
193                                           uint64_t Addr,
194                                           const MCDisassembler *Decoder) {
195   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
196   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
197 }
198 
199 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
200                                            uint64_t Addr,
201                                            const MCDisassembler *Decoder) {
202   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
203   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
204 }
205 
206 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
207                                            uint64_t Addr,
208                                            const MCDisassembler *Decoder) {
209   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
210   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
211 }
212 
213 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
214                                            uint64_t Addr,
215                                            const MCDisassembler *Decoder) {
216   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
217   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
218 }
219 
220 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
221                                             uint64_t Addr,
222                                             const MCDisassembler *Decoder) {
223   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
224   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
225 }
226 
227 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
228                                           uint64_t Addr,
229                                           const MCDisassembler *Decoder) {
230   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
231   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
232 }
233 
234 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
235                                            uint64_t Addr,
236                                            const MCDisassembler *Decoder) {
237   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
238   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
239 }
240 
241 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
242                                            uint64_t Addr,
243                                            const MCDisassembler *Decoder) {
244   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
245   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
246 }
247 
248 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
249                                            uint64_t Addr,
250                                            const MCDisassembler *Decoder) {
251   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
252   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
253 }
254 
255 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
256                                             uint64_t Addr,
257                                             const MCDisassembler *Decoder) {
258   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
259   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
260 }
261 
262 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
263                                           uint64_t Addr,
264                                           const MCDisassembler *Decoder) {
265   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
266   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
267 }
268 
269 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
270                                           uint64_t Addr,
271                                           const MCDisassembler *Decoder) {
272   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
273   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
274 }
275 
276 static DecodeStatus
277 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
278                              const MCDisassembler *Decoder) {
279   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
280   return addOperand(
281       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
282 }
283 
284 static DecodeStatus
285 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
286                              const MCDisassembler *Decoder) {
287   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
288   return addOperand(
289       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
290 }
291 
292 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
293                                           uint64_t Addr, const void *Decoder) {
294   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
295   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
296 }
297 
298 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
299                           const MCRegisterInfo *MRI) {
300   if (OpIdx < 0)
301     return false;
302 
303   const MCOperand &Op = Inst.getOperand(OpIdx);
304   if (!Op.isReg())
305     return false;
306 
307   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
308   auto Reg = Sub ? Sub : Op.getReg();
309   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
310 }
311 
312 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
313                                              AMDGPUDisassembler::OpWidthTy Opw,
314                                              const MCDisassembler *Decoder) {
315   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
316   if (!DAsm->isGFX90A()) {
317     Imm &= 511;
318   } else {
319     // If atomic has both vdata and vdst their register classes are tied.
320     // The bit is decoded along with the vdst, first operand. We need to
321     // change register class to AGPR if vdst was AGPR.
322     // If a DS instruction has both data0 and data1 their register classes
323     // are also tied.
324     unsigned Opc = Inst.getOpcode();
325     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
326     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
327                                                         : AMDGPU::OpName::vdata;
328     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
329     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
330     if ((int)Inst.getNumOperands() == DataIdx) {
331       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
332       if (IsAGPROperand(Inst, DstIdx, MRI))
333         Imm |= 512;
334     }
335 
336     if (TSFlags & SIInstrFlags::DS) {
337       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
338       if ((int)Inst.getNumOperands() == Data2Idx &&
339           IsAGPROperand(Inst, DataIdx, MRI))
340         Imm |= 512;
341     }
342   }
343   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
344 }
345 
346 static DecodeStatus
347 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
348                              const MCDisassembler *Decoder) {
349   return decodeOperand_AVLdSt_Any(Inst, Imm,
350                                   AMDGPUDisassembler::OPW32, Decoder);
351 }
352 
353 static DecodeStatus
354 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
355                              const MCDisassembler *Decoder) {
356   return decodeOperand_AVLdSt_Any(Inst, Imm,
357                                   AMDGPUDisassembler::OPW64, Decoder);
358 }
359 
360 static DecodeStatus
361 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
362                              const MCDisassembler *Decoder) {
363   return decodeOperand_AVLdSt_Any(Inst, Imm,
364                                   AMDGPUDisassembler::OPW96, Decoder);
365 }
366 
367 static DecodeStatus
368 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
369                               const MCDisassembler *Decoder) {
370   return decodeOperand_AVLdSt_Any(Inst, Imm,
371                                   AMDGPUDisassembler::OPW128, Decoder);
372 }
373 
374 static DecodeStatus
375 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
376                               const MCDisassembler *Decoder) {
377   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
378                                   Decoder);
379 }
380 
381 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
382                                           uint64_t Addr,
383                                           const MCDisassembler *Decoder) {
384   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
385   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
386 }
387 
388 #define DECODE_SDWA(DecName) \
389 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
390 
391 DECODE_SDWA(Src32)
392 DECODE_SDWA(Src16)
393 DECODE_SDWA(VopcDst)
394 
395 #include "AMDGPUGenDisassemblerTables.inc"
396 
397 //===----------------------------------------------------------------------===//
398 //
399 //===----------------------------------------------------------------------===//
400 
401 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
402   assert(Bytes.size() >= sizeof(T));
403   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
404   Bytes = Bytes.slice(sizeof(T));
405   return Res;
406 }
407 
408 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
409   assert(Bytes.size() >= 12);
410   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
411       Bytes.data());
412   Bytes = Bytes.slice(8);
413   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
414       Bytes.data());
415   Bytes = Bytes.slice(4);
416   return DecoderUInt128(Lo, Hi);
417 }
418 
419 // The disassembler is greedy, so we need to check FI operand value to
420 // not parse a dpp if the correct literal is not set. For dpp16 the
421 // autogenerated decoder checks the dpp literal
422 static bool isValidDPP8(const MCInst &MI) {
423   using namespace llvm::AMDGPU::DPP;
424   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
425   assert(FiIdx != -1);
426   if ((unsigned)FiIdx >= MI.getNumOperands())
427     return false;
428   unsigned Fi = MI.getOperand(FiIdx).getImm();
429   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
430 }
431 
432 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
433                                                 ArrayRef<uint8_t> Bytes_,
434                                                 uint64_t Address,
435                                                 raw_ostream &CS) const {
436   CommentStream = &CS;
437   bool IsSDWA = false;
438 
439   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
440   Bytes = Bytes_.slice(0, MaxInstBytesNum);
441 
442   DecodeStatus Res = MCDisassembler::Fail;
443   do {
444     // ToDo: better to switch encoding length using some bit predicate
445     // but it is unknown yet, so try all we can
446 
447     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
448     // encodings
449     if (isGFX11Plus() && Bytes.size() >= 12 ) {
450       DecoderUInt128 DecW = eat12Bytes(Bytes);
451       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
452                                           Address);
453       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
454         break;
455       MI = MCInst(); // clear
456       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
457                                           Address);
458       if (Res) {
459         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
460           convertVOP3PDPPInst(MI);
461         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
462           convertVOPCDPPInst(MI); // Special VOP3 case
463         else {
464           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
465           convertVOP3DPPInst(MI); // Regular VOP3 case
466         }
467         break;
468       }
469       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
470       if (Res)
471         break;
472     }
473     // Reinitialize Bytes
474     Bytes = Bytes_.slice(0, MaxInstBytesNum);
475 
476     if (Bytes.size() >= 8) {
477       const uint64_t QW = eatBytes<uint64_t>(Bytes);
478 
479       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
480         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
481         if (Res) {
482           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
483               == -1)
484             break;
485           if (convertDPP8Inst(MI) == MCDisassembler::Success)
486             break;
487           MI = MCInst(); // clear
488         }
489       }
490 
491       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
492       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
493         break;
494       MI = MCInst(); // clear
495 
496       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
497       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
498         break;
499       MI = MCInst(); // clear
500 
501       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
502       if (Res) break;
503 
504       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
505       if (Res) {
506         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
507           convertVOPCDPPInst(MI);
508         break;
509       }
510 
511       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
512       if (Res) { IsSDWA = true;  break; }
513 
514       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
515       if (Res) { IsSDWA = true;  break; }
516 
517       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
518       if (Res) { IsSDWA = true;  break; }
519 
520       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
521         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
522         if (Res)
523           break;
524       }
525 
526       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
527       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
528       // table first so we print the correct name.
529       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
530         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
531         if (Res)
532           break;
533       }
534     }
535 
536     // Reinitialize Bytes as DPP64 could have eaten too much
537     Bytes = Bytes_.slice(0, MaxInstBytesNum);
538 
539     // Try decode 32-bit instruction
540     if (Bytes.size() < 4) break;
541     const uint32_t DW = eatBytes<uint32_t>(Bytes);
542     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
543     if (Res) break;
544 
545     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
546     if (Res) break;
547 
548     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
549     if (Res) break;
550 
551     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
552       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
553       if (Res)
554         break;
555     }
556 
557     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
558       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
559       if (Res) break;
560     }
561 
562     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
563     if (Res) break;
564 
565     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
566     if (Res) break;
567 
568     if (Bytes.size() < 4) break;
569     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
570 
571     if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) {
572       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address);
573       if (Res)
574         break;
575     }
576 
577     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
578       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
579       if (Res)
580         break;
581     }
582 
583     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
584     if (Res) break;
585 
586     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
587     if (Res) break;
588 
589     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
590     if (Res) break;
591 
592     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
593     if (Res) break;
594 
595     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
596     if (Res)
597       break;
598 
599     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
600   } while (false);
601 
602   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
603               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
604               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
605               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
606               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
607               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
608               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
609               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
610               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
611               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
612               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
613               MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
614               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
615               MI.getOpcode() == AMDGPU::V_FMAC_F16_t16_e64_gfx11)) {
616     // Insert dummy unused src2_modifiers.
617     insertNamedMCOperand(MI, MCOperand::createImm(0),
618                          AMDGPU::OpName::src2_modifiers);
619   }
620 
621   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
622           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
623     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
624                                              AMDGPU::OpName::cpol);
625     if (CPolPos != -1) {
626       unsigned CPol =
627           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
628               AMDGPU::CPol::GLC : 0;
629       if (MI.getNumOperands() <= (unsigned)CPolPos) {
630         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
631                              AMDGPU::OpName::cpol);
632       } else if (CPol) {
633         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
634       }
635     }
636   }
637 
638   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
639               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
640              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
641     // GFX90A lost TFE, its place is occupied by ACC.
642     int TFEOpIdx =
643         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
644     if (TFEOpIdx != -1) {
645       auto TFEIter = MI.begin();
646       std::advance(TFEIter, TFEOpIdx);
647       MI.insert(TFEIter, MCOperand::createImm(0));
648     }
649   }
650 
651   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
652               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
653     int SWZOpIdx =
654         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
655     if (SWZOpIdx != -1) {
656       auto SWZIter = MI.begin();
657       std::advance(SWZIter, SWZOpIdx);
658       MI.insert(SWZIter, MCOperand::createImm(0));
659     }
660   }
661 
662   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
663     int VAddr0Idx =
664         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
665     int RsrcIdx =
666         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
667     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
668     if (VAddr0Idx >= 0 && NSAArgs > 0) {
669       unsigned NSAWords = (NSAArgs + 3) / 4;
670       if (Bytes.size() < 4 * NSAWords) {
671         Res = MCDisassembler::Fail;
672       } else {
673         for (unsigned i = 0; i < NSAArgs; ++i) {
674           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
675           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
676           MI.insert(MI.begin() + VAddrIdx,
677                     createRegOperand(VAddrRCID, Bytes[i]));
678         }
679         Bytes = Bytes.slice(4 * NSAWords);
680       }
681     }
682 
683     if (Res)
684       Res = convertMIMGInst(MI);
685   }
686 
687   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
688     Res = convertEXPInst(MI);
689 
690   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
691     Res = convertVINTERPInst(MI);
692 
693   if (Res && IsSDWA)
694     Res = convertSDWAInst(MI);
695 
696   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
697                                               AMDGPU::OpName::vdst_in);
698   if (VDstIn_Idx != -1) {
699     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
700                            MCOI::OperandConstraint::TIED_TO);
701     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
702          !MI.getOperand(VDstIn_Idx).isReg() ||
703          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
704       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
705         MI.erase(&MI.getOperand(VDstIn_Idx));
706       insertNamedMCOperand(MI,
707         MCOperand::createReg(MI.getOperand(Tied).getReg()),
708         AMDGPU::OpName::vdst_in);
709     }
710   }
711 
712   int ImmLitIdx =
713       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
714   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
715   if (Res && ImmLitIdx != -1 && !IsSOPK)
716     Res = convertFMAanyK(MI, ImmLitIdx);
717 
718   // if the opcode was not recognized we'll assume a Size of 4 bytes
719   // (unless there are fewer bytes left)
720   Size = Res ? (MaxInstBytesNum - Bytes.size())
721              : std::min((size_t)4, Bytes_.size());
722   return Res;
723 }
724 
725 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
726   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
727     // The MCInst still has these fields even though they are no longer encoded
728     // in the GFX11 instruction.
729     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
730     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
731   }
732   return MCDisassembler::Success;
733 }
734 
735 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
736   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
737       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
738       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
739       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
740     // The MCInst has this field that is not directly encoded in the
741     // instruction.
742     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
743   }
744   return MCDisassembler::Success;
745 }
746 
747 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
748   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
749       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
750     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
751       // VOPC - insert clamp
752       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
753   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
754     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
755     if (SDst != -1) {
756       // VOPC - insert VCC register as sdst
757       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
758                            AMDGPU::OpName::sdst);
759     } else {
760       // VOP1/2 - insert omod if present in instruction
761       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
762     }
763   }
764   return MCDisassembler::Success;
765 }
766 
767 struct VOPModifiers {
768   unsigned OpSel = 0;
769   unsigned OpSelHi = 0;
770   unsigned NegLo = 0;
771   unsigned NegHi = 0;
772 };
773 
774 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
775 // Note that these values do not affect disassembler output,
776 // so this is only necessary for consistency with src_modifiers.
777 static VOPModifiers collectVOPModifiers(const MCInst &MI,
778                                         bool IsVOP3P = false) {
779   VOPModifiers Modifiers;
780   unsigned Opc = MI.getOpcode();
781   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
782                         AMDGPU::OpName::src1_modifiers,
783                         AMDGPU::OpName::src2_modifiers};
784   for (int J = 0; J < 3; ++J) {
785     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
786     if (OpIdx == -1)
787       continue;
788 
789     unsigned Val = MI.getOperand(OpIdx).getImm();
790 
791     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
792     if (IsVOP3P) {
793       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
794       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
795       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
796     } else if (J == 0) {
797       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
798     }
799   }
800 
801   return Modifiers;
802 }
803 
804 // MAC opcodes have special old and src2 operands.
805 // src2 is tied to dst, while old is not tied (but assumed to be).
806 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
807   constexpr int DST_IDX = 0;
808   auto Opcode = MI.getOpcode();
809   const auto &Desc = MCII->get(Opcode);
810   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
811 
812   if (OldIdx != -1 && Desc.getOperandConstraint(
813                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
814     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
815     assert(Desc.getOperandConstraint(
816                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
817                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
818     (void)DST_IDX;
819     return true;
820   }
821 
822   return false;
823 }
824 
825 // Create dummy old operand and insert dummy unused src2_modifiers
826 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
827   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
828   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
829   insertNamedMCOperand(MI, MCOperand::createImm(0),
830                        AMDGPU::OpName::src2_modifiers);
831 }
832 
833 // We must check FI == literal to reject not genuine dpp8 insts, and we must
834 // first add optional MI operands to check FI
835 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
836   unsigned Opc = MI.getOpcode();
837   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
838     convertVOP3PDPPInst(MI);
839   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
840              AMDGPU::isVOPC64DPP(Opc)) {
841     convertVOPCDPPInst(MI);
842   } else {
843     if (isMacDPP(MI))
844       convertMacDPPInst(MI);
845 
846     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
847     if (MI.getNumOperands() < DescNumOps &&
848         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
849       auto Mods = collectVOPModifiers(MI);
850       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
851                            AMDGPU::OpName::op_sel);
852     } else {
853       // Insert dummy unused src modifiers.
854       if (MI.getNumOperands() < DescNumOps &&
855           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
856         insertNamedMCOperand(MI, MCOperand::createImm(0),
857                              AMDGPU::OpName::src0_modifiers);
858 
859       if (MI.getNumOperands() < DescNumOps &&
860           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
861         insertNamedMCOperand(MI, MCOperand::createImm(0),
862                              AMDGPU::OpName::src1_modifiers);
863     }
864   }
865   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
866 }
867 
868 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
869   if (isMacDPP(MI))
870     convertMacDPPInst(MI);
871 
872   unsigned Opc = MI.getOpcode();
873   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
874   if (MI.getNumOperands() < DescNumOps &&
875       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
876     auto Mods = collectVOPModifiers(MI);
877     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
878                          AMDGPU::OpName::op_sel);
879   }
880   return MCDisassembler::Success;
881 }
882 
883 // Note that before gfx10, the MIMG encoding provided no information about
884 // VADDR size. Consequently, decoded instructions always show address as if it
885 // has 1 dword, which could be not really so.
886 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
887 
888   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
889                                            AMDGPU::OpName::vdst);
890 
891   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
892                                             AMDGPU::OpName::vdata);
893   int VAddr0Idx =
894       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
895   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
896                                             AMDGPU::OpName::dmask);
897 
898   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
899                                             AMDGPU::OpName::tfe);
900   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
901                                             AMDGPU::OpName::d16);
902 
903   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
904   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
905       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
906 
907   assert(VDataIdx != -1);
908   if (BaseOpcode->BVH) {
909     // Add A16 operand for intersect_ray instructions
910     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16))
911       addOperand(MI, MCOperand::createImm(1));
912     return MCDisassembler::Success;
913   }
914 
915   bool IsAtomic = (VDstIdx != -1);
916   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
917   bool IsNSA = false;
918   unsigned AddrSize = Info->VAddrDwords;
919 
920   if (isGFX10Plus()) {
921     unsigned DimIdx =
922         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
923     int A16Idx =
924         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
925     const AMDGPU::MIMGDimInfo *Dim =
926         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
927     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
928 
929     AddrSize =
930         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
931 
932     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
933             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
934     if (!IsNSA) {
935       if (AddrSize > 8)
936         AddrSize = 16;
937     } else {
938       if (AddrSize > Info->VAddrDwords) {
939         // The NSA encoding does not contain enough operands for the combination
940         // of base opcode / dimension. Should this be an error?
941         return MCDisassembler::Success;
942       }
943     }
944   }
945 
946   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
947   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
948 
949   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
950   if (D16 && AMDGPU::hasPackedD16(STI)) {
951     DstSize = (DstSize + 1) / 2;
952   }
953 
954   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
955     DstSize += 1;
956 
957   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
958     return MCDisassembler::Success;
959 
960   int NewOpcode =
961       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
962   if (NewOpcode == -1)
963     return MCDisassembler::Success;
964 
965   // Widen the register to the correct number of enabled channels.
966   unsigned NewVdata = AMDGPU::NoRegister;
967   if (DstSize != Info->VDataDwords) {
968     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
969 
970     // Get first subregister of VData
971     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
972     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
973     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
974 
975     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
976                                        &MRI.getRegClass(DataRCID));
977     if (NewVdata == AMDGPU::NoRegister) {
978       // It's possible to encode this such that the low register + enabled
979       // components exceeds the register count.
980       return MCDisassembler::Success;
981     }
982   }
983 
984   // If not using NSA on GFX10+, widen address register to correct size.
985   unsigned NewVAddr0 = AMDGPU::NoRegister;
986   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
987     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
988     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
989     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
990 
991     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
992     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
993                                         &MRI.getRegClass(AddrRCID));
994     if (NewVAddr0 == AMDGPU::NoRegister)
995       return MCDisassembler::Success;
996   }
997 
998   MI.setOpcode(NewOpcode);
999 
1000   if (NewVdata != AMDGPU::NoRegister) {
1001     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1002 
1003     if (IsAtomic) {
1004       // Atomic operations have an additional operand (a copy of data)
1005       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1006     }
1007   }
1008 
1009   if (NewVAddr0 != AMDGPU::NoRegister) {
1010     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
1011   } else if (IsNSA) {
1012     assert(AddrSize <= Info->VAddrDwords);
1013     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1014              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1015   }
1016 
1017   return MCDisassembler::Success;
1018 }
1019 
1020 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1021 // decoder only adds to src_modifiers, so manually add the bits to the other
1022 // operands.
1023 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1024   unsigned Opc = MI.getOpcode();
1025   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1026   auto Mods = collectVOPModifiers(MI, true);
1027 
1028   if (MI.getNumOperands() < DescNumOps &&
1029       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1030     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1031 
1032   if (MI.getNumOperands() < DescNumOps &&
1033       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1034     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1035                          AMDGPU::OpName::op_sel);
1036   if (MI.getNumOperands() < DescNumOps &&
1037       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1038     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1039                          AMDGPU::OpName::op_sel_hi);
1040   if (MI.getNumOperands() < DescNumOps &&
1041       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1042     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1043                          AMDGPU::OpName::neg_lo);
1044   if (MI.getNumOperands() < DescNumOps &&
1045       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1046     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1047                          AMDGPU::OpName::neg_hi);
1048 
1049   return MCDisassembler::Success;
1050 }
1051 
1052 // Create dummy old operand and insert optional operands
1053 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1054   unsigned Opc = MI.getOpcode();
1055   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1056 
1057   if (MI.getNumOperands() < DescNumOps &&
1058       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1059     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1060 
1061   if (MI.getNumOperands() < DescNumOps &&
1062       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1063     insertNamedMCOperand(MI, MCOperand::createImm(0),
1064                          AMDGPU::OpName::src0_modifiers);
1065 
1066   if (MI.getNumOperands() < DescNumOps &&
1067       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1068     insertNamedMCOperand(MI, MCOperand::createImm(0),
1069                          AMDGPU::OpName::src1_modifiers);
1070   return MCDisassembler::Success;
1071 }
1072 
1073 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1074                                                 int ImmLitIdx) const {
1075   assert(HasLiteral && "Should have decoded a literal");
1076   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1077   unsigned DescNumOps = Desc.getNumOperands();
1078   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1079                        AMDGPU::OpName::immDeferred);
1080   assert(DescNumOps == MI.getNumOperands());
1081   for (unsigned I = 0; I < DescNumOps; ++I) {
1082     auto &Op = MI.getOperand(I);
1083     auto OpType = Desc.OpInfo[I].OperandType;
1084     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1085                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1086     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1087         IsDeferredOp)
1088       Op.setImm(Literal);
1089   }
1090   return MCDisassembler::Success;
1091 }
1092 
1093 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1094   return getContext().getRegisterInfo()->
1095     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1096 }
1097 
1098 inline
1099 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1100                                          const Twine& ErrMsg) const {
1101   *CommentStream << "Error: " + ErrMsg;
1102 
1103   // ToDo: add support for error operands to MCInst.h
1104   // return MCOperand::createError(V);
1105   return MCOperand();
1106 }
1107 
1108 inline
1109 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1110   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1111 }
1112 
1113 inline
1114 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1115                                                unsigned Val) const {
1116   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1117   if (Val >= RegCl.getNumRegs())
1118     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1119                            ": unknown register " + Twine(Val));
1120   return createRegOperand(RegCl.getRegister(Val));
1121 }
1122 
1123 inline
1124 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1125                                                 unsigned Val) const {
1126   // ToDo: SI/CI have 104 SGPRs, VI - 102
1127   // Valery: here we accepting as much as we can, let assembler sort it out
1128   int shift = 0;
1129   switch (SRegClassID) {
1130   case AMDGPU::SGPR_32RegClassID:
1131   case AMDGPU::TTMP_32RegClassID:
1132     break;
1133   case AMDGPU::SGPR_64RegClassID:
1134   case AMDGPU::TTMP_64RegClassID:
1135     shift = 1;
1136     break;
1137   case AMDGPU::SGPR_128RegClassID:
1138   case AMDGPU::TTMP_128RegClassID:
1139   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1140   // this bundle?
1141   case AMDGPU::SGPR_256RegClassID:
1142   case AMDGPU::TTMP_256RegClassID:
1143     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1144   // this bundle?
1145   case AMDGPU::SGPR_512RegClassID:
1146   case AMDGPU::TTMP_512RegClassID:
1147     shift = 2;
1148     break;
1149   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1150   // this bundle?
1151   default:
1152     llvm_unreachable("unhandled register class");
1153   }
1154 
1155   if (Val % (1 << shift)) {
1156     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1157                    << ": scalar reg isn't aligned " << Val;
1158   }
1159 
1160   return createRegOperand(SRegClassID, Val >> shift);
1161 }
1162 
1163 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1164   return decodeSrcOp(OPW32, Val);
1165 }
1166 
1167 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1168   return decodeSrcOp(OPW64, Val);
1169 }
1170 
1171 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1172   return decodeSrcOp(OPW128, Val);
1173 }
1174 
1175 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1176   return decodeSrcOp(OPW16, Val);
1177 }
1178 
1179 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1180   return decodeSrcOp(OPWV216, Val);
1181 }
1182 
1183 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1184   return decodeSrcOp(OPWV232, Val);
1185 }
1186 
1187 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32_Lo128(unsigned Val) const {
1188   return createRegOperand(AMDGPU::VGPR_32_Lo128RegClassID, Val);
1189 }
1190 
1191 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1192   // Some instructions have operand restrictions beyond what the encoding
1193   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1194   // high bit.
1195   Val &= 255;
1196 
1197   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1198 }
1199 
1200 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1201   return decodeSrcOp(OPW32, Val);
1202 }
1203 
1204 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1205   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1206 }
1207 
1208 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1209   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1210 }
1211 
1212 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1213   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1214 }
1215 
1216 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1217   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1218 }
1219 
1220 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1221   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1222 }
1223 
1224 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1225   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1226 }
1227 
1228 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1229   return decodeSrcOp(OPW32, Val);
1230 }
1231 
1232 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1233   return decodeSrcOp(OPW64, Val);
1234 }
1235 
1236 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1237   return decodeSrcOp(OPW128, Val);
1238 }
1239 
1240 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1241   using namespace AMDGPU::EncValues;
1242   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1243   return decodeSrcOp(OPW128, Val | IS_VGPR);
1244 }
1245 
1246 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1247   using namespace AMDGPU::EncValues;
1248   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1249   return decodeSrcOp(OPW512, Val | IS_VGPR);
1250 }
1251 
1252 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1253   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1254 }
1255 
1256 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1257   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1258 }
1259 
1260 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1261   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1262 }
1263 
1264 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1265   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1266 }
1267 
1268 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1269   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1270 }
1271 
1272 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1273   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1274 }
1275 
1276 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1277   // table-gen generated disassembler doesn't care about operand types
1278   // leaving only registry class so SSrc_32 operand turns into SReg_32
1279   // and therefore we accept immediates and literals here as well
1280   return decodeSrcOp(OPW32, Val);
1281 }
1282 
1283 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1284   unsigned Val) const {
1285   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1286   return decodeOperand_SReg_32(Val);
1287 }
1288 
1289 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1290   unsigned Val) const {
1291   // SReg_32_XM0 is SReg_32 without EXEC_HI
1292   return decodeOperand_SReg_32(Val);
1293 }
1294 
1295 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1296   // table-gen generated disassembler doesn't care about operand types
1297   // leaving only registry class so SSrc_32 operand turns into SReg_32
1298   // and therefore we accept immediates and literals here as well
1299   return decodeSrcOp(OPW32, Val);
1300 }
1301 
1302 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1303   return decodeSrcOp(OPW64, Val);
1304 }
1305 
1306 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1307   return decodeSrcOp(OPW64, Val);
1308 }
1309 
1310 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1311   return decodeSrcOp(OPW128, Val);
1312 }
1313 
1314 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1315   return decodeDstOp(OPW256, Val);
1316 }
1317 
1318 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1319   return decodeDstOp(OPW512, Val);
1320 }
1321 
1322 // Decode Literals for insts which always have a literal in the encoding
1323 MCOperand
1324 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1325   if (HasLiteral) {
1326     assert(
1327         AMDGPU::hasVOPD(STI) &&
1328         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1329     if (Literal != Val)
1330       return errOperand(Val, "More than one unique literal is illegal");
1331   }
1332   HasLiteral = true;
1333   Literal = Val;
1334   return MCOperand::createImm(Literal);
1335 }
1336 
1337 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1338   // For now all literal constants are supposed to be unsigned integer
1339   // ToDo: deal with signed/unsigned 64-bit integer constants
1340   // ToDo: deal with float/double constants
1341   if (!HasLiteral) {
1342     if (Bytes.size() < 4) {
1343       return errOperand(0, "cannot read literal, inst bytes left " +
1344                         Twine(Bytes.size()));
1345     }
1346     HasLiteral = true;
1347     Literal = eatBytes<uint32_t>(Bytes);
1348   }
1349   return MCOperand::createImm(Literal);
1350 }
1351 
1352 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1353   using namespace AMDGPU::EncValues;
1354 
1355   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1356   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1357     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1358     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1359       // Cast prevents negative overflow.
1360 }
1361 
1362 static int64_t getInlineImmVal32(unsigned Imm) {
1363   switch (Imm) {
1364   case 240:
1365     return FloatToBits(0.5f);
1366   case 241:
1367     return FloatToBits(-0.5f);
1368   case 242:
1369     return FloatToBits(1.0f);
1370   case 243:
1371     return FloatToBits(-1.0f);
1372   case 244:
1373     return FloatToBits(2.0f);
1374   case 245:
1375     return FloatToBits(-2.0f);
1376   case 246:
1377     return FloatToBits(4.0f);
1378   case 247:
1379     return FloatToBits(-4.0f);
1380   case 248: // 1 / (2 * PI)
1381     return 0x3e22f983;
1382   default:
1383     llvm_unreachable("invalid fp inline imm");
1384   }
1385 }
1386 
1387 static int64_t getInlineImmVal64(unsigned Imm) {
1388   switch (Imm) {
1389   case 240:
1390     return DoubleToBits(0.5);
1391   case 241:
1392     return DoubleToBits(-0.5);
1393   case 242:
1394     return DoubleToBits(1.0);
1395   case 243:
1396     return DoubleToBits(-1.0);
1397   case 244:
1398     return DoubleToBits(2.0);
1399   case 245:
1400     return DoubleToBits(-2.0);
1401   case 246:
1402     return DoubleToBits(4.0);
1403   case 247:
1404     return DoubleToBits(-4.0);
1405   case 248: // 1 / (2 * PI)
1406     return 0x3fc45f306dc9c882;
1407   default:
1408     llvm_unreachable("invalid fp inline imm");
1409   }
1410 }
1411 
1412 static int64_t getInlineImmVal16(unsigned Imm) {
1413   switch (Imm) {
1414   case 240:
1415     return 0x3800;
1416   case 241:
1417     return 0xB800;
1418   case 242:
1419     return 0x3C00;
1420   case 243:
1421     return 0xBC00;
1422   case 244:
1423     return 0x4000;
1424   case 245:
1425     return 0xC000;
1426   case 246:
1427     return 0x4400;
1428   case 247:
1429     return 0xC400;
1430   case 248: // 1 / (2 * PI)
1431     return 0x3118;
1432   default:
1433     llvm_unreachable("invalid fp inline imm");
1434   }
1435 }
1436 
1437 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1438   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1439       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1440 
1441   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1442   switch (Width) {
1443   case OPW32:
1444   case OPW128: // splat constants
1445   case OPW512:
1446   case OPW1024:
1447   case OPWV232:
1448     return MCOperand::createImm(getInlineImmVal32(Imm));
1449   case OPW64:
1450   case OPW256:
1451     return MCOperand::createImm(getInlineImmVal64(Imm));
1452   case OPW16:
1453   case OPWV216:
1454     return MCOperand::createImm(getInlineImmVal16(Imm));
1455   default:
1456     llvm_unreachable("implement me");
1457   }
1458 }
1459 
1460 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1461   using namespace AMDGPU;
1462 
1463   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1464   switch (Width) {
1465   default: // fall
1466   case OPW32:
1467   case OPW16:
1468   case OPWV216:
1469     return VGPR_32RegClassID;
1470   case OPW64:
1471   case OPWV232: return VReg_64RegClassID;
1472   case OPW96: return VReg_96RegClassID;
1473   case OPW128: return VReg_128RegClassID;
1474   case OPW160: return VReg_160RegClassID;
1475   case OPW256: return VReg_256RegClassID;
1476   case OPW512: return VReg_512RegClassID;
1477   case OPW1024: return VReg_1024RegClassID;
1478   }
1479 }
1480 
1481 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1482   using namespace AMDGPU;
1483 
1484   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1485   switch (Width) {
1486   default: // fall
1487   case OPW32:
1488   case OPW16:
1489   case OPWV216:
1490     return AGPR_32RegClassID;
1491   case OPW64:
1492   case OPWV232: return AReg_64RegClassID;
1493   case OPW96: return AReg_96RegClassID;
1494   case OPW128: return AReg_128RegClassID;
1495   case OPW160: return AReg_160RegClassID;
1496   case OPW256: return AReg_256RegClassID;
1497   case OPW512: return AReg_512RegClassID;
1498   case OPW1024: return AReg_1024RegClassID;
1499   }
1500 }
1501 
1502 
1503 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1504   using namespace AMDGPU;
1505 
1506   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1507   switch (Width) {
1508   default: // fall
1509   case OPW32:
1510   case OPW16:
1511   case OPWV216:
1512     return SGPR_32RegClassID;
1513   case OPW64:
1514   case OPWV232: return SGPR_64RegClassID;
1515   case OPW96: return SGPR_96RegClassID;
1516   case OPW128: return SGPR_128RegClassID;
1517   case OPW160: return SGPR_160RegClassID;
1518   case OPW256: return SGPR_256RegClassID;
1519   case OPW512: return SGPR_512RegClassID;
1520   }
1521 }
1522 
1523 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1524   using namespace AMDGPU;
1525 
1526   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1527   switch (Width) {
1528   default: // fall
1529   case OPW32:
1530   case OPW16:
1531   case OPWV216:
1532     return TTMP_32RegClassID;
1533   case OPW64:
1534   case OPWV232: return TTMP_64RegClassID;
1535   case OPW128: return TTMP_128RegClassID;
1536   case OPW256: return TTMP_256RegClassID;
1537   case OPW512: return TTMP_512RegClassID;
1538   }
1539 }
1540 
1541 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1542   using namespace AMDGPU::EncValues;
1543 
1544   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1545   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1546 
1547   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1548 }
1549 
1550 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1551                                           bool MandatoryLiteral) const {
1552   using namespace AMDGPU::EncValues;
1553 
1554   assert(Val < 1024); // enum10
1555 
1556   bool IsAGPR = Val & 512;
1557   Val &= 511;
1558 
1559   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1560     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1561                                    : getVgprClassId(Width), Val - VGPR_MIN);
1562   }
1563   if (Val <= SGPR_MAX) {
1564     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1565     static_assert(SGPR_MIN == 0);
1566     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1567   }
1568 
1569   int TTmpIdx = getTTmpIdx(Val);
1570   if (TTmpIdx >= 0) {
1571     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1572   }
1573 
1574   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1575     return decodeIntImmed(Val);
1576 
1577   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1578     return decodeFPImmed(Width, Val);
1579 
1580   if (Val == LITERAL_CONST) {
1581     if (MandatoryLiteral)
1582       // Keep a sentinel value for deferred setting
1583       return MCOperand::createImm(LITERAL_CONST);
1584     else
1585       return decodeLiteralConstant();
1586   }
1587 
1588   switch (Width) {
1589   case OPW32:
1590   case OPW16:
1591   case OPWV216:
1592     return decodeSpecialReg32(Val);
1593   case OPW64:
1594   case OPWV232:
1595     return decodeSpecialReg64(Val);
1596   default:
1597     llvm_unreachable("unexpected immediate type");
1598   }
1599 }
1600 
1601 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1602   using namespace AMDGPU::EncValues;
1603 
1604   assert(Val < 128);
1605   assert(Width == OPW256 || Width == OPW512);
1606 
1607   if (Val <= SGPR_MAX) {
1608     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1609     static_assert(SGPR_MIN == 0);
1610     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1611   }
1612 
1613   int TTmpIdx = getTTmpIdx(Val);
1614   if (TTmpIdx >= 0) {
1615     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1616   }
1617 
1618   llvm_unreachable("unknown dst register");
1619 }
1620 
1621 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1622 // opposite of bit 0 of DstX.
1623 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1624                                                unsigned Val) const {
1625   int VDstXInd =
1626       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1627   assert(VDstXInd != -1);
1628   assert(Inst.getOperand(VDstXInd).isReg());
1629   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1630   Val |= ~XDstReg & 1;
1631   auto Width = llvm::AMDGPUDisassembler::OPW32;
1632   return createRegOperand(getVgprClassId(Width), Val);
1633 }
1634 
1635 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1636   using namespace AMDGPU;
1637 
1638   switch (Val) {
1639   // clang-format off
1640   case 102: return createRegOperand(FLAT_SCR_LO);
1641   case 103: return createRegOperand(FLAT_SCR_HI);
1642   case 104: return createRegOperand(XNACK_MASK_LO);
1643   case 105: return createRegOperand(XNACK_MASK_HI);
1644   case 106: return createRegOperand(VCC_LO);
1645   case 107: return createRegOperand(VCC_HI);
1646   case 108: return createRegOperand(TBA_LO);
1647   case 109: return createRegOperand(TBA_HI);
1648   case 110: return createRegOperand(TMA_LO);
1649   case 111: return createRegOperand(TMA_HI);
1650   case 124:
1651     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1652   case 125:
1653     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1654   case 126: return createRegOperand(EXEC_LO);
1655   case 127: return createRegOperand(EXEC_HI);
1656   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1657   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1658   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1659   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1660   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1661   case 251: return createRegOperand(SRC_VCCZ);
1662   case 252: return createRegOperand(SRC_EXECZ);
1663   case 253: return createRegOperand(SRC_SCC);
1664   case 254: return createRegOperand(LDS_DIRECT);
1665   default: break;
1666     // clang-format on
1667   }
1668   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1669 }
1670 
1671 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1672   using namespace AMDGPU;
1673 
1674   switch (Val) {
1675   case 102: return createRegOperand(FLAT_SCR);
1676   case 104: return createRegOperand(XNACK_MASK);
1677   case 106: return createRegOperand(VCC);
1678   case 108: return createRegOperand(TBA);
1679   case 110: return createRegOperand(TMA);
1680   case 124:
1681     if (isGFX11Plus())
1682       return createRegOperand(SGPR_NULL);
1683     break;
1684   case 125:
1685     if (!isGFX11Plus())
1686       return createRegOperand(SGPR_NULL);
1687     break;
1688   case 126: return createRegOperand(EXEC);
1689   case 235: return createRegOperand(SRC_SHARED_BASE);
1690   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1691   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1692   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1693   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1694   case 251: return createRegOperand(SRC_VCCZ);
1695   case 252: return createRegOperand(SRC_EXECZ);
1696   case 253: return createRegOperand(SRC_SCC);
1697   default: break;
1698   }
1699   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1700 }
1701 
1702 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1703                                             const unsigned Val) const {
1704   using namespace AMDGPU::SDWA;
1705   using namespace AMDGPU::EncValues;
1706 
1707   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1708       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1709     // XXX: cast to int is needed to avoid stupid warning:
1710     // compare with unsigned is always true
1711     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1712         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1713       return createRegOperand(getVgprClassId(Width),
1714                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1715     }
1716     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1717         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1718                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1719       return createSRegOperand(getSgprClassId(Width),
1720                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1721     }
1722     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1723         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1724       return createSRegOperand(getTtmpClassId(Width),
1725                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1726     }
1727 
1728     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1729 
1730     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1731       return decodeIntImmed(SVal);
1732 
1733     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1734       return decodeFPImmed(Width, SVal);
1735 
1736     return decodeSpecialReg32(SVal);
1737   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1738     return createRegOperand(getVgprClassId(Width), Val);
1739   }
1740   llvm_unreachable("unsupported target");
1741 }
1742 
1743 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1744   return decodeSDWASrc(OPW16, Val);
1745 }
1746 
1747 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1748   return decodeSDWASrc(OPW32, Val);
1749 }
1750 
1751 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1752   using namespace AMDGPU::SDWA;
1753 
1754   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1755           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1756          "SDWAVopcDst should be present only on GFX9+");
1757 
1758   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1759 
1760   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1761     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1762 
1763     int TTmpIdx = getTTmpIdx(Val);
1764     if (TTmpIdx >= 0) {
1765       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1766       return createSRegOperand(TTmpClsId, TTmpIdx);
1767     } else if (Val > SGPR_MAX) {
1768       return IsWave64 ? decodeSpecialReg64(Val)
1769                       : decodeSpecialReg32(Val);
1770     } else {
1771       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1772     }
1773   } else {
1774     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1775   }
1776 }
1777 
1778 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1779   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1780     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1781 }
1782 
1783 bool AMDGPUDisassembler::isVI() const {
1784   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1785 }
1786 
1787 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1788 
1789 bool AMDGPUDisassembler::isGFX90A() const {
1790   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1791 }
1792 
1793 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1794 
1795 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1796 
1797 bool AMDGPUDisassembler::isGFX10Plus() const {
1798   return AMDGPU::isGFX10Plus(STI);
1799 }
1800 
1801 bool AMDGPUDisassembler::isGFX11() const {
1802   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1803 }
1804 
1805 bool AMDGPUDisassembler::isGFX11Plus() const {
1806   return AMDGPU::isGFX11Plus(STI);
1807 }
1808 
1809 
1810 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1811   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1812 }
1813 
1814 //===----------------------------------------------------------------------===//
1815 // AMDGPU specific symbol handling
1816 //===----------------------------------------------------------------------===//
1817 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1818   do {                                                                         \
1819     KdStream << Indent << DIRECTIVE " "                                        \
1820              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1821   } while (0)
1822 
1823 // NOLINTNEXTLINE(readability-identifier-naming)
1824 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1825     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1826   using namespace amdhsa;
1827   StringRef Indent = "\t";
1828 
1829   // We cannot accurately backward compute #VGPRs used from
1830   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1831   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1832   // simply calculate the inverse of what the assembler does.
1833 
1834   uint32_t GranulatedWorkitemVGPRCount =
1835       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1836       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1837 
1838   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1839                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1840 
1841   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1842 
1843   // We cannot backward compute values used to calculate
1844   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1845   // directives can't be computed:
1846   // .amdhsa_reserve_vcc
1847   // .amdhsa_reserve_flat_scratch
1848   // .amdhsa_reserve_xnack_mask
1849   // They take their respective default values if not specified in the assembly.
1850   //
1851   // GRANULATED_WAVEFRONT_SGPR_COUNT
1852   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1853   //
1854   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1855   // are set to 0. So while disassembling we consider that:
1856   //
1857   // GRANULATED_WAVEFRONT_SGPR_COUNT
1858   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1859   //
1860   // The disassembler cannot recover the original values of those 3 directives.
1861 
1862   uint32_t GranulatedWavefrontSGPRCount =
1863       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1864       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1865 
1866   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1867     return MCDisassembler::Fail;
1868 
1869   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1870                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1871 
1872   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1873   if (!hasArchitectedFlatScratch())
1874     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1875   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1876   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1877 
1878   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1879     return MCDisassembler::Fail;
1880 
1881   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1882                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1883   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1884                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1885   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1886                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1887   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1888                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1889 
1890   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1891     return MCDisassembler::Fail;
1892 
1893   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1894 
1895   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1896     return MCDisassembler::Fail;
1897 
1898   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1899 
1900   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1901     return MCDisassembler::Fail;
1902 
1903   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1904     return MCDisassembler::Fail;
1905 
1906   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1907 
1908   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1909     return MCDisassembler::Fail;
1910 
1911   if (isGFX10Plus()) {
1912     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1913                     COMPUTE_PGM_RSRC1_WGP_MODE);
1914     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1915     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1916   }
1917   return MCDisassembler::Success;
1918 }
1919 
1920 // NOLINTNEXTLINE(readability-identifier-naming)
1921 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1922     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1923   using namespace amdhsa;
1924   StringRef Indent = "\t";
1925   if (hasArchitectedFlatScratch())
1926     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1927                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1928   else
1929     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1930                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1931   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1932                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1933   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1934                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1935   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1936                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1937   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1938                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1939   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1940                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1941 
1942   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1943     return MCDisassembler::Fail;
1944 
1945   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1946     return MCDisassembler::Fail;
1947 
1948   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1949     return MCDisassembler::Fail;
1950 
1951   PRINT_DIRECTIVE(
1952       ".amdhsa_exception_fp_ieee_invalid_op",
1953       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1954   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1955                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1956   PRINT_DIRECTIVE(
1957       ".amdhsa_exception_fp_ieee_div_zero",
1958       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1959   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1960                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1961   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1962                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1963   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1964                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1965   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1966                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1967 
1968   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1969     return MCDisassembler::Fail;
1970 
1971   return MCDisassembler::Success;
1972 }
1973 
1974 #undef PRINT_DIRECTIVE
1975 
1976 MCDisassembler::DecodeStatus
1977 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1978     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1979     raw_string_ostream &KdStream) const {
1980 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1981   do {                                                                         \
1982     KdStream << Indent << DIRECTIVE " "                                        \
1983              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1984   } while (0)
1985 
1986   uint16_t TwoByteBuffer = 0;
1987   uint32_t FourByteBuffer = 0;
1988 
1989   StringRef ReservedBytes;
1990   StringRef Indent = "\t";
1991 
1992   assert(Bytes.size() == 64);
1993   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1994 
1995   switch (Cursor.tell()) {
1996   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1997     FourByteBuffer = DE.getU32(Cursor);
1998     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1999              << '\n';
2000     return MCDisassembler::Success;
2001 
2002   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2003     FourByteBuffer = DE.getU32(Cursor);
2004     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2005              << FourByteBuffer << '\n';
2006     return MCDisassembler::Success;
2007 
2008   case amdhsa::KERNARG_SIZE_OFFSET:
2009     FourByteBuffer = DE.getU32(Cursor);
2010     KdStream << Indent << ".amdhsa_kernarg_size "
2011              << FourByteBuffer << '\n';
2012     return MCDisassembler::Success;
2013 
2014   case amdhsa::RESERVED0_OFFSET:
2015     // 4 reserved bytes, must be 0.
2016     ReservedBytes = DE.getBytes(Cursor, 4);
2017     for (int I = 0; I < 4; ++I) {
2018       if (ReservedBytes[I] != 0) {
2019         return MCDisassembler::Fail;
2020       }
2021     }
2022     return MCDisassembler::Success;
2023 
2024   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2025     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2026     // So far no directive controls this for Code Object V3, so simply skip for
2027     // disassembly.
2028     DE.skip(Cursor, 8);
2029     return MCDisassembler::Success;
2030 
2031   case amdhsa::RESERVED1_OFFSET:
2032     // 20 reserved bytes, must be 0.
2033     ReservedBytes = DE.getBytes(Cursor, 20);
2034     for (int I = 0; I < 20; ++I) {
2035       if (ReservedBytes[I] != 0) {
2036         return MCDisassembler::Fail;
2037       }
2038     }
2039     return MCDisassembler::Success;
2040 
2041   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2042     // COMPUTE_PGM_RSRC3
2043     //  - Only set for GFX10, GFX6-9 have this to be 0.
2044     //  - Currently no directives directly control this.
2045     FourByteBuffer = DE.getU32(Cursor);
2046     if (!isGFX10Plus() && FourByteBuffer) {
2047       return MCDisassembler::Fail;
2048     }
2049     return MCDisassembler::Success;
2050 
2051   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2052     FourByteBuffer = DE.getU32(Cursor);
2053     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
2054         MCDisassembler::Fail) {
2055       return MCDisassembler::Fail;
2056     }
2057     return MCDisassembler::Success;
2058 
2059   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2060     FourByteBuffer = DE.getU32(Cursor);
2061     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
2062         MCDisassembler::Fail) {
2063       return MCDisassembler::Fail;
2064     }
2065     return MCDisassembler::Success;
2066 
2067   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2068     using namespace amdhsa;
2069     TwoByteBuffer = DE.getU16(Cursor);
2070 
2071     if (!hasArchitectedFlatScratch())
2072       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2073                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2074     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2075                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2076     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2077                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2078     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2079                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2080     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2081                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2082     if (!hasArchitectedFlatScratch())
2083       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2084                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2085     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2086                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2087 
2088     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2089       return MCDisassembler::Fail;
2090 
2091     // Reserved for GFX9
2092     if (isGFX9() &&
2093         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2094       return MCDisassembler::Fail;
2095     } else if (isGFX10Plus()) {
2096       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2097                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2098     }
2099 
2100     if (AMDGPU::getAmdhsaCodeObjectVersion() >= 5)
2101       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2102                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2103 
2104     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2105       return MCDisassembler::Fail;
2106 
2107     return MCDisassembler::Success;
2108 
2109   case amdhsa::RESERVED2_OFFSET:
2110     // 6 bytes from here are reserved, must be 0.
2111     ReservedBytes = DE.getBytes(Cursor, 6);
2112     for (int I = 0; I < 6; ++I) {
2113       if (ReservedBytes[I] != 0)
2114         return MCDisassembler::Fail;
2115     }
2116     return MCDisassembler::Success;
2117 
2118   default:
2119     llvm_unreachable("Unhandled index. Case statements cover everything.");
2120     return MCDisassembler::Fail;
2121   }
2122 #undef PRINT_DIRECTIVE
2123 }
2124 
2125 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2126     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2127   // CP microcode requires the kernel descriptor to be 64 aligned.
2128   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2129     return MCDisassembler::Fail;
2130 
2131   std::string Kd;
2132   raw_string_ostream KdStream(Kd);
2133   KdStream << ".amdhsa_kernel " << KdName << '\n';
2134 
2135   DataExtractor::Cursor C(0);
2136   while (C && C.tell() < Bytes.size()) {
2137     MCDisassembler::DecodeStatus Status =
2138         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2139 
2140     cantFail(C.takeError());
2141 
2142     if (Status == MCDisassembler::Fail)
2143       return MCDisassembler::Fail;
2144   }
2145   KdStream << ".end_amdhsa_kernel\n";
2146   outs() << KdStream.str();
2147   return MCDisassembler::Success;
2148 }
2149 
2150 Optional<MCDisassembler::DecodeStatus>
2151 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2152                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2153                                   raw_ostream &CStream) const {
2154   // Right now only kernel descriptor needs to be handled.
2155   // We ignore all other symbols for target specific handling.
2156   // TODO:
2157   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2158   // Object V2 and V3 when symbols are marked protected.
2159 
2160   // amd_kernel_code_t for Code Object V2.
2161   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2162     Size = 256;
2163     return MCDisassembler::Fail;
2164   }
2165 
2166   // Code Object V3 kernel descriptors.
2167   StringRef Name = Symbol.Name;
2168   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2169     Size = 64; // Size = 64 regardless of success or failure.
2170     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2171   }
2172   return None;
2173 }
2174 
2175 //===----------------------------------------------------------------------===//
2176 // AMDGPUSymbolizer
2177 //===----------------------------------------------------------------------===//
2178 
2179 // Try to find symbol name for specified label
2180 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2181     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2182     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2183     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2184 
2185   if (!IsBranch) {
2186     return false;
2187   }
2188 
2189   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2190   if (!Symbols)
2191     return false;
2192 
2193   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2194     return Val.Addr == static_cast<uint64_t>(Value) &&
2195            Val.Type == ELF::STT_NOTYPE;
2196   });
2197   if (Result != Symbols->end()) {
2198     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2199     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2200     Inst.addOperand(MCOperand::createExpr(Add));
2201     return true;
2202   }
2203   // Add to list of referenced addresses, so caller can synthesize a label.
2204   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2205   return false;
2206 }
2207 
2208 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2209                                                        int64_t Value,
2210                                                        uint64_t Address) {
2211   llvm_unreachable("unimplemented");
2212 }
2213 
2214 //===----------------------------------------------------------------------===//
2215 // Initialization
2216 //===----------------------------------------------------------------------===//
2217 
2218 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2219                               LLVMOpInfoCallback /*GetOpInfo*/,
2220                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2221                               void *DisInfo,
2222                               MCContext *Ctx,
2223                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2224   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2225 }
2226 
2227 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2228                                                 const MCSubtargetInfo &STI,
2229                                                 MCContext &Ctx) {
2230   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2231 }
2232 
2233 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2234   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2235                                          createAMDGPUDisassembler);
2236   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2237                                        createAMDGPUSymbolizer);
2238 }
2239