xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 1c55b227fe7d42b3ad18bf9e485fca66f14fa751)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
95     Offset = Imm & 0xFFFFF;
96   } else {                    // GFX9+ supports 21-bit signed offsets.
97     Offset = SignExtend64<21>(Imm);
98   }
99   return addOperand(Inst, MCOperand::createImm(Offset));
100 }
101 
102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
103                                   const MCDisassembler *Decoder) {
104   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
105   return addOperand(Inst, DAsm->decodeBoolReg(Val));
106 }
107 
108 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
109   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
110                                         uint64_t /*Addr*/,                     \
111                                         const MCDisassembler *Decoder) {       \
112     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
113     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
114   }
115 
116 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
117 // number of register. Used by VGPR only and AGPR only operands.
118 #define DECODE_OPERAND_REG_8(RegClass)                                         \
119   static DecodeStatus Decode##RegClass##RegisterClass(                         \
120       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
121       const MCDisassembler *Decoder) {                                         \
122     assert(Imm < (1 << 8) && "8-bit encoding");                                \
123     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
124     return addOperand(                                                         \
125         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
126   }
127 
128 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
129                      ImmWidth)                                                 \
130   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
131                            const MCDisassembler *Decoder) {                    \
132     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
133     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
134     return addOperand(Inst,                                                    \
135                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
136                                         MandatoryLiteral, ImmWidth));          \
137   }
138 
139 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
140 // get register class. Used by SGPR only operands.
141 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
142   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
143 
144 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
145 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
146 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
147 // Used by AV_ register classes (AGPR or VGPR only register operands).
148 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
149   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
150                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
151 
152 // Decoder for Src(9-bit encoding) registers only.
153 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
154   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
155 
156 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
157 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
158 // only.
159 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
160   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
161 
162 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
163 // Imm{9} is acc, registers only.
164 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
165   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
166 
167 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
168 // register from RegClass or immediate. Registers that don't belong to RegClass
169 // will be decoded and InstPrinter will report warning. Immediate will be
170 // decoded into constant of size ImmWidth, should match width of immediate used
171 // by OperandType (important for floating point types).
172 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
173   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
174                false, ImmWidth)
175 
176 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
177 // and decode using 'enum10' from decodeSrcOp.
178 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
179   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
180                Imm | 512, false, ImmWidth)
181 
182 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
183   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
184                OpWidth, Imm, true, ImmWidth)
185 
186 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
187 // when RegisterClass is used as an operand. Most often used for destination
188 // operands.
189 
190 DECODE_OPERAND_REG_8(VGPR_32)
191 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
192 DECODE_OPERAND_REG_8(VReg_64)
193 DECODE_OPERAND_REG_8(VReg_96)
194 DECODE_OPERAND_REG_8(VReg_128)
195 DECODE_OPERAND_REG_8(VReg_256)
196 DECODE_OPERAND_REG_8(VReg_288)
197 DECODE_OPERAND_REG_8(VReg_352)
198 DECODE_OPERAND_REG_8(VReg_384)
199 DECODE_OPERAND_REG_8(VReg_512)
200 DECODE_OPERAND_REG_8(VReg_1024)
201 
202 DECODE_OPERAND_REG_7(SReg_32, OPW32)
203 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
204 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
205 DECODE_OPERAND_REG_7(SReg_64, OPW64)
206 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
207 DECODE_OPERAND_REG_7(SReg_128, OPW128)
208 DECODE_OPERAND_REG_7(SReg_256, OPW256)
209 DECODE_OPERAND_REG_7(SReg_512, OPW512)
210 
211 DECODE_OPERAND_REG_8(AGPR_32)
212 DECODE_OPERAND_REG_8(AReg_64)
213 DECODE_OPERAND_REG_8(AReg_128)
214 DECODE_OPERAND_REG_8(AReg_256)
215 DECODE_OPERAND_REG_8(AReg_512)
216 DECODE_OPERAND_REG_8(AReg_1024)
217 
218 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
219 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
220 
221 // Decoders for register only source RegisterOperands that use use 9-bit Src
222 // encoding: 'decodeOperand_<RegClass>'.
223 
224 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
225 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
226 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
227 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
228 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
229 
230 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
231 
232 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
233 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
234 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
235 
236 // Decoders for register or immediate RegisterOperands that use 9-bit Src
237 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
238 
239 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
240 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
243 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
253 
254 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
259 
260 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
264 
265 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
266                                                uint64_t /*Addr*/,
267                                                const MCDisassembler *Decoder) {
268   assert(isUInt<10>(Imm) && "10-bit encoding expected");
269   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
270 
271   bool IsHi = Imm & (1 << 9);
272   unsigned RegIdx = Imm & 0xff;
273   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
274   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
275 }
276 
277 static DecodeStatus
278 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
279                                  const MCDisassembler *Decoder) {
280   assert(isUInt<8>(Imm) && "8-bit encoding expected");
281 
282   bool IsHi = Imm & (1 << 7);
283   unsigned RegIdx = Imm & 0x7f;
284   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
285   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
286 }
287 
288 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
289                                                 uint64_t /*Addr*/,
290                                                 const MCDisassembler *Decoder) {
291   assert(isUInt<9>(Imm) && "9-bit encoding expected");
292 
293   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
294   bool IsVGPR = Imm & (1 << 8);
295   if (IsVGPR) {
296     bool IsHi = Imm & (1 << 7);
297     unsigned RegIdx = Imm & 0x7f;
298     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
299   }
300   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
301                                                    Imm & 0xFF, false, 16));
302 }
303 
304 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
305                                           uint64_t /*Addr*/,
306                                           const MCDisassembler *Decoder) {
307   assert(isUInt<10>(Imm) && "10-bit encoding expected");
308 
309   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
310   bool IsVGPR = Imm & (1 << 8);
311   if (IsVGPR) {
312     bool IsHi = Imm & (1 << 9);
313     unsigned RegIdx = Imm & 0xff;
314     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
315   }
316   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
317                                                    Imm & 0xFF, false, 16));
318 }
319 
320 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
321                                          uint64_t Addr,
322                                          const MCDisassembler *Decoder) {
323   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
324   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
325 }
326 
327 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
328                                           uint64_t Addr, const void *Decoder) {
329   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
330   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
331 }
332 
333 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
334                           const MCRegisterInfo *MRI) {
335   if (OpIdx < 0)
336     return false;
337 
338   const MCOperand &Op = Inst.getOperand(OpIdx);
339   if (!Op.isReg())
340     return false;
341 
342   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
343   auto Reg = Sub ? Sub : Op.getReg();
344   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
345 }
346 
347 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
348                                              AMDGPUDisassembler::OpWidthTy Opw,
349                                              const MCDisassembler *Decoder) {
350   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
351   if (!DAsm->isGFX90A()) {
352     Imm &= 511;
353   } else {
354     // If atomic has both vdata and vdst their register classes are tied.
355     // The bit is decoded along with the vdst, first operand. We need to
356     // change register class to AGPR if vdst was AGPR.
357     // If a DS instruction has both data0 and data1 their register classes
358     // are also tied.
359     unsigned Opc = Inst.getOpcode();
360     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
361     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
362                                                         : AMDGPU::OpName::vdata;
363     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
364     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
365     if ((int)Inst.getNumOperands() == DataIdx) {
366       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
367       if (IsAGPROperand(Inst, DstIdx, MRI))
368         Imm |= 512;
369     }
370 
371     if (TSFlags & SIInstrFlags::DS) {
372       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
373       if ((int)Inst.getNumOperands() == Data2Idx &&
374           IsAGPROperand(Inst, DataIdx, MRI))
375         Imm |= 512;
376     }
377   }
378   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
379 }
380 
381 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
382                                            uint64_t Addr,
383                                            const MCDisassembler *Decoder) {
384   assert(Imm < (1 << 9) && "9-bit encoding");
385   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
386   return addOperand(
387       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
388 }
389 
390 static DecodeStatus
391 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
392                              const MCDisassembler *Decoder) {
393   return decodeOperand_AVLdSt_Any(Inst, Imm,
394                                   AMDGPUDisassembler::OPW32, Decoder);
395 }
396 
397 static DecodeStatus
398 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
399                              const MCDisassembler *Decoder) {
400   return decodeOperand_AVLdSt_Any(Inst, Imm,
401                                   AMDGPUDisassembler::OPW64, Decoder);
402 }
403 
404 static DecodeStatus
405 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
406                              const MCDisassembler *Decoder) {
407   return decodeOperand_AVLdSt_Any(Inst, Imm,
408                                   AMDGPUDisassembler::OPW96, Decoder);
409 }
410 
411 static DecodeStatus
412 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
413                               const MCDisassembler *Decoder) {
414   return decodeOperand_AVLdSt_Any(Inst, Imm,
415                                   AMDGPUDisassembler::OPW128, Decoder);
416 }
417 
418 static DecodeStatus
419 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
420                               const MCDisassembler *Decoder) {
421   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
422                                   Decoder);
423 }
424 
425 #define DECODE_SDWA(DecName) \
426 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
427 
428 DECODE_SDWA(Src32)
429 DECODE_SDWA(Src16)
430 DECODE_SDWA(VopcDst)
431 
432 #include "AMDGPUGenDisassemblerTables.inc"
433 
434 //===----------------------------------------------------------------------===//
435 //
436 //===----------------------------------------------------------------------===//
437 
438 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
439   assert(Bytes.size() >= sizeof(T));
440   const auto Res =
441       support::endian::read<T, llvm::endianness::little>(Bytes.data());
442   Bytes = Bytes.slice(sizeof(T));
443   return Res;
444 }
445 
446 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
447   assert(Bytes.size() >= 12);
448   uint64_t Lo =
449       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
450   Bytes = Bytes.slice(8);
451   uint64_t Hi =
452       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
453   Bytes = Bytes.slice(4);
454   return DecoderUInt128(Lo, Hi);
455 }
456 
457 // The disassembler is greedy, so we need to check FI operand value to
458 // not parse a dpp if the correct literal is not set. For dpp16 the
459 // autogenerated decoder checks the dpp literal
460 static bool isValidDPP8(const MCInst &MI) {
461   using namespace llvm::AMDGPU::DPP;
462   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
463   assert(FiIdx != -1);
464   if ((unsigned)FiIdx >= MI.getNumOperands())
465     return false;
466   unsigned Fi = MI.getOperand(FiIdx).getImm();
467   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
468 }
469 
470 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
471                                                 ArrayRef<uint8_t> Bytes_,
472                                                 uint64_t Address,
473                                                 raw_ostream &CS) const {
474   bool IsSDWA = false;
475 
476   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
477   Bytes = Bytes_.slice(0, MaxInstBytesNum);
478 
479   DecodeStatus Res = MCDisassembler::Fail;
480   do {
481     // ToDo: better to switch encoding length using some bit predicate
482     // but it is unknown yet, so try all we can
483 
484     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
485     // encodings
486     if (isGFX11Plus() && Bytes.size() >= 12 ) {
487       DecoderUInt128 DecW = eat12Bytes(Bytes);
488       Res =
489           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
490                         MI, DecW, Address, CS);
491       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
492         break;
493       MI = MCInst(); // clear
494       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
495                           MI, DecW, Address, CS);
496       if (Res) {
497         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
498           convertVOP3PDPPInst(MI);
499         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
500           convertVOPCDPPInst(MI); // Special VOP3 case
501         else {
502           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
503           convertVOP3DPPInst(MI); // Regular VOP3 case
504         }
505         break;
506       }
507       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
508       if (Res)
509         break;
510 
511       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
512       if (Res)
513         break;
514     }
515     // Reinitialize Bytes
516     Bytes = Bytes_.slice(0, MaxInstBytesNum);
517 
518     if (Bytes.size() >= 8) {
519       const uint64_t QW = eatBytes<uint64_t>(Bytes);
520 
521       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
522         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
523         if (Res) {
524           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
525               == -1)
526             break;
527           if (convertDPP8Inst(MI) == MCDisassembler::Success)
528             break;
529           MI = MCInst(); // clear
530         }
531       }
532 
533       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
534       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
535         break;
536       MI = MCInst(); // clear
537 
538       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
539                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
540       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
541         break;
542       MI = MCInst(); // clear
543 
544       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
545       if (Res) break;
546 
547       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
548                           MI, QW, Address, CS);
549       if (Res) {
550         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
551           convertVOPCDPPInst(MI);
552         break;
553       }
554 
555       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
556       if (Res) { IsSDWA = true;  break; }
557 
558       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
559       if (Res) { IsSDWA = true;  break; }
560 
561       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
562       if (Res) { IsSDWA = true;  break; }
563 
564       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
565         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
566         if (Res)
567           break;
568       }
569 
570       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
571       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
572       // table first so we print the correct name.
573       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
574         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
575         if (Res)
576           break;
577       }
578     }
579 
580     // Reinitialize Bytes as DPP64 could have eaten too much
581     Bytes = Bytes_.slice(0, MaxInstBytesNum);
582 
583     // Try decode 32-bit instruction
584     if (Bytes.size() < 4) break;
585     const uint32_t DW = eatBytes<uint32_t>(Bytes);
586     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
587     if (Res) break;
588 
589     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
590     if (Res) break;
591 
592     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
593     if (Res) break;
594 
595     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
596       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
597       if (Res)
598         break;
599     }
600 
601     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
602       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
603       if (Res) break;
604     }
605 
606     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
607     if (Res) break;
608 
609     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
610                         Address, CS);
611     if (Res) break;
612 
613     Res = tryDecodeInst(DecoderTableGFX1232, MI, DW, Address, CS);
614     if (Res)
615       break;
616 
617     if (Bytes.size() < 4) break;
618     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
619 
620     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
621       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
622       if (Res)
623         break;
624     }
625 
626     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
627       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
628       if (Res)
629         break;
630     }
631 
632     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
633     if (Res) break;
634 
635     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
636     if (Res) break;
637 
638     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
639     if (Res) break;
640 
641     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
642     if (Res) break;
643 
644     Res = tryDecodeInst(DecoderTableGFX1264, MI, QW, Address, CS);
645     if (Res)
646       break;
647 
648     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
649                         Address, CS);
650     if (Res)
651       break;
652 
653     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
654   } while (false);
655 
656   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
657     // Insert dummy unused src2_modifiers.
658     insertNamedMCOperand(MI, MCOperand::createImm(0),
659                          AMDGPU::OpName::src2_modifiers);
660   }
661 
662   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
663           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
664     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
665                                              AMDGPU::OpName::cpol);
666     if (CPolPos != -1) {
667       unsigned CPol =
668           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
669               AMDGPU::CPol::GLC : 0;
670       if (MI.getNumOperands() <= (unsigned)CPolPos) {
671         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
672                              AMDGPU::OpName::cpol);
673       } else if (CPol) {
674         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
675       }
676     }
677   }
678 
679   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
680               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
681              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
682     // GFX90A lost TFE, its place is occupied by ACC.
683     int TFEOpIdx =
684         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
685     if (TFEOpIdx != -1) {
686       auto TFEIter = MI.begin();
687       std::advance(TFEIter, TFEOpIdx);
688       MI.insert(TFEIter, MCOperand::createImm(0));
689     }
690   }
691 
692   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
693               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
694     int SWZOpIdx =
695         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
696     if (SWZOpIdx != -1) {
697       auto SWZIter = MI.begin();
698       std::advance(SWZIter, SWZOpIdx);
699       MI.insert(SWZIter, MCOperand::createImm(0));
700     }
701   }
702 
703   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
704     int VAddr0Idx =
705         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
706     int RsrcIdx =
707         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
708     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
709     if (VAddr0Idx >= 0 && NSAArgs > 0) {
710       unsigned NSAWords = (NSAArgs + 3) / 4;
711       if (Bytes.size() < 4 * NSAWords) {
712         Res = MCDisassembler::Fail;
713       } else {
714         for (unsigned i = 0; i < NSAArgs; ++i) {
715           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
716           auto VAddrRCID =
717               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
718           MI.insert(MI.begin() + VAddrIdx,
719                     createRegOperand(VAddrRCID, Bytes[i]));
720         }
721         Bytes = Bytes.slice(4 * NSAWords);
722       }
723     }
724 
725     if (Res)
726       Res = convertMIMGInst(MI);
727   }
728 
729   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
730               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
731     Res = convertMIMGInst(MI);
732 
733   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
734     Res = convertEXPInst(MI);
735 
736   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
737     Res = convertVINTERPInst(MI);
738 
739   if (Res && IsSDWA)
740     Res = convertSDWAInst(MI);
741 
742   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
743                                               AMDGPU::OpName::vdst_in);
744   if (VDstIn_Idx != -1) {
745     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
746                            MCOI::OperandConstraint::TIED_TO);
747     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
748          !MI.getOperand(VDstIn_Idx).isReg() ||
749          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
750       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
751         MI.erase(&MI.getOperand(VDstIn_Idx));
752       insertNamedMCOperand(MI,
753         MCOperand::createReg(MI.getOperand(Tied).getReg()),
754         AMDGPU::OpName::vdst_in);
755     }
756   }
757 
758   int ImmLitIdx =
759       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
760   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
761   if (Res && ImmLitIdx != -1 && !IsSOPK)
762     Res = convertFMAanyK(MI, ImmLitIdx);
763 
764   // if the opcode was not recognized we'll assume a Size of 4 bytes
765   // (unless there are fewer bytes left)
766   Size = Res ? (MaxInstBytesNum - Bytes.size())
767              : std::min((size_t)4, Bytes_.size());
768   return Res;
769 }
770 
771 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
772   if (STI.hasFeature(AMDGPU::FeatureGFX11)) {
773     // The MCInst still has these fields even though they are no longer encoded
774     // in the GFX11 instruction.
775     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
776     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
777   }
778   return MCDisassembler::Success;
779 }
780 
781 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
782   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
783       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
784       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
785       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
786     // The MCInst has this field that is not directly encoded in the
787     // instruction.
788     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
789   }
790   return MCDisassembler::Success;
791 }
792 
793 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
794   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
795       STI.hasFeature(AMDGPU::FeatureGFX10)) {
796     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
797       // VOPC - insert clamp
798       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
799   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
800     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
801     if (SDst != -1) {
802       // VOPC - insert VCC register as sdst
803       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
804                            AMDGPU::OpName::sdst);
805     } else {
806       // VOP1/2 - insert omod if present in instruction
807       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
808     }
809   }
810   return MCDisassembler::Success;
811 }
812 
813 struct VOPModifiers {
814   unsigned OpSel = 0;
815   unsigned OpSelHi = 0;
816   unsigned NegLo = 0;
817   unsigned NegHi = 0;
818 };
819 
820 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
821 // Note that these values do not affect disassembler output,
822 // so this is only necessary for consistency with src_modifiers.
823 static VOPModifiers collectVOPModifiers(const MCInst &MI,
824                                         bool IsVOP3P = false) {
825   VOPModifiers Modifiers;
826   unsigned Opc = MI.getOpcode();
827   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
828                         AMDGPU::OpName::src1_modifiers,
829                         AMDGPU::OpName::src2_modifiers};
830   for (int J = 0; J < 3; ++J) {
831     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
832     if (OpIdx == -1)
833       continue;
834 
835     unsigned Val = MI.getOperand(OpIdx).getImm();
836 
837     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
838     if (IsVOP3P) {
839       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
840       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
841       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
842     } else if (J == 0) {
843       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
844     }
845   }
846 
847   return Modifiers;
848 }
849 
850 // MAC opcodes have special old and src2 operands.
851 // src2 is tied to dst, while old is not tied (but assumed to be).
852 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
853   constexpr int DST_IDX = 0;
854   auto Opcode = MI.getOpcode();
855   const auto &Desc = MCII->get(Opcode);
856   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
857 
858   if (OldIdx != -1 && Desc.getOperandConstraint(
859                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
860     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
861     assert(Desc.getOperandConstraint(
862                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
863                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
864     (void)DST_IDX;
865     return true;
866   }
867 
868   return false;
869 }
870 
871 // Create dummy old operand and insert dummy unused src2_modifiers
872 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
873   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
874   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
875   insertNamedMCOperand(MI, MCOperand::createImm(0),
876                        AMDGPU::OpName::src2_modifiers);
877 }
878 
879 // We must check FI == literal to reject not genuine dpp8 insts, and we must
880 // first add optional MI operands to check FI
881 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
882   unsigned Opc = MI.getOpcode();
883   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
884     convertVOP3PDPPInst(MI);
885   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
886              AMDGPU::isVOPC64DPP(Opc)) {
887     convertVOPCDPPInst(MI);
888   } else {
889     if (isMacDPP(MI))
890       convertMacDPPInst(MI);
891 
892     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
893     if (MI.getNumOperands() < DescNumOps &&
894         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
895       auto Mods = collectVOPModifiers(MI);
896       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
897                            AMDGPU::OpName::op_sel);
898     } else {
899       // Insert dummy unused src modifiers.
900       if (MI.getNumOperands() < DescNumOps &&
901           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
902         insertNamedMCOperand(MI, MCOperand::createImm(0),
903                              AMDGPU::OpName::src0_modifiers);
904 
905       if (MI.getNumOperands() < DescNumOps &&
906           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
907         insertNamedMCOperand(MI, MCOperand::createImm(0),
908                              AMDGPU::OpName::src1_modifiers);
909     }
910   }
911   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
912 }
913 
914 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
915   if (isMacDPP(MI))
916     convertMacDPPInst(MI);
917 
918   unsigned Opc = MI.getOpcode();
919   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
920   if (MI.getNumOperands() < DescNumOps &&
921       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
922     auto Mods = collectVOPModifiers(MI);
923     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
924                          AMDGPU::OpName::op_sel);
925   }
926   return MCDisassembler::Success;
927 }
928 
929 // Note that before gfx10, the MIMG encoding provided no information about
930 // VADDR size. Consequently, decoded instructions always show address as if it
931 // has 1 dword, which could be not really so.
932 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
933   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
934 
935   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
936                                            AMDGPU::OpName::vdst);
937 
938   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
939                                             AMDGPU::OpName::vdata);
940   int VAddr0Idx =
941       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
942   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
943                                                 : AMDGPU::OpName::rsrc;
944   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
945   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
946                                             AMDGPU::OpName::dmask);
947 
948   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
949                                             AMDGPU::OpName::tfe);
950   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
951                                             AMDGPU::OpName::d16);
952 
953   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
954   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
955       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
956 
957   assert(VDataIdx != -1);
958   if (BaseOpcode->BVH) {
959     // Add A16 operand for intersect_ray instructions
960     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
961     return MCDisassembler::Success;
962   }
963 
964   bool IsAtomic = (VDstIdx != -1);
965   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
966   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
967   bool IsNSA = false;
968   bool IsPartialNSA = false;
969   unsigned AddrSize = Info->VAddrDwords;
970 
971   if (isGFX10Plus()) {
972     unsigned DimIdx =
973         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
974     int A16Idx =
975         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
976     const AMDGPU::MIMGDimInfo *Dim =
977         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
978     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
979 
980     AddrSize =
981         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
982 
983     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
984     // VIMAGE insts other than BVH never use vaddr4.
985     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
986             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
987             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
988     if (!IsNSA) {
989       if (!IsVSample && AddrSize > 12)
990         AddrSize = 16;
991     } else {
992       if (AddrSize > Info->VAddrDwords) {
993         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
994           // The NSA encoding does not contain enough operands for the
995           // combination of base opcode / dimension. Should this be an error?
996           return MCDisassembler::Success;
997         }
998         IsPartialNSA = true;
999       }
1000     }
1001   }
1002 
1003   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1004   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1005 
1006   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1007   if (D16 && AMDGPU::hasPackedD16(STI)) {
1008     DstSize = (DstSize + 1) / 2;
1009   }
1010 
1011   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1012     DstSize += 1;
1013 
1014   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1015     return MCDisassembler::Success;
1016 
1017   int NewOpcode =
1018       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1019   if (NewOpcode == -1)
1020     return MCDisassembler::Success;
1021 
1022   // Widen the register to the correct number of enabled channels.
1023   unsigned NewVdata = AMDGPU::NoRegister;
1024   if (DstSize != Info->VDataDwords) {
1025     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1026 
1027     // Get first subregister of VData
1028     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1029     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1030     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1031 
1032     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1033                                        &MRI.getRegClass(DataRCID));
1034     if (NewVdata == AMDGPU::NoRegister) {
1035       // It's possible to encode this such that the low register + enabled
1036       // components exceeds the register count.
1037       return MCDisassembler::Success;
1038     }
1039   }
1040 
1041   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1042   // If using partial NSA on GFX11+ widen last address register.
1043   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1044   unsigned NewVAddrSA = AMDGPU::NoRegister;
1045   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1046       AddrSize != Info->VAddrDwords) {
1047     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1048     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1049     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1050 
1051     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1052     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1053                                         &MRI.getRegClass(AddrRCID));
1054     if (!NewVAddrSA)
1055       return MCDisassembler::Success;
1056   }
1057 
1058   MI.setOpcode(NewOpcode);
1059 
1060   if (NewVdata != AMDGPU::NoRegister) {
1061     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1062 
1063     if (IsAtomic) {
1064       // Atomic operations have an additional operand (a copy of data)
1065       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1066     }
1067   }
1068 
1069   if (NewVAddrSA) {
1070     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1071   } else if (IsNSA) {
1072     assert(AddrSize <= Info->VAddrDwords);
1073     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1074              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1075   }
1076 
1077   return MCDisassembler::Success;
1078 }
1079 
1080 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1081 // decoder only adds to src_modifiers, so manually add the bits to the other
1082 // operands.
1083 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1084   unsigned Opc = MI.getOpcode();
1085   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1086   auto Mods = collectVOPModifiers(MI, true);
1087 
1088   if (MI.getNumOperands() < DescNumOps &&
1089       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1090     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1091 
1092   if (MI.getNumOperands() < DescNumOps &&
1093       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1094     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1095                          AMDGPU::OpName::op_sel);
1096   if (MI.getNumOperands() < DescNumOps &&
1097       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1098     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1099                          AMDGPU::OpName::op_sel_hi);
1100   if (MI.getNumOperands() < DescNumOps &&
1101       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1102     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1103                          AMDGPU::OpName::neg_lo);
1104   if (MI.getNumOperands() < DescNumOps &&
1105       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1106     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1107                          AMDGPU::OpName::neg_hi);
1108 
1109   return MCDisassembler::Success;
1110 }
1111 
1112 // Create dummy old operand and insert optional operands
1113 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1114   unsigned Opc = MI.getOpcode();
1115   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1116 
1117   if (MI.getNumOperands() < DescNumOps &&
1118       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1119     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1120 
1121   if (MI.getNumOperands() < DescNumOps &&
1122       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1123     insertNamedMCOperand(MI, MCOperand::createImm(0),
1124                          AMDGPU::OpName::src0_modifiers);
1125 
1126   if (MI.getNumOperands() < DescNumOps &&
1127       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1128     insertNamedMCOperand(MI, MCOperand::createImm(0),
1129                          AMDGPU::OpName::src1_modifiers);
1130   return MCDisassembler::Success;
1131 }
1132 
1133 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1134                                                 int ImmLitIdx) const {
1135   assert(HasLiteral && "Should have decoded a literal");
1136   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1137   unsigned DescNumOps = Desc.getNumOperands();
1138   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1139                        AMDGPU::OpName::immDeferred);
1140   assert(DescNumOps == MI.getNumOperands());
1141   for (unsigned I = 0; I < DescNumOps; ++I) {
1142     auto &Op = MI.getOperand(I);
1143     auto OpType = Desc.operands()[I].OperandType;
1144     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1145                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1146     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1147         IsDeferredOp)
1148       Op.setImm(Literal);
1149   }
1150   return MCDisassembler::Success;
1151 }
1152 
1153 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1154   return getContext().getRegisterInfo()->
1155     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1156 }
1157 
1158 inline
1159 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1160                                          const Twine& ErrMsg) const {
1161   *CommentStream << "Error: " + ErrMsg;
1162 
1163   // ToDo: add support for error operands to MCInst.h
1164   // return MCOperand::createError(V);
1165   return MCOperand();
1166 }
1167 
1168 inline
1169 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1170   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1171 }
1172 
1173 inline
1174 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1175                                                unsigned Val) const {
1176   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1177   if (Val >= RegCl.getNumRegs())
1178     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1179                            ": unknown register " + Twine(Val));
1180   return createRegOperand(RegCl.getRegister(Val));
1181 }
1182 
1183 inline
1184 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1185                                                 unsigned Val) const {
1186   // ToDo: SI/CI have 104 SGPRs, VI - 102
1187   // Valery: here we accepting as much as we can, let assembler sort it out
1188   int shift = 0;
1189   switch (SRegClassID) {
1190   case AMDGPU::SGPR_32RegClassID:
1191   case AMDGPU::TTMP_32RegClassID:
1192     break;
1193   case AMDGPU::SGPR_64RegClassID:
1194   case AMDGPU::TTMP_64RegClassID:
1195     shift = 1;
1196     break;
1197   case AMDGPU::SGPR_128RegClassID:
1198   case AMDGPU::TTMP_128RegClassID:
1199   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1200   // this bundle?
1201   case AMDGPU::SGPR_256RegClassID:
1202   case AMDGPU::TTMP_256RegClassID:
1203     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1204   // this bundle?
1205   case AMDGPU::SGPR_288RegClassID:
1206   case AMDGPU::TTMP_288RegClassID:
1207   case AMDGPU::SGPR_320RegClassID:
1208   case AMDGPU::TTMP_320RegClassID:
1209   case AMDGPU::SGPR_352RegClassID:
1210   case AMDGPU::TTMP_352RegClassID:
1211   case AMDGPU::SGPR_384RegClassID:
1212   case AMDGPU::TTMP_384RegClassID:
1213   case AMDGPU::SGPR_512RegClassID:
1214   case AMDGPU::TTMP_512RegClassID:
1215     shift = 2;
1216     break;
1217   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1218   // this bundle?
1219   default:
1220     llvm_unreachable("unhandled register class");
1221   }
1222 
1223   if (Val % (1 << shift)) {
1224     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1225                    << ": scalar reg isn't aligned " << Val;
1226   }
1227 
1228   return createRegOperand(SRegClassID, Val >> shift);
1229 }
1230 
1231 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1232                                                   bool IsHi) const {
1233   unsigned RCID =
1234       IsHi ? AMDGPU::VGPR_HI16RegClassID : AMDGPU::VGPR_LO16RegClassID;
1235   return createRegOperand(RCID, RegIdx);
1236 }
1237 
1238 // Decode Literals for insts which always have a literal in the encoding
1239 MCOperand
1240 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1241   if (HasLiteral) {
1242     assert(
1243         AMDGPU::hasVOPD(STI) &&
1244         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1245     if (Literal != Val)
1246       return errOperand(Val, "More than one unique literal is illegal");
1247   }
1248   HasLiteral = true;
1249   Literal = Val;
1250   return MCOperand::createImm(Literal);
1251 }
1252 
1253 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1254   // For now all literal constants are supposed to be unsigned integer
1255   // ToDo: deal with signed/unsigned 64-bit integer constants
1256   // ToDo: deal with float/double constants
1257   if (!HasLiteral) {
1258     if (Bytes.size() < 4) {
1259       return errOperand(0, "cannot read literal, inst bytes left " +
1260                         Twine(Bytes.size()));
1261     }
1262     HasLiteral = true;
1263     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1264     if (ExtendFP64)
1265       Literal64 <<= 32;
1266   }
1267   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1268 }
1269 
1270 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1271   using namespace AMDGPU::EncValues;
1272 
1273   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1274   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1275     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1276     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1277       // Cast prevents negative overflow.
1278 }
1279 
1280 static int64_t getInlineImmVal32(unsigned Imm) {
1281   switch (Imm) {
1282   case 240:
1283     return llvm::bit_cast<uint32_t>(0.5f);
1284   case 241:
1285     return llvm::bit_cast<uint32_t>(-0.5f);
1286   case 242:
1287     return llvm::bit_cast<uint32_t>(1.0f);
1288   case 243:
1289     return llvm::bit_cast<uint32_t>(-1.0f);
1290   case 244:
1291     return llvm::bit_cast<uint32_t>(2.0f);
1292   case 245:
1293     return llvm::bit_cast<uint32_t>(-2.0f);
1294   case 246:
1295     return llvm::bit_cast<uint32_t>(4.0f);
1296   case 247:
1297     return llvm::bit_cast<uint32_t>(-4.0f);
1298   case 248: // 1 / (2 * PI)
1299     return 0x3e22f983;
1300   default:
1301     llvm_unreachable("invalid fp inline imm");
1302   }
1303 }
1304 
1305 static int64_t getInlineImmVal64(unsigned Imm) {
1306   switch (Imm) {
1307   case 240:
1308     return llvm::bit_cast<uint64_t>(0.5);
1309   case 241:
1310     return llvm::bit_cast<uint64_t>(-0.5);
1311   case 242:
1312     return llvm::bit_cast<uint64_t>(1.0);
1313   case 243:
1314     return llvm::bit_cast<uint64_t>(-1.0);
1315   case 244:
1316     return llvm::bit_cast<uint64_t>(2.0);
1317   case 245:
1318     return llvm::bit_cast<uint64_t>(-2.0);
1319   case 246:
1320     return llvm::bit_cast<uint64_t>(4.0);
1321   case 247:
1322     return llvm::bit_cast<uint64_t>(-4.0);
1323   case 248: // 1 / (2 * PI)
1324     return 0x3fc45f306dc9c882;
1325   default:
1326     llvm_unreachable("invalid fp inline imm");
1327   }
1328 }
1329 
1330 static int64_t getInlineImmVal16(unsigned Imm) {
1331   switch (Imm) {
1332   case 240:
1333     return 0x3800;
1334   case 241:
1335     return 0xB800;
1336   case 242:
1337     return 0x3C00;
1338   case 243:
1339     return 0xBC00;
1340   case 244:
1341     return 0x4000;
1342   case 245:
1343     return 0xC000;
1344   case 246:
1345     return 0x4400;
1346   case 247:
1347     return 0xC400;
1348   case 248: // 1 / (2 * PI)
1349     return 0x3118;
1350   default:
1351     llvm_unreachable("invalid fp inline imm");
1352   }
1353 }
1354 
1355 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1356   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1357       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1358 
1359   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1360   // ImmWidth 0 is a default case where operand should not allow immediates.
1361   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1362   // use it to print verbose error message.
1363   switch (ImmWidth) {
1364   case 0:
1365   case 32:
1366     return MCOperand::createImm(getInlineImmVal32(Imm));
1367   case 64:
1368     return MCOperand::createImm(getInlineImmVal64(Imm));
1369   case 16:
1370     return MCOperand::createImm(getInlineImmVal16(Imm));
1371   default:
1372     llvm_unreachable("implement me");
1373   }
1374 }
1375 
1376 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1377   using namespace AMDGPU;
1378 
1379   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1380   switch (Width) {
1381   default: // fall
1382   case OPW32:
1383   case OPW16:
1384   case OPWV216:
1385     return VGPR_32RegClassID;
1386   case OPW64:
1387   case OPWV232: return VReg_64RegClassID;
1388   case OPW96: return VReg_96RegClassID;
1389   case OPW128: return VReg_128RegClassID;
1390   case OPW160: return VReg_160RegClassID;
1391   case OPW256: return VReg_256RegClassID;
1392   case OPW288: return VReg_288RegClassID;
1393   case OPW320: return VReg_320RegClassID;
1394   case OPW352: return VReg_352RegClassID;
1395   case OPW384: return VReg_384RegClassID;
1396   case OPW512: return VReg_512RegClassID;
1397   case OPW1024: return VReg_1024RegClassID;
1398   }
1399 }
1400 
1401 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1402   using namespace AMDGPU;
1403 
1404   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1405   switch (Width) {
1406   default: // fall
1407   case OPW32:
1408   case OPW16:
1409   case OPWV216:
1410     return AGPR_32RegClassID;
1411   case OPW64:
1412   case OPWV232: return AReg_64RegClassID;
1413   case OPW96: return AReg_96RegClassID;
1414   case OPW128: return AReg_128RegClassID;
1415   case OPW160: return AReg_160RegClassID;
1416   case OPW256: return AReg_256RegClassID;
1417   case OPW288: return AReg_288RegClassID;
1418   case OPW320: return AReg_320RegClassID;
1419   case OPW352: return AReg_352RegClassID;
1420   case OPW384: return AReg_384RegClassID;
1421   case OPW512: return AReg_512RegClassID;
1422   case OPW1024: return AReg_1024RegClassID;
1423   }
1424 }
1425 
1426 
1427 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1428   using namespace AMDGPU;
1429 
1430   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1431   switch (Width) {
1432   default: // fall
1433   case OPW32:
1434   case OPW16:
1435   case OPWV216:
1436     return SGPR_32RegClassID;
1437   case OPW64:
1438   case OPWV232: return SGPR_64RegClassID;
1439   case OPW96: return SGPR_96RegClassID;
1440   case OPW128: return SGPR_128RegClassID;
1441   case OPW160: return SGPR_160RegClassID;
1442   case OPW256: return SGPR_256RegClassID;
1443   case OPW288: return SGPR_288RegClassID;
1444   case OPW320: return SGPR_320RegClassID;
1445   case OPW352: return SGPR_352RegClassID;
1446   case OPW384: return SGPR_384RegClassID;
1447   case OPW512: return SGPR_512RegClassID;
1448   }
1449 }
1450 
1451 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1452   using namespace AMDGPU;
1453 
1454   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1455   switch (Width) {
1456   default: // fall
1457   case OPW32:
1458   case OPW16:
1459   case OPWV216:
1460     return TTMP_32RegClassID;
1461   case OPW64:
1462   case OPWV232: return TTMP_64RegClassID;
1463   case OPW128: return TTMP_128RegClassID;
1464   case OPW256: return TTMP_256RegClassID;
1465   case OPW288: return TTMP_288RegClassID;
1466   case OPW320: return TTMP_320RegClassID;
1467   case OPW352: return TTMP_352RegClassID;
1468   case OPW384: return TTMP_384RegClassID;
1469   case OPW512: return TTMP_512RegClassID;
1470   }
1471 }
1472 
1473 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1474   using namespace AMDGPU::EncValues;
1475 
1476   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1477   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1478 
1479   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1480 }
1481 
1482 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1483                                           bool MandatoryLiteral,
1484                                           unsigned ImmWidth, bool IsFP) const {
1485   using namespace AMDGPU::EncValues;
1486 
1487   assert(Val < 1024); // enum10
1488 
1489   bool IsAGPR = Val & 512;
1490   Val &= 511;
1491 
1492   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1493     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1494                                    : getVgprClassId(Width), Val - VGPR_MIN);
1495   }
1496   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1497                             IsFP);
1498 }
1499 
1500 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1501                                                  unsigned Val,
1502                                                  bool MandatoryLiteral,
1503                                                  unsigned ImmWidth,
1504                                                  bool IsFP) const {
1505   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1506   // decoded earlier.
1507   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1508   using namespace AMDGPU::EncValues;
1509 
1510   if (Val <= SGPR_MAX) {
1511     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1512     static_assert(SGPR_MIN == 0);
1513     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1514   }
1515 
1516   int TTmpIdx = getTTmpIdx(Val);
1517   if (TTmpIdx >= 0) {
1518     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1519   }
1520 
1521   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1522     return decodeIntImmed(Val);
1523 
1524   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1525     return decodeFPImmed(ImmWidth, Val);
1526 
1527   if (Val == LITERAL_CONST) {
1528     if (MandatoryLiteral)
1529       // Keep a sentinel value for deferred setting
1530       return MCOperand::createImm(LITERAL_CONST);
1531     else
1532       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1533   }
1534 
1535   switch (Width) {
1536   case OPW32:
1537   case OPW16:
1538   case OPWV216:
1539     return decodeSpecialReg32(Val);
1540   case OPW64:
1541   case OPWV232:
1542     return decodeSpecialReg64(Val);
1543   default:
1544     llvm_unreachable("unexpected immediate type");
1545   }
1546 }
1547 
1548 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1549 // opposite of bit 0 of DstX.
1550 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1551                                                unsigned Val) const {
1552   int VDstXInd =
1553       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1554   assert(VDstXInd != -1);
1555   assert(Inst.getOperand(VDstXInd).isReg());
1556   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1557   Val |= ~XDstReg & 1;
1558   auto Width = llvm::AMDGPUDisassembler::OPW32;
1559   return createRegOperand(getVgprClassId(Width), Val);
1560 }
1561 
1562 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1563   using namespace AMDGPU;
1564 
1565   switch (Val) {
1566   // clang-format off
1567   case 102: return createRegOperand(FLAT_SCR_LO);
1568   case 103: return createRegOperand(FLAT_SCR_HI);
1569   case 104: return createRegOperand(XNACK_MASK_LO);
1570   case 105: return createRegOperand(XNACK_MASK_HI);
1571   case 106: return createRegOperand(VCC_LO);
1572   case 107: return createRegOperand(VCC_HI);
1573   case 108: return createRegOperand(TBA_LO);
1574   case 109: return createRegOperand(TBA_HI);
1575   case 110: return createRegOperand(TMA_LO);
1576   case 111: return createRegOperand(TMA_HI);
1577   case 124:
1578     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1579   case 125:
1580     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1581   case 126: return createRegOperand(EXEC_LO);
1582   case 127: return createRegOperand(EXEC_HI);
1583   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1584   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1585   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1586   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1587   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1588   case 251: return createRegOperand(SRC_VCCZ);
1589   case 252: return createRegOperand(SRC_EXECZ);
1590   case 253: return createRegOperand(SRC_SCC);
1591   case 254: return createRegOperand(LDS_DIRECT);
1592   default: break;
1593     // clang-format on
1594   }
1595   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1596 }
1597 
1598 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1599   using namespace AMDGPU;
1600 
1601   switch (Val) {
1602   case 102: return createRegOperand(FLAT_SCR);
1603   case 104: return createRegOperand(XNACK_MASK);
1604   case 106: return createRegOperand(VCC);
1605   case 108: return createRegOperand(TBA);
1606   case 110: return createRegOperand(TMA);
1607   case 124:
1608     if (isGFX11Plus())
1609       return createRegOperand(SGPR_NULL);
1610     break;
1611   case 125:
1612     if (!isGFX11Plus())
1613       return createRegOperand(SGPR_NULL);
1614     break;
1615   case 126: return createRegOperand(EXEC);
1616   case 235: return createRegOperand(SRC_SHARED_BASE);
1617   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1618   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1619   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1620   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1621   case 251: return createRegOperand(SRC_VCCZ);
1622   case 252: return createRegOperand(SRC_EXECZ);
1623   case 253: return createRegOperand(SRC_SCC);
1624   default: break;
1625   }
1626   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1627 }
1628 
1629 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1630                                             const unsigned Val,
1631                                             unsigned ImmWidth) const {
1632   using namespace AMDGPU::SDWA;
1633   using namespace AMDGPU::EncValues;
1634 
1635   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1636       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1637     // XXX: cast to int is needed to avoid stupid warning:
1638     // compare with unsigned is always true
1639     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1640         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1641       return createRegOperand(getVgprClassId(Width),
1642                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1643     }
1644     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1645         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1646                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1647       return createSRegOperand(getSgprClassId(Width),
1648                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1649     }
1650     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1651         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1652       return createSRegOperand(getTtmpClassId(Width),
1653                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1654     }
1655 
1656     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1657 
1658     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1659       return decodeIntImmed(SVal);
1660 
1661     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1662       return decodeFPImmed(ImmWidth, SVal);
1663 
1664     return decodeSpecialReg32(SVal);
1665   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1666     return createRegOperand(getVgprClassId(Width), Val);
1667   }
1668   llvm_unreachable("unsupported target");
1669 }
1670 
1671 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1672   return decodeSDWASrc(OPW16, Val, 16);
1673 }
1674 
1675 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1676   return decodeSDWASrc(OPW32, Val, 32);
1677 }
1678 
1679 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1680   using namespace AMDGPU::SDWA;
1681 
1682   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1683           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1684          "SDWAVopcDst should be present only on GFX9+");
1685 
1686   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1687 
1688   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1689     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1690 
1691     int TTmpIdx = getTTmpIdx(Val);
1692     if (TTmpIdx >= 0) {
1693       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1694       return createSRegOperand(TTmpClsId, TTmpIdx);
1695     } else if (Val > SGPR_MAX) {
1696       return IsWave64 ? decodeSpecialReg64(Val)
1697                       : decodeSpecialReg32(Val);
1698     } else {
1699       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1700     }
1701   } else {
1702     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1703   }
1704 }
1705 
1706 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1707   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1708              ? decodeSrcOp(OPW64, Val)
1709              : decodeSrcOp(OPW32, Val);
1710 }
1711 
1712 bool AMDGPUDisassembler::isVI() const {
1713   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1714 }
1715 
1716 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1717 
1718 bool AMDGPUDisassembler::isGFX90A() const {
1719   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1720 }
1721 
1722 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1723 
1724 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1725 
1726 bool AMDGPUDisassembler::isGFX10Plus() const {
1727   return AMDGPU::isGFX10Plus(STI);
1728 }
1729 
1730 bool AMDGPUDisassembler::isGFX11() const {
1731   return STI.hasFeature(AMDGPU::FeatureGFX11);
1732 }
1733 
1734 bool AMDGPUDisassembler::isGFX11Plus() const {
1735   return AMDGPU::isGFX11Plus(STI);
1736 }
1737 
1738 bool AMDGPUDisassembler::isGFX12Plus() const {
1739   return AMDGPU::isGFX12Plus(STI);
1740 }
1741 
1742 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1743   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1744 }
1745 
1746 bool AMDGPUDisassembler::hasKernargPreload() const {
1747   return AMDGPU::hasKernargPreload(STI);
1748 }
1749 
1750 //===----------------------------------------------------------------------===//
1751 // AMDGPU specific symbol handling
1752 //===----------------------------------------------------------------------===//
1753 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1754 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1755   do {                                                                         \
1756     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1757   } while (0)
1758 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1759   do {                                                                         \
1760     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1761              << GET_FIELD(MASK) << '\n';                                       \
1762   } while (0)
1763 
1764 // NOLINTNEXTLINE(readability-identifier-naming)
1765 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1766     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1767   using namespace amdhsa;
1768   StringRef Indent = "\t";
1769 
1770   // We cannot accurately backward compute #VGPRs used from
1771   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1772   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1773   // simply calculate the inverse of what the assembler does.
1774 
1775   uint32_t GranulatedWorkitemVGPRCount =
1776       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1777 
1778   uint32_t NextFreeVGPR =
1779       (GranulatedWorkitemVGPRCount + 1) *
1780       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1781 
1782   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1783 
1784   // We cannot backward compute values used to calculate
1785   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1786   // directives can't be computed:
1787   // .amdhsa_reserve_vcc
1788   // .amdhsa_reserve_flat_scratch
1789   // .amdhsa_reserve_xnack_mask
1790   // They take their respective default values if not specified in the assembly.
1791   //
1792   // GRANULATED_WAVEFRONT_SGPR_COUNT
1793   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1794   //
1795   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1796   // are set to 0. So while disassembling we consider that:
1797   //
1798   // GRANULATED_WAVEFRONT_SGPR_COUNT
1799   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1800   //
1801   // The disassembler cannot recover the original values of those 3 directives.
1802 
1803   uint32_t GranulatedWavefrontSGPRCount =
1804       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1805 
1806   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1807     return MCDisassembler::Fail;
1808 
1809   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1810                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1811 
1812   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1813   if (!hasArchitectedFlatScratch())
1814     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1815   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1816   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1817 
1818   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1819     return MCDisassembler::Fail;
1820 
1821   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1822                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1823   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1824                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1825   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1826                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1827   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1828                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1829 
1830   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1831     return MCDisassembler::Fail;
1832 
1833   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1834 
1835   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1836     return MCDisassembler::Fail;
1837 
1838   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1839 
1840   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1841     return MCDisassembler::Fail;
1842 
1843   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1844     return MCDisassembler::Fail;
1845 
1846   if (isGFX9Plus())
1847     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1848 
1849   if (!isGFX9Plus())
1850     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1851       return MCDisassembler::Fail;
1852   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1853     return MCDisassembler::Fail;
1854   if (!isGFX10Plus())
1855     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1856       return MCDisassembler::Fail;
1857 
1858   if (isGFX10Plus()) {
1859     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1860                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1861     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1862     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1863   }
1864   return MCDisassembler::Success;
1865 }
1866 
1867 // NOLINTNEXTLINE(readability-identifier-naming)
1868 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1869     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1870   using namespace amdhsa;
1871   StringRef Indent = "\t";
1872   if (hasArchitectedFlatScratch())
1873     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1874                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1875   else
1876     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1877                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1878   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1879                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1880   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1881                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1882   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1883                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1884   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1885                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1886   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1887                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1888 
1889   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1890     return MCDisassembler::Fail;
1891 
1892   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1893     return MCDisassembler::Fail;
1894 
1895   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1896     return MCDisassembler::Fail;
1897 
1898   PRINT_DIRECTIVE(
1899       ".amdhsa_exception_fp_ieee_invalid_op",
1900       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1901   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1902                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1903   PRINT_DIRECTIVE(
1904       ".amdhsa_exception_fp_ieee_div_zero",
1905       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1906   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1907                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1908   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1909                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1910   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1911                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1912   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1913                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1914 
1915   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1916     return MCDisassembler::Fail;
1917 
1918   return MCDisassembler::Success;
1919 }
1920 
1921 // NOLINTNEXTLINE(readability-identifier-naming)
1922 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1923     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1924   using namespace amdhsa;
1925   StringRef Indent = "\t";
1926   if (isGFX90A()) {
1927     KdStream << Indent << ".amdhsa_accum_offset "
1928              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1929              << '\n';
1930     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1931       return MCDisassembler::Fail;
1932     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1933     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
1934       return MCDisassembler::Fail;
1935   } else if (isGFX10Plus()) {
1936     if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
1937       PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
1938                       COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1939     } else {
1940       PRINT_PSEUDO_DIRECTIVE_COMMENT(
1941           "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1942     }
1943 
1944     if (isGFX11Plus()) {
1945       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
1946                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_INST_PREF_SIZE);
1947       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
1948                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
1949       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
1950                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_END);
1951     } else {
1952       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED0)
1953         return MCDisassembler::Fail;
1954     }
1955 
1956     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED1)
1957       return MCDisassembler::Fail;
1958 
1959     if (isGFX11Plus()) {
1960       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
1961                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
1962     } else {
1963       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED2)
1964         return MCDisassembler::Fail;
1965     }
1966   } else if (FourByteBuffer) {
1967     return MCDisassembler::Fail;
1968   }
1969   return MCDisassembler::Success;
1970 }
1971 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
1972 #undef PRINT_DIRECTIVE
1973 #undef GET_FIELD
1974 
1975 MCDisassembler::DecodeStatus
1976 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1977     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1978     raw_string_ostream &KdStream) const {
1979 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1980   do {                                                                         \
1981     KdStream << Indent << DIRECTIVE " "                                        \
1982              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1983   } while (0)
1984 
1985   uint16_t TwoByteBuffer = 0;
1986   uint32_t FourByteBuffer = 0;
1987 
1988   StringRef ReservedBytes;
1989   StringRef Indent = "\t";
1990 
1991   assert(Bytes.size() == 64);
1992   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1993 
1994   switch (Cursor.tell()) {
1995   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1996     FourByteBuffer = DE.getU32(Cursor);
1997     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1998              << '\n';
1999     return MCDisassembler::Success;
2000 
2001   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2002     FourByteBuffer = DE.getU32(Cursor);
2003     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2004              << FourByteBuffer << '\n';
2005     return MCDisassembler::Success;
2006 
2007   case amdhsa::KERNARG_SIZE_OFFSET:
2008     FourByteBuffer = DE.getU32(Cursor);
2009     KdStream << Indent << ".amdhsa_kernarg_size "
2010              << FourByteBuffer << '\n';
2011     return MCDisassembler::Success;
2012 
2013   case amdhsa::RESERVED0_OFFSET:
2014     // 4 reserved bytes, must be 0.
2015     ReservedBytes = DE.getBytes(Cursor, 4);
2016     for (int I = 0; I < 4; ++I) {
2017       if (ReservedBytes[I] != 0) {
2018         return MCDisassembler::Fail;
2019       }
2020     }
2021     return MCDisassembler::Success;
2022 
2023   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2024     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2025     // So far no directive controls this for Code Object V3, so simply skip for
2026     // disassembly.
2027     DE.skip(Cursor, 8);
2028     return MCDisassembler::Success;
2029 
2030   case amdhsa::RESERVED1_OFFSET:
2031     // 20 reserved bytes, must be 0.
2032     ReservedBytes = DE.getBytes(Cursor, 20);
2033     for (int I = 0; I < 20; ++I) {
2034       if (ReservedBytes[I] != 0) {
2035         return MCDisassembler::Fail;
2036       }
2037     }
2038     return MCDisassembler::Success;
2039 
2040   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2041     FourByteBuffer = DE.getU32(Cursor);
2042     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2043 
2044   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2045     FourByteBuffer = DE.getU32(Cursor);
2046     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2047 
2048   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2049     FourByteBuffer = DE.getU32(Cursor);
2050     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2051 
2052   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2053     using namespace amdhsa;
2054     TwoByteBuffer = DE.getU16(Cursor);
2055 
2056     if (!hasArchitectedFlatScratch())
2057       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2058                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2059     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2060                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2061     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2062                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2063     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2064                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2065     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2066                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2067     if (!hasArchitectedFlatScratch())
2068       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2069                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2070     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2071                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2072 
2073     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2074       return MCDisassembler::Fail;
2075 
2076     // Reserved for GFX9
2077     if (isGFX9() &&
2078         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2079       return MCDisassembler::Fail;
2080     } else if (isGFX10Plus()) {
2081       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2082                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2083     }
2084 
2085     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2086       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2087                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2088 
2089     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2090       return MCDisassembler::Fail;
2091 
2092     return MCDisassembler::Success;
2093 
2094   case amdhsa::KERNARG_PRELOAD_OFFSET:
2095     using namespace amdhsa;
2096     TwoByteBuffer = DE.getU16(Cursor);
2097     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2098       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2099                       KERNARG_PRELOAD_SPEC_LENGTH);
2100     }
2101 
2102     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2103       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2104                       KERNARG_PRELOAD_SPEC_OFFSET);
2105     }
2106     return MCDisassembler::Success;
2107 
2108   case amdhsa::RESERVED3_OFFSET:
2109     // 4 bytes from here are reserved, must be 0.
2110     ReservedBytes = DE.getBytes(Cursor, 4);
2111     for (int I = 0; I < 4; ++I) {
2112       if (ReservedBytes[I] != 0)
2113         return MCDisassembler::Fail;
2114     }
2115     return MCDisassembler::Success;
2116 
2117   default:
2118     llvm_unreachable("Unhandled index. Case statements cover everything.");
2119     return MCDisassembler::Fail;
2120   }
2121 #undef PRINT_DIRECTIVE
2122 }
2123 
2124 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2125     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2126   // CP microcode requires the kernel descriptor to be 64 aligned.
2127   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2128     return MCDisassembler::Fail;
2129 
2130   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2131   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2132   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2133   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2134   // when required.
2135   if (isGFX10Plus()) {
2136     uint16_t KernelCodeProperties =
2137         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2138                                 llvm::endianness::little);
2139     EnableWavefrontSize32 =
2140         AMDHSA_BITS_GET(KernelCodeProperties,
2141                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2142   }
2143 
2144   std::string Kd;
2145   raw_string_ostream KdStream(Kd);
2146   KdStream << ".amdhsa_kernel " << KdName << '\n';
2147 
2148   DataExtractor::Cursor C(0);
2149   while (C && C.tell() < Bytes.size()) {
2150     MCDisassembler::DecodeStatus Status =
2151         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2152 
2153     cantFail(C.takeError());
2154 
2155     if (Status == MCDisassembler::Fail)
2156       return MCDisassembler::Fail;
2157   }
2158   KdStream << ".end_amdhsa_kernel\n";
2159   outs() << KdStream.str();
2160   return MCDisassembler::Success;
2161 }
2162 
2163 std::optional<MCDisassembler::DecodeStatus>
2164 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2165                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2166                                   raw_ostream &CStream) const {
2167   // Right now only kernel descriptor needs to be handled.
2168   // We ignore all other symbols for target specific handling.
2169   // TODO:
2170   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2171   // Object V2 and V3 when symbols are marked protected.
2172 
2173   // amd_kernel_code_t for Code Object V2.
2174   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2175     Size = 256;
2176     return MCDisassembler::Fail;
2177   }
2178 
2179   // Code Object V3 kernel descriptors.
2180   StringRef Name = Symbol.Name;
2181   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2182     Size = 64; // Size = 64 regardless of success or failure.
2183     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2184   }
2185   return std::nullopt;
2186 }
2187 
2188 //===----------------------------------------------------------------------===//
2189 // AMDGPUSymbolizer
2190 //===----------------------------------------------------------------------===//
2191 
2192 // Try to find symbol name for specified label
2193 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2194     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2195     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2196     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2197 
2198   if (!IsBranch) {
2199     return false;
2200   }
2201 
2202   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2203   if (!Symbols)
2204     return false;
2205 
2206   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2207     return Val.Addr == static_cast<uint64_t>(Value) &&
2208            Val.Type == ELF::STT_NOTYPE;
2209   });
2210   if (Result != Symbols->end()) {
2211     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2212     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2213     Inst.addOperand(MCOperand::createExpr(Add));
2214     return true;
2215   }
2216   // Add to list of referenced addresses, so caller can synthesize a label.
2217   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2218   return false;
2219 }
2220 
2221 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2222                                                        int64_t Value,
2223                                                        uint64_t Address) {
2224   llvm_unreachable("unimplemented");
2225 }
2226 
2227 //===----------------------------------------------------------------------===//
2228 // Initialization
2229 //===----------------------------------------------------------------------===//
2230 
2231 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2232                               LLVMOpInfoCallback /*GetOpInfo*/,
2233                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2234                               void *DisInfo,
2235                               MCContext *Ctx,
2236                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2237   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2238 }
2239 
2240 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2241                                                 const MCSubtargetInfo &STI,
2242                                                 MCContext &Ctx) {
2243   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2244 }
2245 
2246 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2247   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2248                                          createAMDGPUDisassembler);
2249   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2250                                        createAMDGPUSymbolizer);
2251 }
2252