xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 1a51ab766f471059abe6ae9123512d2137e2e0af)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCDecoderOps.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/TargetRegistry.h"
33 #include "llvm/Support/AMDHSAKernelDescriptor.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "amdgpu-disassembler"
38 
39 #define SGPR_MAX                                                               \
40   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
41                  : AMDGPU::EncValues::SGPR_MAX_SI)
42 
43 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
44 
45 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
46                                        MCContext &Ctx,
47                                        MCInstrInfo const *MCII) :
48   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
49   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
50 
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
95     Offset = Imm & 0xFFFFF;
96   } else {                    // GFX9+ supports 21-bit signed offsets.
97     Offset = SignExtend64<21>(Imm);
98   }
99   return addOperand(Inst, MCOperand::createImm(Offset));
100 }
101 
102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
103                                   const MCDisassembler *Decoder) {
104   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
105   return addOperand(Inst, DAsm->decodeBoolReg(Val));
106 }
107 
108 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
109   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
110                                         uint64_t /*Addr*/,                     \
111                                         const MCDisassembler *Decoder) {       \
112     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
113     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
114   }
115 
116 #define DECODE_OPERAND_REG(RegClass) \
117 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
118 
119 DECODE_OPERAND_REG(VGPR_32)
120 DECODE_OPERAND_REG(VRegOrLds_32)
121 DECODE_OPERAND_REG(VS_32)
122 DECODE_OPERAND_REG(VS_64)
123 DECODE_OPERAND_REG(VS_128)
124 
125 DECODE_OPERAND_REG(VReg_64)
126 DECODE_OPERAND_REG(VReg_96)
127 DECODE_OPERAND_REG(VReg_128)
128 DECODE_OPERAND_REG(VReg_256)
129 DECODE_OPERAND_REG(VReg_512)
130 DECODE_OPERAND_REG(VReg_1024)
131 
132 DECODE_OPERAND_REG(SReg_32)
133 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
134 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
135 DECODE_OPERAND_REG(SRegOrLds_32)
136 DECODE_OPERAND_REG(SReg_64)
137 DECODE_OPERAND_REG(SReg_64_XEXEC)
138 DECODE_OPERAND_REG(SReg_128)
139 DECODE_OPERAND_REG(SReg_256)
140 DECODE_OPERAND_REG(SReg_512)
141 
142 DECODE_OPERAND_REG(AGPR_32)
143 DECODE_OPERAND_REG(AReg_64)
144 DECODE_OPERAND_REG(AReg_128)
145 DECODE_OPERAND_REG(AReg_256)
146 DECODE_OPERAND_REG(AReg_512)
147 DECODE_OPERAND_REG(AReg_1024)
148 DECODE_OPERAND_REG(AV_32)
149 DECODE_OPERAND_REG(AV_64)
150 DECODE_OPERAND_REG(AV_128)
151 DECODE_OPERAND_REG(AVDst_128)
152 DECODE_OPERAND_REG(AVDst_512)
153 
154 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
155                                          uint64_t Addr,
156                                          const MCDisassembler *Decoder) {
157   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
158   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
159 }
160 
161 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
162                                            uint64_t Addr,
163                                            const MCDisassembler *Decoder) {
164   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
165   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
166 }
167 
168 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
169                                            uint64_t Addr,
170                                            const MCDisassembler *Decoder) {
171   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
172   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
173 }
174 
175 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
176                                         uint64_t Addr,
177                                         const MCDisassembler *Decoder) {
178   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
179   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
180 }
181 
182 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
183                                         uint64_t Addr,
184                                         const MCDisassembler *Decoder) {
185   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
186   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
187 }
188 
189 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
190                                           uint64_t Addr,
191                                           const MCDisassembler *Decoder) {
192   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
193   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
194 }
195 
196 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
197                                            uint64_t Addr,
198                                            const MCDisassembler *Decoder) {
199   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
200   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
201 }
202 
203 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
204                                            uint64_t Addr,
205                                            const MCDisassembler *Decoder) {
206   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
207   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
208 }
209 
210 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
211                                            uint64_t Addr,
212                                            const MCDisassembler *Decoder) {
213   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
214   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
215 }
216 
217 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
218                                             uint64_t Addr,
219                                             const MCDisassembler *Decoder) {
220   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
221   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
222 }
223 
224 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
225                                           uint64_t Addr,
226                                           const MCDisassembler *Decoder) {
227   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
228   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
229 }
230 
231 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
232                                            uint64_t Addr,
233                                            const MCDisassembler *Decoder) {
234   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
235   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
236 }
237 
238 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
239                                            uint64_t Addr,
240                                            const MCDisassembler *Decoder) {
241   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
242   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
243 }
244 
245 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
246                                            uint64_t Addr,
247                                            const MCDisassembler *Decoder) {
248   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
249   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
250 }
251 
252 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
253                                             uint64_t Addr,
254                                             const MCDisassembler *Decoder) {
255   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
256   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
257 }
258 
259 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
260                                           uint64_t Addr,
261                                           const MCDisassembler *Decoder) {
262   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
263   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
264 }
265 
266 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
267                                           uint64_t Addr,
268                                           const MCDisassembler *Decoder) {
269   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
270   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
271 }
272 
273 static DecodeStatus
274 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
275                              const MCDisassembler *Decoder) {
276   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
277   return addOperand(
278       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
279 }
280 
281 static DecodeStatus
282 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
283                              const MCDisassembler *Decoder) {
284   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
285   return addOperand(
286       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
287 }
288 
289 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
290                           const MCRegisterInfo *MRI) {
291   if (OpIdx < 0)
292     return false;
293 
294   const MCOperand &Op = Inst.getOperand(OpIdx);
295   if (!Op.isReg())
296     return false;
297 
298   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
299   auto Reg = Sub ? Sub : Op.getReg();
300   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
301 }
302 
303 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
304                                              AMDGPUDisassembler::OpWidthTy Opw,
305                                              const MCDisassembler *Decoder) {
306   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
307   if (!DAsm->isGFX90A()) {
308     Imm &= 511;
309   } else {
310     // If atomic has both vdata and vdst their register classes are tied.
311     // The bit is decoded along with the vdst, first operand. We need to
312     // change register class to AGPR if vdst was AGPR.
313     // If a DS instruction has both data0 and data1 their register classes
314     // are also tied.
315     unsigned Opc = Inst.getOpcode();
316     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
317     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
318                                                         : AMDGPU::OpName::vdata;
319     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
320     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
321     if ((int)Inst.getNumOperands() == DataIdx) {
322       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
323       if (IsAGPROperand(Inst, DstIdx, MRI))
324         Imm |= 512;
325     }
326 
327     if (TSFlags & SIInstrFlags::DS) {
328       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
329       if ((int)Inst.getNumOperands() == Data2Idx &&
330           IsAGPROperand(Inst, DataIdx, MRI))
331         Imm |= 512;
332     }
333   }
334   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
335 }
336 
337 static DecodeStatus
338 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
339                              const MCDisassembler *Decoder) {
340   return decodeOperand_AVLdSt_Any(Inst, Imm,
341                                   AMDGPUDisassembler::OPW32, Decoder);
342 }
343 
344 static DecodeStatus
345 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
346                              const MCDisassembler *Decoder) {
347   return decodeOperand_AVLdSt_Any(Inst, Imm,
348                                   AMDGPUDisassembler::OPW64, Decoder);
349 }
350 
351 static DecodeStatus
352 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
353                              const MCDisassembler *Decoder) {
354   return decodeOperand_AVLdSt_Any(Inst, Imm,
355                                   AMDGPUDisassembler::OPW96, Decoder);
356 }
357 
358 static DecodeStatus
359 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
360                               const MCDisassembler *Decoder) {
361   return decodeOperand_AVLdSt_Any(Inst, Imm,
362                                   AMDGPUDisassembler::OPW128, Decoder);
363 }
364 
365 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
366                                           uint64_t Addr,
367                                           const MCDisassembler *Decoder) {
368   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
369   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
370 }
371 
372 #define DECODE_SDWA(DecName) \
373 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
374 
375 DECODE_SDWA(Src32)
376 DECODE_SDWA(Src16)
377 DECODE_SDWA(VopcDst)
378 
379 #include "AMDGPUGenDisassemblerTables.inc"
380 
381 //===----------------------------------------------------------------------===//
382 //
383 //===----------------------------------------------------------------------===//
384 
385 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
386   assert(Bytes.size() >= sizeof(T));
387   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
388   Bytes = Bytes.slice(sizeof(T));
389   return Res;
390 }
391 
392 // The disassembler is greedy, so we need to check FI operand value to
393 // not parse a dpp if the correct literal is not set. For dpp16 the
394 // autogenerated decoder checks the dpp literal
395 static bool isValidDPP8(const MCInst &MI) {
396   using namespace llvm::AMDGPU::DPP;
397   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
398   assert(FiIdx != -1);
399   if ((unsigned)FiIdx >= MI.getNumOperands())
400     return false;
401   unsigned Fi = MI.getOperand(FiIdx).getImm();
402   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
403 }
404 
405 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
406                                                 ArrayRef<uint8_t> Bytes_,
407                                                 uint64_t Address,
408                                                 raw_ostream &CS) const {
409   CommentStream = &CS;
410   bool IsSDWA = false;
411 
412   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
413   Bytes = Bytes_.slice(0, MaxInstBytesNum);
414 
415   DecodeStatus Res = MCDisassembler::Fail;
416   do {
417     // ToDo: better to switch encoding length using some bit predicate
418     // but it is unknown yet, so try all we can
419 
420     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
421     // encodings
422     if (Bytes.size() >= 8) {
423       const uint64_t QW = eatBytes<uint64_t>(Bytes);
424 
425       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
426         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
427         if (Res) {
428           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
429               == -1)
430             break;
431           if (convertDPP8Inst(MI) == MCDisassembler::Success)
432             break;
433           MI = MCInst(); // clear
434         }
435       }
436 
437       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
438       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
439         break;
440 
441       MI = MCInst(); // clear
442 
443       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
444       if (Res) break;
445 
446       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
447       if (Res) { IsSDWA = true;  break; }
448 
449       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
450       if (Res) { IsSDWA = true;  break; }
451 
452       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
453       if (Res) { IsSDWA = true;  break; }
454 
455       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
456         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
457         if (Res)
458           break;
459       }
460 
461       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
462       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
463       // table first so we print the correct name.
464       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
465         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
466         if (Res)
467           break;
468       }
469     }
470 
471     // Reinitialize Bytes as DPP64 could have eaten too much
472     Bytes = Bytes_.slice(0, MaxInstBytesNum);
473 
474     // Try decode 32-bit instruction
475     if (Bytes.size() < 4) break;
476     const uint32_t DW = eatBytes<uint32_t>(Bytes);
477     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
478     if (Res) break;
479 
480     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
481     if (Res) break;
482 
483     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
484     if (Res) break;
485 
486     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
487       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
488       if (Res)
489         break;
490     }
491 
492     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
493       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
494       if (Res) break;
495     }
496 
497     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
498     if (Res) break;
499 
500     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
501     if (Res) break;
502 
503     if (Bytes.size() < 4) break;
504     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
505 
506     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
507       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
508       if (Res)
509         break;
510     }
511 
512     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
513     if (Res) break;
514 
515     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
516     if (Res) break;
517 
518     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
519     if (Res) break;
520 
521     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
522     if (Res) break;
523 
524     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
525   } while (false);
526 
527   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
528               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
529               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
530               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
531               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
532               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
533               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
534               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
535               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
536               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
537               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
538     // Insert dummy unused src2_modifiers.
539     insertNamedMCOperand(MI, MCOperand::createImm(0),
540                          AMDGPU::OpName::src2_modifiers);
541   }
542 
543   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
544           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
545     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
546                                              AMDGPU::OpName::cpol);
547     if (CPolPos != -1) {
548       unsigned CPol =
549           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
550               AMDGPU::CPol::GLC : 0;
551       if (MI.getNumOperands() <= (unsigned)CPolPos) {
552         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
553                              AMDGPU::OpName::cpol);
554       } else if (CPol) {
555         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
556       }
557     }
558   }
559 
560   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
561               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
562              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
563     // GFX90A lost TFE, its place is occupied by ACC.
564     int TFEOpIdx =
565         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
566     if (TFEOpIdx != -1) {
567       auto TFEIter = MI.begin();
568       std::advance(TFEIter, TFEOpIdx);
569       MI.insert(TFEIter, MCOperand::createImm(0));
570     }
571   }
572 
573   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
574               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
575     int SWZOpIdx =
576         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
577     if (SWZOpIdx != -1) {
578       auto SWZIter = MI.begin();
579       std::advance(SWZIter, SWZOpIdx);
580       MI.insert(SWZIter, MCOperand::createImm(0));
581     }
582   }
583 
584   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
585     int VAddr0Idx =
586         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
587     int RsrcIdx =
588         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
589     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
590     if (VAddr0Idx >= 0 && NSAArgs > 0) {
591       unsigned NSAWords = (NSAArgs + 3) / 4;
592       if (Bytes.size() < 4 * NSAWords) {
593         Res = MCDisassembler::Fail;
594       } else {
595         for (unsigned i = 0; i < NSAArgs; ++i) {
596           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
597                     decodeOperand_VGPR_32(Bytes[i]));
598         }
599         Bytes = Bytes.slice(4 * NSAWords);
600       }
601     }
602 
603     if (Res)
604       Res = convertMIMGInst(MI);
605   }
606 
607   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
608     Res = convertEXPInst(MI);
609 
610   if (Res && IsSDWA)
611     Res = convertSDWAInst(MI);
612 
613   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
614                                               AMDGPU::OpName::vdst_in);
615   if (VDstIn_Idx != -1) {
616     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
617                            MCOI::OperandConstraint::TIED_TO);
618     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
619          !MI.getOperand(VDstIn_Idx).isReg() ||
620          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
621       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
622         MI.erase(&MI.getOperand(VDstIn_Idx));
623       insertNamedMCOperand(MI,
624         MCOperand::createReg(MI.getOperand(Tied).getReg()),
625         AMDGPU::OpName::vdst_in);
626     }
627   }
628 
629   int ImmLitIdx =
630       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
631   if (Res && ImmLitIdx != -1)
632     Res = convertFMAanyK(MI, ImmLitIdx);
633 
634   // if the opcode was not recognized we'll assume a Size of 4 bytes
635   // (unless there are fewer bytes left)
636   Size = Res ? (MaxInstBytesNum - Bytes.size())
637              : std::min((size_t)4, Bytes_.size());
638   return Res;
639 }
640 
641 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
642   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
643     // The MCInst still has these fields even though they are no longer encoded
644     // in the GFX11 instruction.
645     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
646     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
647   }
648   return MCDisassembler::Success;
649 }
650 
651 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
652   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
653       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
654     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
655       // VOPC - insert clamp
656       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
657   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
658     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
659     if (SDst != -1) {
660       // VOPC - insert VCC register as sdst
661       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
662                            AMDGPU::OpName::sdst);
663     } else {
664       // VOP1/2 - insert omod if present in instruction
665       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
666     }
667   }
668   return MCDisassembler::Success;
669 }
670 
671 // We must check FI == literal to reject not genuine dpp8 insts, and we must
672 // first add optional MI operands to check FI
673 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
674   unsigned Opc = MI.getOpcode();
675   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
676 
677   // Insert dummy unused src modifiers.
678   if (MI.getNumOperands() < DescNumOps &&
679       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
680     insertNamedMCOperand(MI, MCOperand::createImm(0),
681                          AMDGPU::OpName::src0_modifiers);
682 
683   if (MI.getNumOperands() < DescNumOps &&
684       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
685     insertNamedMCOperand(MI, MCOperand::createImm(0),
686                          AMDGPU::OpName::src1_modifiers);
687 
688   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
689 }
690 
691 // Note that before gfx10, the MIMG encoding provided no information about
692 // VADDR size. Consequently, decoded instructions always show address as if it
693 // has 1 dword, which could be not really so.
694 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
695 
696   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
697                                            AMDGPU::OpName::vdst);
698 
699   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
700                                             AMDGPU::OpName::vdata);
701   int VAddr0Idx =
702       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
703   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
704                                             AMDGPU::OpName::dmask);
705 
706   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
707                                             AMDGPU::OpName::tfe);
708   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
709                                             AMDGPU::OpName::d16);
710 
711   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
712   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
713       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
714 
715   assert(VDataIdx != -1);
716   if (BaseOpcode->BVH) {
717     // Add A16 operand for intersect_ray instructions
718     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
719       addOperand(MI, MCOperand::createImm(1));
720     }
721     return MCDisassembler::Success;
722   }
723 
724   bool IsAtomic = (VDstIdx != -1);
725   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
726   bool IsNSA = false;
727   unsigned AddrSize = Info->VAddrDwords;
728 
729   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
730     unsigned DimIdx =
731         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
732     int A16Idx =
733         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
734     const AMDGPU::MIMGDimInfo *Dim =
735         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
736     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
737 
738     AddrSize =
739         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
740 
741     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
742     if (!IsNSA) {
743       if (AddrSize > 8)
744         AddrSize = 16;
745     } else {
746       if (AddrSize > Info->VAddrDwords) {
747         // The NSA encoding does not contain enough operands for the combination
748         // of base opcode / dimension. Should this be an error?
749         return MCDisassembler::Success;
750       }
751     }
752   }
753 
754   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
755   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
756 
757   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
758   if (D16 && AMDGPU::hasPackedD16(STI)) {
759     DstSize = (DstSize + 1) / 2;
760   }
761 
762   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
763     DstSize += 1;
764 
765   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
766     return MCDisassembler::Success;
767 
768   int NewOpcode =
769       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
770   if (NewOpcode == -1)
771     return MCDisassembler::Success;
772 
773   // Widen the register to the correct number of enabled channels.
774   unsigned NewVdata = AMDGPU::NoRegister;
775   if (DstSize != Info->VDataDwords) {
776     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
777 
778     // Get first subregister of VData
779     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
780     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
781     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
782 
783     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
784                                        &MRI.getRegClass(DataRCID));
785     if (NewVdata == AMDGPU::NoRegister) {
786       // It's possible to encode this such that the low register + enabled
787       // components exceeds the register count.
788       return MCDisassembler::Success;
789     }
790   }
791 
792   unsigned NewVAddr0 = AMDGPU::NoRegister;
793   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
794       AddrSize != Info->VAddrDwords) {
795     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
796     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
797     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
798 
799     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
800     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
801                                         &MRI.getRegClass(AddrRCID));
802     if (NewVAddr0 == AMDGPU::NoRegister)
803       return MCDisassembler::Success;
804   }
805 
806   MI.setOpcode(NewOpcode);
807 
808   if (NewVdata != AMDGPU::NoRegister) {
809     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
810 
811     if (IsAtomic) {
812       // Atomic operations have an additional operand (a copy of data)
813       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
814     }
815   }
816 
817   if (NewVAddr0 != AMDGPU::NoRegister) {
818     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
819   } else if (IsNSA) {
820     assert(AddrSize <= Info->VAddrDwords);
821     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
822              MI.begin() + VAddr0Idx + Info->VAddrDwords);
823   }
824 
825   return MCDisassembler::Success;
826 }
827 
828 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
829                                                 int ImmLitIdx) const {
830   assert(HasLiteral && "Should have decoded a literal");
831   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
832   unsigned DescNumOps = Desc.getNumOperands();
833   assert(DescNumOps == MI.getNumOperands());
834   for (unsigned I = 0; I < DescNumOps; ++I) {
835     auto &Op = MI.getOperand(I);
836     auto OpType = Desc.OpInfo[I].OperandType;
837     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
838                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
839     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
840         IsDeferredOp)
841       Op.setImm(Literal);
842   }
843   return MCDisassembler::Success;
844 }
845 
846 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
847   return getContext().getRegisterInfo()->
848     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
849 }
850 
851 inline
852 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
853                                          const Twine& ErrMsg) const {
854   *CommentStream << "Error: " + ErrMsg;
855 
856   // ToDo: add support for error operands to MCInst.h
857   // return MCOperand::createError(V);
858   return MCOperand();
859 }
860 
861 inline
862 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
863   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
864 }
865 
866 inline
867 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
868                                                unsigned Val) const {
869   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
870   if (Val >= RegCl.getNumRegs())
871     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
872                            ": unknown register " + Twine(Val));
873   return createRegOperand(RegCl.getRegister(Val));
874 }
875 
876 inline
877 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
878                                                 unsigned Val) const {
879   // ToDo: SI/CI have 104 SGPRs, VI - 102
880   // Valery: here we accepting as much as we can, let assembler sort it out
881   int shift = 0;
882   switch (SRegClassID) {
883   case AMDGPU::SGPR_32RegClassID:
884   case AMDGPU::TTMP_32RegClassID:
885     break;
886   case AMDGPU::SGPR_64RegClassID:
887   case AMDGPU::TTMP_64RegClassID:
888     shift = 1;
889     break;
890   case AMDGPU::SGPR_128RegClassID:
891   case AMDGPU::TTMP_128RegClassID:
892   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
893   // this bundle?
894   case AMDGPU::SGPR_256RegClassID:
895   case AMDGPU::TTMP_256RegClassID:
896     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
897   // this bundle?
898   case AMDGPU::SGPR_512RegClassID:
899   case AMDGPU::TTMP_512RegClassID:
900     shift = 2;
901     break;
902   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
903   // this bundle?
904   default:
905     llvm_unreachable("unhandled register class");
906   }
907 
908   if (Val % (1 << shift)) {
909     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
910                    << ": scalar reg isn't aligned " << Val;
911   }
912 
913   return createRegOperand(SRegClassID, Val >> shift);
914 }
915 
916 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
917   return decodeSrcOp(OPW32, Val);
918 }
919 
920 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
921   return decodeSrcOp(OPW64, Val);
922 }
923 
924 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
925   return decodeSrcOp(OPW128, Val);
926 }
927 
928 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
929   return decodeSrcOp(OPW16, Val);
930 }
931 
932 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
933   return decodeSrcOp(OPWV216, Val);
934 }
935 
936 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
937   return decodeSrcOp(OPWV232, Val);
938 }
939 
940 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
941   // Some instructions have operand restrictions beyond what the encoding
942   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
943   // high bit.
944   Val &= 255;
945 
946   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
947 }
948 
949 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
950   return decodeSrcOp(OPW32, Val);
951 }
952 
953 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
954   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
955 }
956 
957 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
958   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
959 }
960 
961 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
962   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
963 }
964 
965 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
966   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
967 }
968 
969 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
970   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
971 }
972 
973 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
974   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
975 }
976 
977 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
978   return decodeSrcOp(OPW32, Val);
979 }
980 
981 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
982   return decodeSrcOp(OPW64, Val);
983 }
984 
985 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
986   return decodeSrcOp(OPW128, Val);
987 }
988 
989 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
990   using namespace AMDGPU::EncValues;
991   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
992   return decodeSrcOp(OPW128, Val | IS_VGPR);
993 }
994 
995 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
996   using namespace AMDGPU::EncValues;
997   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
998   return decodeSrcOp(OPW512, Val | IS_VGPR);
999 }
1000 
1001 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1002   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1003 }
1004 
1005 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1006   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1007 }
1008 
1009 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1010   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1011 }
1012 
1013 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1014   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1015 }
1016 
1017 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1018   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1019 }
1020 
1021 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1022   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1023 }
1024 
1025 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1026   // table-gen generated disassembler doesn't care about operand types
1027   // leaving only registry class so SSrc_32 operand turns into SReg_32
1028   // and therefore we accept immediates and literals here as well
1029   return decodeSrcOp(OPW32, Val);
1030 }
1031 
1032 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1033   unsigned Val) const {
1034   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1035   return decodeOperand_SReg_32(Val);
1036 }
1037 
1038 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1039   unsigned Val) const {
1040   // SReg_32_XM0 is SReg_32 without EXEC_HI
1041   return decodeOperand_SReg_32(Val);
1042 }
1043 
1044 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1045   // table-gen generated disassembler doesn't care about operand types
1046   // leaving only registry class so SSrc_32 operand turns into SReg_32
1047   // and therefore we accept immediates and literals here as well
1048   return decodeSrcOp(OPW32, Val);
1049 }
1050 
1051 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1052   return decodeSrcOp(OPW64, Val);
1053 }
1054 
1055 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1056   return decodeSrcOp(OPW64, Val);
1057 }
1058 
1059 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1060   return decodeSrcOp(OPW128, Val);
1061 }
1062 
1063 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1064   return decodeDstOp(OPW256, Val);
1065 }
1066 
1067 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1068   return decodeDstOp(OPW512, Val);
1069 }
1070 
1071 // Decode Literals for insts which always have a literal in the encoding
1072 MCOperand
1073 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1074   if (HasLiteral) {
1075     if (Literal != Val)
1076       return errOperand(Val, "More than one unique literal is illegal");
1077   }
1078   HasLiteral = true;
1079   Literal = Val;
1080   return MCOperand::createImm(Literal);
1081 }
1082 
1083 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1084   // For now all literal constants are supposed to be unsigned integer
1085   // ToDo: deal with signed/unsigned 64-bit integer constants
1086   // ToDo: deal with float/double constants
1087   if (!HasLiteral) {
1088     if (Bytes.size() < 4) {
1089       return errOperand(0, "cannot read literal, inst bytes left " +
1090                         Twine(Bytes.size()));
1091     }
1092     HasLiteral = true;
1093     Literal = eatBytes<uint32_t>(Bytes);
1094   }
1095   return MCOperand::createImm(Literal);
1096 }
1097 
1098 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1099   using namespace AMDGPU::EncValues;
1100 
1101   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1102   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1103     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1104     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1105       // Cast prevents negative overflow.
1106 }
1107 
1108 static int64_t getInlineImmVal32(unsigned Imm) {
1109   switch (Imm) {
1110   case 240:
1111     return FloatToBits(0.5f);
1112   case 241:
1113     return FloatToBits(-0.5f);
1114   case 242:
1115     return FloatToBits(1.0f);
1116   case 243:
1117     return FloatToBits(-1.0f);
1118   case 244:
1119     return FloatToBits(2.0f);
1120   case 245:
1121     return FloatToBits(-2.0f);
1122   case 246:
1123     return FloatToBits(4.0f);
1124   case 247:
1125     return FloatToBits(-4.0f);
1126   case 248: // 1 / (2 * PI)
1127     return 0x3e22f983;
1128   default:
1129     llvm_unreachable("invalid fp inline imm");
1130   }
1131 }
1132 
1133 static int64_t getInlineImmVal64(unsigned Imm) {
1134   switch (Imm) {
1135   case 240:
1136     return DoubleToBits(0.5);
1137   case 241:
1138     return DoubleToBits(-0.5);
1139   case 242:
1140     return DoubleToBits(1.0);
1141   case 243:
1142     return DoubleToBits(-1.0);
1143   case 244:
1144     return DoubleToBits(2.0);
1145   case 245:
1146     return DoubleToBits(-2.0);
1147   case 246:
1148     return DoubleToBits(4.0);
1149   case 247:
1150     return DoubleToBits(-4.0);
1151   case 248: // 1 / (2 * PI)
1152     return 0x3fc45f306dc9c882;
1153   default:
1154     llvm_unreachable("invalid fp inline imm");
1155   }
1156 }
1157 
1158 static int64_t getInlineImmVal16(unsigned Imm) {
1159   switch (Imm) {
1160   case 240:
1161     return 0x3800;
1162   case 241:
1163     return 0xB800;
1164   case 242:
1165     return 0x3C00;
1166   case 243:
1167     return 0xBC00;
1168   case 244:
1169     return 0x4000;
1170   case 245:
1171     return 0xC000;
1172   case 246:
1173     return 0x4400;
1174   case 247:
1175     return 0xC400;
1176   case 248: // 1 / (2 * PI)
1177     return 0x3118;
1178   default:
1179     llvm_unreachable("invalid fp inline imm");
1180   }
1181 }
1182 
1183 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1184   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1185       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1186 
1187   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1188   switch (Width) {
1189   case OPW32:
1190   case OPW128: // splat constants
1191   case OPW512:
1192   case OPW1024:
1193   case OPWV232:
1194     return MCOperand::createImm(getInlineImmVal32(Imm));
1195   case OPW64:
1196   case OPW256:
1197     return MCOperand::createImm(getInlineImmVal64(Imm));
1198   case OPW16:
1199   case OPWV216:
1200     return MCOperand::createImm(getInlineImmVal16(Imm));
1201   default:
1202     llvm_unreachable("implement me");
1203   }
1204 }
1205 
1206 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1207   using namespace AMDGPU;
1208 
1209   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1210   switch (Width) {
1211   default: // fall
1212   case OPW32:
1213   case OPW16:
1214   case OPWV216:
1215     return VGPR_32RegClassID;
1216   case OPW64:
1217   case OPWV232: return VReg_64RegClassID;
1218   case OPW96: return VReg_96RegClassID;
1219   case OPW128: return VReg_128RegClassID;
1220   case OPW160: return VReg_160RegClassID;
1221   case OPW256: return VReg_256RegClassID;
1222   case OPW512: return VReg_512RegClassID;
1223   case OPW1024: return VReg_1024RegClassID;
1224   }
1225 }
1226 
1227 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1228   using namespace AMDGPU;
1229 
1230   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1231   switch (Width) {
1232   default: // fall
1233   case OPW32:
1234   case OPW16:
1235   case OPWV216:
1236     return AGPR_32RegClassID;
1237   case OPW64:
1238   case OPWV232: return AReg_64RegClassID;
1239   case OPW96: return AReg_96RegClassID;
1240   case OPW128: return AReg_128RegClassID;
1241   case OPW160: return AReg_160RegClassID;
1242   case OPW256: return AReg_256RegClassID;
1243   case OPW512: return AReg_512RegClassID;
1244   case OPW1024: return AReg_1024RegClassID;
1245   }
1246 }
1247 
1248 
1249 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1250   using namespace AMDGPU;
1251 
1252   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1253   switch (Width) {
1254   default: // fall
1255   case OPW32:
1256   case OPW16:
1257   case OPWV216:
1258     return SGPR_32RegClassID;
1259   case OPW64:
1260   case OPWV232: return SGPR_64RegClassID;
1261   case OPW96: return SGPR_96RegClassID;
1262   case OPW128: return SGPR_128RegClassID;
1263   case OPW160: return SGPR_160RegClassID;
1264   case OPW256: return SGPR_256RegClassID;
1265   case OPW512: return SGPR_512RegClassID;
1266   }
1267 }
1268 
1269 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1270   using namespace AMDGPU;
1271 
1272   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1273   switch (Width) {
1274   default: // fall
1275   case OPW32:
1276   case OPW16:
1277   case OPWV216:
1278     return TTMP_32RegClassID;
1279   case OPW64:
1280   case OPWV232: return TTMP_64RegClassID;
1281   case OPW128: return TTMP_128RegClassID;
1282   case OPW256: return TTMP_256RegClassID;
1283   case OPW512: return TTMP_512RegClassID;
1284   }
1285 }
1286 
1287 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1288   using namespace AMDGPU::EncValues;
1289 
1290   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1291   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1292 
1293   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1294 }
1295 
1296 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1297                                           bool MandatoryLiteral) const {
1298   using namespace AMDGPU::EncValues;
1299 
1300   assert(Val < 1024); // enum10
1301 
1302   bool IsAGPR = Val & 512;
1303   Val &= 511;
1304 
1305   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1306     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1307                                    : getVgprClassId(Width), Val - VGPR_MIN);
1308   }
1309   if (Val <= SGPR_MAX) {
1310     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1311     static_assert(SGPR_MIN == 0, "");
1312     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1313   }
1314 
1315   int TTmpIdx = getTTmpIdx(Val);
1316   if (TTmpIdx >= 0) {
1317     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1318   }
1319 
1320   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1321     return decodeIntImmed(Val);
1322 
1323   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1324     return decodeFPImmed(Width, Val);
1325 
1326   if (Val == LITERAL_CONST) {
1327     if (MandatoryLiteral)
1328       // Keep a sentinel value for deferred setting
1329       return MCOperand::createImm(LITERAL_CONST);
1330     else
1331       return decodeLiteralConstant();
1332   }
1333 
1334   switch (Width) {
1335   case OPW32:
1336   case OPW16:
1337   case OPWV216:
1338     return decodeSpecialReg32(Val);
1339   case OPW64:
1340   case OPWV232:
1341     return decodeSpecialReg64(Val);
1342   default:
1343     llvm_unreachable("unexpected immediate type");
1344   }
1345 }
1346 
1347 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1348   using namespace AMDGPU::EncValues;
1349 
1350   assert(Val < 128);
1351   assert(Width == OPW256 || Width == OPW512);
1352 
1353   if (Val <= SGPR_MAX) {
1354     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1355     static_assert(SGPR_MIN == 0, "");
1356     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1357   }
1358 
1359   int TTmpIdx = getTTmpIdx(Val);
1360   if (TTmpIdx >= 0) {
1361     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1362   }
1363 
1364   llvm_unreachable("unknown dst register");
1365 }
1366 
1367 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1368   using namespace AMDGPU;
1369 
1370   switch (Val) {
1371   case 102: return createRegOperand(FLAT_SCR_LO);
1372   case 103: return createRegOperand(FLAT_SCR_HI);
1373   case 104: return createRegOperand(XNACK_MASK_LO);
1374   case 105: return createRegOperand(XNACK_MASK_HI);
1375   case 106: return createRegOperand(VCC_LO);
1376   case 107: return createRegOperand(VCC_HI);
1377   case 108: return createRegOperand(TBA_LO);
1378   case 109: return createRegOperand(TBA_HI);
1379   case 110: return createRegOperand(TMA_LO);
1380   case 111: return createRegOperand(TMA_HI);
1381   case 124:
1382     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1383   case 125:
1384     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1385   case 126: return createRegOperand(EXEC_LO);
1386   case 127: return createRegOperand(EXEC_HI);
1387   case 235: return createRegOperand(SRC_SHARED_BASE);
1388   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1389   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1390   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1391   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1392   case 251: return createRegOperand(SRC_VCCZ);
1393   case 252: return createRegOperand(SRC_EXECZ);
1394   case 253: return createRegOperand(SRC_SCC);
1395   case 254: return createRegOperand(LDS_DIRECT);
1396   default: break;
1397   }
1398   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1399 }
1400 
1401 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1402   using namespace AMDGPU;
1403 
1404   switch (Val) {
1405   case 102: return createRegOperand(FLAT_SCR);
1406   case 104: return createRegOperand(XNACK_MASK);
1407   case 106: return createRegOperand(VCC);
1408   case 108: return createRegOperand(TBA);
1409   case 110: return createRegOperand(TMA);
1410   case 124:
1411     if (isGFX11Plus())
1412       return createRegOperand(SGPR_NULL);
1413     break;
1414   case 125:
1415     if (!isGFX11Plus())
1416       return createRegOperand(SGPR_NULL);
1417     break;
1418   case 126: return createRegOperand(EXEC);
1419   case 235: return createRegOperand(SRC_SHARED_BASE);
1420   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1421   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1422   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1423   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1424   case 251: return createRegOperand(SRC_VCCZ);
1425   case 252: return createRegOperand(SRC_EXECZ);
1426   case 253: return createRegOperand(SRC_SCC);
1427   default: break;
1428   }
1429   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1430 }
1431 
1432 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1433                                             const unsigned Val) const {
1434   using namespace AMDGPU::SDWA;
1435   using namespace AMDGPU::EncValues;
1436 
1437   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1438       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1439     // XXX: cast to int is needed to avoid stupid warning:
1440     // compare with unsigned is always true
1441     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1442         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1443       return createRegOperand(getVgprClassId(Width),
1444                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1445     }
1446     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1447         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1448                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1449       return createSRegOperand(getSgprClassId(Width),
1450                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1451     }
1452     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1453         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1454       return createSRegOperand(getTtmpClassId(Width),
1455                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1456     }
1457 
1458     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1459 
1460     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1461       return decodeIntImmed(SVal);
1462 
1463     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1464       return decodeFPImmed(Width, SVal);
1465 
1466     return decodeSpecialReg32(SVal);
1467   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1468     return createRegOperand(getVgprClassId(Width), Val);
1469   }
1470   llvm_unreachable("unsupported target");
1471 }
1472 
1473 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1474   return decodeSDWASrc(OPW16, Val);
1475 }
1476 
1477 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1478   return decodeSDWASrc(OPW32, Val);
1479 }
1480 
1481 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1482   using namespace AMDGPU::SDWA;
1483 
1484   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1485           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1486          "SDWAVopcDst should be present only on GFX9+");
1487 
1488   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1489 
1490   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1491     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1492 
1493     int TTmpIdx = getTTmpIdx(Val);
1494     if (TTmpIdx >= 0) {
1495       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1496       return createSRegOperand(TTmpClsId, TTmpIdx);
1497     } else if (Val > SGPR_MAX) {
1498       return IsWave64 ? decodeSpecialReg64(Val)
1499                       : decodeSpecialReg32(Val);
1500     } else {
1501       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1502     }
1503   } else {
1504     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1505   }
1506 }
1507 
1508 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1509   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1510     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1511 }
1512 
1513 bool AMDGPUDisassembler::isVI() const {
1514   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1515 }
1516 
1517 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1518 
1519 bool AMDGPUDisassembler::isGFX90A() const {
1520   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1521 }
1522 
1523 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1524 
1525 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1526 
1527 bool AMDGPUDisassembler::isGFX10Plus() const {
1528   return AMDGPU::isGFX10Plus(STI);
1529 }
1530 
1531 bool AMDGPUDisassembler::isGFX11() const {
1532   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1533 }
1534 
1535 bool AMDGPUDisassembler::isGFX11Plus() const {
1536   return AMDGPU::isGFX11Plus(STI);
1537 }
1538 
1539 
1540 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1541   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1542 }
1543 
1544 //===----------------------------------------------------------------------===//
1545 // AMDGPU specific symbol handling
1546 //===----------------------------------------------------------------------===//
1547 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1548   do {                                                                         \
1549     KdStream << Indent << DIRECTIVE " "                                        \
1550              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1551   } while (0)
1552 
1553 // NOLINTNEXTLINE(readability-identifier-naming)
1554 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1555     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1556   using namespace amdhsa;
1557   StringRef Indent = "\t";
1558 
1559   // We cannot accurately backward compute #VGPRs used from
1560   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1561   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1562   // simply calculate the inverse of what the assembler does.
1563 
1564   uint32_t GranulatedWorkitemVGPRCount =
1565       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1566       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1567 
1568   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1569                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1570 
1571   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1572 
1573   // We cannot backward compute values used to calculate
1574   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1575   // directives can't be computed:
1576   // .amdhsa_reserve_vcc
1577   // .amdhsa_reserve_flat_scratch
1578   // .amdhsa_reserve_xnack_mask
1579   // They take their respective default values if not specified in the assembly.
1580   //
1581   // GRANULATED_WAVEFRONT_SGPR_COUNT
1582   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1583   //
1584   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1585   // are set to 0. So while disassembling we consider that:
1586   //
1587   // GRANULATED_WAVEFRONT_SGPR_COUNT
1588   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1589   //
1590   // The disassembler cannot recover the original values of those 3 directives.
1591 
1592   uint32_t GranulatedWavefrontSGPRCount =
1593       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1594       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1595 
1596   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1597     return MCDisassembler::Fail;
1598 
1599   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1600                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1601 
1602   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1603   if (!hasArchitectedFlatScratch())
1604     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1605   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1606   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1607 
1608   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1609     return MCDisassembler::Fail;
1610 
1611   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1612                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1613   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1614                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1615   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1616                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1617   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1618                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1619 
1620   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1621     return MCDisassembler::Fail;
1622 
1623   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1624 
1625   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1626     return MCDisassembler::Fail;
1627 
1628   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1629 
1630   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1631     return MCDisassembler::Fail;
1632 
1633   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1634     return MCDisassembler::Fail;
1635 
1636   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1637 
1638   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1639     return MCDisassembler::Fail;
1640 
1641   if (isGFX10Plus()) {
1642     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1643                     COMPUTE_PGM_RSRC1_WGP_MODE);
1644     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1645     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1646   }
1647   return MCDisassembler::Success;
1648 }
1649 
1650 // NOLINTNEXTLINE(readability-identifier-naming)
1651 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1652     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1653   using namespace amdhsa;
1654   StringRef Indent = "\t";
1655   if (hasArchitectedFlatScratch())
1656     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1657                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1658   else
1659     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1660                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1661   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1662                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1663   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1664                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1665   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1666                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1667   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1668                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1669   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1670                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1671 
1672   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1673     return MCDisassembler::Fail;
1674 
1675   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1676     return MCDisassembler::Fail;
1677 
1678   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1679     return MCDisassembler::Fail;
1680 
1681   PRINT_DIRECTIVE(
1682       ".amdhsa_exception_fp_ieee_invalid_op",
1683       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1684   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1685                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1686   PRINT_DIRECTIVE(
1687       ".amdhsa_exception_fp_ieee_div_zero",
1688       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1689   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1690                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1691   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1692                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1693   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1694                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1695   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1696                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1697 
1698   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1699     return MCDisassembler::Fail;
1700 
1701   return MCDisassembler::Success;
1702 }
1703 
1704 #undef PRINT_DIRECTIVE
1705 
1706 MCDisassembler::DecodeStatus
1707 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1708     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1709     raw_string_ostream &KdStream) const {
1710 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1711   do {                                                                         \
1712     KdStream << Indent << DIRECTIVE " "                                        \
1713              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1714   } while (0)
1715 
1716   uint16_t TwoByteBuffer = 0;
1717   uint32_t FourByteBuffer = 0;
1718 
1719   StringRef ReservedBytes;
1720   StringRef Indent = "\t";
1721 
1722   assert(Bytes.size() == 64);
1723   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1724 
1725   switch (Cursor.tell()) {
1726   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1727     FourByteBuffer = DE.getU32(Cursor);
1728     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1729              << '\n';
1730     return MCDisassembler::Success;
1731 
1732   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1733     FourByteBuffer = DE.getU32(Cursor);
1734     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1735              << FourByteBuffer << '\n';
1736     return MCDisassembler::Success;
1737 
1738   case amdhsa::KERNARG_SIZE_OFFSET:
1739     FourByteBuffer = DE.getU32(Cursor);
1740     KdStream << Indent << ".amdhsa_kernarg_size "
1741              << FourByteBuffer << '\n';
1742     return MCDisassembler::Success;
1743 
1744   case amdhsa::RESERVED0_OFFSET:
1745     // 4 reserved bytes, must be 0.
1746     ReservedBytes = DE.getBytes(Cursor, 4);
1747     for (int I = 0; I < 4; ++I) {
1748       if (ReservedBytes[I] != 0) {
1749         return MCDisassembler::Fail;
1750       }
1751     }
1752     return MCDisassembler::Success;
1753 
1754   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1755     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1756     // So far no directive controls this for Code Object V3, so simply skip for
1757     // disassembly.
1758     DE.skip(Cursor, 8);
1759     return MCDisassembler::Success;
1760 
1761   case amdhsa::RESERVED1_OFFSET:
1762     // 20 reserved bytes, must be 0.
1763     ReservedBytes = DE.getBytes(Cursor, 20);
1764     for (int I = 0; I < 20; ++I) {
1765       if (ReservedBytes[I] != 0) {
1766         return MCDisassembler::Fail;
1767       }
1768     }
1769     return MCDisassembler::Success;
1770 
1771   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1772     // COMPUTE_PGM_RSRC3
1773     //  - Only set for GFX10, GFX6-9 have this to be 0.
1774     //  - Currently no directives directly control this.
1775     FourByteBuffer = DE.getU32(Cursor);
1776     if (!isGFX10Plus() && FourByteBuffer) {
1777       return MCDisassembler::Fail;
1778     }
1779     return MCDisassembler::Success;
1780 
1781   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1782     FourByteBuffer = DE.getU32(Cursor);
1783     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1784         MCDisassembler::Fail) {
1785       return MCDisassembler::Fail;
1786     }
1787     return MCDisassembler::Success;
1788 
1789   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1790     FourByteBuffer = DE.getU32(Cursor);
1791     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1792         MCDisassembler::Fail) {
1793       return MCDisassembler::Fail;
1794     }
1795     return MCDisassembler::Success;
1796 
1797   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1798     using namespace amdhsa;
1799     TwoByteBuffer = DE.getU16(Cursor);
1800 
1801     if (!hasArchitectedFlatScratch())
1802       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1803                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1804     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1805                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1806     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1807                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1808     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1809                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1810     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1811                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1812     if (!hasArchitectedFlatScratch())
1813       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1814                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1815     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1816                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1817 
1818     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1819       return MCDisassembler::Fail;
1820 
1821     // Reserved for GFX9
1822     if (isGFX9() &&
1823         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1824       return MCDisassembler::Fail;
1825     } else if (isGFX10Plus()) {
1826       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1827                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1828     }
1829 
1830     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1831       return MCDisassembler::Fail;
1832 
1833     return MCDisassembler::Success;
1834 
1835   case amdhsa::RESERVED2_OFFSET:
1836     // 6 bytes from here are reserved, must be 0.
1837     ReservedBytes = DE.getBytes(Cursor, 6);
1838     for (int I = 0; I < 6; ++I) {
1839       if (ReservedBytes[I] != 0)
1840         return MCDisassembler::Fail;
1841     }
1842     return MCDisassembler::Success;
1843 
1844   default:
1845     llvm_unreachable("Unhandled index. Case statements cover everything.");
1846     return MCDisassembler::Fail;
1847   }
1848 #undef PRINT_DIRECTIVE
1849 }
1850 
1851 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1852     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1853   // CP microcode requires the kernel descriptor to be 64 aligned.
1854   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1855     return MCDisassembler::Fail;
1856 
1857   std::string Kd;
1858   raw_string_ostream KdStream(Kd);
1859   KdStream << ".amdhsa_kernel " << KdName << '\n';
1860 
1861   DataExtractor::Cursor C(0);
1862   while (C && C.tell() < Bytes.size()) {
1863     MCDisassembler::DecodeStatus Status =
1864         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1865 
1866     cantFail(C.takeError());
1867 
1868     if (Status == MCDisassembler::Fail)
1869       return MCDisassembler::Fail;
1870   }
1871   KdStream << ".end_amdhsa_kernel\n";
1872   outs() << KdStream.str();
1873   return MCDisassembler::Success;
1874 }
1875 
1876 Optional<MCDisassembler::DecodeStatus>
1877 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1878                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1879                                   raw_ostream &CStream) const {
1880   // Right now only kernel descriptor needs to be handled.
1881   // We ignore all other symbols for target specific handling.
1882   // TODO:
1883   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1884   // Object V2 and V3 when symbols are marked protected.
1885 
1886   // amd_kernel_code_t for Code Object V2.
1887   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1888     Size = 256;
1889     return MCDisassembler::Fail;
1890   }
1891 
1892   // Code Object V3 kernel descriptors.
1893   StringRef Name = Symbol.Name;
1894   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1895     Size = 64; // Size = 64 regardless of success or failure.
1896     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1897   }
1898   return None;
1899 }
1900 
1901 //===----------------------------------------------------------------------===//
1902 // AMDGPUSymbolizer
1903 //===----------------------------------------------------------------------===//
1904 
1905 // Try to find symbol name for specified label
1906 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1907                                 raw_ostream &/*cStream*/, int64_t Value,
1908                                 uint64_t /*Address*/, bool IsBranch,
1909                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1910 
1911   if (!IsBranch) {
1912     return false;
1913   }
1914 
1915   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1916   if (!Symbols)
1917     return false;
1918 
1919   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1920     return Val.Addr == static_cast<uint64_t>(Value) &&
1921            Val.Type == ELF::STT_NOTYPE;
1922   });
1923   if (Result != Symbols->end()) {
1924     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1925     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1926     Inst.addOperand(MCOperand::createExpr(Add));
1927     return true;
1928   }
1929   // Add to list of referenced addresses, so caller can synthesize a label.
1930   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1931   return false;
1932 }
1933 
1934 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1935                                                        int64_t Value,
1936                                                        uint64_t Address) {
1937   llvm_unreachable("unimplemented");
1938 }
1939 
1940 //===----------------------------------------------------------------------===//
1941 // Initialization
1942 //===----------------------------------------------------------------------===//
1943 
1944 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1945                               LLVMOpInfoCallback /*GetOpInfo*/,
1946                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1947                               void *DisInfo,
1948                               MCContext *Ctx,
1949                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1950   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1951 }
1952 
1953 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1954                                                 const MCSubtargetInfo &STI,
1955                                                 MCContext &Ctx) {
1956   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1957 }
1958 
1959 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1960   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1961                                          createAMDGPUDisassembler);
1962   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1963                                        createAMDGPUSymbolizer);
1964 }
1965