xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 19f4cec676e99e7cc088f4b4e30976d2683e320d)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
95     Offset = SignExtend64<24>(Imm);
96   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else { // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
119 // number of register. Used by VGPR only and AGPR only operands.
120 #define DECODE_OPERAND_REG_8(RegClass)                                         \
121   static DecodeStatus Decode##RegClass##RegisterClass(                         \
122       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
123       const MCDisassembler *Decoder) {                                         \
124     assert(Imm < (1 << 8) && "8-bit encoding");                                \
125     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
126     return addOperand(                                                         \
127         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
128   }
129 
130 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
131                      ImmWidth)                                                 \
132   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
133                            const MCDisassembler *Decoder) {                    \
134     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
135     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
136     return addOperand(Inst,                                                    \
137                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
138                                         MandatoryLiteral, ImmWidth));          \
139   }
140 
141 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
142 // get register class. Used by SGPR only operands.
143 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
144   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
145 
146 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
147 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
148 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
149 // Used by AV_ register classes (AGPR or VGPR only register operands).
150 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
151   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
152                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
153 
154 // Decoder for Src(9-bit encoding) registers only.
155 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
156   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
157 
158 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
159 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
160 // only.
161 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
162   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
163 
164 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
165 // Imm{9} is acc, registers only.
166 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
167   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
168 
169 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
170 // register from RegClass or immediate. Registers that don't belong to RegClass
171 // will be decoded and InstPrinter will report warning. Immediate will be
172 // decoded into constant of size ImmWidth, should match width of immediate used
173 // by OperandType (important for floating point types).
174 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
175   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
176                false, ImmWidth)
177 
178 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
179 // and decode using 'enum10' from decodeSrcOp.
180 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
181   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
182                Imm | 512, false, ImmWidth)
183 
184 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
185   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
186                OpWidth, Imm, true, ImmWidth)
187 
188 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
189 // when RegisterClass is used as an operand. Most often used for destination
190 // operands.
191 
192 DECODE_OPERAND_REG_8(VGPR_32)
193 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
194 DECODE_OPERAND_REG_8(VReg_64)
195 DECODE_OPERAND_REG_8(VReg_96)
196 DECODE_OPERAND_REG_8(VReg_128)
197 DECODE_OPERAND_REG_8(VReg_256)
198 DECODE_OPERAND_REG_8(VReg_288)
199 DECODE_OPERAND_REG_8(VReg_352)
200 DECODE_OPERAND_REG_8(VReg_384)
201 DECODE_OPERAND_REG_8(VReg_512)
202 DECODE_OPERAND_REG_8(VReg_1024)
203 
204 DECODE_OPERAND_REG_7(SReg_32, OPW32)
205 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
206 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
207 DECODE_OPERAND_REG_7(SReg_64, OPW64)
208 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
209 DECODE_OPERAND_REG_7(SReg_128, OPW128)
210 DECODE_OPERAND_REG_7(SReg_256, OPW256)
211 DECODE_OPERAND_REG_7(SReg_512, OPW512)
212 
213 DECODE_OPERAND_REG_8(AGPR_32)
214 DECODE_OPERAND_REG_8(AReg_64)
215 DECODE_OPERAND_REG_8(AReg_128)
216 DECODE_OPERAND_REG_8(AReg_256)
217 DECODE_OPERAND_REG_8(AReg_512)
218 DECODE_OPERAND_REG_8(AReg_1024)
219 
220 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
221 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
222 
223 // Decoders for register only source RegisterOperands that use use 9-bit Src
224 // encoding: 'decodeOperand_<RegClass>'.
225 
226 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
227 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
228 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
229 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
230 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
231 
232 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
233 
234 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
235 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
236 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
237 
238 // Decoders for register or immediate RegisterOperands that use 9-bit Src
239 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
240 
241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
243 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
244 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
254 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
255 
256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
259 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
260 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
261 
262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
264 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
265 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
266 
267 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
268                                                uint64_t /*Addr*/,
269                                                const MCDisassembler *Decoder) {
270   assert(isUInt<10>(Imm) && "10-bit encoding expected");
271   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
272 
273   bool IsHi = Imm & (1 << 9);
274   unsigned RegIdx = Imm & 0xff;
275   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
276   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
277 }
278 
279 static DecodeStatus
280 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
281                                  const MCDisassembler *Decoder) {
282   assert(isUInt<8>(Imm) && "8-bit encoding expected");
283 
284   bool IsHi = Imm & (1 << 7);
285   unsigned RegIdx = Imm & 0x7f;
286   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
288 }
289 
290 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
291                                                 uint64_t /*Addr*/,
292                                                 const MCDisassembler *Decoder) {
293   assert(isUInt<9>(Imm) && "9-bit encoding expected");
294 
295   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
296   bool IsVGPR = Imm & (1 << 8);
297   if (IsVGPR) {
298     bool IsHi = Imm & (1 << 7);
299     unsigned RegIdx = Imm & 0x7f;
300     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
301   }
302   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
303                                                    Imm & 0xFF, false, 16));
304 }
305 
306 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
307                                           uint64_t /*Addr*/,
308                                           const MCDisassembler *Decoder) {
309   assert(isUInt<10>(Imm) && "10-bit encoding expected");
310 
311   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
312   bool IsVGPR = Imm & (1 << 8);
313   if (IsVGPR) {
314     bool IsHi = Imm & (1 << 9);
315     unsigned RegIdx = Imm & 0xff;
316     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
317   }
318   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
319                                                    Imm & 0xFF, false, 16));
320 }
321 
322 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
323                                          uint64_t Addr,
324                                          const MCDisassembler *Decoder) {
325   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
326   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
327 }
328 
329 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
330                                           uint64_t Addr, const void *Decoder) {
331   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
332   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
333 }
334 
335 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
336                           const MCRegisterInfo *MRI) {
337   if (OpIdx < 0)
338     return false;
339 
340   const MCOperand &Op = Inst.getOperand(OpIdx);
341   if (!Op.isReg())
342     return false;
343 
344   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
345   auto Reg = Sub ? Sub : Op.getReg();
346   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
347 }
348 
349 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
350                                              AMDGPUDisassembler::OpWidthTy Opw,
351                                              const MCDisassembler *Decoder) {
352   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
353   if (!DAsm->isGFX90A()) {
354     Imm &= 511;
355   } else {
356     // If atomic has both vdata and vdst their register classes are tied.
357     // The bit is decoded along with the vdst, first operand. We need to
358     // change register class to AGPR if vdst was AGPR.
359     // If a DS instruction has both data0 and data1 their register classes
360     // are also tied.
361     unsigned Opc = Inst.getOpcode();
362     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
363     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
364                                                         : AMDGPU::OpName::vdata;
365     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
366     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
367     if ((int)Inst.getNumOperands() == DataIdx) {
368       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
369       if (IsAGPROperand(Inst, DstIdx, MRI))
370         Imm |= 512;
371     }
372 
373     if (TSFlags & SIInstrFlags::DS) {
374       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
375       if ((int)Inst.getNumOperands() == Data2Idx &&
376           IsAGPROperand(Inst, DataIdx, MRI))
377         Imm |= 512;
378     }
379   }
380   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
381 }
382 
383 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
384                                            uint64_t Addr,
385                                            const MCDisassembler *Decoder) {
386   assert(Imm < (1 << 9) && "9-bit encoding");
387   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
388   return addOperand(
389       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
390 }
391 
392 static DecodeStatus
393 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
394                              const MCDisassembler *Decoder) {
395   return decodeOperand_AVLdSt_Any(Inst, Imm,
396                                   AMDGPUDisassembler::OPW32, Decoder);
397 }
398 
399 static DecodeStatus
400 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
401                              const MCDisassembler *Decoder) {
402   return decodeOperand_AVLdSt_Any(Inst, Imm,
403                                   AMDGPUDisassembler::OPW64, Decoder);
404 }
405 
406 static DecodeStatus
407 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
408                              const MCDisassembler *Decoder) {
409   return decodeOperand_AVLdSt_Any(Inst, Imm,
410                                   AMDGPUDisassembler::OPW96, Decoder);
411 }
412 
413 static DecodeStatus
414 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
415                               const MCDisassembler *Decoder) {
416   return decodeOperand_AVLdSt_Any(Inst, Imm,
417                                   AMDGPUDisassembler::OPW128, Decoder);
418 }
419 
420 static DecodeStatus
421 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
422                               const MCDisassembler *Decoder) {
423   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
424                                   Decoder);
425 }
426 
427 #define DECODE_SDWA(DecName) \
428 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
429 
430 DECODE_SDWA(Src32)
431 DECODE_SDWA(Src16)
432 DECODE_SDWA(VopcDst)
433 
434 #include "AMDGPUGenDisassemblerTables.inc"
435 
436 //===----------------------------------------------------------------------===//
437 //
438 //===----------------------------------------------------------------------===//
439 
440 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
441   assert(Bytes.size() >= sizeof(T));
442   const auto Res =
443       support::endian::read<T, llvm::endianness::little>(Bytes.data());
444   Bytes = Bytes.slice(sizeof(T));
445   return Res;
446 }
447 
448 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
449   assert(Bytes.size() >= 12);
450   uint64_t Lo =
451       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
452   Bytes = Bytes.slice(8);
453   uint64_t Hi =
454       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
455   Bytes = Bytes.slice(4);
456   return DecoderUInt128(Lo, Hi);
457 }
458 
459 // The disassembler is greedy, so we need to check FI operand value to
460 // not parse a dpp if the correct literal is not set. For dpp16 the
461 // autogenerated decoder checks the dpp literal
462 static bool isValidDPP8(const MCInst &MI) {
463   using namespace llvm::AMDGPU::DPP;
464   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
465   assert(FiIdx != -1);
466   if ((unsigned)FiIdx >= MI.getNumOperands())
467     return false;
468   unsigned Fi = MI.getOperand(FiIdx).getImm();
469   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
470 }
471 
472 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
473                                                 ArrayRef<uint8_t> Bytes_,
474                                                 uint64_t Address,
475                                                 raw_ostream &CS) const {
476   bool IsSDWA = false;
477 
478   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
479   Bytes = Bytes_.slice(0, MaxInstBytesNum);
480 
481   DecodeStatus Res = MCDisassembler::Fail;
482   do {
483     // ToDo: better to switch encoding length using some bit predicate
484     // but it is unknown yet, so try all we can
485 
486     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
487     // encodings
488     if (isGFX11Plus() && Bytes.size() >= 12 ) {
489       DecoderUInt128 DecW = eat12Bytes(Bytes);
490       Res =
491           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
492                         MI, DecW, Address, CS);
493       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
494         break;
495       MI = MCInst(); // clear
496       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
497                           MI, DecW, Address, CS);
498       if (Res) {
499         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
500           convertVOP3PDPPInst(MI);
501         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
502           convertVOPCDPPInst(MI); // Special VOP3 case
503         else {
504           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
505           convertVOP3DPPInst(MI); // Regular VOP3 case
506         }
507         break;
508       }
509       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
510       if (Res)
511         break;
512 
513       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
514       if (Res)
515         break;
516     }
517     // Reinitialize Bytes
518     Bytes = Bytes_.slice(0, MaxInstBytesNum);
519 
520     if (Bytes.size() >= 8) {
521       const uint64_t QW = eatBytes<uint64_t>(Bytes);
522 
523       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
524         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
525         if (Res) {
526           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
527               == -1)
528             break;
529           if (convertDPP8Inst(MI) == MCDisassembler::Success)
530             break;
531           MI = MCInst(); // clear
532         }
533       }
534 
535       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
536       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
537         break;
538       MI = MCInst(); // clear
539 
540       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
541                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
542       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
543         break;
544       MI = MCInst(); // clear
545 
546       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
547       if (Res) break;
548 
549       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
550                           MI, QW, Address, CS);
551       if (Res) {
552         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
553           convertVOPCDPPInst(MI);
554         break;
555       }
556 
557       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
558       if (Res) { IsSDWA = true;  break; }
559 
560       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
561       if (Res) { IsSDWA = true;  break; }
562 
563       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
564       if (Res) { IsSDWA = true;  break; }
565 
566       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
567         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
568         if (Res)
569           break;
570       }
571 
572       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
573       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
574       // table first so we print the correct name.
575       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
576         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
577         if (Res)
578           break;
579       }
580     }
581 
582     // Reinitialize Bytes as DPP64 could have eaten too much
583     Bytes = Bytes_.slice(0, MaxInstBytesNum);
584 
585     // Try decode 32-bit instruction
586     if (Bytes.size() < 4) break;
587     const uint32_t DW = eatBytes<uint32_t>(Bytes);
588     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
589     if (Res) break;
590 
591     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
592     if (Res) break;
593 
594     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
595     if (Res) break;
596 
597     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
598       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
599       if (Res)
600         break;
601     }
602 
603     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
604       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
605       if (Res) break;
606     }
607 
608     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
609     if (Res) break;
610 
611     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
612                         Address, CS);
613     if (Res) break;
614 
615     Res = tryDecodeInst(DecoderTableGFX1232, MI, DW, Address, CS);
616     if (Res)
617       break;
618 
619     if (Bytes.size() < 4) break;
620     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
621 
622     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
623       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
624       if (Res)
625         break;
626     }
627 
628     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
629       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
630       if (Res)
631         break;
632     }
633 
634     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
635     if (Res) break;
636 
637     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
638     if (Res) break;
639 
640     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
641     if (Res) break;
642 
643     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
644     if (Res) break;
645 
646     Res = tryDecodeInst(DecoderTableGFX1264, MI, QW, Address, CS);
647     if (Res)
648       break;
649 
650     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
651                         Address, CS);
652     if (Res)
653       break;
654 
655     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
656   } while (false);
657 
658   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
659     // Insert dummy unused src2_modifiers.
660     insertNamedMCOperand(MI, MCOperand::createImm(0),
661                          AMDGPU::OpName::src2_modifiers);
662   }
663 
664   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
665           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
666     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
667                                              AMDGPU::OpName::cpol);
668     if (CPolPos != -1) {
669       unsigned CPol =
670           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
671               AMDGPU::CPol::GLC : 0;
672       if (MI.getNumOperands() <= (unsigned)CPolPos) {
673         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
674                              AMDGPU::OpName::cpol);
675       } else if (CPol) {
676         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
677       }
678     }
679   }
680 
681   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
682               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
683              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
684     // GFX90A lost TFE, its place is occupied by ACC.
685     int TFEOpIdx =
686         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
687     if (TFEOpIdx != -1) {
688       auto TFEIter = MI.begin();
689       std::advance(TFEIter, TFEOpIdx);
690       MI.insert(TFEIter, MCOperand::createImm(0));
691     }
692   }
693 
694   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
695               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
696     int SWZOpIdx =
697         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
698     if (SWZOpIdx != -1) {
699       auto SWZIter = MI.begin();
700       std::advance(SWZIter, SWZOpIdx);
701       MI.insert(SWZIter, MCOperand::createImm(0));
702     }
703   }
704 
705   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
706     int VAddr0Idx =
707         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
708     int RsrcIdx =
709         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
710     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
711     if (VAddr0Idx >= 0 && NSAArgs > 0) {
712       unsigned NSAWords = (NSAArgs + 3) / 4;
713       if (Bytes.size() < 4 * NSAWords) {
714         Res = MCDisassembler::Fail;
715       } else {
716         for (unsigned i = 0; i < NSAArgs; ++i) {
717           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
718           auto VAddrRCID =
719               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
720           MI.insert(MI.begin() + VAddrIdx,
721                     createRegOperand(VAddrRCID, Bytes[i]));
722         }
723         Bytes = Bytes.slice(4 * NSAWords);
724       }
725     }
726 
727     if (Res)
728       Res = convertMIMGInst(MI);
729   }
730 
731   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
732               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
733     Res = convertMIMGInst(MI);
734 
735   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
736     Res = convertEXPInst(MI);
737 
738   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
739     Res = convertVINTERPInst(MI);
740 
741   if (Res && IsSDWA)
742     Res = convertSDWAInst(MI);
743 
744   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
745                                               AMDGPU::OpName::vdst_in);
746   if (VDstIn_Idx != -1) {
747     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
748                            MCOI::OperandConstraint::TIED_TO);
749     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
750          !MI.getOperand(VDstIn_Idx).isReg() ||
751          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
752       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
753         MI.erase(&MI.getOperand(VDstIn_Idx));
754       insertNamedMCOperand(MI,
755         MCOperand::createReg(MI.getOperand(Tied).getReg()),
756         AMDGPU::OpName::vdst_in);
757     }
758   }
759 
760   int ImmLitIdx =
761       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
762   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
763   if (Res && ImmLitIdx != -1 && !IsSOPK)
764     Res = convertFMAanyK(MI, ImmLitIdx);
765 
766   // if the opcode was not recognized we'll assume a Size of 4 bytes
767   // (unless there are fewer bytes left)
768   Size = Res ? (MaxInstBytesNum - Bytes.size())
769              : std::min((size_t)4, Bytes_.size());
770   return Res;
771 }
772 
773 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
774   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
775     // The MCInst still has these fields even though they are no longer encoded
776     // in the GFX11 instruction.
777     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
778     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
779   }
780   return MCDisassembler::Success;
781 }
782 
783 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
784   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
785       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
786       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
787       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
788       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
789       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
790       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
791       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
792     // The MCInst has this field that is not directly encoded in the
793     // instruction.
794     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
795   }
796   return MCDisassembler::Success;
797 }
798 
799 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
800   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
801       STI.hasFeature(AMDGPU::FeatureGFX10)) {
802     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
803       // VOPC - insert clamp
804       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
805   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
806     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
807     if (SDst != -1) {
808       // VOPC - insert VCC register as sdst
809       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
810                            AMDGPU::OpName::sdst);
811     } else {
812       // VOP1/2 - insert omod if present in instruction
813       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
814     }
815   }
816   return MCDisassembler::Success;
817 }
818 
819 struct VOPModifiers {
820   unsigned OpSel = 0;
821   unsigned OpSelHi = 0;
822   unsigned NegLo = 0;
823   unsigned NegHi = 0;
824 };
825 
826 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
827 // Note that these values do not affect disassembler output,
828 // so this is only necessary for consistency with src_modifiers.
829 static VOPModifiers collectVOPModifiers(const MCInst &MI,
830                                         bool IsVOP3P = false) {
831   VOPModifiers Modifiers;
832   unsigned Opc = MI.getOpcode();
833   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
834                         AMDGPU::OpName::src1_modifiers,
835                         AMDGPU::OpName::src2_modifiers};
836   for (int J = 0; J < 3; ++J) {
837     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
838     if (OpIdx == -1)
839       continue;
840 
841     unsigned Val = MI.getOperand(OpIdx).getImm();
842 
843     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
844     if (IsVOP3P) {
845       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
846       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
847       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
848     } else if (J == 0) {
849       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
850     }
851   }
852 
853   return Modifiers;
854 }
855 
856 // MAC opcodes have special old and src2 operands.
857 // src2 is tied to dst, while old is not tied (but assumed to be).
858 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
859   constexpr int DST_IDX = 0;
860   auto Opcode = MI.getOpcode();
861   const auto &Desc = MCII->get(Opcode);
862   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
863 
864   if (OldIdx != -1 && Desc.getOperandConstraint(
865                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
866     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
867     assert(Desc.getOperandConstraint(
868                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
869                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
870     (void)DST_IDX;
871     return true;
872   }
873 
874   return false;
875 }
876 
877 // Create dummy old operand and insert dummy unused src2_modifiers
878 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
879   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
880   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
881   insertNamedMCOperand(MI, MCOperand::createImm(0),
882                        AMDGPU::OpName::src2_modifiers);
883 }
884 
885 // We must check FI == literal to reject not genuine dpp8 insts, and we must
886 // first add optional MI operands to check FI
887 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
888   unsigned Opc = MI.getOpcode();
889   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
890     convertVOP3PDPPInst(MI);
891   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
892              AMDGPU::isVOPC64DPP(Opc)) {
893     convertVOPCDPPInst(MI);
894   } else {
895     if (isMacDPP(MI))
896       convertMacDPPInst(MI);
897 
898     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
899     if (MI.getNumOperands() < DescNumOps &&
900         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
901       auto Mods = collectVOPModifiers(MI);
902       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
903                            AMDGPU::OpName::op_sel);
904     } else {
905       // Insert dummy unused src modifiers.
906       if (MI.getNumOperands() < DescNumOps &&
907           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
908         insertNamedMCOperand(MI, MCOperand::createImm(0),
909                              AMDGPU::OpName::src0_modifiers);
910 
911       if (MI.getNumOperands() < DescNumOps &&
912           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
913         insertNamedMCOperand(MI, MCOperand::createImm(0),
914                              AMDGPU::OpName::src1_modifiers);
915     }
916   }
917   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
918 }
919 
920 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
921   if (isMacDPP(MI))
922     convertMacDPPInst(MI);
923 
924   unsigned Opc = MI.getOpcode();
925   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
926   if (MI.getNumOperands() < DescNumOps &&
927       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
928     auto Mods = collectVOPModifiers(MI);
929     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
930                          AMDGPU::OpName::op_sel);
931   }
932   return MCDisassembler::Success;
933 }
934 
935 // Note that before gfx10, the MIMG encoding provided no information about
936 // VADDR size. Consequently, decoded instructions always show address as if it
937 // has 1 dword, which could be not really so.
938 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
939   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
940 
941   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
942                                            AMDGPU::OpName::vdst);
943 
944   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
945                                             AMDGPU::OpName::vdata);
946   int VAddr0Idx =
947       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
948   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
949                                                 : AMDGPU::OpName::rsrc;
950   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
951   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
952                                             AMDGPU::OpName::dmask);
953 
954   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
955                                             AMDGPU::OpName::tfe);
956   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
957                                             AMDGPU::OpName::d16);
958 
959   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
960   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
961       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
962 
963   assert(VDataIdx != -1);
964   if (BaseOpcode->BVH) {
965     // Add A16 operand for intersect_ray instructions
966     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
967     return MCDisassembler::Success;
968   }
969 
970   bool IsAtomic = (VDstIdx != -1);
971   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
972   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
973   bool IsNSA = false;
974   bool IsPartialNSA = false;
975   unsigned AddrSize = Info->VAddrDwords;
976 
977   if (isGFX10Plus()) {
978     unsigned DimIdx =
979         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
980     int A16Idx =
981         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
982     const AMDGPU::MIMGDimInfo *Dim =
983         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
984     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
985 
986     AddrSize =
987         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
988 
989     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
990     // VIMAGE insts other than BVH never use vaddr4.
991     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
992             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
993             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
994     if (!IsNSA) {
995       if (!IsVSample && AddrSize > 12)
996         AddrSize = 16;
997     } else {
998       if (AddrSize > Info->VAddrDwords) {
999         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1000           // The NSA encoding does not contain enough operands for the
1001           // combination of base opcode / dimension. Should this be an error?
1002           return MCDisassembler::Success;
1003         }
1004         IsPartialNSA = true;
1005       }
1006     }
1007   }
1008 
1009   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1010   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1011 
1012   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1013   if (D16 && AMDGPU::hasPackedD16(STI)) {
1014     DstSize = (DstSize + 1) / 2;
1015   }
1016 
1017   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1018     DstSize += 1;
1019 
1020   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1021     return MCDisassembler::Success;
1022 
1023   int NewOpcode =
1024       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1025   if (NewOpcode == -1)
1026     return MCDisassembler::Success;
1027 
1028   // Widen the register to the correct number of enabled channels.
1029   unsigned NewVdata = AMDGPU::NoRegister;
1030   if (DstSize != Info->VDataDwords) {
1031     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1032 
1033     // Get first subregister of VData
1034     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1035     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1036     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1037 
1038     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1039                                        &MRI.getRegClass(DataRCID));
1040     if (NewVdata == AMDGPU::NoRegister) {
1041       // It's possible to encode this such that the low register + enabled
1042       // components exceeds the register count.
1043       return MCDisassembler::Success;
1044     }
1045   }
1046 
1047   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1048   // If using partial NSA on GFX11+ widen last address register.
1049   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1050   unsigned NewVAddrSA = AMDGPU::NoRegister;
1051   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1052       AddrSize != Info->VAddrDwords) {
1053     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1054     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1055     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1056 
1057     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1058     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1059                                         &MRI.getRegClass(AddrRCID));
1060     if (!NewVAddrSA)
1061       return MCDisassembler::Success;
1062   }
1063 
1064   MI.setOpcode(NewOpcode);
1065 
1066   if (NewVdata != AMDGPU::NoRegister) {
1067     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1068 
1069     if (IsAtomic) {
1070       // Atomic operations have an additional operand (a copy of data)
1071       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1072     }
1073   }
1074 
1075   if (NewVAddrSA) {
1076     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1077   } else if (IsNSA) {
1078     assert(AddrSize <= Info->VAddrDwords);
1079     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1080              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1081   }
1082 
1083   return MCDisassembler::Success;
1084 }
1085 
1086 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1087 // decoder only adds to src_modifiers, so manually add the bits to the other
1088 // operands.
1089 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1090   unsigned Opc = MI.getOpcode();
1091   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1092   auto Mods = collectVOPModifiers(MI, true);
1093 
1094   if (MI.getNumOperands() < DescNumOps &&
1095       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1096     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1097 
1098   if (MI.getNumOperands() < DescNumOps &&
1099       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1100     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1101                          AMDGPU::OpName::op_sel);
1102   if (MI.getNumOperands() < DescNumOps &&
1103       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1104     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1105                          AMDGPU::OpName::op_sel_hi);
1106   if (MI.getNumOperands() < DescNumOps &&
1107       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1108     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1109                          AMDGPU::OpName::neg_lo);
1110   if (MI.getNumOperands() < DescNumOps &&
1111       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1112     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1113                          AMDGPU::OpName::neg_hi);
1114 
1115   return MCDisassembler::Success;
1116 }
1117 
1118 // Create dummy old operand and insert optional operands
1119 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1120   unsigned Opc = MI.getOpcode();
1121   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1122 
1123   if (MI.getNumOperands() < DescNumOps &&
1124       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1125     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1126 
1127   if (MI.getNumOperands() < DescNumOps &&
1128       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1129     insertNamedMCOperand(MI, MCOperand::createImm(0),
1130                          AMDGPU::OpName::src0_modifiers);
1131 
1132   if (MI.getNumOperands() < DescNumOps &&
1133       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1134     insertNamedMCOperand(MI, MCOperand::createImm(0),
1135                          AMDGPU::OpName::src1_modifiers);
1136   return MCDisassembler::Success;
1137 }
1138 
1139 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1140                                                 int ImmLitIdx) const {
1141   assert(HasLiteral && "Should have decoded a literal");
1142   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1143   unsigned DescNumOps = Desc.getNumOperands();
1144   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1145                        AMDGPU::OpName::immDeferred);
1146   assert(DescNumOps == MI.getNumOperands());
1147   for (unsigned I = 0; I < DescNumOps; ++I) {
1148     auto &Op = MI.getOperand(I);
1149     auto OpType = Desc.operands()[I].OperandType;
1150     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1151                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1152     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1153         IsDeferredOp)
1154       Op.setImm(Literal);
1155   }
1156   return MCDisassembler::Success;
1157 }
1158 
1159 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1160   return getContext().getRegisterInfo()->
1161     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1162 }
1163 
1164 inline
1165 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1166                                          const Twine& ErrMsg) const {
1167   *CommentStream << "Error: " + ErrMsg;
1168 
1169   // ToDo: add support for error operands to MCInst.h
1170   // return MCOperand::createError(V);
1171   return MCOperand();
1172 }
1173 
1174 inline
1175 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1176   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1177 }
1178 
1179 inline
1180 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1181                                                unsigned Val) const {
1182   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1183   if (Val >= RegCl.getNumRegs())
1184     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1185                            ": unknown register " + Twine(Val));
1186   return createRegOperand(RegCl.getRegister(Val));
1187 }
1188 
1189 inline
1190 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1191                                                 unsigned Val) const {
1192   // ToDo: SI/CI have 104 SGPRs, VI - 102
1193   // Valery: here we accepting as much as we can, let assembler sort it out
1194   int shift = 0;
1195   switch (SRegClassID) {
1196   case AMDGPU::SGPR_32RegClassID:
1197   case AMDGPU::TTMP_32RegClassID:
1198     break;
1199   case AMDGPU::SGPR_64RegClassID:
1200   case AMDGPU::TTMP_64RegClassID:
1201     shift = 1;
1202     break;
1203   case AMDGPU::SGPR_128RegClassID:
1204   case AMDGPU::TTMP_128RegClassID:
1205   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1206   // this bundle?
1207   case AMDGPU::SGPR_256RegClassID:
1208   case AMDGPU::TTMP_256RegClassID:
1209     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1210   // this bundle?
1211   case AMDGPU::SGPR_288RegClassID:
1212   case AMDGPU::TTMP_288RegClassID:
1213   case AMDGPU::SGPR_320RegClassID:
1214   case AMDGPU::TTMP_320RegClassID:
1215   case AMDGPU::SGPR_352RegClassID:
1216   case AMDGPU::TTMP_352RegClassID:
1217   case AMDGPU::SGPR_384RegClassID:
1218   case AMDGPU::TTMP_384RegClassID:
1219   case AMDGPU::SGPR_512RegClassID:
1220   case AMDGPU::TTMP_512RegClassID:
1221     shift = 2;
1222     break;
1223   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1224   // this bundle?
1225   default:
1226     llvm_unreachable("unhandled register class");
1227   }
1228 
1229   if (Val % (1 << shift)) {
1230     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1231                    << ": scalar reg isn't aligned " << Val;
1232   }
1233 
1234   return createRegOperand(SRegClassID, Val >> shift);
1235 }
1236 
1237 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1238                                                   bool IsHi) const {
1239   unsigned RCID =
1240       IsHi ? AMDGPU::VGPR_HI16RegClassID : AMDGPU::VGPR_LO16RegClassID;
1241   return createRegOperand(RCID, RegIdx);
1242 }
1243 
1244 // Decode Literals for insts which always have a literal in the encoding
1245 MCOperand
1246 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1247   if (HasLiteral) {
1248     assert(
1249         AMDGPU::hasVOPD(STI) &&
1250         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1251     if (Literal != Val)
1252       return errOperand(Val, "More than one unique literal is illegal");
1253   }
1254   HasLiteral = true;
1255   Literal = Val;
1256   return MCOperand::createImm(Literal);
1257 }
1258 
1259 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1260   // For now all literal constants are supposed to be unsigned integer
1261   // ToDo: deal with signed/unsigned 64-bit integer constants
1262   // ToDo: deal with float/double constants
1263   if (!HasLiteral) {
1264     if (Bytes.size() < 4) {
1265       return errOperand(0, "cannot read literal, inst bytes left " +
1266                         Twine(Bytes.size()));
1267     }
1268     HasLiteral = true;
1269     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1270     if (ExtendFP64)
1271       Literal64 <<= 32;
1272   }
1273   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1274 }
1275 
1276 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1277   using namespace AMDGPU::EncValues;
1278 
1279   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1280   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1281     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1282     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1283       // Cast prevents negative overflow.
1284 }
1285 
1286 static int64_t getInlineImmVal32(unsigned Imm) {
1287   switch (Imm) {
1288   case 240:
1289     return llvm::bit_cast<uint32_t>(0.5f);
1290   case 241:
1291     return llvm::bit_cast<uint32_t>(-0.5f);
1292   case 242:
1293     return llvm::bit_cast<uint32_t>(1.0f);
1294   case 243:
1295     return llvm::bit_cast<uint32_t>(-1.0f);
1296   case 244:
1297     return llvm::bit_cast<uint32_t>(2.0f);
1298   case 245:
1299     return llvm::bit_cast<uint32_t>(-2.0f);
1300   case 246:
1301     return llvm::bit_cast<uint32_t>(4.0f);
1302   case 247:
1303     return llvm::bit_cast<uint32_t>(-4.0f);
1304   case 248: // 1 / (2 * PI)
1305     return 0x3e22f983;
1306   default:
1307     llvm_unreachable("invalid fp inline imm");
1308   }
1309 }
1310 
1311 static int64_t getInlineImmVal64(unsigned Imm) {
1312   switch (Imm) {
1313   case 240:
1314     return llvm::bit_cast<uint64_t>(0.5);
1315   case 241:
1316     return llvm::bit_cast<uint64_t>(-0.5);
1317   case 242:
1318     return llvm::bit_cast<uint64_t>(1.0);
1319   case 243:
1320     return llvm::bit_cast<uint64_t>(-1.0);
1321   case 244:
1322     return llvm::bit_cast<uint64_t>(2.0);
1323   case 245:
1324     return llvm::bit_cast<uint64_t>(-2.0);
1325   case 246:
1326     return llvm::bit_cast<uint64_t>(4.0);
1327   case 247:
1328     return llvm::bit_cast<uint64_t>(-4.0);
1329   case 248: // 1 / (2 * PI)
1330     return 0x3fc45f306dc9c882;
1331   default:
1332     llvm_unreachable("invalid fp inline imm");
1333   }
1334 }
1335 
1336 static int64_t getInlineImmVal16(unsigned Imm) {
1337   switch (Imm) {
1338   case 240:
1339     return 0x3800;
1340   case 241:
1341     return 0xB800;
1342   case 242:
1343     return 0x3C00;
1344   case 243:
1345     return 0xBC00;
1346   case 244:
1347     return 0x4000;
1348   case 245:
1349     return 0xC000;
1350   case 246:
1351     return 0x4400;
1352   case 247:
1353     return 0xC400;
1354   case 248: // 1 / (2 * PI)
1355     return 0x3118;
1356   default:
1357     llvm_unreachable("invalid fp inline imm");
1358   }
1359 }
1360 
1361 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1362   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1363       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1364 
1365   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1366   // ImmWidth 0 is a default case where operand should not allow immediates.
1367   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1368   // use it to print verbose error message.
1369   switch (ImmWidth) {
1370   case 0:
1371   case 32:
1372     return MCOperand::createImm(getInlineImmVal32(Imm));
1373   case 64:
1374     return MCOperand::createImm(getInlineImmVal64(Imm));
1375   case 16:
1376     return MCOperand::createImm(getInlineImmVal16(Imm));
1377   default:
1378     llvm_unreachable("implement me");
1379   }
1380 }
1381 
1382 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1383   using namespace AMDGPU;
1384 
1385   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1386   switch (Width) {
1387   default: // fall
1388   case OPW32:
1389   case OPW16:
1390   case OPWV216:
1391     return VGPR_32RegClassID;
1392   case OPW64:
1393   case OPWV232: return VReg_64RegClassID;
1394   case OPW96: return VReg_96RegClassID;
1395   case OPW128: return VReg_128RegClassID;
1396   case OPW160: return VReg_160RegClassID;
1397   case OPW256: return VReg_256RegClassID;
1398   case OPW288: return VReg_288RegClassID;
1399   case OPW320: return VReg_320RegClassID;
1400   case OPW352: return VReg_352RegClassID;
1401   case OPW384: return VReg_384RegClassID;
1402   case OPW512: return VReg_512RegClassID;
1403   case OPW1024: return VReg_1024RegClassID;
1404   }
1405 }
1406 
1407 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1408   using namespace AMDGPU;
1409 
1410   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1411   switch (Width) {
1412   default: // fall
1413   case OPW32:
1414   case OPW16:
1415   case OPWV216:
1416     return AGPR_32RegClassID;
1417   case OPW64:
1418   case OPWV232: return AReg_64RegClassID;
1419   case OPW96: return AReg_96RegClassID;
1420   case OPW128: return AReg_128RegClassID;
1421   case OPW160: return AReg_160RegClassID;
1422   case OPW256: return AReg_256RegClassID;
1423   case OPW288: return AReg_288RegClassID;
1424   case OPW320: return AReg_320RegClassID;
1425   case OPW352: return AReg_352RegClassID;
1426   case OPW384: return AReg_384RegClassID;
1427   case OPW512: return AReg_512RegClassID;
1428   case OPW1024: return AReg_1024RegClassID;
1429   }
1430 }
1431 
1432 
1433 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1434   using namespace AMDGPU;
1435 
1436   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1437   switch (Width) {
1438   default: // fall
1439   case OPW32:
1440   case OPW16:
1441   case OPWV216:
1442     return SGPR_32RegClassID;
1443   case OPW64:
1444   case OPWV232: return SGPR_64RegClassID;
1445   case OPW96: return SGPR_96RegClassID;
1446   case OPW128: return SGPR_128RegClassID;
1447   case OPW160: return SGPR_160RegClassID;
1448   case OPW256: return SGPR_256RegClassID;
1449   case OPW288: return SGPR_288RegClassID;
1450   case OPW320: return SGPR_320RegClassID;
1451   case OPW352: return SGPR_352RegClassID;
1452   case OPW384: return SGPR_384RegClassID;
1453   case OPW512: return SGPR_512RegClassID;
1454   }
1455 }
1456 
1457 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1458   using namespace AMDGPU;
1459 
1460   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1461   switch (Width) {
1462   default: // fall
1463   case OPW32:
1464   case OPW16:
1465   case OPWV216:
1466     return TTMP_32RegClassID;
1467   case OPW64:
1468   case OPWV232: return TTMP_64RegClassID;
1469   case OPW128: return TTMP_128RegClassID;
1470   case OPW256: return TTMP_256RegClassID;
1471   case OPW288: return TTMP_288RegClassID;
1472   case OPW320: return TTMP_320RegClassID;
1473   case OPW352: return TTMP_352RegClassID;
1474   case OPW384: return TTMP_384RegClassID;
1475   case OPW512: return TTMP_512RegClassID;
1476   }
1477 }
1478 
1479 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1480   using namespace AMDGPU::EncValues;
1481 
1482   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1483   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1484 
1485   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1486 }
1487 
1488 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1489                                           bool MandatoryLiteral,
1490                                           unsigned ImmWidth, bool IsFP) const {
1491   using namespace AMDGPU::EncValues;
1492 
1493   assert(Val < 1024); // enum10
1494 
1495   bool IsAGPR = Val & 512;
1496   Val &= 511;
1497 
1498   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1499     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1500                                    : getVgprClassId(Width), Val - VGPR_MIN);
1501   }
1502   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1503                             IsFP);
1504 }
1505 
1506 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1507                                                  unsigned Val,
1508                                                  bool MandatoryLiteral,
1509                                                  unsigned ImmWidth,
1510                                                  bool IsFP) const {
1511   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1512   // decoded earlier.
1513   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1514   using namespace AMDGPU::EncValues;
1515 
1516   if (Val <= SGPR_MAX) {
1517     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1518     static_assert(SGPR_MIN == 0);
1519     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1520   }
1521 
1522   int TTmpIdx = getTTmpIdx(Val);
1523   if (TTmpIdx >= 0) {
1524     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1525   }
1526 
1527   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1528     return decodeIntImmed(Val);
1529 
1530   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1531     return decodeFPImmed(ImmWidth, Val);
1532 
1533   if (Val == LITERAL_CONST) {
1534     if (MandatoryLiteral)
1535       // Keep a sentinel value for deferred setting
1536       return MCOperand::createImm(LITERAL_CONST);
1537     else
1538       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1539   }
1540 
1541   switch (Width) {
1542   case OPW32:
1543   case OPW16:
1544   case OPWV216:
1545     return decodeSpecialReg32(Val);
1546   case OPW64:
1547   case OPWV232:
1548     return decodeSpecialReg64(Val);
1549   default:
1550     llvm_unreachable("unexpected immediate type");
1551   }
1552 }
1553 
1554 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1555 // opposite of bit 0 of DstX.
1556 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1557                                                unsigned Val) const {
1558   int VDstXInd =
1559       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1560   assert(VDstXInd != -1);
1561   assert(Inst.getOperand(VDstXInd).isReg());
1562   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1563   Val |= ~XDstReg & 1;
1564   auto Width = llvm::AMDGPUDisassembler::OPW32;
1565   return createRegOperand(getVgprClassId(Width), Val);
1566 }
1567 
1568 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1569   using namespace AMDGPU;
1570 
1571   switch (Val) {
1572   // clang-format off
1573   case 102: return createRegOperand(FLAT_SCR_LO);
1574   case 103: return createRegOperand(FLAT_SCR_HI);
1575   case 104: return createRegOperand(XNACK_MASK_LO);
1576   case 105: return createRegOperand(XNACK_MASK_HI);
1577   case 106: return createRegOperand(VCC_LO);
1578   case 107: return createRegOperand(VCC_HI);
1579   case 108: return createRegOperand(TBA_LO);
1580   case 109: return createRegOperand(TBA_HI);
1581   case 110: return createRegOperand(TMA_LO);
1582   case 111: return createRegOperand(TMA_HI);
1583   case 124:
1584     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1585   case 125:
1586     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1587   case 126: return createRegOperand(EXEC_LO);
1588   case 127: return createRegOperand(EXEC_HI);
1589   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1590   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1591   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1592   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1593   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1594   case 251: return createRegOperand(SRC_VCCZ);
1595   case 252: return createRegOperand(SRC_EXECZ);
1596   case 253: return createRegOperand(SRC_SCC);
1597   case 254: return createRegOperand(LDS_DIRECT);
1598   default: break;
1599     // clang-format on
1600   }
1601   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1602 }
1603 
1604 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1605   using namespace AMDGPU;
1606 
1607   switch (Val) {
1608   case 102: return createRegOperand(FLAT_SCR);
1609   case 104: return createRegOperand(XNACK_MASK);
1610   case 106: return createRegOperand(VCC);
1611   case 108: return createRegOperand(TBA);
1612   case 110: return createRegOperand(TMA);
1613   case 124:
1614     if (isGFX11Plus())
1615       return createRegOperand(SGPR_NULL);
1616     break;
1617   case 125:
1618     if (!isGFX11Plus())
1619       return createRegOperand(SGPR_NULL);
1620     break;
1621   case 126: return createRegOperand(EXEC);
1622   case 235: return createRegOperand(SRC_SHARED_BASE);
1623   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1624   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1625   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1626   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1627   case 251: return createRegOperand(SRC_VCCZ);
1628   case 252: return createRegOperand(SRC_EXECZ);
1629   case 253: return createRegOperand(SRC_SCC);
1630   default: break;
1631   }
1632   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1633 }
1634 
1635 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1636                                             const unsigned Val,
1637                                             unsigned ImmWidth) const {
1638   using namespace AMDGPU::SDWA;
1639   using namespace AMDGPU::EncValues;
1640 
1641   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1642       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1643     // XXX: cast to int is needed to avoid stupid warning:
1644     // compare with unsigned is always true
1645     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1646         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1647       return createRegOperand(getVgprClassId(Width),
1648                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1649     }
1650     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1651         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1652                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1653       return createSRegOperand(getSgprClassId(Width),
1654                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1655     }
1656     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1657         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1658       return createSRegOperand(getTtmpClassId(Width),
1659                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1660     }
1661 
1662     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1663 
1664     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1665       return decodeIntImmed(SVal);
1666 
1667     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1668       return decodeFPImmed(ImmWidth, SVal);
1669 
1670     return decodeSpecialReg32(SVal);
1671   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1672     return createRegOperand(getVgprClassId(Width), Val);
1673   }
1674   llvm_unreachable("unsupported target");
1675 }
1676 
1677 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1678   return decodeSDWASrc(OPW16, Val, 16);
1679 }
1680 
1681 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1682   return decodeSDWASrc(OPW32, Val, 32);
1683 }
1684 
1685 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1686   using namespace AMDGPU::SDWA;
1687 
1688   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1689           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1690          "SDWAVopcDst should be present only on GFX9+");
1691 
1692   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1693 
1694   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1695     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1696 
1697     int TTmpIdx = getTTmpIdx(Val);
1698     if (TTmpIdx >= 0) {
1699       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1700       return createSRegOperand(TTmpClsId, TTmpIdx);
1701     } else if (Val > SGPR_MAX) {
1702       return IsWave64 ? decodeSpecialReg64(Val)
1703                       : decodeSpecialReg32(Val);
1704     } else {
1705       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1706     }
1707   } else {
1708     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1709   }
1710 }
1711 
1712 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1713   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1714              ? decodeSrcOp(OPW64, Val)
1715              : decodeSrcOp(OPW32, Val);
1716 }
1717 
1718 bool AMDGPUDisassembler::isVI() const {
1719   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1720 }
1721 
1722 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1723 
1724 bool AMDGPUDisassembler::isGFX90A() const {
1725   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1726 }
1727 
1728 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1729 
1730 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1731 
1732 bool AMDGPUDisassembler::isGFX10Plus() const {
1733   return AMDGPU::isGFX10Plus(STI);
1734 }
1735 
1736 bool AMDGPUDisassembler::isGFX11() const {
1737   return STI.hasFeature(AMDGPU::FeatureGFX11);
1738 }
1739 
1740 bool AMDGPUDisassembler::isGFX11Plus() const {
1741   return AMDGPU::isGFX11Plus(STI);
1742 }
1743 
1744 bool AMDGPUDisassembler::isGFX12Plus() const {
1745   return AMDGPU::isGFX12Plus(STI);
1746 }
1747 
1748 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1749   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1750 }
1751 
1752 bool AMDGPUDisassembler::hasKernargPreload() const {
1753   return AMDGPU::hasKernargPreload(STI);
1754 }
1755 
1756 //===----------------------------------------------------------------------===//
1757 // AMDGPU specific symbol handling
1758 //===----------------------------------------------------------------------===//
1759 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1760 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1761   do {                                                                         \
1762     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1763   } while (0)
1764 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1765   do {                                                                         \
1766     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1767              << GET_FIELD(MASK) << '\n';                                       \
1768   } while (0)
1769 
1770 // NOLINTNEXTLINE(readability-identifier-naming)
1771 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1772     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1773   using namespace amdhsa;
1774   StringRef Indent = "\t";
1775 
1776   // We cannot accurately backward compute #VGPRs used from
1777   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1778   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1779   // simply calculate the inverse of what the assembler does.
1780 
1781   uint32_t GranulatedWorkitemVGPRCount =
1782       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1783 
1784   uint32_t NextFreeVGPR =
1785       (GranulatedWorkitemVGPRCount + 1) *
1786       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1787 
1788   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1789 
1790   // We cannot backward compute values used to calculate
1791   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1792   // directives can't be computed:
1793   // .amdhsa_reserve_vcc
1794   // .amdhsa_reserve_flat_scratch
1795   // .amdhsa_reserve_xnack_mask
1796   // They take their respective default values if not specified in the assembly.
1797   //
1798   // GRANULATED_WAVEFRONT_SGPR_COUNT
1799   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1800   //
1801   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1802   // are set to 0. So while disassembling we consider that:
1803   //
1804   // GRANULATED_WAVEFRONT_SGPR_COUNT
1805   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1806   //
1807   // The disassembler cannot recover the original values of those 3 directives.
1808 
1809   uint32_t GranulatedWavefrontSGPRCount =
1810       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1811 
1812   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1813     return MCDisassembler::Fail;
1814 
1815   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1816                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1817 
1818   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1819   if (!hasArchitectedFlatScratch())
1820     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1821   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1822   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1823 
1824   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1825     return MCDisassembler::Fail;
1826 
1827   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1828                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1829   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1830                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1831   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1832                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1833   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1834                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1835 
1836   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1837     return MCDisassembler::Fail;
1838 
1839   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1840 
1841   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1842     return MCDisassembler::Fail;
1843 
1844   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1845 
1846   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1847     return MCDisassembler::Fail;
1848 
1849   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1850     return MCDisassembler::Fail;
1851 
1852   if (isGFX9Plus())
1853     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1854 
1855   if (!isGFX9Plus())
1856     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1857       return MCDisassembler::Fail;
1858   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1859     return MCDisassembler::Fail;
1860   if (!isGFX10Plus())
1861     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1862       return MCDisassembler::Fail;
1863 
1864   if (isGFX10Plus()) {
1865     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1866                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1867     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1868     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1869   }
1870   return MCDisassembler::Success;
1871 }
1872 
1873 // NOLINTNEXTLINE(readability-identifier-naming)
1874 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1875     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1876   using namespace amdhsa;
1877   StringRef Indent = "\t";
1878   if (hasArchitectedFlatScratch())
1879     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1880                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1881   else
1882     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1883                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1884   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1885                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1886   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1887                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1888   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1889                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1890   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1891                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1892   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1893                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1894 
1895   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1896     return MCDisassembler::Fail;
1897 
1898   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1899     return MCDisassembler::Fail;
1900 
1901   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1902     return MCDisassembler::Fail;
1903 
1904   PRINT_DIRECTIVE(
1905       ".amdhsa_exception_fp_ieee_invalid_op",
1906       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1907   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1908                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1909   PRINT_DIRECTIVE(
1910       ".amdhsa_exception_fp_ieee_div_zero",
1911       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1912   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1913                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1914   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1915                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1916   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1917                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1918   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1919                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1920 
1921   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1922     return MCDisassembler::Fail;
1923 
1924   return MCDisassembler::Success;
1925 }
1926 
1927 // NOLINTNEXTLINE(readability-identifier-naming)
1928 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1929     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1930   using namespace amdhsa;
1931   StringRef Indent = "\t";
1932   if (isGFX90A()) {
1933     KdStream << Indent << ".amdhsa_accum_offset "
1934              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1935              << '\n';
1936     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1937       return MCDisassembler::Fail;
1938     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1939     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
1940       return MCDisassembler::Fail;
1941   } else if (isGFX10Plus()) {
1942     if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
1943       PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
1944                       COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1945     } else {
1946       PRINT_PSEUDO_DIRECTIVE_COMMENT(
1947           "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1948     }
1949 
1950     if (isGFX11Plus()) {
1951       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
1952                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_INST_PREF_SIZE);
1953       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
1954                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
1955       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
1956                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_END);
1957     } else {
1958       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED0)
1959         return MCDisassembler::Fail;
1960     }
1961 
1962     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED1)
1963       return MCDisassembler::Fail;
1964 
1965     if (isGFX11Plus()) {
1966       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
1967                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
1968     } else {
1969       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED2)
1970         return MCDisassembler::Fail;
1971     }
1972   } else if (FourByteBuffer) {
1973     return MCDisassembler::Fail;
1974   }
1975   return MCDisassembler::Success;
1976 }
1977 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
1978 #undef PRINT_DIRECTIVE
1979 #undef GET_FIELD
1980 
1981 MCDisassembler::DecodeStatus
1982 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1983     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1984     raw_string_ostream &KdStream) const {
1985 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1986   do {                                                                         \
1987     KdStream << Indent << DIRECTIVE " "                                        \
1988              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1989   } while (0)
1990 
1991   uint16_t TwoByteBuffer = 0;
1992   uint32_t FourByteBuffer = 0;
1993 
1994   StringRef ReservedBytes;
1995   StringRef Indent = "\t";
1996 
1997   assert(Bytes.size() == 64);
1998   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1999 
2000   switch (Cursor.tell()) {
2001   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2002     FourByteBuffer = DE.getU32(Cursor);
2003     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2004              << '\n';
2005     return MCDisassembler::Success;
2006 
2007   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2008     FourByteBuffer = DE.getU32(Cursor);
2009     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2010              << FourByteBuffer << '\n';
2011     return MCDisassembler::Success;
2012 
2013   case amdhsa::KERNARG_SIZE_OFFSET:
2014     FourByteBuffer = DE.getU32(Cursor);
2015     KdStream << Indent << ".amdhsa_kernarg_size "
2016              << FourByteBuffer << '\n';
2017     return MCDisassembler::Success;
2018 
2019   case amdhsa::RESERVED0_OFFSET:
2020     // 4 reserved bytes, must be 0.
2021     ReservedBytes = DE.getBytes(Cursor, 4);
2022     for (int I = 0; I < 4; ++I) {
2023       if (ReservedBytes[I] != 0) {
2024         return MCDisassembler::Fail;
2025       }
2026     }
2027     return MCDisassembler::Success;
2028 
2029   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2030     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2031     // So far no directive controls this for Code Object V3, so simply skip for
2032     // disassembly.
2033     DE.skip(Cursor, 8);
2034     return MCDisassembler::Success;
2035 
2036   case amdhsa::RESERVED1_OFFSET:
2037     // 20 reserved bytes, must be 0.
2038     ReservedBytes = DE.getBytes(Cursor, 20);
2039     for (int I = 0; I < 20; ++I) {
2040       if (ReservedBytes[I] != 0) {
2041         return MCDisassembler::Fail;
2042       }
2043     }
2044     return MCDisassembler::Success;
2045 
2046   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2047     FourByteBuffer = DE.getU32(Cursor);
2048     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2049 
2050   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2051     FourByteBuffer = DE.getU32(Cursor);
2052     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2053 
2054   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2055     FourByteBuffer = DE.getU32(Cursor);
2056     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2057 
2058   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2059     using namespace amdhsa;
2060     TwoByteBuffer = DE.getU16(Cursor);
2061 
2062     if (!hasArchitectedFlatScratch())
2063       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2064                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2065     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2066                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2067     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2068                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2069     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2070                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2071     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2072                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2073     if (!hasArchitectedFlatScratch())
2074       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2075                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2076     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2077                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2078 
2079     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2080       return MCDisassembler::Fail;
2081 
2082     // Reserved for GFX9
2083     if (isGFX9() &&
2084         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2085       return MCDisassembler::Fail;
2086     } else if (isGFX10Plus()) {
2087       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2088                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2089     }
2090 
2091     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2092       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2093                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2094 
2095     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2096       return MCDisassembler::Fail;
2097 
2098     return MCDisassembler::Success;
2099 
2100   case amdhsa::KERNARG_PRELOAD_OFFSET:
2101     using namespace amdhsa;
2102     TwoByteBuffer = DE.getU16(Cursor);
2103     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2104       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2105                       KERNARG_PRELOAD_SPEC_LENGTH);
2106     }
2107 
2108     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2109       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2110                       KERNARG_PRELOAD_SPEC_OFFSET);
2111     }
2112     return MCDisassembler::Success;
2113 
2114   case amdhsa::RESERVED3_OFFSET:
2115     // 4 bytes from here are reserved, must be 0.
2116     ReservedBytes = DE.getBytes(Cursor, 4);
2117     for (int I = 0; I < 4; ++I) {
2118       if (ReservedBytes[I] != 0)
2119         return MCDisassembler::Fail;
2120     }
2121     return MCDisassembler::Success;
2122 
2123   default:
2124     llvm_unreachable("Unhandled index. Case statements cover everything.");
2125     return MCDisassembler::Fail;
2126   }
2127 #undef PRINT_DIRECTIVE
2128 }
2129 
2130 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2131     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2132   // CP microcode requires the kernel descriptor to be 64 aligned.
2133   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2134     return MCDisassembler::Fail;
2135 
2136   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2137   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2138   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2139   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2140   // when required.
2141   if (isGFX10Plus()) {
2142     uint16_t KernelCodeProperties =
2143         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2144                                 llvm::endianness::little);
2145     EnableWavefrontSize32 =
2146         AMDHSA_BITS_GET(KernelCodeProperties,
2147                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2148   }
2149 
2150   std::string Kd;
2151   raw_string_ostream KdStream(Kd);
2152   KdStream << ".amdhsa_kernel " << KdName << '\n';
2153 
2154   DataExtractor::Cursor C(0);
2155   while (C && C.tell() < Bytes.size()) {
2156     MCDisassembler::DecodeStatus Status =
2157         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2158 
2159     cantFail(C.takeError());
2160 
2161     if (Status == MCDisassembler::Fail)
2162       return MCDisassembler::Fail;
2163   }
2164   KdStream << ".end_amdhsa_kernel\n";
2165   outs() << KdStream.str();
2166   return MCDisassembler::Success;
2167 }
2168 
2169 std::optional<MCDisassembler::DecodeStatus>
2170 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2171                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2172                                   raw_ostream &CStream) const {
2173   // Right now only kernel descriptor needs to be handled.
2174   // We ignore all other symbols for target specific handling.
2175   // TODO:
2176   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2177   // Object V2 and V3 when symbols are marked protected.
2178 
2179   // amd_kernel_code_t for Code Object V2.
2180   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2181     Size = 256;
2182     return MCDisassembler::Fail;
2183   }
2184 
2185   // Code Object V3 kernel descriptors.
2186   StringRef Name = Symbol.Name;
2187   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2188     Size = 64; // Size = 64 regardless of success or failure.
2189     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2190   }
2191   return std::nullopt;
2192 }
2193 
2194 //===----------------------------------------------------------------------===//
2195 // AMDGPUSymbolizer
2196 //===----------------------------------------------------------------------===//
2197 
2198 // Try to find symbol name for specified label
2199 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2200     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2201     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2202     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2203 
2204   if (!IsBranch) {
2205     return false;
2206   }
2207 
2208   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2209   if (!Symbols)
2210     return false;
2211 
2212   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2213     return Val.Addr == static_cast<uint64_t>(Value) &&
2214            Val.Type == ELF::STT_NOTYPE;
2215   });
2216   if (Result != Symbols->end()) {
2217     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2218     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2219     Inst.addOperand(MCOperand::createExpr(Add));
2220     return true;
2221   }
2222   // Add to list of referenced addresses, so caller can synthesize a label.
2223   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2224   return false;
2225 }
2226 
2227 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2228                                                        int64_t Value,
2229                                                        uint64_t Address) {
2230   llvm_unreachable("unimplemented");
2231 }
2232 
2233 //===----------------------------------------------------------------------===//
2234 // Initialization
2235 //===----------------------------------------------------------------------===//
2236 
2237 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2238                               LLVMOpInfoCallback /*GetOpInfo*/,
2239                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2240                               void *DisInfo,
2241                               MCContext *Ctx,
2242                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2243   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2244 }
2245 
2246 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2247                                                 const MCSubtargetInfo &STI,
2248                                                 MCContext &Ctx) {
2249   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2250 }
2251 
2252 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2253   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2254                                          createAMDGPUDisassembler);
2255   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2256                                        createAMDGPUSymbolizer);
2257 }
2258