xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 086a9c106274b597ba501f47281f78b392d86afe)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VRegOrLds_32)
123 DECODE_OPERAND_REG(VS_32)
124 DECODE_OPERAND_REG(VS_64)
125 DECODE_OPERAND_REG(VS_128)
126 
127 DECODE_OPERAND_REG(VReg_64)
128 DECODE_OPERAND_REG(VReg_96)
129 DECODE_OPERAND_REG(VReg_128)
130 DECODE_OPERAND_REG(VReg_256)
131 DECODE_OPERAND_REG(VReg_512)
132 DECODE_OPERAND_REG(VReg_1024)
133 
134 DECODE_OPERAND_REG(SReg_32)
135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
137 DECODE_OPERAND_REG(SRegOrLds_32)
138 DECODE_OPERAND_REG(SReg_64)
139 DECODE_OPERAND_REG(SReg_64_XEXEC)
140 DECODE_OPERAND_REG(SReg_128)
141 DECODE_OPERAND_REG(SReg_256)
142 DECODE_OPERAND_REG(SReg_512)
143 
144 DECODE_OPERAND_REG(AGPR_32)
145 DECODE_OPERAND_REG(AReg_64)
146 DECODE_OPERAND_REG(AReg_128)
147 DECODE_OPERAND_REG(AReg_256)
148 DECODE_OPERAND_REG(AReg_512)
149 DECODE_OPERAND_REG(AReg_1024)
150 DECODE_OPERAND_REG(AV_32)
151 DECODE_OPERAND_REG(AV_64)
152 DECODE_OPERAND_REG(AV_128)
153 DECODE_OPERAND_REG(AVDst_128)
154 DECODE_OPERAND_REG(AVDst_512)
155 
156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
157                                          uint64_t Addr,
158                                          const MCDisassembler *Decoder) {
159   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
161 }
162 
163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
164                                            uint64_t Addr,
165                                            const MCDisassembler *Decoder) {
166   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
167   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
168 }
169 
170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
171                                            uint64_t Addr,
172                                            const MCDisassembler *Decoder) {
173   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
175 }
176 
177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
178                                         uint64_t Addr,
179                                         const MCDisassembler *Decoder) {
180   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
182 }
183 
184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
185                                         uint64_t Addr,
186                                         const MCDisassembler *Decoder) {
187   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190 
191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
192                                           uint64_t Addr,
193                                           const MCDisassembler *Decoder) {
194   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
195   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
196 }
197 
198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
199                                            uint64_t Addr,
200                                            const MCDisassembler *Decoder) {
201   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
202   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
203 }
204 
205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
206                                            uint64_t Addr,
207                                            const MCDisassembler *Decoder) {
208   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
209   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
210 }
211 
212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
213                                            uint64_t Addr,
214                                            const MCDisassembler *Decoder) {
215   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218 
219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
220                                             uint64_t Addr,
221                                             const MCDisassembler *Decoder) {
222   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
223   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
224 }
225 
226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
227                                           uint64_t Addr,
228                                           const MCDisassembler *Decoder) {
229   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
231 }
232 
233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
234                                            uint64_t Addr,
235                                            const MCDisassembler *Decoder) {
236   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
237   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
238 }
239 
240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
241                                            uint64_t Addr,
242                                            const MCDisassembler *Decoder) {
243   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
245 }
246 
247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
248                                            uint64_t Addr,
249                                            const MCDisassembler *Decoder) {
250   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
251   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
252 }
253 
254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
255                                             uint64_t Addr,
256                                             const MCDisassembler *Decoder) {
257   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
258   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
259 }
260 
261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
262                                           uint64_t Addr,
263                                           const MCDisassembler *Decoder) {
264   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
265   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
266 }
267 
268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
269                                           uint64_t Addr,
270                                           const MCDisassembler *Decoder) {
271   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
272   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
273 }
274 
275 static DecodeStatus
276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
277                              const MCDisassembler *Decoder) {
278   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
279   return addOperand(
280       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
281 }
282 
283 static DecodeStatus
284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
285                              const MCDisassembler *Decoder) {
286   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(
288       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
289 }
290 
291 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
292                           const MCRegisterInfo *MRI) {
293   if (OpIdx < 0)
294     return false;
295 
296   const MCOperand &Op = Inst.getOperand(OpIdx);
297   if (!Op.isReg())
298     return false;
299 
300   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
301   auto Reg = Sub ? Sub : Op.getReg();
302   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
303 }
304 
305 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
306                                              AMDGPUDisassembler::OpWidthTy Opw,
307                                              const MCDisassembler *Decoder) {
308   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
309   if (!DAsm->isGFX90A()) {
310     Imm &= 511;
311   } else {
312     // If atomic has both vdata and vdst their register classes are tied.
313     // The bit is decoded along with the vdst, first operand. We need to
314     // change register class to AGPR if vdst was AGPR.
315     // If a DS instruction has both data0 and data1 their register classes
316     // are also tied.
317     unsigned Opc = Inst.getOpcode();
318     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
319     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
320                                                         : AMDGPU::OpName::vdata;
321     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
322     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
323     if ((int)Inst.getNumOperands() == DataIdx) {
324       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
325       if (IsAGPROperand(Inst, DstIdx, MRI))
326         Imm |= 512;
327     }
328 
329     if (TSFlags & SIInstrFlags::DS) {
330       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
331       if ((int)Inst.getNumOperands() == Data2Idx &&
332           IsAGPROperand(Inst, DataIdx, MRI))
333         Imm |= 512;
334     }
335   }
336   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
337 }
338 
339 static DecodeStatus
340 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
341                              const MCDisassembler *Decoder) {
342   return decodeOperand_AVLdSt_Any(Inst, Imm,
343                                   AMDGPUDisassembler::OPW32, Decoder);
344 }
345 
346 static DecodeStatus
347 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
348                              const MCDisassembler *Decoder) {
349   return decodeOperand_AVLdSt_Any(Inst, Imm,
350                                   AMDGPUDisassembler::OPW64, Decoder);
351 }
352 
353 static DecodeStatus
354 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
355                              const MCDisassembler *Decoder) {
356   return decodeOperand_AVLdSt_Any(Inst, Imm,
357                                   AMDGPUDisassembler::OPW96, Decoder);
358 }
359 
360 static DecodeStatus
361 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
362                               const MCDisassembler *Decoder) {
363   return decodeOperand_AVLdSt_Any(Inst, Imm,
364                                   AMDGPUDisassembler::OPW128, Decoder);
365 }
366 
367 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
368                                           uint64_t Addr,
369                                           const MCDisassembler *Decoder) {
370   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
371   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
372 }
373 
374 #define DECODE_SDWA(DecName) \
375 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
376 
377 DECODE_SDWA(Src32)
378 DECODE_SDWA(Src16)
379 DECODE_SDWA(VopcDst)
380 
381 #include "AMDGPUGenDisassemblerTables.inc"
382 
383 //===----------------------------------------------------------------------===//
384 //
385 //===----------------------------------------------------------------------===//
386 
387 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
388   assert(Bytes.size() >= sizeof(T));
389   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
390   Bytes = Bytes.slice(sizeof(T));
391   return Res;
392 }
393 
394 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
395   assert(Bytes.size() >= 12);
396   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
397       Bytes.data());
398   Bytes = Bytes.slice(8);
399   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
400       Bytes.data());
401   Bytes = Bytes.slice(4);
402   return DecoderUInt128(Lo, Hi);
403 }
404 
405 // The disassembler is greedy, so we need to check FI operand value to
406 // not parse a dpp if the correct literal is not set. For dpp16 the
407 // autogenerated decoder checks the dpp literal
408 static bool isValidDPP8(const MCInst &MI) {
409   using namespace llvm::AMDGPU::DPP;
410   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
411   assert(FiIdx != -1);
412   if ((unsigned)FiIdx >= MI.getNumOperands())
413     return false;
414   unsigned Fi = MI.getOperand(FiIdx).getImm();
415   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
416 }
417 
418 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
419                                                 ArrayRef<uint8_t> Bytes_,
420                                                 uint64_t Address,
421                                                 raw_ostream &CS) const {
422   CommentStream = &CS;
423   bool IsSDWA = false;
424 
425   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
426   Bytes = Bytes_.slice(0, MaxInstBytesNum);
427 
428   DecodeStatus Res = MCDisassembler::Fail;
429   do {
430     // ToDo: better to switch encoding length using some bit predicate
431     // but it is unknown yet, so try all we can
432 
433     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
434     // encodings
435     if (isGFX11Plus() && Bytes.size() >= 12 ) {
436       DecoderUInt128 DecW = eat12Bytes(Bytes);
437       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
438                                           Address);
439       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
440         break;
441       MI = MCInst(); // clear
442       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
443                                           Address);
444       if (Res)
445         break;
446     }
447     // Reinitialize Bytes
448     Bytes = Bytes_.slice(0, MaxInstBytesNum);
449 
450     if (Bytes.size() >= 8) {
451       const uint64_t QW = eatBytes<uint64_t>(Bytes);
452 
453       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
454         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
455         if (Res) {
456           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
457               == -1)
458             break;
459           if (convertDPP8Inst(MI) == MCDisassembler::Success)
460             break;
461           MI = MCInst(); // clear
462         }
463       }
464 
465       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
466       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
467         break;
468       MI = MCInst(); // clear
469 
470       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
471       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
472         break;
473       MI = MCInst(); // clear
474 
475       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
476       if (Res) break;
477 
478       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
479       if (Res)
480         break;
481 
482       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
483       if (Res) { IsSDWA = true;  break; }
484 
485       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
486       if (Res) { IsSDWA = true;  break; }
487 
488       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
489       if (Res) { IsSDWA = true;  break; }
490 
491       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
492         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
493         if (Res)
494           break;
495       }
496 
497       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
498       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
499       // table first so we print the correct name.
500       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
501         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
502         if (Res)
503           break;
504       }
505     }
506 
507     // Reinitialize Bytes as DPP64 could have eaten too much
508     Bytes = Bytes_.slice(0, MaxInstBytesNum);
509 
510     // Try decode 32-bit instruction
511     if (Bytes.size() < 4) break;
512     const uint32_t DW = eatBytes<uint32_t>(Bytes);
513     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
514     if (Res) break;
515 
516     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
517     if (Res) break;
518 
519     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
520     if (Res) break;
521 
522     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
523       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
524       if (Res)
525         break;
526     }
527 
528     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
529       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
530       if (Res) break;
531     }
532 
533     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
534     if (Res) break;
535 
536     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
537     if (Res) break;
538 
539     if (Bytes.size() < 4) break;
540     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
541 
542     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
543       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
544       if (Res)
545         break;
546     }
547 
548     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
549     if (Res) break;
550 
551     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
552     if (Res) break;
553 
554     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
555     if (Res) break;
556 
557     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
558     if (Res) break;
559 
560     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
561   } while (false);
562 
563   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
564               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
565               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
566               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
567               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
568               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
569               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
570               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
571               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
572               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
573               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
574               MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
575               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
576               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx11)) {
577     // Insert dummy unused src2_modifiers.
578     insertNamedMCOperand(MI, MCOperand::createImm(0),
579                          AMDGPU::OpName::src2_modifiers);
580   }
581 
582   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
583           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
584     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
585                                              AMDGPU::OpName::cpol);
586     if (CPolPos != -1) {
587       unsigned CPol =
588           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
589               AMDGPU::CPol::GLC : 0;
590       if (MI.getNumOperands() <= (unsigned)CPolPos) {
591         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
592                              AMDGPU::OpName::cpol);
593       } else if (CPol) {
594         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
595       }
596     }
597   }
598 
599   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
600               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
601              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
602     // GFX90A lost TFE, its place is occupied by ACC.
603     int TFEOpIdx =
604         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
605     if (TFEOpIdx != -1) {
606       auto TFEIter = MI.begin();
607       std::advance(TFEIter, TFEOpIdx);
608       MI.insert(TFEIter, MCOperand::createImm(0));
609     }
610   }
611 
612   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
613               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
614     int SWZOpIdx =
615         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
616     if (SWZOpIdx != -1) {
617       auto SWZIter = MI.begin();
618       std::advance(SWZIter, SWZOpIdx);
619       MI.insert(SWZIter, MCOperand::createImm(0));
620     }
621   }
622 
623   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
624     int VAddr0Idx =
625         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
626     int RsrcIdx =
627         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
628     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
629     if (VAddr0Idx >= 0 && NSAArgs > 0) {
630       unsigned NSAWords = (NSAArgs + 3) / 4;
631       if (Bytes.size() < 4 * NSAWords) {
632         Res = MCDisassembler::Fail;
633       } else {
634         for (unsigned i = 0; i < NSAArgs; ++i) {
635           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
636           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
637           MI.insert(MI.begin() + VAddrIdx,
638                     createRegOperand(VAddrRCID, Bytes[i]));
639         }
640         Bytes = Bytes.slice(4 * NSAWords);
641       }
642     }
643 
644     if (Res)
645       Res = convertMIMGInst(MI);
646   }
647 
648   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
649     Res = convertEXPInst(MI);
650 
651   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
652     Res = convertVINTERPInst(MI);
653 
654   if (Res && IsSDWA)
655     Res = convertSDWAInst(MI);
656 
657   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
658                                               AMDGPU::OpName::vdst_in);
659   if (VDstIn_Idx != -1) {
660     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
661                            MCOI::OperandConstraint::TIED_TO);
662     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
663          !MI.getOperand(VDstIn_Idx).isReg() ||
664          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
665       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
666         MI.erase(&MI.getOperand(VDstIn_Idx));
667       insertNamedMCOperand(MI,
668         MCOperand::createReg(MI.getOperand(Tied).getReg()),
669         AMDGPU::OpName::vdst_in);
670     }
671   }
672 
673   int ImmLitIdx =
674       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
675   if (Res && ImmLitIdx != -1)
676     Res = convertFMAanyK(MI, ImmLitIdx);
677 
678   // if the opcode was not recognized we'll assume a Size of 4 bytes
679   // (unless there are fewer bytes left)
680   Size = Res ? (MaxInstBytesNum - Bytes.size())
681              : std::min((size_t)4, Bytes_.size());
682   return Res;
683 }
684 
685 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
686   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
687     // The MCInst still has these fields even though they are no longer encoded
688     // in the GFX11 instruction.
689     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
690     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
691   }
692   return MCDisassembler::Success;
693 }
694 
695 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
696   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
697       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
698       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
699       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
700     // The MCInst has this field that is not directly encoded in the
701     // instruction.
702     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
703   }
704   return MCDisassembler::Success;
705 }
706 
707 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
708   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
709       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
710     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
711       // VOPC - insert clamp
712       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
713   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
714     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
715     if (SDst != -1) {
716       // VOPC - insert VCC register as sdst
717       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
718                            AMDGPU::OpName::sdst);
719     } else {
720       // VOP1/2 - insert omod if present in instruction
721       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
722     }
723   }
724   return MCDisassembler::Success;
725 }
726 
727 // We must check FI == literal to reject not genuine dpp8 insts, and we must
728 // first add optional MI operands to check FI
729 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
730   unsigned Opc = MI.getOpcode();
731   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
732 
733   // Insert dummy unused src modifiers.
734   if (MI.getNumOperands() < DescNumOps &&
735       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
736     insertNamedMCOperand(MI, MCOperand::createImm(0),
737                          AMDGPU::OpName::src0_modifiers);
738 
739   if (MI.getNumOperands() < DescNumOps &&
740       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
741     insertNamedMCOperand(MI, MCOperand::createImm(0),
742                          AMDGPU::OpName::src1_modifiers);
743 
744   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
745 }
746 
747 // Note that before gfx10, the MIMG encoding provided no information about
748 // VADDR size. Consequently, decoded instructions always show address as if it
749 // has 1 dword, which could be not really so.
750 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
751 
752   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
753                                            AMDGPU::OpName::vdst);
754 
755   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
756                                             AMDGPU::OpName::vdata);
757   int VAddr0Idx =
758       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
759   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
760                                             AMDGPU::OpName::dmask);
761 
762   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
763                                             AMDGPU::OpName::tfe);
764   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
765                                             AMDGPU::OpName::d16);
766 
767   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
768   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
769       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
770 
771   assert(VDataIdx != -1);
772   if (BaseOpcode->BVH) {
773     // Add A16 operand for intersect_ray instructions
774     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
775       addOperand(MI, MCOperand::createImm(1));
776     }
777     return MCDisassembler::Success;
778   }
779 
780   bool IsAtomic = (VDstIdx != -1);
781   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
782   bool IsNSA = false;
783   unsigned AddrSize = Info->VAddrDwords;
784 
785   if (isGFX10Plus()) {
786     unsigned DimIdx =
787         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
788     int A16Idx =
789         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
790     const AMDGPU::MIMGDimInfo *Dim =
791         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
792     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
793 
794     AddrSize =
795         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
796 
797     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
798             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
799     if (!IsNSA) {
800       if (AddrSize > 8)
801         AddrSize = 16;
802     } else {
803       if (AddrSize > Info->VAddrDwords) {
804         // The NSA encoding does not contain enough operands for the combination
805         // of base opcode / dimension. Should this be an error?
806         return MCDisassembler::Success;
807       }
808     }
809   }
810 
811   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
812   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
813 
814   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
815   if (D16 && AMDGPU::hasPackedD16(STI)) {
816     DstSize = (DstSize + 1) / 2;
817   }
818 
819   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
820     DstSize += 1;
821 
822   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
823     return MCDisassembler::Success;
824 
825   int NewOpcode =
826       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
827   if (NewOpcode == -1)
828     return MCDisassembler::Success;
829 
830   // Widen the register to the correct number of enabled channels.
831   unsigned NewVdata = AMDGPU::NoRegister;
832   if (DstSize != Info->VDataDwords) {
833     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
834 
835     // Get first subregister of VData
836     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
837     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
838     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
839 
840     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
841                                        &MRI.getRegClass(DataRCID));
842     if (NewVdata == AMDGPU::NoRegister) {
843       // It's possible to encode this such that the low register + enabled
844       // components exceeds the register count.
845       return MCDisassembler::Success;
846     }
847   }
848 
849   // If not using NSA on GFX10+, widen address register to correct size.
850   unsigned NewVAddr0 = AMDGPU::NoRegister;
851   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
852     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
853     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
854     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
855 
856     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
857     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
858                                         &MRI.getRegClass(AddrRCID));
859     if (NewVAddr0 == AMDGPU::NoRegister)
860       return MCDisassembler::Success;
861   }
862 
863   MI.setOpcode(NewOpcode);
864 
865   if (NewVdata != AMDGPU::NoRegister) {
866     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
867 
868     if (IsAtomic) {
869       // Atomic operations have an additional operand (a copy of data)
870       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
871     }
872   }
873 
874   if (NewVAddr0 != AMDGPU::NoRegister) {
875     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
876   } else if (IsNSA) {
877     assert(AddrSize <= Info->VAddrDwords);
878     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
879              MI.begin() + VAddr0Idx + Info->VAddrDwords);
880   }
881 
882   return MCDisassembler::Success;
883 }
884 
885 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
886                                                 int ImmLitIdx) const {
887   assert(HasLiteral && "Should have decoded a literal");
888   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
889   unsigned DescNumOps = Desc.getNumOperands();
890   assert(DescNumOps == MI.getNumOperands());
891   for (unsigned I = 0; I < DescNumOps; ++I) {
892     auto &Op = MI.getOperand(I);
893     auto OpType = Desc.OpInfo[I].OperandType;
894     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
895                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
896     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
897         IsDeferredOp)
898       Op.setImm(Literal);
899   }
900   return MCDisassembler::Success;
901 }
902 
903 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
904   return getContext().getRegisterInfo()->
905     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
906 }
907 
908 inline
909 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
910                                          const Twine& ErrMsg) const {
911   *CommentStream << "Error: " + ErrMsg;
912 
913   // ToDo: add support for error operands to MCInst.h
914   // return MCOperand::createError(V);
915   return MCOperand();
916 }
917 
918 inline
919 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
920   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
921 }
922 
923 inline
924 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
925                                                unsigned Val) const {
926   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
927   if (Val >= RegCl.getNumRegs())
928     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
929                            ": unknown register " + Twine(Val));
930   return createRegOperand(RegCl.getRegister(Val));
931 }
932 
933 inline
934 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
935                                                 unsigned Val) const {
936   // ToDo: SI/CI have 104 SGPRs, VI - 102
937   // Valery: here we accepting as much as we can, let assembler sort it out
938   int shift = 0;
939   switch (SRegClassID) {
940   case AMDGPU::SGPR_32RegClassID:
941   case AMDGPU::TTMP_32RegClassID:
942     break;
943   case AMDGPU::SGPR_64RegClassID:
944   case AMDGPU::TTMP_64RegClassID:
945     shift = 1;
946     break;
947   case AMDGPU::SGPR_128RegClassID:
948   case AMDGPU::TTMP_128RegClassID:
949   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
950   // this bundle?
951   case AMDGPU::SGPR_256RegClassID:
952   case AMDGPU::TTMP_256RegClassID:
953     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
954   // this bundle?
955   case AMDGPU::SGPR_512RegClassID:
956   case AMDGPU::TTMP_512RegClassID:
957     shift = 2;
958     break;
959   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
960   // this bundle?
961   default:
962     llvm_unreachable("unhandled register class");
963   }
964 
965   if (Val % (1 << shift)) {
966     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
967                    << ": scalar reg isn't aligned " << Val;
968   }
969 
970   return createRegOperand(SRegClassID, Val >> shift);
971 }
972 
973 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
974   return decodeSrcOp(OPW32, Val);
975 }
976 
977 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
978   return decodeSrcOp(OPW64, Val);
979 }
980 
981 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
982   return decodeSrcOp(OPW128, Val);
983 }
984 
985 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
986   return decodeSrcOp(OPW16, Val);
987 }
988 
989 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
990   return decodeSrcOp(OPWV216, Val);
991 }
992 
993 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
994   return decodeSrcOp(OPWV232, Val);
995 }
996 
997 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
998   // Some instructions have operand restrictions beyond what the encoding
999   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1000   // high bit.
1001   Val &= 255;
1002 
1003   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1004 }
1005 
1006 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1007   return decodeSrcOp(OPW32, Val);
1008 }
1009 
1010 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1011   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1012 }
1013 
1014 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1015   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1016 }
1017 
1018 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1019   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1020 }
1021 
1022 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1023   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1024 }
1025 
1026 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1027   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1028 }
1029 
1030 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1031   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1032 }
1033 
1034 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1035   return decodeSrcOp(OPW32, Val);
1036 }
1037 
1038 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1039   return decodeSrcOp(OPW64, Val);
1040 }
1041 
1042 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1043   return decodeSrcOp(OPW128, Val);
1044 }
1045 
1046 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1047   using namespace AMDGPU::EncValues;
1048   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1049   return decodeSrcOp(OPW128, Val | IS_VGPR);
1050 }
1051 
1052 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1053   using namespace AMDGPU::EncValues;
1054   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1055   return decodeSrcOp(OPW512, Val | IS_VGPR);
1056 }
1057 
1058 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1059   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1060 }
1061 
1062 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1063   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1064 }
1065 
1066 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1067   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1068 }
1069 
1070 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1071   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1072 }
1073 
1074 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1075   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1076 }
1077 
1078 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1079   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1080 }
1081 
1082 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1083   // table-gen generated disassembler doesn't care about operand types
1084   // leaving only registry class so SSrc_32 operand turns into SReg_32
1085   // and therefore we accept immediates and literals here as well
1086   return decodeSrcOp(OPW32, Val);
1087 }
1088 
1089 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1090   unsigned Val) const {
1091   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1092   return decodeOperand_SReg_32(Val);
1093 }
1094 
1095 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1096   unsigned Val) const {
1097   // SReg_32_XM0 is SReg_32 without EXEC_HI
1098   return decodeOperand_SReg_32(Val);
1099 }
1100 
1101 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1102   // table-gen generated disassembler doesn't care about operand types
1103   // leaving only registry class so SSrc_32 operand turns into SReg_32
1104   // and therefore we accept immediates and literals here as well
1105   return decodeSrcOp(OPW32, Val);
1106 }
1107 
1108 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1109   return decodeSrcOp(OPW64, Val);
1110 }
1111 
1112 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1113   return decodeSrcOp(OPW64, Val);
1114 }
1115 
1116 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1117   return decodeSrcOp(OPW128, Val);
1118 }
1119 
1120 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1121   return decodeDstOp(OPW256, Val);
1122 }
1123 
1124 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1125   return decodeDstOp(OPW512, Val);
1126 }
1127 
1128 // Decode Literals for insts which always have a literal in the encoding
1129 MCOperand
1130 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1131   if (HasLiteral) {
1132     if (Literal != Val)
1133       return errOperand(Val, "More than one unique literal is illegal");
1134   }
1135   HasLiteral = true;
1136   Literal = Val;
1137   return MCOperand::createImm(Literal);
1138 }
1139 
1140 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1141   // For now all literal constants are supposed to be unsigned integer
1142   // ToDo: deal with signed/unsigned 64-bit integer constants
1143   // ToDo: deal with float/double constants
1144   if (!HasLiteral) {
1145     if (Bytes.size() < 4) {
1146       return errOperand(0, "cannot read literal, inst bytes left " +
1147                         Twine(Bytes.size()));
1148     }
1149     HasLiteral = true;
1150     Literal = eatBytes<uint32_t>(Bytes);
1151   }
1152   return MCOperand::createImm(Literal);
1153 }
1154 
1155 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1156   using namespace AMDGPU::EncValues;
1157 
1158   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1159   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1160     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1161     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1162       // Cast prevents negative overflow.
1163 }
1164 
1165 static int64_t getInlineImmVal32(unsigned Imm) {
1166   switch (Imm) {
1167   case 240:
1168     return FloatToBits(0.5f);
1169   case 241:
1170     return FloatToBits(-0.5f);
1171   case 242:
1172     return FloatToBits(1.0f);
1173   case 243:
1174     return FloatToBits(-1.0f);
1175   case 244:
1176     return FloatToBits(2.0f);
1177   case 245:
1178     return FloatToBits(-2.0f);
1179   case 246:
1180     return FloatToBits(4.0f);
1181   case 247:
1182     return FloatToBits(-4.0f);
1183   case 248: // 1 / (2 * PI)
1184     return 0x3e22f983;
1185   default:
1186     llvm_unreachable("invalid fp inline imm");
1187   }
1188 }
1189 
1190 static int64_t getInlineImmVal64(unsigned Imm) {
1191   switch (Imm) {
1192   case 240:
1193     return DoubleToBits(0.5);
1194   case 241:
1195     return DoubleToBits(-0.5);
1196   case 242:
1197     return DoubleToBits(1.0);
1198   case 243:
1199     return DoubleToBits(-1.0);
1200   case 244:
1201     return DoubleToBits(2.0);
1202   case 245:
1203     return DoubleToBits(-2.0);
1204   case 246:
1205     return DoubleToBits(4.0);
1206   case 247:
1207     return DoubleToBits(-4.0);
1208   case 248: // 1 / (2 * PI)
1209     return 0x3fc45f306dc9c882;
1210   default:
1211     llvm_unreachable("invalid fp inline imm");
1212   }
1213 }
1214 
1215 static int64_t getInlineImmVal16(unsigned Imm) {
1216   switch (Imm) {
1217   case 240:
1218     return 0x3800;
1219   case 241:
1220     return 0xB800;
1221   case 242:
1222     return 0x3C00;
1223   case 243:
1224     return 0xBC00;
1225   case 244:
1226     return 0x4000;
1227   case 245:
1228     return 0xC000;
1229   case 246:
1230     return 0x4400;
1231   case 247:
1232     return 0xC400;
1233   case 248: // 1 / (2 * PI)
1234     return 0x3118;
1235   default:
1236     llvm_unreachable("invalid fp inline imm");
1237   }
1238 }
1239 
1240 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1241   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1242       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1243 
1244   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1245   switch (Width) {
1246   case OPW32:
1247   case OPW128: // splat constants
1248   case OPW512:
1249   case OPW1024:
1250   case OPWV232:
1251     return MCOperand::createImm(getInlineImmVal32(Imm));
1252   case OPW64:
1253   case OPW256:
1254     return MCOperand::createImm(getInlineImmVal64(Imm));
1255   case OPW16:
1256   case OPWV216:
1257     return MCOperand::createImm(getInlineImmVal16(Imm));
1258   default:
1259     llvm_unreachable("implement me");
1260   }
1261 }
1262 
1263 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1264   using namespace AMDGPU;
1265 
1266   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1267   switch (Width) {
1268   default: // fall
1269   case OPW32:
1270   case OPW16:
1271   case OPWV216:
1272     return VGPR_32RegClassID;
1273   case OPW64:
1274   case OPWV232: return VReg_64RegClassID;
1275   case OPW96: return VReg_96RegClassID;
1276   case OPW128: return VReg_128RegClassID;
1277   case OPW160: return VReg_160RegClassID;
1278   case OPW256: return VReg_256RegClassID;
1279   case OPW512: return VReg_512RegClassID;
1280   case OPW1024: return VReg_1024RegClassID;
1281   }
1282 }
1283 
1284 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1285   using namespace AMDGPU;
1286 
1287   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1288   switch (Width) {
1289   default: // fall
1290   case OPW32:
1291   case OPW16:
1292   case OPWV216:
1293     return AGPR_32RegClassID;
1294   case OPW64:
1295   case OPWV232: return AReg_64RegClassID;
1296   case OPW96: return AReg_96RegClassID;
1297   case OPW128: return AReg_128RegClassID;
1298   case OPW160: return AReg_160RegClassID;
1299   case OPW256: return AReg_256RegClassID;
1300   case OPW512: return AReg_512RegClassID;
1301   case OPW1024: return AReg_1024RegClassID;
1302   }
1303 }
1304 
1305 
1306 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1307   using namespace AMDGPU;
1308 
1309   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1310   switch (Width) {
1311   default: // fall
1312   case OPW32:
1313   case OPW16:
1314   case OPWV216:
1315     return SGPR_32RegClassID;
1316   case OPW64:
1317   case OPWV232: return SGPR_64RegClassID;
1318   case OPW96: return SGPR_96RegClassID;
1319   case OPW128: return SGPR_128RegClassID;
1320   case OPW160: return SGPR_160RegClassID;
1321   case OPW256: return SGPR_256RegClassID;
1322   case OPW512: return SGPR_512RegClassID;
1323   }
1324 }
1325 
1326 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1327   using namespace AMDGPU;
1328 
1329   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1330   switch (Width) {
1331   default: // fall
1332   case OPW32:
1333   case OPW16:
1334   case OPWV216:
1335     return TTMP_32RegClassID;
1336   case OPW64:
1337   case OPWV232: return TTMP_64RegClassID;
1338   case OPW128: return TTMP_128RegClassID;
1339   case OPW256: return TTMP_256RegClassID;
1340   case OPW512: return TTMP_512RegClassID;
1341   }
1342 }
1343 
1344 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1345   using namespace AMDGPU::EncValues;
1346 
1347   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1348   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1349 
1350   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1351 }
1352 
1353 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1354                                           bool MandatoryLiteral) const {
1355   using namespace AMDGPU::EncValues;
1356 
1357   assert(Val < 1024); // enum10
1358 
1359   bool IsAGPR = Val & 512;
1360   Val &= 511;
1361 
1362   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1363     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1364                                    : getVgprClassId(Width), Val - VGPR_MIN);
1365   }
1366   if (Val <= SGPR_MAX) {
1367     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1368     static_assert(SGPR_MIN == 0, "");
1369     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1370   }
1371 
1372   int TTmpIdx = getTTmpIdx(Val);
1373   if (TTmpIdx >= 0) {
1374     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1375   }
1376 
1377   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1378     return decodeIntImmed(Val);
1379 
1380   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1381     return decodeFPImmed(Width, Val);
1382 
1383   if (Val == LITERAL_CONST) {
1384     if (MandatoryLiteral)
1385       // Keep a sentinel value for deferred setting
1386       return MCOperand::createImm(LITERAL_CONST);
1387     else
1388       return decodeLiteralConstant();
1389   }
1390 
1391   switch (Width) {
1392   case OPW32:
1393   case OPW16:
1394   case OPWV216:
1395     return decodeSpecialReg32(Val);
1396   case OPW64:
1397   case OPWV232:
1398     return decodeSpecialReg64(Val);
1399   default:
1400     llvm_unreachable("unexpected immediate type");
1401   }
1402 }
1403 
1404 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1405   using namespace AMDGPU::EncValues;
1406 
1407   assert(Val < 128);
1408   assert(Width == OPW256 || Width == OPW512);
1409 
1410   if (Val <= SGPR_MAX) {
1411     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1412     static_assert(SGPR_MIN == 0, "");
1413     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1414   }
1415 
1416   int TTmpIdx = getTTmpIdx(Val);
1417   if (TTmpIdx >= 0) {
1418     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1419   }
1420 
1421   llvm_unreachable("unknown dst register");
1422 }
1423 
1424 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1425   using namespace AMDGPU;
1426 
1427   switch (Val) {
1428   case 102: return createRegOperand(FLAT_SCR_LO);
1429   case 103: return createRegOperand(FLAT_SCR_HI);
1430   case 104: return createRegOperand(XNACK_MASK_LO);
1431   case 105: return createRegOperand(XNACK_MASK_HI);
1432   case 106: return createRegOperand(VCC_LO);
1433   case 107: return createRegOperand(VCC_HI);
1434   case 108: return createRegOperand(TBA_LO);
1435   case 109: return createRegOperand(TBA_HI);
1436   case 110: return createRegOperand(TMA_LO);
1437   case 111: return createRegOperand(TMA_HI);
1438   case 124:
1439     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1440   case 125:
1441     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1442   case 126: return createRegOperand(EXEC_LO);
1443   case 127: return createRegOperand(EXEC_HI);
1444   case 235: return createRegOperand(SRC_SHARED_BASE);
1445   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1446   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1447   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1448   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1449   case 251: return createRegOperand(SRC_VCCZ);
1450   case 252: return createRegOperand(SRC_EXECZ);
1451   case 253: return createRegOperand(SRC_SCC);
1452   case 254: return createRegOperand(LDS_DIRECT);
1453   default: break;
1454   }
1455   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1456 }
1457 
1458 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1459   using namespace AMDGPU;
1460 
1461   switch (Val) {
1462   case 102: return createRegOperand(FLAT_SCR);
1463   case 104: return createRegOperand(XNACK_MASK);
1464   case 106: return createRegOperand(VCC);
1465   case 108: return createRegOperand(TBA);
1466   case 110: return createRegOperand(TMA);
1467   case 124:
1468     if (isGFX11Plus())
1469       return createRegOperand(SGPR_NULL);
1470     break;
1471   case 125:
1472     if (!isGFX11Plus())
1473       return createRegOperand(SGPR_NULL);
1474     break;
1475   case 126: return createRegOperand(EXEC);
1476   case 235: return createRegOperand(SRC_SHARED_BASE);
1477   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1478   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1479   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1480   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1481   case 251: return createRegOperand(SRC_VCCZ);
1482   case 252: return createRegOperand(SRC_EXECZ);
1483   case 253: return createRegOperand(SRC_SCC);
1484   default: break;
1485   }
1486   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1487 }
1488 
1489 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1490                                             const unsigned Val) const {
1491   using namespace AMDGPU::SDWA;
1492   using namespace AMDGPU::EncValues;
1493 
1494   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1495       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1496     // XXX: cast to int is needed to avoid stupid warning:
1497     // compare with unsigned is always true
1498     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1499         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1500       return createRegOperand(getVgprClassId(Width),
1501                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1502     }
1503     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1504         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1505                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1506       return createSRegOperand(getSgprClassId(Width),
1507                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1508     }
1509     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1510         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1511       return createSRegOperand(getTtmpClassId(Width),
1512                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1513     }
1514 
1515     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1516 
1517     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1518       return decodeIntImmed(SVal);
1519 
1520     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1521       return decodeFPImmed(Width, SVal);
1522 
1523     return decodeSpecialReg32(SVal);
1524   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1525     return createRegOperand(getVgprClassId(Width), Val);
1526   }
1527   llvm_unreachable("unsupported target");
1528 }
1529 
1530 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1531   return decodeSDWASrc(OPW16, Val);
1532 }
1533 
1534 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1535   return decodeSDWASrc(OPW32, Val);
1536 }
1537 
1538 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1539   using namespace AMDGPU::SDWA;
1540 
1541   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1542           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1543          "SDWAVopcDst should be present only on GFX9+");
1544 
1545   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1546 
1547   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1548     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1549 
1550     int TTmpIdx = getTTmpIdx(Val);
1551     if (TTmpIdx >= 0) {
1552       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1553       return createSRegOperand(TTmpClsId, TTmpIdx);
1554     } else if (Val > SGPR_MAX) {
1555       return IsWave64 ? decodeSpecialReg64(Val)
1556                       : decodeSpecialReg32(Val);
1557     } else {
1558       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1559     }
1560   } else {
1561     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1562   }
1563 }
1564 
1565 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1566   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1567     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1568 }
1569 
1570 bool AMDGPUDisassembler::isVI() const {
1571   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1572 }
1573 
1574 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1575 
1576 bool AMDGPUDisassembler::isGFX90A() const {
1577   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1578 }
1579 
1580 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1581 
1582 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1583 
1584 bool AMDGPUDisassembler::isGFX10Plus() const {
1585   return AMDGPU::isGFX10Plus(STI);
1586 }
1587 
1588 bool AMDGPUDisassembler::isGFX11() const {
1589   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1590 }
1591 
1592 bool AMDGPUDisassembler::isGFX11Plus() const {
1593   return AMDGPU::isGFX11Plus(STI);
1594 }
1595 
1596 
1597 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1598   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1599 }
1600 
1601 //===----------------------------------------------------------------------===//
1602 // AMDGPU specific symbol handling
1603 //===----------------------------------------------------------------------===//
1604 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1605   do {                                                                         \
1606     KdStream << Indent << DIRECTIVE " "                                        \
1607              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1608   } while (0)
1609 
1610 // NOLINTNEXTLINE(readability-identifier-naming)
1611 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1612     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1613   using namespace amdhsa;
1614   StringRef Indent = "\t";
1615 
1616   // We cannot accurately backward compute #VGPRs used from
1617   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1618   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1619   // simply calculate the inverse of what the assembler does.
1620 
1621   uint32_t GranulatedWorkitemVGPRCount =
1622       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1623       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1624 
1625   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1626                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1627 
1628   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1629 
1630   // We cannot backward compute values used to calculate
1631   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1632   // directives can't be computed:
1633   // .amdhsa_reserve_vcc
1634   // .amdhsa_reserve_flat_scratch
1635   // .amdhsa_reserve_xnack_mask
1636   // They take their respective default values if not specified in the assembly.
1637   //
1638   // GRANULATED_WAVEFRONT_SGPR_COUNT
1639   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1640   //
1641   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1642   // are set to 0. So while disassembling we consider that:
1643   //
1644   // GRANULATED_WAVEFRONT_SGPR_COUNT
1645   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1646   //
1647   // The disassembler cannot recover the original values of those 3 directives.
1648 
1649   uint32_t GranulatedWavefrontSGPRCount =
1650       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1651       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1652 
1653   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1654     return MCDisassembler::Fail;
1655 
1656   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1657                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1658 
1659   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1660   if (!hasArchitectedFlatScratch())
1661     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1662   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1663   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1664 
1665   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1666     return MCDisassembler::Fail;
1667 
1668   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1669                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1670   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1671                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1672   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1673                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1674   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1675                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1676 
1677   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1678     return MCDisassembler::Fail;
1679 
1680   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1681 
1682   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1683     return MCDisassembler::Fail;
1684 
1685   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1686 
1687   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1688     return MCDisassembler::Fail;
1689 
1690   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1691     return MCDisassembler::Fail;
1692 
1693   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1694 
1695   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1696     return MCDisassembler::Fail;
1697 
1698   if (isGFX10Plus()) {
1699     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1700                     COMPUTE_PGM_RSRC1_WGP_MODE);
1701     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1702     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1703   }
1704   return MCDisassembler::Success;
1705 }
1706 
1707 // NOLINTNEXTLINE(readability-identifier-naming)
1708 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1709     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1710   using namespace amdhsa;
1711   StringRef Indent = "\t";
1712   if (hasArchitectedFlatScratch())
1713     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1714                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1715   else
1716     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1717                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1718   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1719                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1720   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1721                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1722   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1723                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1724   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1725                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1726   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1727                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1728 
1729   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1730     return MCDisassembler::Fail;
1731 
1732   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1733     return MCDisassembler::Fail;
1734 
1735   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1736     return MCDisassembler::Fail;
1737 
1738   PRINT_DIRECTIVE(
1739       ".amdhsa_exception_fp_ieee_invalid_op",
1740       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1741   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1742                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1743   PRINT_DIRECTIVE(
1744       ".amdhsa_exception_fp_ieee_div_zero",
1745       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1746   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1747                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1748   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1749                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1750   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1751                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1752   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1753                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1754 
1755   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1756     return MCDisassembler::Fail;
1757 
1758   return MCDisassembler::Success;
1759 }
1760 
1761 #undef PRINT_DIRECTIVE
1762 
1763 MCDisassembler::DecodeStatus
1764 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1765     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1766     raw_string_ostream &KdStream) const {
1767 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1768   do {                                                                         \
1769     KdStream << Indent << DIRECTIVE " "                                        \
1770              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1771   } while (0)
1772 
1773   uint16_t TwoByteBuffer = 0;
1774   uint32_t FourByteBuffer = 0;
1775 
1776   StringRef ReservedBytes;
1777   StringRef Indent = "\t";
1778 
1779   assert(Bytes.size() == 64);
1780   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1781 
1782   switch (Cursor.tell()) {
1783   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1784     FourByteBuffer = DE.getU32(Cursor);
1785     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1786              << '\n';
1787     return MCDisassembler::Success;
1788 
1789   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1790     FourByteBuffer = DE.getU32(Cursor);
1791     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1792              << FourByteBuffer << '\n';
1793     return MCDisassembler::Success;
1794 
1795   case amdhsa::KERNARG_SIZE_OFFSET:
1796     FourByteBuffer = DE.getU32(Cursor);
1797     KdStream << Indent << ".amdhsa_kernarg_size "
1798              << FourByteBuffer << '\n';
1799     return MCDisassembler::Success;
1800 
1801   case amdhsa::RESERVED0_OFFSET:
1802     // 4 reserved bytes, must be 0.
1803     ReservedBytes = DE.getBytes(Cursor, 4);
1804     for (int I = 0; I < 4; ++I) {
1805       if (ReservedBytes[I] != 0) {
1806         return MCDisassembler::Fail;
1807       }
1808     }
1809     return MCDisassembler::Success;
1810 
1811   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1812     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1813     // So far no directive controls this for Code Object V3, so simply skip for
1814     // disassembly.
1815     DE.skip(Cursor, 8);
1816     return MCDisassembler::Success;
1817 
1818   case amdhsa::RESERVED1_OFFSET:
1819     // 20 reserved bytes, must be 0.
1820     ReservedBytes = DE.getBytes(Cursor, 20);
1821     for (int I = 0; I < 20; ++I) {
1822       if (ReservedBytes[I] != 0) {
1823         return MCDisassembler::Fail;
1824       }
1825     }
1826     return MCDisassembler::Success;
1827 
1828   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1829     // COMPUTE_PGM_RSRC3
1830     //  - Only set for GFX10, GFX6-9 have this to be 0.
1831     //  - Currently no directives directly control this.
1832     FourByteBuffer = DE.getU32(Cursor);
1833     if (!isGFX10Plus() && FourByteBuffer) {
1834       return MCDisassembler::Fail;
1835     }
1836     return MCDisassembler::Success;
1837 
1838   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1839     FourByteBuffer = DE.getU32(Cursor);
1840     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1841         MCDisassembler::Fail) {
1842       return MCDisassembler::Fail;
1843     }
1844     return MCDisassembler::Success;
1845 
1846   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1847     FourByteBuffer = DE.getU32(Cursor);
1848     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1849         MCDisassembler::Fail) {
1850       return MCDisassembler::Fail;
1851     }
1852     return MCDisassembler::Success;
1853 
1854   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1855     using namespace amdhsa;
1856     TwoByteBuffer = DE.getU16(Cursor);
1857 
1858     if (!hasArchitectedFlatScratch())
1859       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1860                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1861     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1862                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1863     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1864                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1865     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1866                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1867     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1868                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1869     if (!hasArchitectedFlatScratch())
1870       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1871                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1872     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1873                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1874 
1875     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1876       return MCDisassembler::Fail;
1877 
1878     // Reserved for GFX9
1879     if (isGFX9() &&
1880         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1881       return MCDisassembler::Fail;
1882     } else if (isGFX10Plus()) {
1883       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1884                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1885     }
1886 
1887     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1888       return MCDisassembler::Fail;
1889 
1890     return MCDisassembler::Success;
1891 
1892   case amdhsa::RESERVED2_OFFSET:
1893     // 6 bytes from here are reserved, must be 0.
1894     ReservedBytes = DE.getBytes(Cursor, 6);
1895     for (int I = 0; I < 6; ++I) {
1896       if (ReservedBytes[I] != 0)
1897         return MCDisassembler::Fail;
1898     }
1899     return MCDisassembler::Success;
1900 
1901   default:
1902     llvm_unreachable("Unhandled index. Case statements cover everything.");
1903     return MCDisassembler::Fail;
1904   }
1905 #undef PRINT_DIRECTIVE
1906 }
1907 
1908 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1909     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1910   // CP microcode requires the kernel descriptor to be 64 aligned.
1911   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1912     return MCDisassembler::Fail;
1913 
1914   std::string Kd;
1915   raw_string_ostream KdStream(Kd);
1916   KdStream << ".amdhsa_kernel " << KdName << '\n';
1917 
1918   DataExtractor::Cursor C(0);
1919   while (C && C.tell() < Bytes.size()) {
1920     MCDisassembler::DecodeStatus Status =
1921         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1922 
1923     cantFail(C.takeError());
1924 
1925     if (Status == MCDisassembler::Fail)
1926       return MCDisassembler::Fail;
1927   }
1928   KdStream << ".end_amdhsa_kernel\n";
1929   outs() << KdStream.str();
1930   return MCDisassembler::Success;
1931 }
1932 
1933 Optional<MCDisassembler::DecodeStatus>
1934 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1935                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1936                                   raw_ostream &CStream) const {
1937   // Right now only kernel descriptor needs to be handled.
1938   // We ignore all other symbols for target specific handling.
1939   // TODO:
1940   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1941   // Object V2 and V3 when symbols are marked protected.
1942 
1943   // amd_kernel_code_t for Code Object V2.
1944   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1945     Size = 256;
1946     return MCDisassembler::Fail;
1947   }
1948 
1949   // Code Object V3 kernel descriptors.
1950   StringRef Name = Symbol.Name;
1951   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1952     Size = 64; // Size = 64 regardless of success or failure.
1953     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1954   }
1955   return None;
1956 }
1957 
1958 //===----------------------------------------------------------------------===//
1959 // AMDGPUSymbolizer
1960 //===----------------------------------------------------------------------===//
1961 
1962 // Try to find symbol name for specified label
1963 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
1964     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
1965     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
1966     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
1967 
1968   if (!IsBranch) {
1969     return false;
1970   }
1971 
1972   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1973   if (!Symbols)
1974     return false;
1975 
1976   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1977     return Val.Addr == static_cast<uint64_t>(Value) &&
1978            Val.Type == ELF::STT_NOTYPE;
1979   });
1980   if (Result != Symbols->end()) {
1981     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1982     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1983     Inst.addOperand(MCOperand::createExpr(Add));
1984     return true;
1985   }
1986   // Add to list of referenced addresses, so caller can synthesize a label.
1987   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1988   return false;
1989 }
1990 
1991 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1992                                                        int64_t Value,
1993                                                        uint64_t Address) {
1994   llvm_unreachable("unimplemented");
1995 }
1996 
1997 //===----------------------------------------------------------------------===//
1998 // Initialization
1999 //===----------------------------------------------------------------------===//
2000 
2001 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2002                               LLVMOpInfoCallback /*GetOpInfo*/,
2003                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2004                               void *DisInfo,
2005                               MCContext *Ctx,
2006                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2007   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2008 }
2009 
2010 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2011                                                 const MCSubtargetInfo &STI,
2012                                                 MCContext &Ctx) {
2013   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2014 }
2015 
2016 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2017   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2018                                          createAMDGPUDisassembler);
2019   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2020                                        createAMDGPUSymbolizer);
2021 }
2022