xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 07b7fada73da5e371607cf42b60b5d1a2706ad1c)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VRegOrLds_32)
123 DECODE_OPERAND_REG(VS_32)
124 DECODE_OPERAND_REG(VS_64)
125 DECODE_OPERAND_REG(VS_128)
126 
127 DECODE_OPERAND_REG(VReg_64)
128 DECODE_OPERAND_REG(VReg_96)
129 DECODE_OPERAND_REG(VReg_128)
130 DECODE_OPERAND_REG(VReg_256)
131 DECODE_OPERAND_REG(VReg_512)
132 DECODE_OPERAND_REG(VReg_1024)
133 
134 DECODE_OPERAND_REG(SReg_32)
135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
137 DECODE_OPERAND_REG(SRegOrLds_32)
138 DECODE_OPERAND_REG(SReg_64)
139 DECODE_OPERAND_REG(SReg_64_XEXEC)
140 DECODE_OPERAND_REG(SReg_128)
141 DECODE_OPERAND_REG(SReg_256)
142 DECODE_OPERAND_REG(SReg_512)
143 
144 DECODE_OPERAND_REG(AGPR_32)
145 DECODE_OPERAND_REG(AReg_64)
146 DECODE_OPERAND_REG(AReg_128)
147 DECODE_OPERAND_REG(AReg_256)
148 DECODE_OPERAND_REG(AReg_512)
149 DECODE_OPERAND_REG(AReg_1024)
150 DECODE_OPERAND_REG(AV_32)
151 DECODE_OPERAND_REG(AV_64)
152 DECODE_OPERAND_REG(AV_128)
153 DECODE_OPERAND_REG(AVDst_128)
154 DECODE_OPERAND_REG(AVDst_512)
155 
156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
157                                          uint64_t Addr,
158                                          const MCDisassembler *Decoder) {
159   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
161 }
162 
163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
164                                            uint64_t Addr,
165                                            const MCDisassembler *Decoder) {
166   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
167   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
168 }
169 
170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
171                                            uint64_t Addr,
172                                            const MCDisassembler *Decoder) {
173   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
175 }
176 
177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
178                                         uint64_t Addr,
179                                         const MCDisassembler *Decoder) {
180   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
182 }
183 
184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
185                                         uint64_t Addr,
186                                         const MCDisassembler *Decoder) {
187   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190 
191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
192                                           uint64_t Addr,
193                                           const MCDisassembler *Decoder) {
194   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
195   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
196 }
197 
198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
199                                            uint64_t Addr,
200                                            const MCDisassembler *Decoder) {
201   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
202   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
203 }
204 
205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
206                                            uint64_t Addr,
207                                            const MCDisassembler *Decoder) {
208   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
209   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
210 }
211 
212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
213                                            uint64_t Addr,
214                                            const MCDisassembler *Decoder) {
215   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218 
219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
220                                             uint64_t Addr,
221                                             const MCDisassembler *Decoder) {
222   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
223   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
224 }
225 
226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
227                                           uint64_t Addr,
228                                           const MCDisassembler *Decoder) {
229   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
231 }
232 
233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
234                                            uint64_t Addr,
235                                            const MCDisassembler *Decoder) {
236   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
237   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
238 }
239 
240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
241                                            uint64_t Addr,
242                                            const MCDisassembler *Decoder) {
243   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
245 }
246 
247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
248                                            uint64_t Addr,
249                                            const MCDisassembler *Decoder) {
250   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
251   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
252 }
253 
254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
255                                             uint64_t Addr,
256                                             const MCDisassembler *Decoder) {
257   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
258   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
259 }
260 
261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
262                                           uint64_t Addr,
263                                           const MCDisassembler *Decoder) {
264   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
265   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
266 }
267 
268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
269                                           uint64_t Addr,
270                                           const MCDisassembler *Decoder) {
271   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
272   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
273 }
274 
275 static DecodeStatus
276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
277                              const MCDisassembler *Decoder) {
278   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
279   return addOperand(
280       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
281 }
282 
283 static DecodeStatus
284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
285                              const MCDisassembler *Decoder) {
286   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(
288       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
289 }
290 
291 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
292                                           uint64_t Addr, const void *Decoder) {
293   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
294   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
295 }
296 
297 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
298                           const MCRegisterInfo *MRI) {
299   if (OpIdx < 0)
300     return false;
301 
302   const MCOperand &Op = Inst.getOperand(OpIdx);
303   if (!Op.isReg())
304     return false;
305 
306   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
307   auto Reg = Sub ? Sub : Op.getReg();
308   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
309 }
310 
311 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
312                                              AMDGPUDisassembler::OpWidthTy Opw,
313                                              const MCDisassembler *Decoder) {
314   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
315   if (!DAsm->isGFX90A()) {
316     Imm &= 511;
317   } else {
318     // If atomic has both vdata and vdst their register classes are tied.
319     // The bit is decoded along with the vdst, first operand. We need to
320     // change register class to AGPR if vdst was AGPR.
321     // If a DS instruction has both data0 and data1 their register classes
322     // are also tied.
323     unsigned Opc = Inst.getOpcode();
324     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
325     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
326                                                         : AMDGPU::OpName::vdata;
327     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
328     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
329     if ((int)Inst.getNumOperands() == DataIdx) {
330       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
331       if (IsAGPROperand(Inst, DstIdx, MRI))
332         Imm |= 512;
333     }
334 
335     if (TSFlags & SIInstrFlags::DS) {
336       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
337       if ((int)Inst.getNumOperands() == Data2Idx &&
338           IsAGPROperand(Inst, DataIdx, MRI))
339         Imm |= 512;
340     }
341   }
342   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
343 }
344 
345 static DecodeStatus
346 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
347                              const MCDisassembler *Decoder) {
348   return decodeOperand_AVLdSt_Any(Inst, Imm,
349                                   AMDGPUDisassembler::OPW32, Decoder);
350 }
351 
352 static DecodeStatus
353 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
354                              const MCDisassembler *Decoder) {
355   return decodeOperand_AVLdSt_Any(Inst, Imm,
356                                   AMDGPUDisassembler::OPW64, Decoder);
357 }
358 
359 static DecodeStatus
360 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
361                              const MCDisassembler *Decoder) {
362   return decodeOperand_AVLdSt_Any(Inst, Imm,
363                                   AMDGPUDisassembler::OPW96, Decoder);
364 }
365 
366 static DecodeStatus
367 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
368                               const MCDisassembler *Decoder) {
369   return decodeOperand_AVLdSt_Any(Inst, Imm,
370                                   AMDGPUDisassembler::OPW128, Decoder);
371 }
372 
373 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
374                                           uint64_t Addr,
375                                           const MCDisassembler *Decoder) {
376   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
377   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
378 }
379 
380 #define DECODE_SDWA(DecName) \
381 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
382 
383 DECODE_SDWA(Src32)
384 DECODE_SDWA(Src16)
385 DECODE_SDWA(VopcDst)
386 
387 #include "AMDGPUGenDisassemblerTables.inc"
388 
389 //===----------------------------------------------------------------------===//
390 //
391 //===----------------------------------------------------------------------===//
392 
393 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
394   assert(Bytes.size() >= sizeof(T));
395   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
396   Bytes = Bytes.slice(sizeof(T));
397   return Res;
398 }
399 
400 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
401   assert(Bytes.size() >= 12);
402   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
403       Bytes.data());
404   Bytes = Bytes.slice(8);
405   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
406       Bytes.data());
407   Bytes = Bytes.slice(4);
408   return DecoderUInt128(Lo, Hi);
409 }
410 
411 // The disassembler is greedy, so we need to check FI operand value to
412 // not parse a dpp if the correct literal is not set. For dpp16 the
413 // autogenerated decoder checks the dpp literal
414 static bool isValidDPP8(const MCInst &MI) {
415   using namespace llvm::AMDGPU::DPP;
416   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
417   assert(FiIdx != -1);
418   if ((unsigned)FiIdx >= MI.getNumOperands())
419     return false;
420   unsigned Fi = MI.getOperand(FiIdx).getImm();
421   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
422 }
423 
424 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
425                                                 ArrayRef<uint8_t> Bytes_,
426                                                 uint64_t Address,
427                                                 raw_ostream &CS) const {
428   CommentStream = &CS;
429   bool IsSDWA = false;
430 
431   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
432   Bytes = Bytes_.slice(0, MaxInstBytesNum);
433 
434   DecodeStatus Res = MCDisassembler::Fail;
435   do {
436     // ToDo: better to switch encoding length using some bit predicate
437     // but it is unknown yet, so try all we can
438 
439     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
440     // encodings
441     if (isGFX11Plus() && Bytes.size() >= 12 ) {
442       DecoderUInt128 DecW = eat12Bytes(Bytes);
443       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
444                                           Address);
445       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
446         break;
447       MI = MCInst(); // clear
448       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
449                                           Address);
450       if (Res) {
451         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
452           convertVOP3PDPPInst(MI);
453         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
454           convertVOPCDPPInst(MI);
455         break;
456       }
457       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
458       if (Res)
459         break;
460     }
461     // Reinitialize Bytes
462     Bytes = Bytes_.slice(0, MaxInstBytesNum);
463 
464     if (Bytes.size() >= 8) {
465       const uint64_t QW = eatBytes<uint64_t>(Bytes);
466 
467       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
468         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
469         if (Res) {
470           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
471               == -1)
472             break;
473           if (convertDPP8Inst(MI) == MCDisassembler::Success)
474             break;
475           MI = MCInst(); // clear
476         }
477       }
478 
479       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
480       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
481         break;
482       MI = MCInst(); // clear
483 
484       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
485       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
486         break;
487       MI = MCInst(); // clear
488 
489       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
490       if (Res) break;
491 
492       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
493       if (Res) {
494         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
495           convertVOPCDPPInst(MI);
496         break;
497       }
498 
499       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
500       if (Res) { IsSDWA = true;  break; }
501 
502       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
503       if (Res) { IsSDWA = true;  break; }
504 
505       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
506       if (Res) { IsSDWA = true;  break; }
507 
508       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
509         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
510         if (Res)
511           break;
512       }
513 
514       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
515       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
516       // table first so we print the correct name.
517       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
518         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
519         if (Res)
520           break;
521       }
522     }
523 
524     // Reinitialize Bytes as DPP64 could have eaten too much
525     Bytes = Bytes_.slice(0, MaxInstBytesNum);
526 
527     // Try decode 32-bit instruction
528     if (Bytes.size() < 4) break;
529     const uint32_t DW = eatBytes<uint32_t>(Bytes);
530     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
531     if (Res) break;
532 
533     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
534     if (Res) break;
535 
536     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
537     if (Res) break;
538 
539     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
540       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
541       if (Res)
542         break;
543     }
544 
545     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
546       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
547       if (Res) break;
548     }
549 
550     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
551     if (Res) break;
552 
553     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
554     if (Res) break;
555 
556     if (Bytes.size() < 4) break;
557     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
558 
559     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
560       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
561       if (Res)
562         break;
563     }
564 
565     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
566     if (Res) break;
567 
568     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
569     if (Res) break;
570 
571     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
572     if (Res) break;
573 
574     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
575     if (Res) break;
576 
577     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
578   } while (false);
579 
580   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
581               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
582               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
583               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
584               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
585               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
586               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
587               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
588               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
589               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
590               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
591               MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
592               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
593               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx11)) {
594     // Insert dummy unused src2_modifiers.
595     insertNamedMCOperand(MI, MCOperand::createImm(0),
596                          AMDGPU::OpName::src2_modifiers);
597   }
598 
599   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
600           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
601     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
602                                              AMDGPU::OpName::cpol);
603     if (CPolPos != -1) {
604       unsigned CPol =
605           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
606               AMDGPU::CPol::GLC : 0;
607       if (MI.getNumOperands() <= (unsigned)CPolPos) {
608         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
609                              AMDGPU::OpName::cpol);
610       } else if (CPol) {
611         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
612       }
613     }
614   }
615 
616   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
617               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
618              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
619     // GFX90A lost TFE, its place is occupied by ACC.
620     int TFEOpIdx =
621         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
622     if (TFEOpIdx != -1) {
623       auto TFEIter = MI.begin();
624       std::advance(TFEIter, TFEOpIdx);
625       MI.insert(TFEIter, MCOperand::createImm(0));
626     }
627   }
628 
629   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
630               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
631     int SWZOpIdx =
632         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
633     if (SWZOpIdx != -1) {
634       auto SWZIter = MI.begin();
635       std::advance(SWZIter, SWZOpIdx);
636       MI.insert(SWZIter, MCOperand::createImm(0));
637     }
638   }
639 
640   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
641     int VAddr0Idx =
642         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
643     int RsrcIdx =
644         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
645     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
646     if (VAddr0Idx >= 0 && NSAArgs > 0) {
647       unsigned NSAWords = (NSAArgs + 3) / 4;
648       if (Bytes.size() < 4 * NSAWords) {
649         Res = MCDisassembler::Fail;
650       } else {
651         for (unsigned i = 0; i < NSAArgs; ++i) {
652           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
653           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
654           MI.insert(MI.begin() + VAddrIdx,
655                     createRegOperand(VAddrRCID, Bytes[i]));
656         }
657         Bytes = Bytes.slice(4 * NSAWords);
658       }
659     }
660 
661     if (Res)
662       Res = convertMIMGInst(MI);
663   }
664 
665   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
666     Res = convertEXPInst(MI);
667 
668   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
669     Res = convertVINTERPInst(MI);
670 
671   if (Res && IsSDWA)
672     Res = convertSDWAInst(MI);
673 
674   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
675                                               AMDGPU::OpName::vdst_in);
676   if (VDstIn_Idx != -1) {
677     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
678                            MCOI::OperandConstraint::TIED_TO);
679     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
680          !MI.getOperand(VDstIn_Idx).isReg() ||
681          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
682       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
683         MI.erase(&MI.getOperand(VDstIn_Idx));
684       insertNamedMCOperand(MI,
685         MCOperand::createReg(MI.getOperand(Tied).getReg()),
686         AMDGPU::OpName::vdst_in);
687     }
688   }
689 
690   int ImmLitIdx =
691       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
692   if (Res && ImmLitIdx != -1)
693     Res = convertFMAanyK(MI, ImmLitIdx);
694 
695   // if the opcode was not recognized we'll assume a Size of 4 bytes
696   // (unless there are fewer bytes left)
697   Size = Res ? (MaxInstBytesNum - Bytes.size())
698              : std::min((size_t)4, Bytes_.size());
699   return Res;
700 }
701 
702 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
703   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
704     // The MCInst still has these fields even though they are no longer encoded
705     // in the GFX11 instruction.
706     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
707     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
708   }
709   return MCDisassembler::Success;
710 }
711 
712 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
713   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
714       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
715       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
716       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
717     // The MCInst has this field that is not directly encoded in the
718     // instruction.
719     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
720   }
721   return MCDisassembler::Success;
722 }
723 
724 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
725   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
726       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
727     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
728       // VOPC - insert clamp
729       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
730   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
731     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
732     if (SDst != -1) {
733       // VOPC - insert VCC register as sdst
734       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
735                            AMDGPU::OpName::sdst);
736     } else {
737       // VOP1/2 - insert omod if present in instruction
738       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
739     }
740   }
741   return MCDisassembler::Success;
742 }
743 
744 // We must check FI == literal to reject not genuine dpp8 insts, and we must
745 // first add optional MI operands to check FI
746 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
747   unsigned Opc = MI.getOpcode();
748   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
749   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
750     convertVOP3PDPPInst(MI);
751   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
752              AMDGPU::isVOPC64DPP(Opc)) {
753     convertVOPCDPPInst(MI);
754   } else {
755     // Insert dummy unused src modifiers.
756     if (MI.getNumOperands() < DescNumOps &&
757         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
758       insertNamedMCOperand(MI, MCOperand::createImm(0),
759                            AMDGPU::OpName::src0_modifiers);
760 
761     if (MI.getNumOperands() < DescNumOps &&
762         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
763       insertNamedMCOperand(MI, MCOperand::createImm(0),
764                            AMDGPU::OpName::src1_modifiers);
765   }
766   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
767 }
768 
769 // Note that before gfx10, the MIMG encoding provided no information about
770 // VADDR size. Consequently, decoded instructions always show address as if it
771 // has 1 dword, which could be not really so.
772 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
773 
774   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
775                                            AMDGPU::OpName::vdst);
776 
777   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
778                                             AMDGPU::OpName::vdata);
779   int VAddr0Idx =
780       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
781   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
782                                             AMDGPU::OpName::dmask);
783 
784   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
785                                             AMDGPU::OpName::tfe);
786   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
787                                             AMDGPU::OpName::d16);
788 
789   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
790   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
791       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
792 
793   assert(VDataIdx != -1);
794   if (BaseOpcode->BVH) {
795     // Add A16 operand for intersect_ray instructions
796     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
797       addOperand(MI, MCOperand::createImm(1));
798     }
799     return MCDisassembler::Success;
800   }
801 
802   bool IsAtomic = (VDstIdx != -1);
803   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
804   bool IsNSA = false;
805   unsigned AddrSize = Info->VAddrDwords;
806 
807   if (isGFX10Plus()) {
808     unsigned DimIdx =
809         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
810     int A16Idx =
811         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
812     const AMDGPU::MIMGDimInfo *Dim =
813         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
814     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
815 
816     AddrSize =
817         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
818 
819     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
820             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
821     if (!IsNSA) {
822       if (AddrSize > 8)
823         AddrSize = 16;
824     } else {
825       if (AddrSize > Info->VAddrDwords) {
826         // The NSA encoding does not contain enough operands for the combination
827         // of base opcode / dimension. Should this be an error?
828         return MCDisassembler::Success;
829       }
830     }
831   }
832 
833   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
834   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
835 
836   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
837   if (D16 && AMDGPU::hasPackedD16(STI)) {
838     DstSize = (DstSize + 1) / 2;
839   }
840 
841   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
842     DstSize += 1;
843 
844   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
845     return MCDisassembler::Success;
846 
847   int NewOpcode =
848       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
849   if (NewOpcode == -1)
850     return MCDisassembler::Success;
851 
852   // Widen the register to the correct number of enabled channels.
853   unsigned NewVdata = AMDGPU::NoRegister;
854   if (DstSize != Info->VDataDwords) {
855     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
856 
857     // Get first subregister of VData
858     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
859     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
860     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
861 
862     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
863                                        &MRI.getRegClass(DataRCID));
864     if (NewVdata == AMDGPU::NoRegister) {
865       // It's possible to encode this such that the low register + enabled
866       // components exceeds the register count.
867       return MCDisassembler::Success;
868     }
869   }
870 
871   // If not using NSA on GFX10+, widen address register to correct size.
872   unsigned NewVAddr0 = AMDGPU::NoRegister;
873   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
874     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
875     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
876     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
877 
878     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
879     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
880                                         &MRI.getRegClass(AddrRCID));
881     if (NewVAddr0 == AMDGPU::NoRegister)
882       return MCDisassembler::Success;
883   }
884 
885   MI.setOpcode(NewOpcode);
886 
887   if (NewVdata != AMDGPU::NoRegister) {
888     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
889 
890     if (IsAtomic) {
891       // Atomic operations have an additional operand (a copy of data)
892       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
893     }
894   }
895 
896   if (NewVAddr0 != AMDGPU::NoRegister) {
897     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
898   } else if (IsNSA) {
899     assert(AddrSize <= Info->VAddrDwords);
900     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
901              MI.begin() + VAddr0Idx + Info->VAddrDwords);
902   }
903 
904   return MCDisassembler::Success;
905 }
906 
907 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
908 // decoder only adds to src_modifiers, so manually add the bits to the other
909 // operands.
910 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
911   unsigned Opc = MI.getOpcode();
912   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
913 
914   if (MI.getNumOperands() < DescNumOps &&
915       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1)
916     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
917 
918   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
919                         AMDGPU::OpName::src1_modifiers,
920                         AMDGPU::OpName::src2_modifiers};
921   unsigned OpSel = 0;
922   unsigned OpSelHi = 0;
923   unsigned NegLo = 0;
924   unsigned NegHi = 0;
925   for (int J = 0; J < 3; ++J) {
926     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
927     if (OpIdx == -1)
928       break;
929     unsigned Val = MI.getOperand(OpIdx).getImm();
930 
931     OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
932     OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
933     NegLo |= !!(Val & SISrcMods::NEG) << J;
934     NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
935   }
936 
937   if (MI.getNumOperands() < DescNumOps &&
938       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1)
939     insertNamedMCOperand(MI, MCOperand::createImm(OpSel),
940                          AMDGPU::OpName::op_sel);
941   if (MI.getNumOperands() < DescNumOps &&
942       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1)
943     insertNamedMCOperand(MI, MCOperand::createImm(OpSelHi),
944                          AMDGPU::OpName::op_sel_hi);
945   if (MI.getNumOperands() < DescNumOps &&
946       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1)
947     insertNamedMCOperand(MI, MCOperand::createImm(NegLo),
948                          AMDGPU::OpName::neg_lo);
949   if (MI.getNumOperands() < DescNumOps &&
950       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1)
951     insertNamedMCOperand(MI, MCOperand::createImm(NegHi),
952                          AMDGPU::OpName::neg_hi);
953 
954   return MCDisassembler::Success;
955 }
956 
957 // Create dummy old operand and insert optional operands
958 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
959   unsigned Opc = MI.getOpcode();
960   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
961 
962   if (MI.getNumOperands() < DescNumOps &&
963       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::old) != -1)
964     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
965 
966   if (MI.getNumOperands() < DescNumOps &&
967       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
968     insertNamedMCOperand(MI, MCOperand::createImm(0),
969                          AMDGPU::OpName::src0_modifiers);
970 
971   if (MI.getNumOperands() < DescNumOps &&
972       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
973     insertNamedMCOperand(MI, MCOperand::createImm(0),
974                          AMDGPU::OpName::src1_modifiers);
975   return MCDisassembler::Success;
976 }
977 
978 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
979                                                 int ImmLitIdx) const {
980   assert(HasLiteral && "Should have decoded a literal");
981   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
982   unsigned DescNumOps = Desc.getNumOperands();
983   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
984                        AMDGPU::OpName::immDeferred);
985   assert(DescNumOps == MI.getNumOperands());
986   for (unsigned I = 0; I < DescNumOps; ++I) {
987     auto &Op = MI.getOperand(I);
988     auto OpType = Desc.OpInfo[I].OperandType;
989     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
990                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
991     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
992         IsDeferredOp)
993       Op.setImm(Literal);
994   }
995   return MCDisassembler::Success;
996 }
997 
998 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
999   return getContext().getRegisterInfo()->
1000     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1001 }
1002 
1003 inline
1004 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1005                                          const Twine& ErrMsg) const {
1006   *CommentStream << "Error: " + ErrMsg;
1007 
1008   // ToDo: add support for error operands to MCInst.h
1009   // return MCOperand::createError(V);
1010   return MCOperand();
1011 }
1012 
1013 inline
1014 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1015   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1016 }
1017 
1018 inline
1019 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1020                                                unsigned Val) const {
1021   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1022   if (Val >= RegCl.getNumRegs())
1023     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1024                            ": unknown register " + Twine(Val));
1025   return createRegOperand(RegCl.getRegister(Val));
1026 }
1027 
1028 inline
1029 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1030                                                 unsigned Val) const {
1031   // ToDo: SI/CI have 104 SGPRs, VI - 102
1032   // Valery: here we accepting as much as we can, let assembler sort it out
1033   int shift = 0;
1034   switch (SRegClassID) {
1035   case AMDGPU::SGPR_32RegClassID:
1036   case AMDGPU::TTMP_32RegClassID:
1037     break;
1038   case AMDGPU::SGPR_64RegClassID:
1039   case AMDGPU::TTMP_64RegClassID:
1040     shift = 1;
1041     break;
1042   case AMDGPU::SGPR_128RegClassID:
1043   case AMDGPU::TTMP_128RegClassID:
1044   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1045   // this bundle?
1046   case AMDGPU::SGPR_256RegClassID:
1047   case AMDGPU::TTMP_256RegClassID:
1048     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1049   // this bundle?
1050   case AMDGPU::SGPR_512RegClassID:
1051   case AMDGPU::TTMP_512RegClassID:
1052     shift = 2;
1053     break;
1054   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1055   // this bundle?
1056   default:
1057     llvm_unreachable("unhandled register class");
1058   }
1059 
1060   if (Val % (1 << shift)) {
1061     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1062                    << ": scalar reg isn't aligned " << Val;
1063   }
1064 
1065   return createRegOperand(SRegClassID, Val >> shift);
1066 }
1067 
1068 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1069   return decodeSrcOp(OPW32, Val);
1070 }
1071 
1072 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1073   return decodeSrcOp(OPW64, Val);
1074 }
1075 
1076 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1077   return decodeSrcOp(OPW128, Val);
1078 }
1079 
1080 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1081   return decodeSrcOp(OPW16, Val);
1082 }
1083 
1084 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1085   return decodeSrcOp(OPWV216, Val);
1086 }
1087 
1088 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1089   return decodeSrcOp(OPWV232, Val);
1090 }
1091 
1092 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1093   // Some instructions have operand restrictions beyond what the encoding
1094   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1095   // high bit.
1096   Val &= 255;
1097 
1098   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1099 }
1100 
1101 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1102   return decodeSrcOp(OPW32, Val);
1103 }
1104 
1105 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1106   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1107 }
1108 
1109 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1110   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1111 }
1112 
1113 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1114   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1115 }
1116 
1117 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1118   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1119 }
1120 
1121 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1122   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1123 }
1124 
1125 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1126   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1127 }
1128 
1129 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1130   return decodeSrcOp(OPW32, Val);
1131 }
1132 
1133 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1134   return decodeSrcOp(OPW64, Val);
1135 }
1136 
1137 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1138   return decodeSrcOp(OPW128, Val);
1139 }
1140 
1141 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1142   using namespace AMDGPU::EncValues;
1143   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1144   return decodeSrcOp(OPW128, Val | IS_VGPR);
1145 }
1146 
1147 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1148   using namespace AMDGPU::EncValues;
1149   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1150   return decodeSrcOp(OPW512, Val | IS_VGPR);
1151 }
1152 
1153 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1154   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1155 }
1156 
1157 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1158   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1159 }
1160 
1161 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1162   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1163 }
1164 
1165 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1166   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1167 }
1168 
1169 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1170   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1171 }
1172 
1173 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1174   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1175 }
1176 
1177 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1178   // table-gen generated disassembler doesn't care about operand types
1179   // leaving only registry class so SSrc_32 operand turns into SReg_32
1180   // and therefore we accept immediates and literals here as well
1181   return decodeSrcOp(OPW32, Val);
1182 }
1183 
1184 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1185   unsigned Val) const {
1186   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1187   return decodeOperand_SReg_32(Val);
1188 }
1189 
1190 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1191   unsigned Val) const {
1192   // SReg_32_XM0 is SReg_32 without EXEC_HI
1193   return decodeOperand_SReg_32(Val);
1194 }
1195 
1196 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1197   // table-gen generated disassembler doesn't care about operand types
1198   // leaving only registry class so SSrc_32 operand turns into SReg_32
1199   // and therefore we accept immediates and literals here as well
1200   return decodeSrcOp(OPW32, Val);
1201 }
1202 
1203 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1204   return decodeSrcOp(OPW64, Val);
1205 }
1206 
1207 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1208   return decodeSrcOp(OPW64, Val);
1209 }
1210 
1211 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1212   return decodeSrcOp(OPW128, Val);
1213 }
1214 
1215 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1216   return decodeDstOp(OPW256, Val);
1217 }
1218 
1219 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1220   return decodeDstOp(OPW512, Val);
1221 }
1222 
1223 // Decode Literals for insts which always have a literal in the encoding
1224 MCOperand
1225 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1226   if (HasLiteral) {
1227     assert(
1228         AMDGPU::hasVOPD(STI) &&
1229         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1230     if (Literal != Val)
1231       return errOperand(Val, "More than one unique literal is illegal");
1232   }
1233   HasLiteral = true;
1234   Literal = Val;
1235   return MCOperand::createImm(Literal);
1236 }
1237 
1238 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1239   // For now all literal constants are supposed to be unsigned integer
1240   // ToDo: deal with signed/unsigned 64-bit integer constants
1241   // ToDo: deal with float/double constants
1242   if (!HasLiteral) {
1243     if (Bytes.size() < 4) {
1244       return errOperand(0, "cannot read literal, inst bytes left " +
1245                         Twine(Bytes.size()));
1246     }
1247     HasLiteral = true;
1248     Literal = eatBytes<uint32_t>(Bytes);
1249   }
1250   return MCOperand::createImm(Literal);
1251 }
1252 
1253 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1254   using namespace AMDGPU::EncValues;
1255 
1256   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1257   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1258     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1259     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1260       // Cast prevents negative overflow.
1261 }
1262 
1263 static int64_t getInlineImmVal32(unsigned Imm) {
1264   switch (Imm) {
1265   case 240:
1266     return FloatToBits(0.5f);
1267   case 241:
1268     return FloatToBits(-0.5f);
1269   case 242:
1270     return FloatToBits(1.0f);
1271   case 243:
1272     return FloatToBits(-1.0f);
1273   case 244:
1274     return FloatToBits(2.0f);
1275   case 245:
1276     return FloatToBits(-2.0f);
1277   case 246:
1278     return FloatToBits(4.0f);
1279   case 247:
1280     return FloatToBits(-4.0f);
1281   case 248: // 1 / (2 * PI)
1282     return 0x3e22f983;
1283   default:
1284     llvm_unreachable("invalid fp inline imm");
1285   }
1286 }
1287 
1288 static int64_t getInlineImmVal64(unsigned Imm) {
1289   switch (Imm) {
1290   case 240:
1291     return DoubleToBits(0.5);
1292   case 241:
1293     return DoubleToBits(-0.5);
1294   case 242:
1295     return DoubleToBits(1.0);
1296   case 243:
1297     return DoubleToBits(-1.0);
1298   case 244:
1299     return DoubleToBits(2.0);
1300   case 245:
1301     return DoubleToBits(-2.0);
1302   case 246:
1303     return DoubleToBits(4.0);
1304   case 247:
1305     return DoubleToBits(-4.0);
1306   case 248: // 1 / (2 * PI)
1307     return 0x3fc45f306dc9c882;
1308   default:
1309     llvm_unreachable("invalid fp inline imm");
1310   }
1311 }
1312 
1313 static int64_t getInlineImmVal16(unsigned Imm) {
1314   switch (Imm) {
1315   case 240:
1316     return 0x3800;
1317   case 241:
1318     return 0xB800;
1319   case 242:
1320     return 0x3C00;
1321   case 243:
1322     return 0xBC00;
1323   case 244:
1324     return 0x4000;
1325   case 245:
1326     return 0xC000;
1327   case 246:
1328     return 0x4400;
1329   case 247:
1330     return 0xC400;
1331   case 248: // 1 / (2 * PI)
1332     return 0x3118;
1333   default:
1334     llvm_unreachable("invalid fp inline imm");
1335   }
1336 }
1337 
1338 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1339   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1340       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1341 
1342   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1343   switch (Width) {
1344   case OPW32:
1345   case OPW128: // splat constants
1346   case OPW512:
1347   case OPW1024:
1348   case OPWV232:
1349     return MCOperand::createImm(getInlineImmVal32(Imm));
1350   case OPW64:
1351   case OPW256:
1352     return MCOperand::createImm(getInlineImmVal64(Imm));
1353   case OPW16:
1354   case OPWV216:
1355     return MCOperand::createImm(getInlineImmVal16(Imm));
1356   default:
1357     llvm_unreachable("implement me");
1358   }
1359 }
1360 
1361 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1362   using namespace AMDGPU;
1363 
1364   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1365   switch (Width) {
1366   default: // fall
1367   case OPW32:
1368   case OPW16:
1369   case OPWV216:
1370     return VGPR_32RegClassID;
1371   case OPW64:
1372   case OPWV232: return VReg_64RegClassID;
1373   case OPW96: return VReg_96RegClassID;
1374   case OPW128: return VReg_128RegClassID;
1375   case OPW160: return VReg_160RegClassID;
1376   case OPW256: return VReg_256RegClassID;
1377   case OPW512: return VReg_512RegClassID;
1378   case OPW1024: return VReg_1024RegClassID;
1379   }
1380 }
1381 
1382 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1383   using namespace AMDGPU;
1384 
1385   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1386   switch (Width) {
1387   default: // fall
1388   case OPW32:
1389   case OPW16:
1390   case OPWV216:
1391     return AGPR_32RegClassID;
1392   case OPW64:
1393   case OPWV232: return AReg_64RegClassID;
1394   case OPW96: return AReg_96RegClassID;
1395   case OPW128: return AReg_128RegClassID;
1396   case OPW160: return AReg_160RegClassID;
1397   case OPW256: return AReg_256RegClassID;
1398   case OPW512: return AReg_512RegClassID;
1399   case OPW1024: return AReg_1024RegClassID;
1400   }
1401 }
1402 
1403 
1404 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1405   using namespace AMDGPU;
1406 
1407   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1408   switch (Width) {
1409   default: // fall
1410   case OPW32:
1411   case OPW16:
1412   case OPWV216:
1413     return SGPR_32RegClassID;
1414   case OPW64:
1415   case OPWV232: return SGPR_64RegClassID;
1416   case OPW96: return SGPR_96RegClassID;
1417   case OPW128: return SGPR_128RegClassID;
1418   case OPW160: return SGPR_160RegClassID;
1419   case OPW256: return SGPR_256RegClassID;
1420   case OPW512: return SGPR_512RegClassID;
1421   }
1422 }
1423 
1424 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1425   using namespace AMDGPU;
1426 
1427   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1428   switch (Width) {
1429   default: // fall
1430   case OPW32:
1431   case OPW16:
1432   case OPWV216:
1433     return TTMP_32RegClassID;
1434   case OPW64:
1435   case OPWV232: return TTMP_64RegClassID;
1436   case OPW128: return TTMP_128RegClassID;
1437   case OPW256: return TTMP_256RegClassID;
1438   case OPW512: return TTMP_512RegClassID;
1439   }
1440 }
1441 
1442 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1443   using namespace AMDGPU::EncValues;
1444 
1445   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1446   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1447 
1448   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1449 }
1450 
1451 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1452                                           bool MandatoryLiteral) const {
1453   using namespace AMDGPU::EncValues;
1454 
1455   assert(Val < 1024); // enum10
1456 
1457   bool IsAGPR = Val & 512;
1458   Val &= 511;
1459 
1460   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1461     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1462                                    : getVgprClassId(Width), Val - VGPR_MIN);
1463   }
1464   if (Val <= SGPR_MAX) {
1465     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1466     static_assert(SGPR_MIN == 0, "");
1467     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1468   }
1469 
1470   int TTmpIdx = getTTmpIdx(Val);
1471   if (TTmpIdx >= 0) {
1472     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1473   }
1474 
1475   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1476     return decodeIntImmed(Val);
1477 
1478   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1479     return decodeFPImmed(Width, Val);
1480 
1481   if (Val == LITERAL_CONST) {
1482     if (MandatoryLiteral)
1483       // Keep a sentinel value for deferred setting
1484       return MCOperand::createImm(LITERAL_CONST);
1485     else
1486       return decodeLiteralConstant();
1487   }
1488 
1489   switch (Width) {
1490   case OPW32:
1491   case OPW16:
1492   case OPWV216:
1493     return decodeSpecialReg32(Val);
1494   case OPW64:
1495   case OPWV232:
1496     return decodeSpecialReg64(Val);
1497   default:
1498     llvm_unreachable("unexpected immediate type");
1499   }
1500 }
1501 
1502 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1503   using namespace AMDGPU::EncValues;
1504 
1505   assert(Val < 128);
1506   assert(Width == OPW256 || Width == OPW512);
1507 
1508   if (Val <= SGPR_MAX) {
1509     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1510     static_assert(SGPR_MIN == 0, "");
1511     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1512   }
1513 
1514   int TTmpIdx = getTTmpIdx(Val);
1515   if (TTmpIdx >= 0) {
1516     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1517   }
1518 
1519   llvm_unreachable("unknown dst register");
1520 }
1521 
1522 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1523 // opposite of bit 0 of DstX.
1524 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1525                                                unsigned Val) const {
1526   int VDstXInd =
1527       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1528   assert(VDstXInd != -1);
1529   assert(Inst.getOperand(VDstXInd).isReg());
1530   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1531   Val |= ~XDstReg & 1;
1532   auto Width = llvm::AMDGPUDisassembler::OPW32;
1533   return createRegOperand(getVgprClassId(Width), Val);
1534 }
1535 
1536 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1537   using namespace AMDGPU;
1538 
1539   switch (Val) {
1540   case 102: return createRegOperand(FLAT_SCR_LO);
1541   case 103: return createRegOperand(FLAT_SCR_HI);
1542   case 104: return createRegOperand(XNACK_MASK_LO);
1543   case 105: return createRegOperand(XNACK_MASK_HI);
1544   case 106: return createRegOperand(VCC_LO);
1545   case 107: return createRegOperand(VCC_HI);
1546   case 108: return createRegOperand(TBA_LO);
1547   case 109: return createRegOperand(TBA_HI);
1548   case 110: return createRegOperand(TMA_LO);
1549   case 111: return createRegOperand(TMA_HI);
1550   case 124:
1551     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1552   case 125:
1553     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1554   case 126: return createRegOperand(EXEC_LO);
1555   case 127: return createRegOperand(EXEC_HI);
1556   case 235: return createRegOperand(SRC_SHARED_BASE);
1557   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1558   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1559   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1560   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1561   case 251: return createRegOperand(SRC_VCCZ);
1562   case 252: return createRegOperand(SRC_EXECZ);
1563   case 253: return createRegOperand(SRC_SCC);
1564   case 254: return createRegOperand(LDS_DIRECT);
1565   default: break;
1566   }
1567   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1568 }
1569 
1570 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1571   using namespace AMDGPU;
1572 
1573   switch (Val) {
1574   case 102: return createRegOperand(FLAT_SCR);
1575   case 104: return createRegOperand(XNACK_MASK);
1576   case 106: return createRegOperand(VCC);
1577   case 108: return createRegOperand(TBA);
1578   case 110: return createRegOperand(TMA);
1579   case 124:
1580     if (isGFX11Plus())
1581       return createRegOperand(SGPR_NULL);
1582     break;
1583   case 125:
1584     if (!isGFX11Plus())
1585       return createRegOperand(SGPR_NULL);
1586     break;
1587   case 126: return createRegOperand(EXEC);
1588   case 235: return createRegOperand(SRC_SHARED_BASE);
1589   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1590   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1591   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1592   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1593   case 251: return createRegOperand(SRC_VCCZ);
1594   case 252: return createRegOperand(SRC_EXECZ);
1595   case 253: return createRegOperand(SRC_SCC);
1596   default: break;
1597   }
1598   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1599 }
1600 
1601 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1602                                             const unsigned Val) const {
1603   using namespace AMDGPU::SDWA;
1604   using namespace AMDGPU::EncValues;
1605 
1606   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1607       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1608     // XXX: cast to int is needed to avoid stupid warning:
1609     // compare with unsigned is always true
1610     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1611         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1612       return createRegOperand(getVgprClassId(Width),
1613                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1614     }
1615     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1616         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1617                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1618       return createSRegOperand(getSgprClassId(Width),
1619                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1620     }
1621     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1622         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1623       return createSRegOperand(getTtmpClassId(Width),
1624                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1625     }
1626 
1627     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1628 
1629     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1630       return decodeIntImmed(SVal);
1631 
1632     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1633       return decodeFPImmed(Width, SVal);
1634 
1635     return decodeSpecialReg32(SVal);
1636   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1637     return createRegOperand(getVgprClassId(Width), Val);
1638   }
1639   llvm_unreachable("unsupported target");
1640 }
1641 
1642 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1643   return decodeSDWASrc(OPW16, Val);
1644 }
1645 
1646 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1647   return decodeSDWASrc(OPW32, Val);
1648 }
1649 
1650 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1651   using namespace AMDGPU::SDWA;
1652 
1653   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1654           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1655          "SDWAVopcDst should be present only on GFX9+");
1656 
1657   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1658 
1659   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1660     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1661 
1662     int TTmpIdx = getTTmpIdx(Val);
1663     if (TTmpIdx >= 0) {
1664       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1665       return createSRegOperand(TTmpClsId, TTmpIdx);
1666     } else if (Val > SGPR_MAX) {
1667       return IsWave64 ? decodeSpecialReg64(Val)
1668                       : decodeSpecialReg32(Val);
1669     } else {
1670       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1671     }
1672   } else {
1673     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1674   }
1675 }
1676 
1677 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1678   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1679     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1680 }
1681 
1682 bool AMDGPUDisassembler::isVI() const {
1683   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1684 }
1685 
1686 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1687 
1688 bool AMDGPUDisassembler::isGFX90A() const {
1689   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1690 }
1691 
1692 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1693 
1694 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1695 
1696 bool AMDGPUDisassembler::isGFX10Plus() const {
1697   return AMDGPU::isGFX10Plus(STI);
1698 }
1699 
1700 bool AMDGPUDisassembler::isGFX11() const {
1701   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1702 }
1703 
1704 bool AMDGPUDisassembler::isGFX11Plus() const {
1705   return AMDGPU::isGFX11Plus(STI);
1706 }
1707 
1708 
1709 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1710   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1711 }
1712 
1713 //===----------------------------------------------------------------------===//
1714 // AMDGPU specific symbol handling
1715 //===----------------------------------------------------------------------===//
1716 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1717   do {                                                                         \
1718     KdStream << Indent << DIRECTIVE " "                                        \
1719              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1720   } while (0)
1721 
1722 // NOLINTNEXTLINE(readability-identifier-naming)
1723 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1724     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1725   using namespace amdhsa;
1726   StringRef Indent = "\t";
1727 
1728   // We cannot accurately backward compute #VGPRs used from
1729   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1730   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1731   // simply calculate the inverse of what the assembler does.
1732 
1733   uint32_t GranulatedWorkitemVGPRCount =
1734       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1735       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1736 
1737   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1738                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1739 
1740   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1741 
1742   // We cannot backward compute values used to calculate
1743   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1744   // directives can't be computed:
1745   // .amdhsa_reserve_vcc
1746   // .amdhsa_reserve_flat_scratch
1747   // .amdhsa_reserve_xnack_mask
1748   // They take their respective default values if not specified in the assembly.
1749   //
1750   // GRANULATED_WAVEFRONT_SGPR_COUNT
1751   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1752   //
1753   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1754   // are set to 0. So while disassembling we consider that:
1755   //
1756   // GRANULATED_WAVEFRONT_SGPR_COUNT
1757   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1758   //
1759   // The disassembler cannot recover the original values of those 3 directives.
1760 
1761   uint32_t GranulatedWavefrontSGPRCount =
1762       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1763       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1764 
1765   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1766     return MCDisassembler::Fail;
1767 
1768   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1769                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1770 
1771   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1772   if (!hasArchitectedFlatScratch())
1773     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1774   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1775   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1776 
1777   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1778     return MCDisassembler::Fail;
1779 
1780   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1781                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1782   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1783                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1784   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1785                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1786   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1787                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1788 
1789   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1790     return MCDisassembler::Fail;
1791 
1792   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1793 
1794   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1795     return MCDisassembler::Fail;
1796 
1797   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1798 
1799   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1800     return MCDisassembler::Fail;
1801 
1802   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1803     return MCDisassembler::Fail;
1804 
1805   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1806 
1807   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1808     return MCDisassembler::Fail;
1809 
1810   if (isGFX10Plus()) {
1811     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1812                     COMPUTE_PGM_RSRC1_WGP_MODE);
1813     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1814     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1815   }
1816   return MCDisassembler::Success;
1817 }
1818 
1819 // NOLINTNEXTLINE(readability-identifier-naming)
1820 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1821     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1822   using namespace amdhsa;
1823   StringRef Indent = "\t";
1824   if (hasArchitectedFlatScratch())
1825     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1826                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1827   else
1828     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1829                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1830   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1831                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1832   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1833                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1834   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1835                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1836   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1837                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1838   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1839                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1840 
1841   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1842     return MCDisassembler::Fail;
1843 
1844   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1845     return MCDisassembler::Fail;
1846 
1847   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1848     return MCDisassembler::Fail;
1849 
1850   PRINT_DIRECTIVE(
1851       ".amdhsa_exception_fp_ieee_invalid_op",
1852       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1853   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1854                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1855   PRINT_DIRECTIVE(
1856       ".amdhsa_exception_fp_ieee_div_zero",
1857       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1858   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1859                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1860   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1861                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1862   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1863                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1864   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1865                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1866 
1867   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1868     return MCDisassembler::Fail;
1869 
1870   return MCDisassembler::Success;
1871 }
1872 
1873 #undef PRINT_DIRECTIVE
1874 
1875 MCDisassembler::DecodeStatus
1876 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1877     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1878     raw_string_ostream &KdStream) const {
1879 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1880   do {                                                                         \
1881     KdStream << Indent << DIRECTIVE " "                                        \
1882              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1883   } while (0)
1884 
1885   uint16_t TwoByteBuffer = 0;
1886   uint32_t FourByteBuffer = 0;
1887 
1888   StringRef ReservedBytes;
1889   StringRef Indent = "\t";
1890 
1891   assert(Bytes.size() == 64);
1892   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1893 
1894   switch (Cursor.tell()) {
1895   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1896     FourByteBuffer = DE.getU32(Cursor);
1897     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1898              << '\n';
1899     return MCDisassembler::Success;
1900 
1901   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1902     FourByteBuffer = DE.getU32(Cursor);
1903     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1904              << FourByteBuffer << '\n';
1905     return MCDisassembler::Success;
1906 
1907   case amdhsa::KERNARG_SIZE_OFFSET:
1908     FourByteBuffer = DE.getU32(Cursor);
1909     KdStream << Indent << ".amdhsa_kernarg_size "
1910              << FourByteBuffer << '\n';
1911     return MCDisassembler::Success;
1912 
1913   case amdhsa::RESERVED0_OFFSET:
1914     // 4 reserved bytes, must be 0.
1915     ReservedBytes = DE.getBytes(Cursor, 4);
1916     for (int I = 0; I < 4; ++I) {
1917       if (ReservedBytes[I] != 0) {
1918         return MCDisassembler::Fail;
1919       }
1920     }
1921     return MCDisassembler::Success;
1922 
1923   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1924     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1925     // So far no directive controls this for Code Object V3, so simply skip for
1926     // disassembly.
1927     DE.skip(Cursor, 8);
1928     return MCDisassembler::Success;
1929 
1930   case amdhsa::RESERVED1_OFFSET:
1931     // 20 reserved bytes, must be 0.
1932     ReservedBytes = DE.getBytes(Cursor, 20);
1933     for (int I = 0; I < 20; ++I) {
1934       if (ReservedBytes[I] != 0) {
1935         return MCDisassembler::Fail;
1936       }
1937     }
1938     return MCDisassembler::Success;
1939 
1940   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1941     // COMPUTE_PGM_RSRC3
1942     //  - Only set for GFX10, GFX6-9 have this to be 0.
1943     //  - Currently no directives directly control this.
1944     FourByteBuffer = DE.getU32(Cursor);
1945     if (!isGFX10Plus() && FourByteBuffer) {
1946       return MCDisassembler::Fail;
1947     }
1948     return MCDisassembler::Success;
1949 
1950   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1951     FourByteBuffer = DE.getU32(Cursor);
1952     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1953         MCDisassembler::Fail) {
1954       return MCDisassembler::Fail;
1955     }
1956     return MCDisassembler::Success;
1957 
1958   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1959     FourByteBuffer = DE.getU32(Cursor);
1960     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1961         MCDisassembler::Fail) {
1962       return MCDisassembler::Fail;
1963     }
1964     return MCDisassembler::Success;
1965 
1966   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1967     using namespace amdhsa;
1968     TwoByteBuffer = DE.getU16(Cursor);
1969 
1970     if (!hasArchitectedFlatScratch())
1971       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1972                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1973     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1974                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1975     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1976                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1977     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1978                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1979     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1980                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1981     if (!hasArchitectedFlatScratch())
1982       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1983                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1984     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1985                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1986 
1987     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1988       return MCDisassembler::Fail;
1989 
1990     // Reserved for GFX9
1991     if (isGFX9() &&
1992         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1993       return MCDisassembler::Fail;
1994     } else if (isGFX10Plus()) {
1995       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1996                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1997     }
1998 
1999     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2000       return MCDisassembler::Fail;
2001 
2002     return MCDisassembler::Success;
2003 
2004   case amdhsa::RESERVED2_OFFSET:
2005     // 6 bytes from here are reserved, must be 0.
2006     ReservedBytes = DE.getBytes(Cursor, 6);
2007     for (int I = 0; I < 6; ++I) {
2008       if (ReservedBytes[I] != 0)
2009         return MCDisassembler::Fail;
2010     }
2011     return MCDisassembler::Success;
2012 
2013   default:
2014     llvm_unreachable("Unhandled index. Case statements cover everything.");
2015     return MCDisassembler::Fail;
2016   }
2017 #undef PRINT_DIRECTIVE
2018 }
2019 
2020 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2021     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2022   // CP microcode requires the kernel descriptor to be 64 aligned.
2023   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2024     return MCDisassembler::Fail;
2025 
2026   std::string Kd;
2027   raw_string_ostream KdStream(Kd);
2028   KdStream << ".amdhsa_kernel " << KdName << '\n';
2029 
2030   DataExtractor::Cursor C(0);
2031   while (C && C.tell() < Bytes.size()) {
2032     MCDisassembler::DecodeStatus Status =
2033         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2034 
2035     cantFail(C.takeError());
2036 
2037     if (Status == MCDisassembler::Fail)
2038       return MCDisassembler::Fail;
2039   }
2040   KdStream << ".end_amdhsa_kernel\n";
2041   outs() << KdStream.str();
2042   return MCDisassembler::Success;
2043 }
2044 
2045 Optional<MCDisassembler::DecodeStatus>
2046 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2047                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2048                                   raw_ostream &CStream) const {
2049   // Right now only kernel descriptor needs to be handled.
2050   // We ignore all other symbols for target specific handling.
2051   // TODO:
2052   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2053   // Object V2 and V3 when symbols are marked protected.
2054 
2055   // amd_kernel_code_t for Code Object V2.
2056   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2057     Size = 256;
2058     return MCDisassembler::Fail;
2059   }
2060 
2061   // Code Object V3 kernel descriptors.
2062   StringRef Name = Symbol.Name;
2063   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2064     Size = 64; // Size = 64 regardless of success or failure.
2065     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2066   }
2067   return None;
2068 }
2069 
2070 //===----------------------------------------------------------------------===//
2071 // AMDGPUSymbolizer
2072 //===----------------------------------------------------------------------===//
2073 
2074 // Try to find symbol name for specified label
2075 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2076     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2077     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2078     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2079 
2080   if (!IsBranch) {
2081     return false;
2082   }
2083 
2084   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2085   if (!Symbols)
2086     return false;
2087 
2088   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2089     return Val.Addr == static_cast<uint64_t>(Value) &&
2090            Val.Type == ELF::STT_NOTYPE;
2091   });
2092   if (Result != Symbols->end()) {
2093     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2094     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2095     Inst.addOperand(MCOperand::createExpr(Add));
2096     return true;
2097   }
2098   // Add to list of referenced addresses, so caller can synthesize a label.
2099   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2100   return false;
2101 }
2102 
2103 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2104                                                        int64_t Value,
2105                                                        uint64_t Address) {
2106   llvm_unreachable("unimplemented");
2107 }
2108 
2109 //===----------------------------------------------------------------------===//
2110 // Initialization
2111 //===----------------------------------------------------------------------===//
2112 
2113 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2114                               LLVMOpInfoCallback /*GetOpInfo*/,
2115                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2116                               void *DisInfo,
2117                               MCContext *Ctx,
2118                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2119   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2120 }
2121 
2122 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2123                                                 const MCSubtargetInfo &STI,
2124                                                 MCContext &Ctx) {
2125   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2126 }
2127 
2128 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2129   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2130                                          createAMDGPUDisassembler);
2131   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2132                                        createAMDGPUSymbolizer);
2133 }
2134