xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp (revision d3316bc1114d17aac1a53d1fd32de92bdd70c837)
1 //===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates local data store, LDS, uses from non-kernel functions.
10 // LDS is contiguous memory allocated per kernel execution.
11 //
12 // Background.
13 //
14 // The programming model is global variables, or equivalently function local
15 // static variables, accessible from kernels or other functions. For uses from
16 // kernels this is straightforward - assign an integer to the kernel for the
17 // memory required by all the variables combined, allocate them within that.
18 // For uses from functions there are performance tradeoffs to choose between.
19 //
20 // This model means the GPU runtime can specify the amount of memory allocated.
21 // If this is more than the kernel assumed, the excess can be made available
22 // using a language specific feature, which IR represents as a variable with
23 // no initializer. This feature is referred to here as "Dynamic LDS" and is
24 // lowered slightly differently to the normal case.
25 //
26 // Consequences of this GPU feature:
27 // - memory is limited and exceeding it halts compilation
28 // - a global accessed by one kernel exists independent of other kernels
29 // - a global exists independent of simultaneous execution of the same kernel
30 // - the address of the global may be different from different kernels as they
31 //   do not alias, which permits only allocating variables they use
32 // - if the address is allowed to differ, functions need help to find it
33 //
34 // Uses from kernels are implemented here by grouping them in a per-kernel
35 // struct instance. This duplicates the variables, accurately modelling their
36 // aliasing properties relative to a single global representation. It also
37 // permits control over alignment via padding.
38 //
39 // Uses from functions are more complicated and the primary purpose of this
40 // IR pass. Several different lowering are chosen between to meet requirements
41 // to avoid allocating any LDS where it is not necessary, as that impacts
42 // occupancy and may fail the compilation, while not imposing overhead on a
43 // feature whose primary advantage over global memory is performance. The basic
44 // design goal is to avoid one kernel imposing overhead on another.
45 //
46 // Implementation.
47 //
48 // LDS variables with constant annotation or non-undef initializer are passed
49 // through unchanged for simplification or error diagnostics in later passes.
50 // Non-undef initializers are not yet implemented for LDS.
51 //
52 // LDS variables that are always allocated at the same address can be found
53 // by lookup at that address. Otherwise runtime information/cost is required.
54 //
55 // The simplest strategy possible is to group all LDS variables in a single
56 // struct and allocate that struct in every kernel such that the original
57 // variables are always at the same address. LDS is however a limited resource
58 // so this strategy is unusable in practice. It is not implemented here.
59 //
60 // Strategy | Precise allocation | Zero runtime cost | General purpose |
61 //  --------+--------------------+-------------------+-----------------+
62 //   Module |                 No |               Yes |             Yes |
63 //    Table |                Yes |                No |             Yes |
64 //   Kernel |                Yes |               Yes |              No |
65 //   Hybrid |                Yes |           Partial |             Yes |
66 //
67 // "Module" spends LDS memory to save cycles. "Table" spends cycles and global
68 // memory to save LDS. "Kernel" is as fast as kernel allocation but only works
69 // for variables that are known reachable from a single kernel. "Hybrid" picks
70 // between all three. When forced to choose between LDS and cycles we minimise
71 // LDS use.
72 
73 // The "module" lowering implemented here finds LDS variables which are used by
74 // non-kernel functions and creates a new struct with a field for each of those
75 // LDS variables. Variables that are only used from kernels are excluded.
76 //
77 // The "table" lowering implemented here has three components.
78 // First kernels are assigned a unique integer identifier which is available in
79 // functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
80 // is passed through a specific SGPR, thus works with indirect calls.
81 // Second, each kernel allocates LDS variables independent of other kernels and
82 // writes the addresses it chose for each variable into an array in consistent
83 // order. If the kernel does not allocate a given variable, it writes undef to
84 // the corresponding array location. These arrays are written to a constant
85 // table in the order matching the kernel unique integer identifier.
86 // Third, uses from non-kernel functions are replaced with a table lookup using
87 // the intrinsic function to find the address of the variable.
88 //
89 // "Kernel" lowering is only applicable for variables that are unambiguously
90 // reachable from exactly one kernel. For those cases, accesses to the variable
91 // can be lowered to ConstantExpr address of a struct instance specific to that
92 // one kernel. This is zero cost in space and in compute. It will raise a fatal
93 // error on any variable that might be reachable from multiple kernels and is
94 // thus most easily used as part of the hybrid lowering strategy.
95 //
96 // Hybrid lowering is a mixture of the above. It uses the zero cost kernel
97 // lowering where it can. It lowers the variable accessed by the greatest
98 // number of kernels using the module strategy as that is free for the first
99 // variable. Any futher variables that can be lowered with the module strategy
100 // without incurring LDS memory overhead are. The remaining ones are lowered
101 // via table.
102 //
103 // Consequences
104 // - No heuristics or user controlled magic numbers, hybrid is the right choice
105 // - Kernels that don't use functions (or have had them all inlined) are not
106 //   affected by any lowering for kernels that do.
107 // - Kernels that don't make indirect function calls are not affected by those
108 //   that do.
109 // - Variables which are used by lots of kernels, e.g. those injected by a
110 //   language runtime in most kernels, are expected to have no overhead
111 // - Implementations that instantiate templates per-kernel where those templates
112 //   use LDS are expected to hit the "Kernel" lowering strategy
113 // - The runtime properties impose a cost in compiler implementation complexity
114 //
115 // Dynamic LDS implementation
116 // Dynamic LDS is lowered similarly to the "table" strategy above and uses the
117 // same intrinsic to identify which kernel is at the root of the dynamic call
118 // graph. This relies on the specified behaviour that all dynamic LDS variables
119 // alias one another, i.e. are at the same address, with respect to a given
120 // kernel. Therefore this pass creates new dynamic LDS variables for each kernel
121 // that allocates any dynamic LDS and builds a table of addresses out of those.
122 // The AMDGPUPromoteAlloca pass skips kernels that use dynamic LDS.
123 // The corresponding optimisation for "kernel" lowering where the table lookup
124 // is elided is not implemented.
125 //
126 //
127 // Implementation notes / limitations
128 // A single LDS global variable represents an instance per kernel that can reach
129 // said variables. This pass essentially specialises said variables per kernel.
130 // Handling ConstantExpr during the pass complicated this significantly so now
131 // all ConstantExpr uses of LDS variables are expanded to instructions. This
132 // may need amending when implementing non-undef initialisers.
133 //
134 // Lowering is split between this IR pass and the back end. This pass chooses
135 // where given variables should be allocated and marks them with metadata,
136 // MD_absolute_symbol. The backend places the variables in coincidentally the
137 // same location and raises a fatal error if something has gone awry. This works
138 // in practice because the only pass between this one and the backend that
139 // changes LDS is PromoteAlloca and the changes it makes do not conflict.
140 //
141 // Addresses are written to constant global arrays based on the same metadata.
142 //
143 // The backend lowers LDS variables in the order of traversal of the function.
144 // This is at odds with the deterministic layout required. The workaround is to
145 // allocate the fixed-address variables immediately upon starting the function
146 // where they can be placed as intended. This requires a means of mapping from
147 // the function to the variables that it allocates. For the module scope lds,
148 // this is via metadata indicating whether the variable is not required. If a
149 // pass deletes that metadata, a fatal error on disagreement with the absolute
150 // symbol metadata will occur. For kernel scope and dynamic, this is by _name_
151 // correspondence between the function and the variable. It requires the
152 // kernel to have a name (which is only a limitation for tests in practice) and
153 // for nothing to rename the corresponding symbols. This is a hazard if the pass
154 // is run multiple times during debugging. Alternative schemes considered all
155 // involve bespoke metadata.
156 //
157 // If the name correspondence can be replaced, multiple distinct kernels that
158 // have the same memory layout can map to the same kernel id (as the address
159 // itself is handled by the absolute symbol metadata) and that will allow more
160 // uses of the "kernel" style faster lowering and reduce the size of the lookup
161 // tables.
162 //
163 // There is a test that checks this does not fire for a graphics shader. This
164 // lowering is expected to work for graphics if the isKernel test is changed.
165 //
166 // The current markUsedByKernel is sufficient for PromoteAlloca but is elided
167 // before codegen. Replacing this with an equivalent intrinsic which lasts until
168 // shortly after the machine function lowering of LDS would help break the name
169 // mapping. The other part needed is probably to amend PromoteAlloca to embed
170 // the LDS variables it creates in the same struct created here. That avoids the
171 // current hazard where a PromoteAlloca LDS variable might be allocated before
172 // the kernel scope (and thus error on the address check). Given a new invariant
173 // that no LDS variables exist outside of the structs managed here, and an
174 // intrinsic that lasts until after the LDS frame lowering, it should be
175 // possible to drop the name mapping and fold equivalent memory layouts.
176 //
177 //===----------------------------------------------------------------------===//
178 
179 #include "AMDGPU.h"
180 #include "Utils/AMDGPUBaseInfo.h"
181 #include "Utils/AMDGPUMemoryUtils.h"
182 #include "llvm/ADT/BitVector.h"
183 #include "llvm/ADT/DenseMap.h"
184 #include "llvm/ADT/DenseSet.h"
185 #include "llvm/ADT/STLExtras.h"
186 #include "llvm/ADT/SetOperations.h"
187 #include "llvm/ADT/SetVector.h"
188 #include "llvm/Analysis/CallGraph.h"
189 #include "llvm/IR/Constants.h"
190 #include "llvm/IR/DerivedTypes.h"
191 #include "llvm/IR/IRBuilder.h"
192 #include "llvm/IR/InlineAsm.h"
193 #include "llvm/IR/Instructions.h"
194 #include "llvm/IR/IntrinsicsAMDGPU.h"
195 #include "llvm/IR/MDBuilder.h"
196 #include "llvm/IR/ReplaceConstant.h"
197 #include "llvm/InitializePasses.h"
198 #include "llvm/Pass.h"
199 #include "llvm/Support/CommandLine.h"
200 #include "llvm/Support/Debug.h"
201 #include "llvm/Support/OptimizedStructLayout.h"
202 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
203 #include "llvm/Transforms/Utils/ModuleUtils.h"
204 
205 #include <tuple>
206 #include <vector>
207 
208 #include <cstdio>
209 
210 #define DEBUG_TYPE "amdgpu-lower-module-lds"
211 
212 using namespace llvm;
213 
214 namespace {
215 
216 cl::opt<bool> SuperAlignLDSGlobals(
217     "amdgpu-super-align-lds-globals",
218     cl::desc("Increase alignment of LDS if it is not on align boundary"),
219     cl::init(true), cl::Hidden);
220 
221 enum class LoweringKind { module, table, kernel, hybrid };
222 cl::opt<LoweringKind> LoweringKindLoc(
223     "amdgpu-lower-module-lds-strategy",
224     cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
225     cl::init(LoweringKind::hybrid),
226     cl::values(
227         clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
228         clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
229         clEnumValN(
230             LoweringKind::kernel, "kernel",
231             "Lower variables reachable from one kernel, otherwise abort"),
232         clEnumValN(LoweringKind::hybrid, "hybrid",
233                    "Lower via mixture of above strategies")));
234 
235 bool isKernelLDS(const Function *F) {
236   // Some weirdness here. AMDGPU::isKernelCC does not call into
237   // AMDGPU::isKernel with the calling conv, it instead calls into
238   // isModuleEntryFunction which returns true for more calling conventions
239   // than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel.
240   // There's also a test that checks that the LDS lowering does not hit on
241   // a graphics shader, denoted amdgpu_ps, so stay with the limited case.
242   // Putting LDS in the name of the function to draw attention to this.
243   return AMDGPU::isKernel(F->getCallingConv());
244 }
245 
246 template <typename T> std::vector<T> sortByName(std::vector<T> &&V) {
247   llvm::sort(V.begin(), V.end(), [](const auto *L, const auto *R) {
248     return L->getName() < R->getName();
249   });
250   return {std::move(V)};
251 }
252 
253 class AMDGPULowerModuleLDS : public ModulePass {
254 
255   static void
256   removeLocalVarsFromUsedLists(Module &M,
257                                const DenseSet<GlobalVariable *> &LocalVars) {
258     // The verifier rejects used lists containing an inttoptr of a constant
259     // so remove the variables from these lists before replaceAllUsesWith
260     SmallPtrSet<Constant *, 8> LocalVarsSet;
261     for (GlobalVariable *LocalVar : LocalVars)
262       LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
263 
264     removeFromUsedLists(
265         M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
266 
267     for (GlobalVariable *LocalVar : LocalVars)
268       LocalVar->removeDeadConstantUsers();
269   }
270 
271   static void markUsedByKernel(IRBuilder<> &Builder, Function *Func,
272                                GlobalVariable *SGV) {
273     // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
274     // that might call a function which accesses a field within it. This is
275     // presently approximated to 'all kernels' if there are any such functions
276     // in the module. This implicit use is redefined as an explicit use here so
277     // that later passes, specifically PromoteAlloca, account for the required
278     // memory without any knowledge of this transform.
279 
280     // An operand bundle on llvm.donothing works because the call instruction
281     // survives until after the last pass that needs to account for LDS. It is
282     // better than inline asm as the latter survives until the end of codegen. A
283     // totally robust solution would be a function with the same semantics as
284     // llvm.donothing that takes a pointer to the instance and is lowered to a
285     // no-op after LDS is allocated, but that is not presently necessary.
286 
287     // This intrinsic is eliminated shortly before instruction selection. It
288     // does not suffice to indicate to ISel that a given global which is not
289     // immediately used by the kernel must still be allocated by it. An
290     // equivalent target specific intrinsic which lasts until immediately after
291     // codegen would suffice for that, but one would still need to ensure that
292     // the variables are allocated in the anticpated order.
293 
294     LLVMContext &Ctx = Func->getContext();
295 
296     Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI());
297 
298     FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {});
299 
300     Function *Decl =
301         Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
302 
303     Value *UseInstance[1] = {Builder.CreateInBoundsGEP(
304         SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))};
305 
306     Builder.CreateCall(FTy, Decl, {},
307                        {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)},
308                        "");
309   }
310 
311   static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) {
312     // Constants are uniqued within LLVM. A ConstantExpr referring to a LDS
313     // global may have uses from multiple different functions as a result.
314     // This pass specialises LDS variables with respect to the kernel that
315     // allocates them.
316 
317     // This is semantically equivalent to (the unimplemented as slow):
318     // for (auto &F : M.functions())
319     //   for (auto &BB : F)
320     //     for (auto &I : BB)
321     //       for (Use &Op : I.operands())
322     //         if (constantExprUsesLDS(Op))
323     //           replaceConstantExprInFunction(I, Op);
324 
325     SmallVector<Constant *> LDSGlobals;
326     for (auto &GV : M.globals())
327       if (AMDGPU::isLDSVariableToLower(GV))
328         LDSGlobals.push_back(&GV);
329 
330     return convertUsersOfConstantsToInstructions(LDSGlobals);
331   }
332 
333 public:
334   static char ID;
335 
336   AMDGPULowerModuleLDS() : ModulePass(ID) {
337     initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry());
338   }
339 
340   using FunctionVariableMap = DenseMap<Function *, DenseSet<GlobalVariable *>>;
341 
342   using VariableFunctionMap = DenseMap<GlobalVariable *, DenseSet<Function *>>;
343 
344   static void getUsesOfLDSByFunction(CallGraph const &CG, Module &M,
345                                      FunctionVariableMap &kernels,
346                                      FunctionVariableMap &functions) {
347 
348     // Get uses from the current function, excluding uses by called functions
349     // Two output variables to avoid walking the globals list twice
350     for (auto &GV : M.globals()) {
351       if (!AMDGPU::isLDSVariableToLower(GV)) {
352         continue;
353       }
354 
355       if (GV.isAbsoluteSymbolRef()) {
356         report_fatal_error(
357             "LDS variables with absolute addresses are unimplemented.");
358       }
359 
360       for (User *V : GV.users()) {
361         if (auto *I = dyn_cast<Instruction>(V)) {
362           Function *F = I->getFunction();
363           if (isKernelLDS(F)) {
364             kernels[F].insert(&GV);
365           } else {
366             functions[F].insert(&GV);
367           }
368         }
369       }
370     }
371   }
372 
373   struct LDSUsesInfoTy {
374     FunctionVariableMap direct_access;
375     FunctionVariableMap indirect_access;
376   };
377 
378   static LDSUsesInfoTy getTransitiveUsesOfLDS(CallGraph const &CG, Module &M) {
379 
380     FunctionVariableMap direct_map_kernel;
381     FunctionVariableMap direct_map_function;
382     getUsesOfLDSByFunction(CG, M, direct_map_kernel, direct_map_function);
383 
384     // Collect variables that are used by functions whose address has escaped
385     DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer;
386     for (Function &F : M.functions()) {
387       if (!isKernelLDS(&F))
388         if (F.hasAddressTaken(nullptr,
389                               /* IgnoreCallbackUses */ false,
390                               /* IgnoreAssumeLikeCalls */ false,
391                               /* IgnoreLLVMUsed */ true,
392                               /* IgnoreArcAttachedCall */ false)) {
393           set_union(VariablesReachableThroughFunctionPointer,
394                     direct_map_function[&F]);
395         }
396     }
397 
398     auto functionMakesUnknownCall = [&](const Function *F) -> bool {
399       assert(!F->isDeclaration());
400       for (const CallGraphNode::CallRecord &R : *CG[F]) {
401         if (!R.second->getFunction()) {
402           return true;
403         }
404       }
405       return false;
406     };
407 
408     // Work out which variables are reachable through function calls
409     FunctionVariableMap transitive_map_function = direct_map_function;
410 
411     // If the function makes any unknown call, assume the worst case that it can
412     // access all variables accessed by functions whose address escaped
413     for (Function &F : M.functions()) {
414       if (!F.isDeclaration() && functionMakesUnknownCall(&F)) {
415         if (!isKernelLDS(&F)) {
416           set_union(transitive_map_function[&F],
417                     VariablesReachableThroughFunctionPointer);
418         }
419       }
420     }
421 
422     // Direct implementation of collecting all variables reachable from each
423     // function
424     for (Function &Func : M.functions()) {
425       if (Func.isDeclaration() || isKernelLDS(&Func))
426         continue;
427 
428       DenseSet<Function *> seen; // catches cycles
429       SmallVector<Function *, 4> wip{&Func};
430 
431       while (!wip.empty()) {
432         Function *F = wip.pop_back_val();
433 
434         // Can accelerate this by referring to transitive map for functions that
435         // have already been computed, with more care than this
436         set_union(transitive_map_function[&Func], direct_map_function[F]);
437 
438         for (const CallGraphNode::CallRecord &R : *CG[F]) {
439           Function *ith = R.second->getFunction();
440           if (ith) {
441             if (!seen.contains(ith)) {
442               seen.insert(ith);
443               wip.push_back(ith);
444             }
445           }
446         }
447       }
448     }
449 
450     // direct_map_kernel lists which variables are used by the kernel
451     // find the variables which are used through a function call
452     FunctionVariableMap indirect_map_kernel;
453 
454     for (Function &Func : M.functions()) {
455       if (Func.isDeclaration() || !isKernelLDS(&Func))
456         continue;
457 
458       for (const CallGraphNode::CallRecord &R : *CG[&Func]) {
459         Function *ith = R.second->getFunction();
460         if (ith) {
461           set_union(indirect_map_kernel[&Func], transitive_map_function[ith]);
462         } else {
463           set_union(indirect_map_kernel[&Func],
464                     VariablesReachableThroughFunctionPointer);
465         }
466       }
467     }
468 
469     return {std::move(direct_map_kernel), std::move(indirect_map_kernel)};
470   }
471 
472   struct LDSVariableReplacement {
473     GlobalVariable *SGV = nullptr;
474     DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
475   };
476 
477   // remap from lds global to a constantexpr gep to where it has been moved to
478   // for each kernel
479   // an array with an element for each kernel containing where the corresponding
480   // variable was remapped to
481 
482   static Constant *getAddressesOfVariablesInKernel(
483       LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables,
484       const DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
485     // Create a ConstantArray containing the address of each Variable within the
486     // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
487     // does not allocate it
488     // TODO: Drop the ptrtoint conversion
489 
490     Type *I32 = Type::getInt32Ty(Ctx);
491 
492     ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
493 
494     SmallVector<Constant *> Elements;
495     for (size_t i = 0; i < Variables.size(); i++) {
496       GlobalVariable *GV = Variables[i];
497       auto ConstantGepIt = LDSVarsToConstantGEP.find(GV);
498       if (ConstantGepIt != LDSVarsToConstantGEP.end()) {
499         auto elt = ConstantExpr::getPtrToInt(ConstantGepIt->second, I32);
500         Elements.push_back(elt);
501       } else {
502         Elements.push_back(PoisonValue::get(I32));
503       }
504     }
505     return ConstantArray::get(KernelOffsetsType, Elements);
506   }
507 
508   static GlobalVariable *buildLookupTable(
509       Module &M, ArrayRef<GlobalVariable *> Variables,
510       ArrayRef<Function *> kernels,
511       DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) {
512     if (Variables.empty()) {
513       return nullptr;
514     }
515     LLVMContext &Ctx = M.getContext();
516 
517     const size_t NumberVariables = Variables.size();
518     const size_t NumberKernels = kernels.size();
519 
520     ArrayType *KernelOffsetsType =
521         ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
522 
523     ArrayType *AllKernelsOffsetsType =
524         ArrayType::get(KernelOffsetsType, NumberKernels);
525 
526     Constant *Missing = PoisonValue::get(KernelOffsetsType);
527     std::vector<Constant *> overallConstantExprElts(NumberKernels);
528     for (size_t i = 0; i < NumberKernels; i++) {
529       auto Replacement = KernelToReplacement.find(kernels[i]);
530       overallConstantExprElts[i] =
531           (Replacement == KernelToReplacement.end())
532               ? Missing
533               : getAddressesOfVariablesInKernel(
534                     Ctx, Variables, Replacement->second.LDSVarsToConstantGEP);
535     }
536 
537     Constant *init =
538         ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
539 
540     return new GlobalVariable(
541         M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
542         "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
543         AMDGPUAS::CONSTANT_ADDRESS);
544   }
545 
546   void replaceUseWithTableLookup(Module &M, IRBuilder<> &Builder,
547                                  GlobalVariable *LookupTable,
548                                  GlobalVariable *GV, Use &U,
549                                  Value *OptionalIndex) {
550     // Table is a constant array of the same length as OrderedKernels
551     LLVMContext &Ctx = M.getContext();
552     Type *I32 = Type::getInt32Ty(Ctx);
553     auto *I = cast<Instruction>(U.getUser());
554 
555     Value *tableKernelIndex = getTableLookupKernelIndex(M, I->getFunction());
556 
557     if (auto *Phi = dyn_cast<PHINode>(I)) {
558       BasicBlock *BB = Phi->getIncomingBlock(U);
559       Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
560     } else {
561       Builder.SetInsertPoint(I);
562     }
563 
564     SmallVector<Value *, 3> GEPIdx = {
565         ConstantInt::get(I32, 0),
566         tableKernelIndex,
567     };
568     if (OptionalIndex)
569       GEPIdx.push_back(OptionalIndex);
570 
571     Value *Address = Builder.CreateInBoundsGEP(
572         LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
573 
574     Value *loaded = Builder.CreateLoad(I32, Address);
575 
576     Value *replacement =
577         Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
578 
579     U.set(replacement);
580   }
581 
582   void replaceUsesInInstructionsWithTableLookup(
583       Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
584       GlobalVariable *LookupTable) {
585 
586     LLVMContext &Ctx = M.getContext();
587     IRBuilder<> Builder(Ctx);
588     Type *I32 = Type::getInt32Ty(Ctx);
589 
590     for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
591       auto *GV = ModuleScopeVariables[Index];
592 
593       for (Use &U : make_early_inc_range(GV->uses())) {
594         auto *I = dyn_cast<Instruction>(U.getUser());
595         if (!I)
596           continue;
597 
598         replaceUseWithTableLookup(M, Builder, LookupTable, GV, U,
599                                   ConstantInt::get(I32, Index));
600       }
601     }
602   }
603 
604   static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
605       Module &M, LDSUsesInfoTy &LDSUsesInfo,
606       DenseSet<GlobalVariable *> const &VariableSet) {
607 
608     DenseSet<Function *> KernelSet;
609 
610     if (VariableSet.empty())
611       return KernelSet;
612 
613     for (Function &Func : M.functions()) {
614       if (Func.isDeclaration() || !isKernelLDS(&Func))
615         continue;
616       for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
617         if (VariableSet.contains(GV)) {
618           KernelSet.insert(&Func);
619           break;
620         }
621       }
622     }
623 
624     return KernelSet;
625   }
626 
627   static GlobalVariable *
628   chooseBestVariableForModuleStrategy(const DataLayout &DL,
629                                       VariableFunctionMap &LDSVars) {
630     // Find the global variable with the most indirect uses from kernels
631 
632     struct CandidateTy {
633       GlobalVariable *GV = nullptr;
634       size_t UserCount = 0;
635       size_t Size = 0;
636 
637       CandidateTy() = default;
638 
639       CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
640           : GV(GV), UserCount(UserCount), Size(AllocSize) {}
641 
642       bool operator<(const CandidateTy &Other) const {
643         // Fewer users makes module scope variable less attractive
644         if (UserCount < Other.UserCount) {
645           return true;
646         }
647         if (UserCount > Other.UserCount) {
648           return false;
649         }
650 
651         // Bigger makes module scope variable less attractive
652         if (Size < Other.Size) {
653           return false;
654         }
655 
656         if (Size > Other.Size) {
657           return true;
658         }
659 
660         // Arbitrary but consistent
661         return GV->getName() < Other.GV->getName();
662       }
663     };
664 
665     CandidateTy MostUsed;
666 
667     for (auto &K : LDSVars) {
668       GlobalVariable *GV = K.first;
669       if (K.second.size() <= 1) {
670         // A variable reachable by only one kernel is best lowered with kernel
671         // strategy
672         continue;
673       }
674       CandidateTy Candidate(
675           GV, K.second.size(),
676           DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
677       if (MostUsed < Candidate)
678         MostUsed = Candidate;
679     }
680 
681     return MostUsed.GV;
682   }
683 
684   static void recordLDSAbsoluteAddress(Module *M, GlobalVariable *GV,
685                                        uint32_t Address) {
686     // Write the specified address into metadata where it can be retrieved by
687     // the assembler. Format is a half open range, [Address Address+1)
688     LLVMContext &Ctx = M->getContext();
689     auto *IntTy =
690         M->getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS);
691     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address));
692     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address + 1));
693     GV->setMetadata(LLVMContext::MD_absolute_symbol,
694                     MDNode::get(Ctx, {MinC, MaxC}));
695   }
696 
697   DenseMap<Function *, Value *> tableKernelIndexCache;
698   Value *getTableLookupKernelIndex(Module &M, Function *F) {
699     // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
700     // lowers to a read from a live in register. Emit it once in the entry
701     // block to spare deduplicating it later.
702     if (tableKernelIndexCache.count(F) == 0) {
703       LLVMContext &Ctx = M.getContext();
704       IRBuilder<> Builder(Ctx);
705       FunctionType *FTy = FunctionType::get(Type::getInt32Ty(Ctx), {});
706       Function *Decl =
707           Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
708 
709       BasicBlock::iterator it =
710           F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
711       Instruction &i = *it;
712       Builder.SetInsertPoint(&i);
713 
714       tableKernelIndexCache[F] = Builder.CreateCall(FTy, Decl, {});
715     }
716 
717     return tableKernelIndexCache[F];
718   }
719 
720   static std::vector<Function *> assignLDSKernelIDToEachKernel(
721       Module *M, DenseSet<Function *> const &KernelsThatAllocateTableLDS,
722       DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS) {
723     // Associate kernels in the set with an arbirary but reproducible order and
724     // annotate them with that order in metadata. This metadata is recognised by
725     // the backend and lowered to a SGPR which can be read from using
726     // amdgcn_lds_kernel_id.
727 
728     std::vector<Function *> OrderedKernels;
729     if (!KernelsThatAllocateTableLDS.empty() ||
730         !KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
731 
732       for (Function &Func : M->functions()) {
733         if (Func.isDeclaration())
734           continue;
735         if (!isKernelLDS(&Func))
736           continue;
737 
738         if (KernelsThatAllocateTableLDS.contains(&Func) ||
739             KernelsThatIndirectlyAllocateDynamicLDS.contains(&Func)) {
740           assert(Func.hasName()); // else fatal error earlier
741           OrderedKernels.push_back(&Func);
742         }
743       }
744 
745       // Put them in an arbitrary but reproducible order
746       OrderedKernels = sortByName(std::move(OrderedKernels));
747 
748       // Annotate the kernels with their order in this vector
749       LLVMContext &Ctx = M->getContext();
750       IRBuilder<> Builder(Ctx);
751 
752       if (OrderedKernels.size() > UINT32_MAX) {
753         // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
754         report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
755       }
756 
757       for (size_t i = 0; i < OrderedKernels.size(); i++) {
758         Metadata *AttrMDArgs[1] = {
759             ConstantAsMetadata::get(Builder.getInt32(i)),
760         };
761         OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
762                                        MDNode::get(Ctx, AttrMDArgs));
763       }
764     }
765     return OrderedKernels;
766   }
767 
768   static void partitionVariablesIntoIndirectStrategies(
769       Module &M, LDSUsesInfoTy const &LDSUsesInfo,
770       VariableFunctionMap &LDSToKernelsThatNeedToAccessItIndirectly,
771       DenseSet<GlobalVariable *> &ModuleScopeVariables,
772       DenseSet<GlobalVariable *> &TableLookupVariables,
773       DenseSet<GlobalVariable *> &KernelAccessVariables,
774       DenseSet<GlobalVariable *> &DynamicVariables) {
775 
776     GlobalVariable *HybridModuleRoot =
777         LoweringKindLoc != LoweringKind::hybrid
778             ? nullptr
779             : chooseBestVariableForModuleStrategy(
780                   M.getDataLayout(), LDSToKernelsThatNeedToAccessItIndirectly);
781 
782     DenseSet<Function *> const EmptySet;
783     DenseSet<Function *> const &HybridModuleRootKernels =
784         HybridModuleRoot
785             ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
786             : EmptySet;
787 
788     for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
789       // Each iteration of this loop assigns exactly one global variable to
790       // exactly one of the implementation strategies.
791 
792       GlobalVariable *GV = K.first;
793       assert(AMDGPU::isLDSVariableToLower(*GV));
794       assert(K.second.size() != 0);
795 
796       if (AMDGPU::isDynamicLDS(*GV)) {
797         DynamicVariables.insert(GV);
798         continue;
799       }
800 
801       switch (LoweringKindLoc) {
802       case LoweringKind::module:
803         ModuleScopeVariables.insert(GV);
804         break;
805 
806       case LoweringKind::table:
807         TableLookupVariables.insert(GV);
808         break;
809 
810       case LoweringKind::kernel:
811         if (K.second.size() == 1) {
812           KernelAccessVariables.insert(GV);
813         } else {
814           report_fatal_error(
815               "cannot lower LDS '" + GV->getName() +
816               "' to kernel access as it is reachable from multiple kernels");
817         }
818         break;
819 
820       case LoweringKind::hybrid: {
821         if (GV == HybridModuleRoot) {
822           assert(K.second.size() != 1);
823           ModuleScopeVariables.insert(GV);
824         } else if (K.second.size() == 1) {
825           KernelAccessVariables.insert(GV);
826         } else if (set_is_subset(K.second, HybridModuleRootKernels)) {
827           ModuleScopeVariables.insert(GV);
828         } else {
829           TableLookupVariables.insert(GV);
830         }
831         break;
832       }
833       }
834     }
835 
836     // All LDS variables accessed indirectly have now been partitioned into
837     // the distinct lowering strategies.
838     assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
839                KernelAccessVariables.size() + DynamicVariables.size() ==
840            LDSToKernelsThatNeedToAccessItIndirectly.size());
841   }
842 
843   static GlobalVariable *lowerModuleScopeStructVariables(
844       Module &M, DenseSet<GlobalVariable *> const &ModuleScopeVariables,
845       DenseSet<Function *> const &KernelsThatAllocateModuleLDS) {
846     // Create a struct to hold the ModuleScopeVariables
847     // Replace all uses of those variables from non-kernel functions with the
848     // new struct instance Replace only the uses from kernel functions that will
849     // allocate this instance. That is a space optimisation - kernels that use a
850     // subset of the module scope struct and do not need to allocate it for
851     // indirect calls will only allocate the subset they use (they do so as part
852     // of the per-kernel lowering).
853     if (ModuleScopeVariables.empty()) {
854       return nullptr;
855     }
856 
857     LLVMContext &Ctx = M.getContext();
858 
859     LDSVariableReplacement ModuleScopeReplacement =
860         createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
861                                      ModuleScopeVariables);
862 
863     appendToCompilerUsed(M, {static_cast<GlobalValue *>(
864                                 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
865                                     cast<Constant>(ModuleScopeReplacement.SGV),
866                                     Type::getInt8PtrTy(Ctx)))});
867 
868     // module.lds will be allocated at zero in any kernel that allocates it
869     recordLDSAbsoluteAddress(&M, ModuleScopeReplacement.SGV, 0);
870 
871     // historic
872     removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
873 
874     // Replace all uses of module scope variable from non-kernel functions
875     replaceLDSVariablesWithStruct(
876         M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
877           Instruction *I = dyn_cast<Instruction>(U.getUser());
878           if (!I) {
879             return false;
880           }
881           Function *F = I->getFunction();
882           return !isKernelLDS(F);
883         });
884 
885     // Replace uses of module scope variable from kernel functions that
886     // allocate the module scope variable, otherwise leave them unchanged
887     // Record on each kernel whether the module scope global is used by it
888 
889     IRBuilder<> Builder(Ctx);
890 
891     for (Function &Func : M.functions()) {
892       if (Func.isDeclaration() || !isKernelLDS(&Func))
893         continue;
894 
895       if (KernelsThatAllocateModuleLDS.contains(&Func)) {
896         replaceLDSVariablesWithStruct(
897             M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
898               Instruction *I = dyn_cast<Instruction>(U.getUser());
899               if (!I) {
900                 return false;
901               }
902               Function *F = I->getFunction();
903               return F == &Func;
904             });
905 
906         markUsedByKernel(Builder, &Func, ModuleScopeReplacement.SGV);
907       }
908     }
909 
910     return ModuleScopeReplacement.SGV;
911   }
912 
913   static DenseMap<Function *, LDSVariableReplacement>
914   lowerKernelScopeStructVariables(
915       Module &M, LDSUsesInfoTy &LDSUsesInfo,
916       DenseSet<GlobalVariable *> const &ModuleScopeVariables,
917       DenseSet<Function *> const &KernelsThatAllocateModuleLDS,
918       GlobalVariable *MaybeModuleScopeStruct) {
919 
920     // Create a struct for each kernel for the non-module-scope variables.
921 
922     IRBuilder<> Builder(M.getContext());
923     DenseMap<Function *, LDSVariableReplacement> KernelToReplacement;
924     for (Function &Func : M.functions()) {
925       if (Func.isDeclaration() || !isKernelLDS(&Func))
926         continue;
927 
928       DenseSet<GlobalVariable *> KernelUsedVariables;
929       // Allocating variables that are used directly in this struct to get
930       // alignment aware allocation and predictable frame size.
931       for (auto &v : LDSUsesInfo.direct_access[&Func]) {
932         if (!AMDGPU::isDynamicLDS(*v)) {
933           KernelUsedVariables.insert(v);
934         }
935       }
936 
937       // Allocating variables that are accessed indirectly so that a lookup of
938       // this struct instance can find them from nested functions.
939       for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
940         if (!AMDGPU::isDynamicLDS(*v)) {
941           KernelUsedVariables.insert(v);
942         }
943       }
944 
945       // Variables allocated in module lds must all resolve to that struct,
946       // not to the per-kernel instance.
947       if (KernelsThatAllocateModuleLDS.contains(&Func)) {
948         for (GlobalVariable *v : ModuleScopeVariables) {
949           KernelUsedVariables.erase(v);
950         }
951       }
952 
953       if (KernelUsedVariables.empty()) {
954         // Either used no LDS, or the LDS it used was all in the module struct
955         // or dynamically sized
956         continue;
957       }
958 
959       // The association between kernel function and LDS struct is done by
960       // symbol name, which only works if the function in question has a
961       // name This is not expected to be a problem in practice as kernels
962       // are called by name making anonymous ones (which are named by the
963       // backend) difficult to use. This does mean that llvm test cases need
964       // to name the kernels.
965       if (!Func.hasName()) {
966         report_fatal_error("Anonymous kernels cannot use LDS variables");
967       }
968 
969       std::string VarName =
970           (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
971 
972       auto Replacement =
973           createLDSVariableReplacement(M, VarName, KernelUsedVariables);
974 
975       // If any indirect uses, create a direct use to ensure allocation
976       // TODO: Simpler to unconditionally mark used but that regresses
977       // codegen in test/CodeGen/AMDGPU/noclobber-barrier.ll
978       auto Accesses = LDSUsesInfo.indirect_access.find(&Func);
979       if ((Accesses != LDSUsesInfo.indirect_access.end()) &&
980           !Accesses->second.empty())
981         markUsedByKernel(Builder, &Func, Replacement.SGV);
982 
983       // remove preserves existing codegen
984       removeLocalVarsFromUsedLists(M, KernelUsedVariables);
985       KernelToReplacement[&Func] = Replacement;
986 
987       // Rewrite uses within kernel to the new struct
988       replaceLDSVariablesWithStruct(
989           M, KernelUsedVariables, Replacement, [&Func](Use &U) {
990             Instruction *I = dyn_cast<Instruction>(U.getUser());
991             return I && I->getFunction() == &Func;
992           });
993     }
994     return KernelToReplacement;
995   }
996 
997   static GlobalVariable *
998   buildRepresentativeDynamicLDSInstance(Module &M, LDSUsesInfoTy &LDSUsesInfo,
999                                         Function *func) {
1000     // Create a dynamic lds variable with a name associated with the passed
1001     // function that has the maximum alignment of any dynamic lds variable
1002     // reachable from this kernel. Dynamic LDS is allocated after the static LDS
1003     // allocation, possibly after alignment padding. The representative variable
1004     // created here has the maximum alignment of any other dynamic variable
1005     // reachable by that kernel. All dynamic LDS variables are allocated at the
1006     // same address in each kernel in order to provide the documented aliasing
1007     // semantics. Setting the alignment here allows this IR pass to accurately
1008     // predict the exact constant at which it will be allocated.
1009 
1010     assert(isKernelLDS(func));
1011 
1012     LLVMContext &Ctx = M.getContext();
1013     const DataLayout &DL = M.getDataLayout();
1014     Align MaxDynamicAlignment(1);
1015 
1016     auto UpdateMaxAlignment = [&MaxDynamicAlignment, &DL](GlobalVariable *GV) {
1017       if (AMDGPU::isDynamicLDS(*GV)) {
1018         MaxDynamicAlignment =
1019             std::max(MaxDynamicAlignment, AMDGPU::getAlign(DL, GV));
1020       }
1021     };
1022 
1023     for (GlobalVariable *GV : LDSUsesInfo.indirect_access[func]) {
1024       UpdateMaxAlignment(GV);
1025     }
1026 
1027     for (GlobalVariable *GV : LDSUsesInfo.direct_access[func]) {
1028       UpdateMaxAlignment(GV);
1029     }
1030 
1031     assert(func->hasName()); // Checked by caller
1032     auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
1033     GlobalVariable *N = new GlobalVariable(
1034         M, emptyCharArray, false, GlobalValue::ExternalLinkage, nullptr,
1035         Twine("llvm.amdgcn." + func->getName() + ".dynlds"), nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1036         false);
1037     N->setAlignment(MaxDynamicAlignment);
1038 
1039     assert(AMDGPU::isDynamicLDS(*N));
1040     return N;
1041   }
1042 
1043   DenseMap<Function *, GlobalVariable *> lowerDynamicLDSVariables(
1044       Module &M, LDSUsesInfoTy &LDSUsesInfo,
1045       DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS,
1046       DenseSet<GlobalVariable *> const &DynamicVariables,
1047       std::vector<Function *> const &OrderedKernels) {
1048     DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS;
1049     if (!KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
1050       LLVMContext &Ctx = M.getContext();
1051       IRBuilder<> Builder(Ctx);
1052       Type *I32 = Type::getInt32Ty(Ctx);
1053 
1054       std::vector<Constant *> newDynamicLDS;
1055 
1056       // Table is built in the same order as OrderedKernels
1057       for (auto &func : OrderedKernels) {
1058 
1059         if (KernelsThatIndirectlyAllocateDynamicLDS.contains(func)) {
1060           assert(isKernelLDS(func));
1061           if (!func->hasName()) {
1062             report_fatal_error("Anonymous kernels cannot use LDS variables");
1063           }
1064 
1065           GlobalVariable *N =
1066               buildRepresentativeDynamicLDSInstance(M, LDSUsesInfo, func);
1067 
1068           KernelToCreatedDynamicLDS[func] = N;
1069 
1070           markUsedByKernel(Builder, func, N);
1071 
1072           auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
1073           auto GEP = ConstantExpr::getGetElementPtr(
1074               emptyCharArray, N, ConstantInt::get(I32, 0), true);
1075           newDynamicLDS.push_back(ConstantExpr::getPtrToInt(GEP, I32));
1076         } else {
1077           newDynamicLDS.push_back(PoisonValue::get(I32));
1078         }
1079       }
1080       assert(OrderedKernels.size() == newDynamicLDS.size());
1081 
1082       ArrayType *t = ArrayType::get(I32, newDynamicLDS.size());
1083       Constant *init = ConstantArray::get(t, newDynamicLDS);
1084       GlobalVariable *table = new GlobalVariable(
1085           M, t, true, GlobalValue::InternalLinkage, init,
1086           "llvm.amdgcn.dynlds.offset.table", nullptr,
1087           GlobalValue::NotThreadLocal, AMDGPUAS::CONSTANT_ADDRESS);
1088 
1089       for (GlobalVariable *GV : DynamicVariables) {
1090         for (Use &U : make_early_inc_range(GV->uses())) {
1091           auto *I = dyn_cast<Instruction>(U.getUser());
1092           if (!I)
1093             continue;
1094           if (isKernelLDS(I->getFunction()))
1095             continue;
1096 
1097           replaceUseWithTableLookup(M, Builder, table, GV, U, nullptr);
1098         }
1099       }
1100     }
1101     return KernelToCreatedDynamicLDS;
1102   }
1103 
1104   bool runOnModule(Module &M) override {
1105     CallGraph CG = CallGraph(M);
1106     bool Changed = superAlignLDSGlobals(M);
1107 
1108     Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
1109 
1110     Changed = true; // todo: narrow this down
1111 
1112     // For each kernel, what variables does it access directly or through
1113     // callees
1114     LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
1115 
1116     // For each variable accessed through callees, which kernels access it
1117     VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
1118     for (auto &K : LDSUsesInfo.indirect_access) {
1119       Function *F = K.first;
1120       assert(isKernelLDS(F));
1121       for (GlobalVariable *GV : K.second) {
1122         LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
1123       }
1124     }
1125 
1126     // Partition variables accessed indirectly into the different strategies
1127     DenseSet<GlobalVariable *> ModuleScopeVariables;
1128     DenseSet<GlobalVariable *> TableLookupVariables;
1129     DenseSet<GlobalVariable *> KernelAccessVariables;
1130     DenseSet<GlobalVariable *> DynamicVariables;
1131     partitionVariablesIntoIndirectStrategies(
1132         M, LDSUsesInfo, LDSToKernelsThatNeedToAccessItIndirectly,
1133         ModuleScopeVariables, TableLookupVariables, KernelAccessVariables,
1134         DynamicVariables);
1135 
1136     // If the kernel accesses a variable that is going to be stored in the
1137     // module instance through a call then that kernel needs to allocate the
1138     // module instance
1139     const DenseSet<Function *> KernelsThatAllocateModuleLDS =
1140         kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
1141                                                         ModuleScopeVariables);
1142     const DenseSet<Function *> KernelsThatAllocateTableLDS =
1143         kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
1144                                                         TableLookupVariables);
1145 
1146     const DenseSet<Function *> KernelsThatIndirectlyAllocateDynamicLDS =
1147         kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
1148                                                         DynamicVariables);
1149 
1150     GlobalVariable *MaybeModuleScopeStruct = lowerModuleScopeStructVariables(
1151         M, ModuleScopeVariables, KernelsThatAllocateModuleLDS);
1152 
1153     DenseMap<Function *, LDSVariableReplacement> KernelToReplacement =
1154         lowerKernelScopeStructVariables(M, LDSUsesInfo, ModuleScopeVariables,
1155                                         KernelsThatAllocateModuleLDS,
1156                                         MaybeModuleScopeStruct);
1157 
1158     // Lower zero cost accesses to the kernel instances just created
1159     for (auto &GV : KernelAccessVariables) {
1160       auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
1161       assert(funcs.size() == 1); // Only one kernel can access it
1162       LDSVariableReplacement Replacement =
1163           KernelToReplacement[*(funcs.begin())];
1164 
1165       DenseSet<GlobalVariable *> Vec;
1166       Vec.insert(GV);
1167 
1168       replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
1169         return isa<Instruction>(U.getUser());
1170       });
1171     }
1172 
1173     // The ith element of this vector is kernel id i
1174     std::vector<Function *> OrderedKernels =
1175         assignLDSKernelIDToEachKernel(&M, KernelsThatAllocateTableLDS,
1176                                       KernelsThatIndirectlyAllocateDynamicLDS);
1177 
1178     if (!KernelsThatAllocateTableLDS.empty()) {
1179       LLVMContext &Ctx = M.getContext();
1180       IRBuilder<> Builder(Ctx);
1181 
1182       // The order must be consistent between lookup table and accesses to
1183       // lookup table
1184       auto TableLookupVariablesOrdered =
1185           sortByName(std::vector<GlobalVariable *>(TableLookupVariables.begin(),
1186                                                    TableLookupVariables.end()));
1187 
1188       GlobalVariable *LookupTable = buildLookupTable(
1189           M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
1190       replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
1191                                                LookupTable);
1192     }
1193 
1194     DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS =
1195         lowerDynamicLDSVariables(M, LDSUsesInfo,
1196                                  KernelsThatIndirectlyAllocateDynamicLDS,
1197                                  DynamicVariables, OrderedKernels);
1198 
1199     // All kernel frames have been allocated. Calculate and record the
1200     // addresses.
1201     {
1202       const DataLayout &DL = M.getDataLayout();
1203 
1204       for (Function &Func : M.functions()) {
1205         if (Func.isDeclaration() || !isKernelLDS(&Func))
1206           continue;
1207 
1208         // All three of these are optional. The first variable is allocated at
1209         // zero. They are allocated by AMDGPUMachineFunction as one block.
1210         // Layout:
1211         //{
1212         //  module.lds
1213         //  alignment padding
1214         //  kernel instance
1215         //  alignment padding
1216         //  dynamic lds variables
1217         //}
1218 
1219         const bool AllocateModuleScopeStruct =
1220             MaybeModuleScopeStruct &&
1221             KernelsThatAllocateModuleLDS.contains(&Func);
1222 
1223         auto Replacement = KernelToReplacement.find(&Func);
1224         const bool AllocateKernelScopeStruct =
1225             Replacement != KernelToReplacement.end();
1226 
1227         const bool AllocateDynamicVariable =
1228             KernelToCreatedDynamicLDS.contains(&Func);
1229 
1230         uint32_t Offset = 0;
1231 
1232         if (AllocateModuleScopeStruct) {
1233           // Allocated at zero, recorded once on construction, not once per
1234           // kernel
1235           Offset += DL.getTypeAllocSize(MaybeModuleScopeStruct->getValueType());
1236         }
1237 
1238         if (AllocateKernelScopeStruct) {
1239           GlobalVariable *KernelStruct = Replacement->second.SGV;
1240           Offset = alignTo(Offset, AMDGPU::getAlign(DL, KernelStruct));
1241           recordLDSAbsoluteAddress(&M, KernelStruct, Offset);
1242           Offset += DL.getTypeAllocSize(KernelStruct->getValueType());
1243         }
1244 
1245         // If there is dynamic allocation, the alignment needed is included in
1246         // the static frame size. There may be no reference to the dynamic
1247         // variable in the kernel itself, so without including it here, that
1248         // alignment padding could be missed.
1249         if (AllocateDynamicVariable) {
1250           GlobalVariable *DynamicVariable = KernelToCreatedDynamicLDS[&Func];
1251           Offset = alignTo(Offset, AMDGPU::getAlign(DL, DynamicVariable));
1252           recordLDSAbsoluteAddress(&M, DynamicVariable, Offset);
1253         }
1254 
1255         if (Offset != 0)
1256           Func.addFnAttr("amdgpu-lds-size", std::to_string(Offset));
1257       }
1258     }
1259 
1260     for (auto &GV : make_early_inc_range(M.globals()))
1261       if (AMDGPU::isLDSVariableToLower(GV)) {
1262         // probably want to remove from used lists
1263         GV.removeDeadConstantUsers();
1264         if (GV.use_empty())
1265           GV.eraseFromParent();
1266       }
1267 
1268     return Changed;
1269   }
1270 
1271 private:
1272   // Increase the alignment of LDS globals if necessary to maximise the chance
1273   // that we can use aligned LDS instructions to access them.
1274   static bool superAlignLDSGlobals(Module &M) {
1275     const DataLayout &DL = M.getDataLayout();
1276     bool Changed = false;
1277     if (!SuperAlignLDSGlobals) {
1278       return Changed;
1279     }
1280 
1281     for (auto &GV : M.globals()) {
1282       if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
1283         // Only changing alignment of LDS variables
1284         continue;
1285       }
1286       if (!GV.hasInitializer()) {
1287         // cuda/hip extern __shared__ variable, leave alignment alone
1288         continue;
1289       }
1290 
1291       Align Alignment = AMDGPU::getAlign(DL, &GV);
1292       TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
1293 
1294       if (GVSize > 8) {
1295         // We might want to use a b96 or b128 load/store
1296         Alignment = std::max(Alignment, Align(16));
1297       } else if (GVSize > 4) {
1298         // We might want to use a b64 load/store
1299         Alignment = std::max(Alignment, Align(8));
1300       } else if (GVSize > 2) {
1301         // We might want to use a b32 load/store
1302         Alignment = std::max(Alignment, Align(4));
1303       } else if (GVSize > 1) {
1304         // We might want to use a b16 load/store
1305         Alignment = std::max(Alignment, Align(2));
1306       }
1307 
1308       if (Alignment != AMDGPU::getAlign(DL, &GV)) {
1309         Changed = true;
1310         GV.setAlignment(Alignment);
1311       }
1312     }
1313     return Changed;
1314   }
1315 
1316   static LDSVariableReplacement createLDSVariableReplacement(
1317       Module &M, std::string VarName,
1318       DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
1319     // Create a struct instance containing LDSVarsToTransform and map from those
1320     // variables to ConstantExprGEP
1321     // Variables may be introduced to meet alignment requirements. No aliasing
1322     // metadata is useful for these as they have no uses. Erased before return.
1323 
1324     LLVMContext &Ctx = M.getContext();
1325     const DataLayout &DL = M.getDataLayout();
1326     assert(!LDSVarsToTransform.empty());
1327 
1328     SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
1329     LayoutFields.reserve(LDSVarsToTransform.size());
1330     {
1331       // The order of fields in this struct depends on the order of
1332       // varables in the argument which varies when changing how they
1333       // are identified, leading to spurious test breakage.
1334       auto Sorted = sortByName(std::vector<GlobalVariable *>(
1335           LDSVarsToTransform.begin(), LDSVarsToTransform.end()));
1336 
1337       for (GlobalVariable *GV : Sorted) {
1338         OptimizedStructLayoutField F(GV,
1339                                      DL.getTypeAllocSize(GV->getValueType()),
1340                                      AMDGPU::getAlign(DL, GV));
1341         LayoutFields.emplace_back(F);
1342       }
1343     }
1344 
1345     performOptimizedStructLayout(LayoutFields);
1346 
1347     std::vector<GlobalVariable *> LocalVars;
1348     BitVector IsPaddingField;
1349     LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
1350     IsPaddingField.reserve(LDSVarsToTransform.size());
1351     {
1352       uint64_t CurrentOffset = 0;
1353       for (size_t I = 0; I < LayoutFields.size(); I++) {
1354         GlobalVariable *FGV = static_cast<GlobalVariable *>(
1355             const_cast<void *>(LayoutFields[I].Id));
1356         Align DataAlign = LayoutFields[I].Alignment;
1357 
1358         uint64_t DataAlignV = DataAlign.value();
1359         if (uint64_t Rem = CurrentOffset % DataAlignV) {
1360           uint64_t Padding = DataAlignV - Rem;
1361 
1362           // Append an array of padding bytes to meet alignment requested
1363           // Note (o +      (a - (o % a)) ) % a == 0
1364           //      (offset + Padding       ) % align == 0
1365 
1366           Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
1367           LocalVars.push_back(new GlobalVariable(
1368               M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy),
1369               "", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1370               false));
1371           IsPaddingField.push_back(true);
1372           CurrentOffset += Padding;
1373         }
1374 
1375         LocalVars.push_back(FGV);
1376         IsPaddingField.push_back(false);
1377         CurrentOffset += LayoutFields[I].Size;
1378       }
1379     }
1380 
1381     std::vector<Type *> LocalVarTypes;
1382     LocalVarTypes.reserve(LocalVars.size());
1383     std::transform(
1384         LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
1385         [](const GlobalVariable *V) -> Type * { return V->getValueType(); });
1386 
1387     StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
1388 
1389     Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
1390 
1391     GlobalVariable *SGV = new GlobalVariable(
1392         M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy),
1393         VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1394         false);
1395     SGV->setAlignment(StructAlign);
1396 
1397     DenseMap<GlobalVariable *, Constant *> Map;
1398     Type *I32 = Type::getInt32Ty(Ctx);
1399     for (size_t I = 0; I < LocalVars.size(); I++) {
1400       GlobalVariable *GV = LocalVars[I];
1401       Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
1402       Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
1403       if (IsPaddingField[I]) {
1404         assert(GV->use_empty());
1405         GV->eraseFromParent();
1406       } else {
1407         Map[GV] = GEP;
1408       }
1409     }
1410     assert(Map.size() == LDSVarsToTransform.size());
1411     return {SGV, std::move(Map)};
1412   }
1413 
1414   template <typename PredicateTy>
1415   static void replaceLDSVariablesWithStruct(
1416       Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
1417       const LDSVariableReplacement &Replacement, PredicateTy Predicate) {
1418     LLVMContext &Ctx = M.getContext();
1419     const DataLayout &DL = M.getDataLayout();
1420 
1421     // A hack... we need to insert the aliasing info in a predictable order for
1422     // lit tests. Would like to have them in a stable order already, ideally the
1423     // same order they get allocated, which might mean an ordered set container
1424     auto LDSVarsToTransform = sortByName(std::vector<GlobalVariable *>(
1425         LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end()));
1426 
1427     // Create alias.scope and their lists. Each field in the new structure
1428     // does not alias with all other fields.
1429     SmallVector<MDNode *> AliasScopes;
1430     SmallVector<Metadata *> NoAliasList;
1431     const size_t NumberVars = LDSVarsToTransform.size();
1432     if (NumberVars > 1) {
1433       MDBuilder MDB(Ctx);
1434       AliasScopes.reserve(NumberVars);
1435       MDNode *Domain = MDB.createAnonymousAliasScopeDomain();
1436       for (size_t I = 0; I < NumberVars; I++) {
1437         MDNode *Scope = MDB.createAnonymousAliasScope(Domain);
1438         AliasScopes.push_back(Scope);
1439       }
1440       NoAliasList.append(&AliasScopes[1], AliasScopes.end());
1441     }
1442 
1443     // Replace uses of ith variable with a constantexpr to the corresponding
1444     // field of the instance that will be allocated by AMDGPUMachineFunction
1445     for (size_t I = 0; I < NumberVars; I++) {
1446       GlobalVariable *GV = LDSVarsToTransform[I];
1447       Constant *GEP = Replacement.LDSVarsToConstantGEP.at(GV);
1448 
1449       GV->replaceUsesWithIf(GEP, Predicate);
1450 
1451       APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
1452       GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
1453       uint64_t Offset = APOff.getZExtValue();
1454 
1455       Align A =
1456           commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
1457 
1458       if (I)
1459         NoAliasList[I - 1] = AliasScopes[I - 1];
1460       MDNode *NoAlias =
1461           NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
1462       MDNode *AliasScope =
1463           AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
1464 
1465       refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
1466     }
1467   }
1468 
1469   static void refineUsesAlignmentAndAA(Value *Ptr, Align A,
1470                                        const DataLayout &DL, MDNode *AliasScope,
1471                                        MDNode *NoAlias, unsigned MaxDepth = 5) {
1472     if (!MaxDepth || (A == 1 && !AliasScope))
1473       return;
1474 
1475     for (User *U : Ptr->users()) {
1476       if (auto *I = dyn_cast<Instruction>(U)) {
1477         if (AliasScope && I->mayReadOrWriteMemory()) {
1478           MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
1479           AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
1480                    : AliasScope);
1481           I->setMetadata(LLVMContext::MD_alias_scope, AS);
1482 
1483           MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
1484           NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
1485           I->setMetadata(LLVMContext::MD_noalias, NA);
1486         }
1487       }
1488 
1489       if (auto *LI = dyn_cast<LoadInst>(U)) {
1490         LI->setAlignment(std::max(A, LI->getAlign()));
1491         continue;
1492       }
1493       if (auto *SI = dyn_cast<StoreInst>(U)) {
1494         if (SI->getPointerOperand() == Ptr)
1495           SI->setAlignment(std::max(A, SI->getAlign()));
1496         continue;
1497       }
1498       if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
1499         // None of atomicrmw operations can work on pointers, but let's
1500         // check it anyway in case it will or we will process ConstantExpr.
1501         if (AI->getPointerOperand() == Ptr)
1502           AI->setAlignment(std::max(A, AI->getAlign()));
1503         continue;
1504       }
1505       if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
1506         if (AI->getPointerOperand() == Ptr)
1507           AI->setAlignment(std::max(A, AI->getAlign()));
1508         continue;
1509       }
1510       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
1511         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1512         APInt Off(BitWidth, 0);
1513         if (GEP->getPointerOperand() == Ptr) {
1514           Align GA;
1515           if (GEP->accumulateConstantOffset(DL, Off))
1516             GA = commonAlignment(A, Off.getLimitedValue());
1517           refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
1518                                    MaxDepth - 1);
1519         }
1520         continue;
1521       }
1522       if (auto *I = dyn_cast<Instruction>(U)) {
1523         if (I->getOpcode() == Instruction::BitCast ||
1524             I->getOpcode() == Instruction::AddrSpaceCast)
1525           refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
1526       }
1527     }
1528   }
1529 };
1530 
1531 } // namespace
1532 char AMDGPULowerModuleLDS::ID = 0;
1533 
1534 char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID;
1535 
1536 INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE,
1537                 "Lower uses of LDS variables from non-kernel functions", false,
1538                 false)
1539 
1540 ModulePass *llvm::createAMDGPULowerModuleLDSPass() {
1541   return new AMDGPULowerModuleLDS();
1542 }
1543 
1544 PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
1545                                                 ModuleAnalysisManager &) {
1546   return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none()
1547                                                : PreservedAnalyses::all();
1548 }
1549