1 //===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates local data store, LDS, uses from non-kernel functions. 10 // LDS is contiguous memory allocated per kernel execution. 11 // 12 // Background. 13 // 14 // The programming model is global variables, or equivalently function local 15 // static variables, accessible from kernels or other functions. For uses from 16 // kernels this is straightforward - assign an integer to the kernel for the 17 // memory required by all the variables combined, allocate them within that. 18 // For uses from functions there are performance tradeoffs to choose between. 19 // 20 // This model means the GPU runtime can specify the amount of memory allocated. 21 // If this is more than the kernel assumed, the excess can be made available 22 // using a language specific feature, which IR represents as a variable with 23 // no initializer. This feature is referred to here as "Dynamic LDS" and is 24 // lowered slightly differently to the normal case. 25 // 26 // Consequences of this GPU feature: 27 // - memory is limited and exceeding it halts compilation 28 // - a global accessed by one kernel exists independent of other kernels 29 // - a global exists independent of simultaneous execution of the same kernel 30 // - the address of the global may be different from different kernels as they 31 // do not alias, which permits only allocating variables they use 32 // - if the address is allowed to differ, functions need help to find it 33 // 34 // Uses from kernels are implemented here by grouping them in a per-kernel 35 // struct instance. This duplicates the variables, accurately modelling their 36 // aliasing properties relative to a single global representation. It also 37 // permits control over alignment via padding. 38 // 39 // Uses from functions are more complicated and the primary purpose of this 40 // IR pass. Several different lowering are chosen between to meet requirements 41 // to avoid allocating any LDS where it is not necessary, as that impacts 42 // occupancy and may fail the compilation, while not imposing overhead on a 43 // feature whose primary advantage over global memory is performance. The basic 44 // design goal is to avoid one kernel imposing overhead on another. 45 // 46 // Implementation. 47 // 48 // LDS variables with constant annotation or non-undef initializer are passed 49 // through unchanged for simplification or error diagnostics in later passes. 50 // Non-undef initializers are not yet implemented for LDS. 51 // 52 // LDS variables that are always allocated at the same address can be found 53 // by lookup at that address. Otherwise runtime information/cost is required. 54 // 55 // The simplest strategy possible is to group all LDS variables in a single 56 // struct and allocate that struct in every kernel such that the original 57 // variables are always at the same address. LDS is however a limited resource 58 // so this strategy is unusable in practice. It is not implemented here. 59 // 60 // Strategy | Precise allocation | Zero runtime cost | General purpose | 61 // --------+--------------------+-------------------+-----------------+ 62 // Module | No | Yes | Yes | 63 // Table | Yes | No | Yes | 64 // Kernel | Yes | Yes | No | 65 // Hybrid | Yes | Partial | Yes | 66 // 67 // "Module" spends LDS memory to save cycles. "Table" spends cycles and global 68 // memory to save LDS. "Kernel" is as fast as kernel allocation but only works 69 // for variables that are known reachable from a single kernel. "Hybrid" picks 70 // between all three. When forced to choose between LDS and cycles we minimise 71 // LDS use. 72 73 // The "module" lowering implemented here finds LDS variables which are used by 74 // non-kernel functions and creates a new struct with a field for each of those 75 // LDS variables. Variables that are only used from kernels are excluded. 76 // 77 // The "table" lowering implemented here has three components. 78 // First kernels are assigned a unique integer identifier which is available in 79 // functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer 80 // is passed through a specific SGPR, thus works with indirect calls. 81 // Second, each kernel allocates LDS variables independent of other kernels and 82 // writes the addresses it chose for each variable into an array in consistent 83 // order. If the kernel does not allocate a given variable, it writes undef to 84 // the corresponding array location. These arrays are written to a constant 85 // table in the order matching the kernel unique integer identifier. 86 // Third, uses from non-kernel functions are replaced with a table lookup using 87 // the intrinsic function to find the address of the variable. 88 // 89 // "Kernel" lowering is only applicable for variables that are unambiguously 90 // reachable from exactly one kernel. For those cases, accesses to the variable 91 // can be lowered to ConstantExpr address of a struct instance specific to that 92 // one kernel. This is zero cost in space and in compute. It will raise a fatal 93 // error on any variable that might be reachable from multiple kernels and is 94 // thus most easily used as part of the hybrid lowering strategy. 95 // 96 // Hybrid lowering is a mixture of the above. It uses the zero cost kernel 97 // lowering where it can. It lowers the variable accessed by the greatest 98 // number of kernels using the module strategy as that is free for the first 99 // variable. Any futher variables that can be lowered with the module strategy 100 // without incurring LDS memory overhead are. The remaining ones are lowered 101 // via table. 102 // 103 // Consequences 104 // - No heuristics or user controlled magic numbers, hybrid is the right choice 105 // - Kernels that don't use functions (or have had them all inlined) are not 106 // affected by any lowering for kernels that do. 107 // - Kernels that don't make indirect function calls are not affected by those 108 // that do. 109 // - Variables which are used by lots of kernels, e.g. those injected by a 110 // language runtime in most kernels, are expected to have no overhead 111 // - Implementations that instantiate templates per-kernel where those templates 112 // use LDS are expected to hit the "Kernel" lowering strategy 113 // - The runtime properties impose a cost in compiler implementation complexity 114 // 115 // Dynamic LDS implementation 116 // Dynamic LDS is lowered similarly to the "table" strategy above and uses the 117 // same intrinsic to identify which kernel is at the root of the dynamic call 118 // graph. This relies on the specified behaviour that all dynamic LDS variables 119 // alias one another, i.e. are at the same address, with respect to a given 120 // kernel. Therefore this pass creates new dynamic LDS variables for each kernel 121 // that allocates any dynamic LDS and builds a table of addresses out of those. 122 // The AMDGPUPromoteAlloca pass skips kernels that use dynamic LDS. 123 // The corresponding optimisation for "kernel" lowering where the table lookup 124 // is elided is not implemented. 125 // 126 // 127 // Implementation notes / limitations 128 // A single LDS global variable represents an instance per kernel that can reach 129 // said variables. This pass essentially specialises said variables per kernel. 130 // Handling ConstantExpr during the pass complicated this significantly so now 131 // all ConstantExpr uses of LDS variables are expanded to instructions. This 132 // may need amending when implementing non-undef initialisers. 133 // 134 // Lowering is split between this IR pass and the back end. This pass chooses 135 // where given variables should be allocated and marks them with metadata, 136 // MD_absolute_symbol. The backend places the variables in coincidentally the 137 // same location and raises a fatal error if something has gone awry. This works 138 // in practice because the only pass between this one and the backend that 139 // changes LDS is PromoteAlloca and the changes it makes do not conflict. 140 // 141 // Addresses are written to constant global arrays based on the same metadata. 142 // 143 // The backend lowers LDS variables in the order of traversal of the function. 144 // This is at odds with the deterministic layout required. The workaround is to 145 // allocate the fixed-address variables immediately upon starting the function 146 // where they can be placed as intended. This requires a means of mapping from 147 // the function to the variables that it allocates. For the module scope lds, 148 // this is via metadata indicating whether the variable is not required. If a 149 // pass deletes that metadata, a fatal error on disagreement with the absolute 150 // symbol metadata will occur. For kernel scope and dynamic, this is by _name_ 151 // correspondence between the function and the variable. It requires the 152 // kernel to have a name (which is only a limitation for tests in practice) and 153 // for nothing to rename the corresponding symbols. This is a hazard if the pass 154 // is run multiple times during debugging. Alternative schemes considered all 155 // involve bespoke metadata. 156 // 157 // If the name correspondence can be replaced, multiple distinct kernels that 158 // have the same memory layout can map to the same kernel id (as the address 159 // itself is handled by the absolute symbol metadata) and that will allow more 160 // uses of the "kernel" style faster lowering and reduce the size of the lookup 161 // tables. 162 // 163 // There is a test that checks this does not fire for a graphics shader. This 164 // lowering is expected to work for graphics if the isKernel test is changed. 165 // 166 // The current markUsedByKernel is sufficient for PromoteAlloca but is elided 167 // before codegen. Replacing this with an equivalent intrinsic which lasts until 168 // shortly after the machine function lowering of LDS would help break the name 169 // mapping. The other part needed is probably to amend PromoteAlloca to embed 170 // the LDS variables it creates in the same struct created here. That avoids the 171 // current hazard where a PromoteAlloca LDS variable might be allocated before 172 // the kernel scope (and thus error on the address check). Given a new invariant 173 // that no LDS variables exist outside of the structs managed here, and an 174 // intrinsic that lasts until after the LDS frame lowering, it should be 175 // possible to drop the name mapping and fold equivalent memory layouts. 176 // 177 //===----------------------------------------------------------------------===// 178 179 #include "AMDGPU.h" 180 #include "AMDGPUTargetMachine.h" 181 #include "Utils/AMDGPUBaseInfo.h" 182 #include "Utils/AMDGPUMemoryUtils.h" 183 #include "llvm/ADT/BitVector.h" 184 #include "llvm/ADT/DenseMap.h" 185 #include "llvm/ADT/DenseSet.h" 186 #include "llvm/ADT/STLExtras.h" 187 #include "llvm/ADT/SetOperations.h" 188 #include "llvm/Analysis/CallGraph.h" 189 #include "llvm/CodeGen/TargetPassConfig.h" 190 #include "llvm/IR/Constants.h" 191 #include "llvm/IR/DerivedTypes.h" 192 #include "llvm/IR/IRBuilder.h" 193 #include "llvm/IR/InlineAsm.h" 194 #include "llvm/IR/Instructions.h" 195 #include "llvm/IR/IntrinsicsAMDGPU.h" 196 #include "llvm/IR/MDBuilder.h" 197 #include "llvm/IR/ReplaceConstant.h" 198 #include "llvm/InitializePasses.h" 199 #include "llvm/Pass.h" 200 #include "llvm/Support/CommandLine.h" 201 #include "llvm/Support/Debug.h" 202 #include "llvm/Support/Format.h" 203 #include "llvm/Support/OptimizedStructLayout.h" 204 #include "llvm/Support/raw_ostream.h" 205 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 206 #include "llvm/Transforms/Utils/ModuleUtils.h" 207 208 #include <tuple> 209 #include <vector> 210 211 #include <cstdio> 212 213 #define DEBUG_TYPE "amdgpu-lower-module-lds" 214 215 using namespace llvm; 216 217 namespace { 218 219 cl::opt<bool> SuperAlignLDSGlobals( 220 "amdgpu-super-align-lds-globals", 221 cl::desc("Increase alignment of LDS if it is not on align boundary"), 222 cl::init(true), cl::Hidden); 223 224 enum class LoweringKind { module, table, kernel, hybrid }; 225 cl::opt<LoweringKind> LoweringKindLoc( 226 "amdgpu-lower-module-lds-strategy", 227 cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden, 228 cl::init(LoweringKind::hybrid), 229 cl::values( 230 clEnumValN(LoweringKind::table, "table", "Lower via table lookup"), 231 clEnumValN(LoweringKind::module, "module", "Lower via module struct"), 232 clEnumValN( 233 LoweringKind::kernel, "kernel", 234 "Lower variables reachable from one kernel, otherwise abort"), 235 clEnumValN(LoweringKind::hybrid, "hybrid", 236 "Lower via mixture of above strategies"))); 237 238 bool isKernelLDS(const Function *F) { 239 // Some weirdness here. AMDGPU::isKernelCC does not call into 240 // AMDGPU::isKernel with the calling conv, it instead calls into 241 // isModuleEntryFunction which returns true for more calling conventions 242 // than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel. 243 // There's also a test that checks that the LDS lowering does not hit on 244 // a graphics shader, denoted amdgpu_ps, so stay with the limited case. 245 // Putting LDS in the name of the function to draw attention to this. 246 return AMDGPU::isKernel(F->getCallingConv()); 247 } 248 249 template <typename T> std::vector<T> sortByName(std::vector<T> &&V) { 250 llvm::sort(V.begin(), V.end(), [](const auto *L, const auto *R) { 251 return L->getName() < R->getName(); 252 }); 253 return {std::move(V)}; 254 } 255 256 class AMDGPULowerModuleLDS { 257 const AMDGPUTargetMachine &TM; 258 259 static void 260 removeLocalVarsFromUsedLists(Module &M, 261 const DenseSet<GlobalVariable *> &LocalVars) { 262 // The verifier rejects used lists containing an inttoptr of a constant 263 // so remove the variables from these lists before replaceAllUsesWith 264 SmallPtrSet<Constant *, 8> LocalVarsSet; 265 for (GlobalVariable *LocalVar : LocalVars) 266 LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts())); 267 268 removeFromUsedLists( 269 M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); }); 270 271 for (GlobalVariable *LocalVar : LocalVars) 272 LocalVar->removeDeadConstantUsers(); 273 } 274 275 static void markUsedByKernel(Function *Func, GlobalVariable *SGV) { 276 // The llvm.amdgcn.module.lds instance is implicitly used by all kernels 277 // that might call a function which accesses a field within it. This is 278 // presently approximated to 'all kernels' if there are any such functions 279 // in the module. This implicit use is redefined as an explicit use here so 280 // that later passes, specifically PromoteAlloca, account for the required 281 // memory without any knowledge of this transform. 282 283 // An operand bundle on llvm.donothing works because the call instruction 284 // survives until after the last pass that needs to account for LDS. It is 285 // better than inline asm as the latter survives until the end of codegen. A 286 // totally robust solution would be a function with the same semantics as 287 // llvm.donothing that takes a pointer to the instance and is lowered to a 288 // no-op after LDS is allocated, but that is not presently necessary. 289 290 // This intrinsic is eliminated shortly before instruction selection. It 291 // does not suffice to indicate to ISel that a given global which is not 292 // immediately used by the kernel must still be allocated by it. An 293 // equivalent target specific intrinsic which lasts until immediately after 294 // codegen would suffice for that, but one would still need to ensure that 295 // the variables are allocated in the anticpated order. 296 BasicBlock *Entry = &Func->getEntryBlock(); 297 IRBuilder<> Builder(Entry, Entry->getFirstNonPHIIt()); 298 299 Function *Decl = 300 Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {}); 301 302 Value *UseInstance[1] = { 303 Builder.CreateConstInBoundsGEP1_32(SGV->getValueType(), SGV, 0)}; 304 305 Builder.CreateCall( 306 Decl, {}, {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)}); 307 } 308 309 static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) { 310 // Constants are uniqued within LLVM. A ConstantExpr referring to a LDS 311 // global may have uses from multiple different functions as a result. 312 // This pass specialises LDS variables with respect to the kernel that 313 // allocates them. 314 315 // This is semantically equivalent to (the unimplemented as slow): 316 // for (auto &F : M.functions()) 317 // for (auto &BB : F) 318 // for (auto &I : BB) 319 // for (Use &Op : I.operands()) 320 // if (constantExprUsesLDS(Op)) 321 // replaceConstantExprInFunction(I, Op); 322 323 SmallVector<Constant *> LDSGlobals; 324 for (auto &GV : M.globals()) 325 if (AMDGPU::isLDSVariableToLower(GV)) 326 LDSGlobals.push_back(&GV); 327 328 return convertUsersOfConstantsToInstructions(LDSGlobals); 329 } 330 331 public: 332 AMDGPULowerModuleLDS(const AMDGPUTargetMachine &TM_) : TM(TM_) {} 333 334 using FunctionVariableMap = DenseMap<Function *, DenseSet<GlobalVariable *>>; 335 336 using VariableFunctionMap = DenseMap<GlobalVariable *, DenseSet<Function *>>; 337 338 static void getUsesOfLDSByFunction(CallGraph const &CG, Module &M, 339 FunctionVariableMap &kernels, 340 FunctionVariableMap &functions) { 341 342 // Get uses from the current function, excluding uses by called functions 343 // Two output variables to avoid walking the globals list twice 344 for (auto &GV : M.globals()) { 345 if (!AMDGPU::isLDSVariableToLower(GV)) { 346 continue; 347 } 348 349 if (GV.isAbsoluteSymbolRef()) { 350 report_fatal_error( 351 "LDS variables with absolute addresses are unimplemented."); 352 } 353 354 for (User *V : GV.users()) { 355 if (auto *I = dyn_cast<Instruction>(V)) { 356 Function *F = I->getFunction(); 357 if (isKernelLDS(F)) { 358 kernels[F].insert(&GV); 359 } else { 360 functions[F].insert(&GV); 361 } 362 } 363 } 364 } 365 } 366 367 struct LDSUsesInfoTy { 368 FunctionVariableMap direct_access; 369 FunctionVariableMap indirect_access; 370 }; 371 372 static LDSUsesInfoTy getTransitiveUsesOfLDS(CallGraph const &CG, Module &M) { 373 374 FunctionVariableMap direct_map_kernel; 375 FunctionVariableMap direct_map_function; 376 getUsesOfLDSByFunction(CG, M, direct_map_kernel, direct_map_function); 377 378 // Collect variables that are used by functions whose address has escaped 379 DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer; 380 for (Function &F : M.functions()) { 381 if (!isKernelLDS(&F)) 382 if (F.hasAddressTaken(nullptr, 383 /* IgnoreCallbackUses */ false, 384 /* IgnoreAssumeLikeCalls */ false, 385 /* IgnoreLLVMUsed */ true, 386 /* IgnoreArcAttachedCall */ false)) { 387 set_union(VariablesReachableThroughFunctionPointer, 388 direct_map_function[&F]); 389 } 390 } 391 392 auto functionMakesUnknownCall = [&](const Function *F) -> bool { 393 assert(!F->isDeclaration()); 394 for (const CallGraphNode::CallRecord &R : *CG[F]) { 395 if (!R.second->getFunction()) { 396 return true; 397 } 398 } 399 return false; 400 }; 401 402 // Work out which variables are reachable through function calls 403 FunctionVariableMap transitive_map_function = direct_map_function; 404 405 // If the function makes any unknown call, assume the worst case that it can 406 // access all variables accessed by functions whose address escaped 407 for (Function &F : M.functions()) { 408 if (!F.isDeclaration() && functionMakesUnknownCall(&F)) { 409 if (!isKernelLDS(&F)) { 410 set_union(transitive_map_function[&F], 411 VariablesReachableThroughFunctionPointer); 412 } 413 } 414 } 415 416 // Direct implementation of collecting all variables reachable from each 417 // function 418 for (Function &Func : M.functions()) { 419 if (Func.isDeclaration() || isKernelLDS(&Func)) 420 continue; 421 422 DenseSet<Function *> seen; // catches cycles 423 SmallVector<Function *, 4> wip{&Func}; 424 425 while (!wip.empty()) { 426 Function *F = wip.pop_back_val(); 427 428 // Can accelerate this by referring to transitive map for functions that 429 // have already been computed, with more care than this 430 set_union(transitive_map_function[&Func], direct_map_function[F]); 431 432 for (const CallGraphNode::CallRecord &R : *CG[F]) { 433 Function *ith = R.second->getFunction(); 434 if (ith) { 435 if (!seen.contains(ith)) { 436 seen.insert(ith); 437 wip.push_back(ith); 438 } 439 } 440 } 441 } 442 } 443 444 // direct_map_kernel lists which variables are used by the kernel 445 // find the variables which are used through a function call 446 FunctionVariableMap indirect_map_kernel; 447 448 for (Function &Func : M.functions()) { 449 if (Func.isDeclaration() || !isKernelLDS(&Func)) 450 continue; 451 452 for (const CallGraphNode::CallRecord &R : *CG[&Func]) { 453 Function *ith = R.second->getFunction(); 454 if (ith) { 455 set_union(indirect_map_kernel[&Func], transitive_map_function[ith]); 456 } else { 457 set_union(indirect_map_kernel[&Func], 458 VariablesReachableThroughFunctionPointer); 459 } 460 } 461 } 462 463 return {std::move(direct_map_kernel), std::move(indirect_map_kernel)}; 464 } 465 466 struct LDSVariableReplacement { 467 GlobalVariable *SGV = nullptr; 468 DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP; 469 }; 470 471 // remap from lds global to a constantexpr gep to where it has been moved to 472 // for each kernel 473 // an array with an element for each kernel containing where the corresponding 474 // variable was remapped to 475 476 static Constant *getAddressesOfVariablesInKernel( 477 LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables, 478 const DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) { 479 // Create a ConstantArray containing the address of each Variable within the 480 // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel 481 // does not allocate it 482 // TODO: Drop the ptrtoint conversion 483 484 Type *I32 = Type::getInt32Ty(Ctx); 485 486 ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size()); 487 488 SmallVector<Constant *> Elements; 489 for (size_t i = 0; i < Variables.size(); i++) { 490 GlobalVariable *GV = Variables[i]; 491 auto ConstantGepIt = LDSVarsToConstantGEP.find(GV); 492 if (ConstantGepIt != LDSVarsToConstantGEP.end()) { 493 auto elt = ConstantExpr::getPtrToInt(ConstantGepIt->second, I32); 494 Elements.push_back(elt); 495 } else { 496 Elements.push_back(PoisonValue::get(I32)); 497 } 498 } 499 return ConstantArray::get(KernelOffsetsType, Elements); 500 } 501 502 static GlobalVariable *buildLookupTable( 503 Module &M, ArrayRef<GlobalVariable *> Variables, 504 ArrayRef<Function *> kernels, 505 DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) { 506 if (Variables.empty()) { 507 return nullptr; 508 } 509 LLVMContext &Ctx = M.getContext(); 510 511 const size_t NumberVariables = Variables.size(); 512 const size_t NumberKernels = kernels.size(); 513 514 ArrayType *KernelOffsetsType = 515 ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables); 516 517 ArrayType *AllKernelsOffsetsType = 518 ArrayType::get(KernelOffsetsType, NumberKernels); 519 520 Constant *Missing = PoisonValue::get(KernelOffsetsType); 521 std::vector<Constant *> overallConstantExprElts(NumberKernels); 522 for (size_t i = 0; i < NumberKernels; i++) { 523 auto Replacement = KernelToReplacement.find(kernels[i]); 524 overallConstantExprElts[i] = 525 (Replacement == KernelToReplacement.end()) 526 ? Missing 527 : getAddressesOfVariablesInKernel( 528 Ctx, Variables, Replacement->second.LDSVarsToConstantGEP); 529 } 530 531 Constant *init = 532 ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts); 533 534 return new GlobalVariable( 535 M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init, 536 "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal, 537 AMDGPUAS::CONSTANT_ADDRESS); 538 } 539 540 void replaceUseWithTableLookup(Module &M, IRBuilder<> &Builder, 541 GlobalVariable *LookupTable, 542 GlobalVariable *GV, Use &U, 543 Value *OptionalIndex) { 544 // Table is a constant array of the same length as OrderedKernels 545 LLVMContext &Ctx = M.getContext(); 546 Type *I32 = Type::getInt32Ty(Ctx); 547 auto *I = cast<Instruction>(U.getUser()); 548 549 Value *tableKernelIndex = getTableLookupKernelIndex(M, I->getFunction()); 550 551 if (auto *Phi = dyn_cast<PHINode>(I)) { 552 BasicBlock *BB = Phi->getIncomingBlock(U); 553 Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt()))); 554 } else { 555 Builder.SetInsertPoint(I); 556 } 557 558 SmallVector<Value *, 3> GEPIdx = { 559 ConstantInt::get(I32, 0), 560 tableKernelIndex, 561 }; 562 if (OptionalIndex) 563 GEPIdx.push_back(OptionalIndex); 564 565 Value *Address = Builder.CreateInBoundsGEP( 566 LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName()); 567 568 Value *loaded = Builder.CreateLoad(I32, Address); 569 570 Value *replacement = 571 Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName()); 572 573 U.set(replacement); 574 } 575 576 void replaceUsesInInstructionsWithTableLookup( 577 Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables, 578 GlobalVariable *LookupTable) { 579 580 LLVMContext &Ctx = M.getContext(); 581 IRBuilder<> Builder(Ctx); 582 Type *I32 = Type::getInt32Ty(Ctx); 583 584 for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) { 585 auto *GV = ModuleScopeVariables[Index]; 586 587 for (Use &U : make_early_inc_range(GV->uses())) { 588 auto *I = dyn_cast<Instruction>(U.getUser()); 589 if (!I) 590 continue; 591 592 replaceUseWithTableLookup(M, Builder, LookupTable, GV, U, 593 ConstantInt::get(I32, Index)); 594 } 595 } 596 } 597 598 static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables( 599 Module &M, LDSUsesInfoTy &LDSUsesInfo, 600 DenseSet<GlobalVariable *> const &VariableSet) { 601 602 DenseSet<Function *> KernelSet; 603 604 if (VariableSet.empty()) 605 return KernelSet; 606 607 for (Function &Func : M.functions()) { 608 if (Func.isDeclaration() || !isKernelLDS(&Func)) 609 continue; 610 for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) { 611 if (VariableSet.contains(GV)) { 612 KernelSet.insert(&Func); 613 break; 614 } 615 } 616 } 617 618 return KernelSet; 619 } 620 621 static GlobalVariable * 622 chooseBestVariableForModuleStrategy(const DataLayout &DL, 623 VariableFunctionMap &LDSVars) { 624 // Find the global variable with the most indirect uses from kernels 625 626 struct CandidateTy { 627 GlobalVariable *GV = nullptr; 628 size_t UserCount = 0; 629 size_t Size = 0; 630 631 CandidateTy() = default; 632 633 CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize) 634 : GV(GV), UserCount(UserCount), Size(AllocSize) {} 635 636 bool operator<(const CandidateTy &Other) const { 637 // Fewer users makes module scope variable less attractive 638 if (UserCount < Other.UserCount) { 639 return true; 640 } 641 if (UserCount > Other.UserCount) { 642 return false; 643 } 644 645 // Bigger makes module scope variable less attractive 646 if (Size < Other.Size) { 647 return false; 648 } 649 650 if (Size > Other.Size) { 651 return true; 652 } 653 654 // Arbitrary but consistent 655 return GV->getName() < Other.GV->getName(); 656 } 657 }; 658 659 CandidateTy MostUsed; 660 661 for (auto &K : LDSVars) { 662 GlobalVariable *GV = K.first; 663 if (K.second.size() <= 1) { 664 // A variable reachable by only one kernel is best lowered with kernel 665 // strategy 666 continue; 667 } 668 CandidateTy Candidate( 669 GV, K.second.size(), 670 DL.getTypeAllocSize(GV->getValueType()).getFixedValue()); 671 if (MostUsed < Candidate) 672 MostUsed = Candidate; 673 } 674 675 return MostUsed.GV; 676 } 677 678 static void recordLDSAbsoluteAddress(Module *M, GlobalVariable *GV, 679 uint32_t Address) { 680 // Write the specified address into metadata where it can be retrieved by 681 // the assembler. Format is a half open range, [Address Address+1) 682 LLVMContext &Ctx = M->getContext(); 683 auto *IntTy = 684 M->getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS); 685 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address)); 686 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address + 1)); 687 GV->setMetadata(LLVMContext::MD_absolute_symbol, 688 MDNode::get(Ctx, {MinC, MaxC})); 689 } 690 691 DenseMap<Function *, Value *> tableKernelIndexCache; 692 Value *getTableLookupKernelIndex(Module &M, Function *F) { 693 // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which 694 // lowers to a read from a live in register. Emit it once in the entry 695 // block to spare deduplicating it later. 696 auto [It, Inserted] = tableKernelIndexCache.try_emplace(F); 697 if (Inserted) { 698 Function *Decl = 699 Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {}); 700 701 auto InsertAt = F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca(); 702 IRBuilder<> Builder(&*InsertAt); 703 704 It->second = Builder.CreateCall(Decl, {}); 705 } 706 707 return It->second; 708 } 709 710 static std::vector<Function *> assignLDSKernelIDToEachKernel( 711 Module *M, DenseSet<Function *> const &KernelsThatAllocateTableLDS, 712 DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS) { 713 // Associate kernels in the set with an arbirary but reproducible order and 714 // annotate them with that order in metadata. This metadata is recognised by 715 // the backend and lowered to a SGPR which can be read from using 716 // amdgcn_lds_kernel_id. 717 718 std::vector<Function *> OrderedKernels; 719 if (!KernelsThatAllocateTableLDS.empty() || 720 !KernelsThatIndirectlyAllocateDynamicLDS.empty()) { 721 722 for (Function &Func : M->functions()) { 723 if (Func.isDeclaration()) 724 continue; 725 if (!isKernelLDS(&Func)) 726 continue; 727 728 if (KernelsThatAllocateTableLDS.contains(&Func) || 729 KernelsThatIndirectlyAllocateDynamicLDS.contains(&Func)) { 730 assert(Func.hasName()); // else fatal error earlier 731 OrderedKernels.push_back(&Func); 732 } 733 } 734 735 // Put them in an arbitrary but reproducible order 736 OrderedKernels = sortByName(std::move(OrderedKernels)); 737 738 // Annotate the kernels with their order in this vector 739 LLVMContext &Ctx = M->getContext(); 740 IRBuilder<> Builder(Ctx); 741 742 if (OrderedKernels.size() > UINT32_MAX) { 743 // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU 744 report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels"); 745 } 746 747 for (size_t i = 0; i < OrderedKernels.size(); i++) { 748 Metadata *AttrMDArgs[1] = { 749 ConstantAsMetadata::get(Builder.getInt32(i)), 750 }; 751 OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id", 752 MDNode::get(Ctx, AttrMDArgs)); 753 } 754 } 755 return OrderedKernels; 756 } 757 758 static void partitionVariablesIntoIndirectStrategies( 759 Module &M, LDSUsesInfoTy const &LDSUsesInfo, 760 VariableFunctionMap &LDSToKernelsThatNeedToAccessItIndirectly, 761 DenseSet<GlobalVariable *> &ModuleScopeVariables, 762 DenseSet<GlobalVariable *> &TableLookupVariables, 763 DenseSet<GlobalVariable *> &KernelAccessVariables, 764 DenseSet<GlobalVariable *> &DynamicVariables) { 765 766 GlobalVariable *HybridModuleRoot = 767 LoweringKindLoc != LoweringKind::hybrid 768 ? nullptr 769 : chooseBestVariableForModuleStrategy( 770 M.getDataLayout(), LDSToKernelsThatNeedToAccessItIndirectly); 771 772 DenseSet<Function *> const EmptySet; 773 DenseSet<Function *> const &HybridModuleRootKernels = 774 HybridModuleRoot 775 ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot] 776 : EmptySet; 777 778 for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) { 779 // Each iteration of this loop assigns exactly one global variable to 780 // exactly one of the implementation strategies. 781 782 GlobalVariable *GV = K.first; 783 assert(AMDGPU::isLDSVariableToLower(*GV)); 784 assert(K.second.size() != 0); 785 786 if (AMDGPU::isDynamicLDS(*GV)) { 787 DynamicVariables.insert(GV); 788 continue; 789 } 790 791 switch (LoweringKindLoc) { 792 case LoweringKind::module: 793 ModuleScopeVariables.insert(GV); 794 break; 795 796 case LoweringKind::table: 797 TableLookupVariables.insert(GV); 798 break; 799 800 case LoweringKind::kernel: 801 if (K.second.size() == 1) { 802 KernelAccessVariables.insert(GV); 803 } else { 804 report_fatal_error( 805 "cannot lower LDS '" + GV->getName() + 806 "' to kernel access as it is reachable from multiple kernels"); 807 } 808 break; 809 810 case LoweringKind::hybrid: { 811 if (GV == HybridModuleRoot) { 812 assert(K.second.size() != 1); 813 ModuleScopeVariables.insert(GV); 814 } else if (K.second.size() == 1) { 815 KernelAccessVariables.insert(GV); 816 } else if (set_is_subset(K.second, HybridModuleRootKernels)) { 817 ModuleScopeVariables.insert(GV); 818 } else { 819 TableLookupVariables.insert(GV); 820 } 821 break; 822 } 823 } 824 } 825 826 // All LDS variables accessed indirectly have now been partitioned into 827 // the distinct lowering strategies. 828 assert(ModuleScopeVariables.size() + TableLookupVariables.size() + 829 KernelAccessVariables.size() + DynamicVariables.size() == 830 LDSToKernelsThatNeedToAccessItIndirectly.size()); 831 } 832 833 static GlobalVariable *lowerModuleScopeStructVariables( 834 Module &M, DenseSet<GlobalVariable *> const &ModuleScopeVariables, 835 DenseSet<Function *> const &KernelsThatAllocateModuleLDS) { 836 // Create a struct to hold the ModuleScopeVariables 837 // Replace all uses of those variables from non-kernel functions with the 838 // new struct instance Replace only the uses from kernel functions that will 839 // allocate this instance. That is a space optimisation - kernels that use a 840 // subset of the module scope struct and do not need to allocate it for 841 // indirect calls will only allocate the subset they use (they do so as part 842 // of the per-kernel lowering). 843 if (ModuleScopeVariables.empty()) { 844 return nullptr; 845 } 846 847 LLVMContext &Ctx = M.getContext(); 848 849 LDSVariableReplacement ModuleScopeReplacement = 850 createLDSVariableReplacement(M, "llvm.amdgcn.module.lds", 851 ModuleScopeVariables); 852 853 appendToCompilerUsed(M, {static_cast<GlobalValue *>( 854 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 855 cast<Constant>(ModuleScopeReplacement.SGV), 856 PointerType::getUnqual(Ctx)))}); 857 858 // module.lds will be allocated at zero in any kernel that allocates it 859 recordLDSAbsoluteAddress(&M, ModuleScopeReplacement.SGV, 0); 860 861 // historic 862 removeLocalVarsFromUsedLists(M, ModuleScopeVariables); 863 864 // Replace all uses of module scope variable from non-kernel functions 865 replaceLDSVariablesWithStruct( 866 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) { 867 Instruction *I = dyn_cast<Instruction>(U.getUser()); 868 if (!I) { 869 return false; 870 } 871 Function *F = I->getFunction(); 872 return !isKernelLDS(F); 873 }); 874 875 // Replace uses of module scope variable from kernel functions that 876 // allocate the module scope variable, otherwise leave them unchanged 877 // Record on each kernel whether the module scope global is used by it 878 879 for (Function &Func : M.functions()) { 880 if (Func.isDeclaration() || !isKernelLDS(&Func)) 881 continue; 882 883 if (KernelsThatAllocateModuleLDS.contains(&Func)) { 884 replaceLDSVariablesWithStruct( 885 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) { 886 Instruction *I = dyn_cast<Instruction>(U.getUser()); 887 if (!I) { 888 return false; 889 } 890 Function *F = I->getFunction(); 891 return F == &Func; 892 }); 893 894 markUsedByKernel(&Func, ModuleScopeReplacement.SGV); 895 } 896 } 897 898 return ModuleScopeReplacement.SGV; 899 } 900 901 static DenseMap<Function *, LDSVariableReplacement> 902 lowerKernelScopeStructVariables( 903 Module &M, LDSUsesInfoTy &LDSUsesInfo, 904 DenseSet<GlobalVariable *> const &ModuleScopeVariables, 905 DenseSet<Function *> const &KernelsThatAllocateModuleLDS, 906 GlobalVariable *MaybeModuleScopeStruct) { 907 908 // Create a struct for each kernel for the non-module-scope variables. 909 910 DenseMap<Function *, LDSVariableReplacement> KernelToReplacement; 911 for (Function &Func : M.functions()) { 912 if (Func.isDeclaration() || !isKernelLDS(&Func)) 913 continue; 914 915 DenseSet<GlobalVariable *> KernelUsedVariables; 916 // Allocating variables that are used directly in this struct to get 917 // alignment aware allocation and predictable frame size. 918 for (auto &v : LDSUsesInfo.direct_access[&Func]) { 919 if (!AMDGPU::isDynamicLDS(*v)) { 920 KernelUsedVariables.insert(v); 921 } 922 } 923 924 // Allocating variables that are accessed indirectly so that a lookup of 925 // this struct instance can find them from nested functions. 926 for (auto &v : LDSUsesInfo.indirect_access[&Func]) { 927 if (!AMDGPU::isDynamicLDS(*v)) { 928 KernelUsedVariables.insert(v); 929 } 930 } 931 932 // Variables allocated in module lds must all resolve to that struct, 933 // not to the per-kernel instance. 934 if (KernelsThatAllocateModuleLDS.contains(&Func)) { 935 for (GlobalVariable *v : ModuleScopeVariables) { 936 KernelUsedVariables.erase(v); 937 } 938 } 939 940 if (KernelUsedVariables.empty()) { 941 // Either used no LDS, or the LDS it used was all in the module struct 942 // or dynamically sized 943 continue; 944 } 945 946 // The association between kernel function and LDS struct is done by 947 // symbol name, which only works if the function in question has a 948 // name This is not expected to be a problem in practice as kernels 949 // are called by name making anonymous ones (which are named by the 950 // backend) difficult to use. This does mean that llvm test cases need 951 // to name the kernels. 952 if (!Func.hasName()) { 953 report_fatal_error("Anonymous kernels cannot use LDS variables"); 954 } 955 956 std::string VarName = 957 (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str(); 958 959 auto Replacement = 960 createLDSVariableReplacement(M, VarName, KernelUsedVariables); 961 962 // If any indirect uses, create a direct use to ensure allocation 963 // TODO: Simpler to unconditionally mark used but that regresses 964 // codegen in test/CodeGen/AMDGPU/noclobber-barrier.ll 965 auto Accesses = LDSUsesInfo.indirect_access.find(&Func); 966 if ((Accesses != LDSUsesInfo.indirect_access.end()) && 967 !Accesses->second.empty()) 968 markUsedByKernel(&Func, Replacement.SGV); 969 970 // remove preserves existing codegen 971 removeLocalVarsFromUsedLists(M, KernelUsedVariables); 972 KernelToReplacement[&Func] = Replacement; 973 974 // Rewrite uses within kernel to the new struct 975 replaceLDSVariablesWithStruct( 976 M, KernelUsedVariables, Replacement, [&Func](Use &U) { 977 Instruction *I = dyn_cast<Instruction>(U.getUser()); 978 return I && I->getFunction() == &Func; 979 }); 980 } 981 return KernelToReplacement; 982 } 983 984 static GlobalVariable * 985 buildRepresentativeDynamicLDSInstance(Module &M, LDSUsesInfoTy &LDSUsesInfo, 986 Function *func) { 987 // Create a dynamic lds variable with a name associated with the passed 988 // function that has the maximum alignment of any dynamic lds variable 989 // reachable from this kernel. Dynamic LDS is allocated after the static LDS 990 // allocation, possibly after alignment padding. The representative variable 991 // created here has the maximum alignment of any other dynamic variable 992 // reachable by that kernel. All dynamic LDS variables are allocated at the 993 // same address in each kernel in order to provide the documented aliasing 994 // semantics. Setting the alignment here allows this IR pass to accurately 995 // predict the exact constant at which it will be allocated. 996 997 assert(isKernelLDS(func)); 998 999 LLVMContext &Ctx = M.getContext(); 1000 const DataLayout &DL = M.getDataLayout(); 1001 Align MaxDynamicAlignment(1); 1002 1003 auto UpdateMaxAlignment = [&MaxDynamicAlignment, &DL](GlobalVariable *GV) { 1004 if (AMDGPU::isDynamicLDS(*GV)) { 1005 MaxDynamicAlignment = 1006 std::max(MaxDynamicAlignment, AMDGPU::getAlign(DL, GV)); 1007 } 1008 }; 1009 1010 for (GlobalVariable *GV : LDSUsesInfo.indirect_access[func]) { 1011 UpdateMaxAlignment(GV); 1012 } 1013 1014 for (GlobalVariable *GV : LDSUsesInfo.direct_access[func]) { 1015 UpdateMaxAlignment(GV); 1016 } 1017 1018 assert(func->hasName()); // Checked by caller 1019 auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0); 1020 GlobalVariable *N = new GlobalVariable( 1021 M, emptyCharArray, false, GlobalValue::ExternalLinkage, nullptr, 1022 Twine("llvm.amdgcn." + func->getName() + ".dynlds"), nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, 1023 false); 1024 N->setAlignment(MaxDynamicAlignment); 1025 1026 assert(AMDGPU::isDynamicLDS(*N)); 1027 return N; 1028 } 1029 1030 DenseMap<Function *, GlobalVariable *> lowerDynamicLDSVariables( 1031 Module &M, LDSUsesInfoTy &LDSUsesInfo, 1032 DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS, 1033 DenseSet<GlobalVariable *> const &DynamicVariables, 1034 std::vector<Function *> const &OrderedKernels) { 1035 DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS; 1036 if (!KernelsThatIndirectlyAllocateDynamicLDS.empty()) { 1037 LLVMContext &Ctx = M.getContext(); 1038 IRBuilder<> Builder(Ctx); 1039 Type *I32 = Type::getInt32Ty(Ctx); 1040 1041 std::vector<Constant *> newDynamicLDS; 1042 1043 // Table is built in the same order as OrderedKernels 1044 for (auto &func : OrderedKernels) { 1045 1046 if (KernelsThatIndirectlyAllocateDynamicLDS.contains(func)) { 1047 assert(isKernelLDS(func)); 1048 if (!func->hasName()) { 1049 report_fatal_error("Anonymous kernels cannot use LDS variables"); 1050 } 1051 1052 GlobalVariable *N = 1053 buildRepresentativeDynamicLDSInstance(M, LDSUsesInfo, func); 1054 1055 KernelToCreatedDynamicLDS[func] = N; 1056 1057 markUsedByKernel(func, N); 1058 1059 auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0); 1060 auto GEP = ConstantExpr::getGetElementPtr( 1061 emptyCharArray, N, ConstantInt::get(I32, 0), true); 1062 newDynamicLDS.push_back(ConstantExpr::getPtrToInt(GEP, I32)); 1063 } else { 1064 newDynamicLDS.push_back(PoisonValue::get(I32)); 1065 } 1066 } 1067 assert(OrderedKernels.size() == newDynamicLDS.size()); 1068 1069 ArrayType *t = ArrayType::get(I32, newDynamicLDS.size()); 1070 Constant *init = ConstantArray::get(t, newDynamicLDS); 1071 GlobalVariable *table = new GlobalVariable( 1072 M, t, true, GlobalValue::InternalLinkage, init, 1073 "llvm.amdgcn.dynlds.offset.table", nullptr, 1074 GlobalValue::NotThreadLocal, AMDGPUAS::CONSTANT_ADDRESS); 1075 1076 for (GlobalVariable *GV : DynamicVariables) { 1077 for (Use &U : make_early_inc_range(GV->uses())) { 1078 auto *I = dyn_cast<Instruction>(U.getUser()); 1079 if (!I) 1080 continue; 1081 if (isKernelLDS(I->getFunction())) 1082 continue; 1083 1084 replaceUseWithTableLookup(M, Builder, table, GV, U, nullptr); 1085 } 1086 } 1087 } 1088 return KernelToCreatedDynamicLDS; 1089 } 1090 1091 bool runOnModule(Module &M) { 1092 CallGraph CG = CallGraph(M); 1093 bool Changed = superAlignLDSGlobals(M); 1094 1095 Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M); 1096 1097 Changed = true; // todo: narrow this down 1098 1099 // For each kernel, what variables does it access directly or through 1100 // callees 1101 LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M); 1102 1103 // For each variable accessed through callees, which kernels access it 1104 VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly; 1105 for (auto &K : LDSUsesInfo.indirect_access) { 1106 Function *F = K.first; 1107 assert(isKernelLDS(F)); 1108 for (GlobalVariable *GV : K.second) { 1109 LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F); 1110 } 1111 } 1112 1113 // Partition variables accessed indirectly into the different strategies 1114 DenseSet<GlobalVariable *> ModuleScopeVariables; 1115 DenseSet<GlobalVariable *> TableLookupVariables; 1116 DenseSet<GlobalVariable *> KernelAccessVariables; 1117 DenseSet<GlobalVariable *> DynamicVariables; 1118 partitionVariablesIntoIndirectStrategies( 1119 M, LDSUsesInfo, LDSToKernelsThatNeedToAccessItIndirectly, 1120 ModuleScopeVariables, TableLookupVariables, KernelAccessVariables, 1121 DynamicVariables); 1122 1123 // If the kernel accesses a variable that is going to be stored in the 1124 // module instance through a call then that kernel needs to allocate the 1125 // module instance 1126 const DenseSet<Function *> KernelsThatAllocateModuleLDS = 1127 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo, 1128 ModuleScopeVariables); 1129 const DenseSet<Function *> KernelsThatAllocateTableLDS = 1130 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo, 1131 TableLookupVariables); 1132 1133 const DenseSet<Function *> KernelsThatIndirectlyAllocateDynamicLDS = 1134 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo, 1135 DynamicVariables); 1136 1137 GlobalVariable *MaybeModuleScopeStruct = lowerModuleScopeStructVariables( 1138 M, ModuleScopeVariables, KernelsThatAllocateModuleLDS); 1139 1140 DenseMap<Function *, LDSVariableReplacement> KernelToReplacement = 1141 lowerKernelScopeStructVariables(M, LDSUsesInfo, ModuleScopeVariables, 1142 KernelsThatAllocateModuleLDS, 1143 MaybeModuleScopeStruct); 1144 1145 // Lower zero cost accesses to the kernel instances just created 1146 for (auto &GV : KernelAccessVariables) { 1147 auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV]; 1148 assert(funcs.size() == 1); // Only one kernel can access it 1149 LDSVariableReplacement Replacement = 1150 KernelToReplacement[*(funcs.begin())]; 1151 1152 DenseSet<GlobalVariable *> Vec; 1153 Vec.insert(GV); 1154 1155 replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) { 1156 return isa<Instruction>(U.getUser()); 1157 }); 1158 } 1159 1160 // The ith element of this vector is kernel id i 1161 std::vector<Function *> OrderedKernels = 1162 assignLDSKernelIDToEachKernel(&M, KernelsThatAllocateTableLDS, 1163 KernelsThatIndirectlyAllocateDynamicLDS); 1164 1165 if (!KernelsThatAllocateTableLDS.empty()) { 1166 LLVMContext &Ctx = M.getContext(); 1167 IRBuilder<> Builder(Ctx); 1168 1169 // The order must be consistent between lookup table and accesses to 1170 // lookup table 1171 auto TableLookupVariablesOrdered = 1172 sortByName(std::vector<GlobalVariable *>(TableLookupVariables.begin(), 1173 TableLookupVariables.end())); 1174 1175 GlobalVariable *LookupTable = buildLookupTable( 1176 M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement); 1177 replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered, 1178 LookupTable); 1179 } 1180 1181 DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS = 1182 lowerDynamicLDSVariables(M, LDSUsesInfo, 1183 KernelsThatIndirectlyAllocateDynamicLDS, 1184 DynamicVariables, OrderedKernels); 1185 1186 // All kernel frames have been allocated. Calculate and record the 1187 // addresses. 1188 { 1189 const DataLayout &DL = M.getDataLayout(); 1190 1191 for (Function &Func : M.functions()) { 1192 if (Func.isDeclaration() || !isKernelLDS(&Func)) 1193 continue; 1194 1195 // All three of these are optional. The first variable is allocated at 1196 // zero. They are allocated by AMDGPUMachineFunction as one block. 1197 // Layout: 1198 //{ 1199 // module.lds 1200 // alignment padding 1201 // kernel instance 1202 // alignment padding 1203 // dynamic lds variables 1204 //} 1205 1206 const bool AllocateModuleScopeStruct = 1207 MaybeModuleScopeStruct && 1208 KernelsThatAllocateModuleLDS.contains(&Func); 1209 1210 auto Replacement = KernelToReplacement.find(&Func); 1211 const bool AllocateKernelScopeStruct = 1212 Replacement != KernelToReplacement.end(); 1213 1214 const bool AllocateDynamicVariable = 1215 KernelToCreatedDynamicLDS.contains(&Func); 1216 1217 uint32_t Offset = 0; 1218 1219 if (AllocateModuleScopeStruct) { 1220 // Allocated at zero, recorded once on construction, not once per 1221 // kernel 1222 Offset += DL.getTypeAllocSize(MaybeModuleScopeStruct->getValueType()); 1223 } 1224 1225 if (AllocateKernelScopeStruct) { 1226 GlobalVariable *KernelStruct = Replacement->second.SGV; 1227 Offset = alignTo(Offset, AMDGPU::getAlign(DL, KernelStruct)); 1228 recordLDSAbsoluteAddress(&M, KernelStruct, Offset); 1229 Offset += DL.getTypeAllocSize(KernelStruct->getValueType()); 1230 } 1231 1232 // If there is dynamic allocation, the alignment needed is included in 1233 // the static frame size. There may be no reference to the dynamic 1234 // variable in the kernel itself, so without including it here, that 1235 // alignment padding could be missed. 1236 if (AllocateDynamicVariable) { 1237 GlobalVariable *DynamicVariable = KernelToCreatedDynamicLDS[&Func]; 1238 Offset = alignTo(Offset, AMDGPU::getAlign(DL, DynamicVariable)); 1239 recordLDSAbsoluteAddress(&M, DynamicVariable, Offset); 1240 } 1241 1242 if (Offset != 0) { 1243 (void)TM; // TODO: Account for target maximum LDS 1244 std::string Buffer; 1245 raw_string_ostream SS{Buffer}; 1246 SS << format("%u", Offset); 1247 1248 // Instead of explictly marking kernels that access dynamic variables 1249 // using special case metadata, annotate with min-lds == max-lds, i.e. 1250 // that there is no more space available for allocating more static 1251 // LDS variables. That is the right condition to prevent allocating 1252 // more variables which would collide with the addresses assigned to 1253 // dynamic variables. 1254 if (AllocateDynamicVariable) 1255 SS << format(",%u", Offset); 1256 1257 Func.addFnAttr("amdgpu-lds-size", Buffer); 1258 } 1259 } 1260 } 1261 1262 for (auto &GV : make_early_inc_range(M.globals())) 1263 if (AMDGPU::isLDSVariableToLower(GV)) { 1264 // probably want to remove from used lists 1265 GV.removeDeadConstantUsers(); 1266 if (GV.use_empty()) 1267 GV.eraseFromParent(); 1268 } 1269 1270 return Changed; 1271 } 1272 1273 private: 1274 // Increase the alignment of LDS globals if necessary to maximise the chance 1275 // that we can use aligned LDS instructions to access them. 1276 static bool superAlignLDSGlobals(Module &M) { 1277 const DataLayout &DL = M.getDataLayout(); 1278 bool Changed = false; 1279 if (!SuperAlignLDSGlobals) { 1280 return Changed; 1281 } 1282 1283 for (auto &GV : M.globals()) { 1284 if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) { 1285 // Only changing alignment of LDS variables 1286 continue; 1287 } 1288 if (!GV.hasInitializer()) { 1289 // cuda/hip extern __shared__ variable, leave alignment alone 1290 continue; 1291 } 1292 1293 Align Alignment = AMDGPU::getAlign(DL, &GV); 1294 TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType()); 1295 1296 if (GVSize > 8) { 1297 // We might want to use a b96 or b128 load/store 1298 Alignment = std::max(Alignment, Align(16)); 1299 } else if (GVSize > 4) { 1300 // We might want to use a b64 load/store 1301 Alignment = std::max(Alignment, Align(8)); 1302 } else if (GVSize > 2) { 1303 // We might want to use a b32 load/store 1304 Alignment = std::max(Alignment, Align(4)); 1305 } else if (GVSize > 1) { 1306 // We might want to use a b16 load/store 1307 Alignment = std::max(Alignment, Align(2)); 1308 } 1309 1310 if (Alignment != AMDGPU::getAlign(DL, &GV)) { 1311 Changed = true; 1312 GV.setAlignment(Alignment); 1313 } 1314 } 1315 return Changed; 1316 } 1317 1318 static LDSVariableReplacement createLDSVariableReplacement( 1319 Module &M, std::string VarName, 1320 DenseSet<GlobalVariable *> const &LDSVarsToTransform) { 1321 // Create a struct instance containing LDSVarsToTransform and map from those 1322 // variables to ConstantExprGEP 1323 // Variables may be introduced to meet alignment requirements. No aliasing 1324 // metadata is useful for these as they have no uses. Erased before return. 1325 1326 LLVMContext &Ctx = M.getContext(); 1327 const DataLayout &DL = M.getDataLayout(); 1328 assert(!LDSVarsToTransform.empty()); 1329 1330 SmallVector<OptimizedStructLayoutField, 8> LayoutFields; 1331 LayoutFields.reserve(LDSVarsToTransform.size()); 1332 { 1333 // The order of fields in this struct depends on the order of 1334 // varables in the argument which varies when changing how they 1335 // are identified, leading to spurious test breakage. 1336 auto Sorted = sortByName(std::vector<GlobalVariable *>( 1337 LDSVarsToTransform.begin(), LDSVarsToTransform.end())); 1338 1339 for (GlobalVariable *GV : Sorted) { 1340 OptimizedStructLayoutField F(GV, 1341 DL.getTypeAllocSize(GV->getValueType()), 1342 AMDGPU::getAlign(DL, GV)); 1343 LayoutFields.emplace_back(F); 1344 } 1345 } 1346 1347 performOptimizedStructLayout(LayoutFields); 1348 1349 std::vector<GlobalVariable *> LocalVars; 1350 BitVector IsPaddingField; 1351 LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large 1352 IsPaddingField.reserve(LDSVarsToTransform.size()); 1353 { 1354 uint64_t CurrentOffset = 0; 1355 for (size_t I = 0; I < LayoutFields.size(); I++) { 1356 GlobalVariable *FGV = static_cast<GlobalVariable *>( 1357 const_cast<void *>(LayoutFields[I].Id)); 1358 Align DataAlign = LayoutFields[I].Alignment; 1359 1360 uint64_t DataAlignV = DataAlign.value(); 1361 if (uint64_t Rem = CurrentOffset % DataAlignV) { 1362 uint64_t Padding = DataAlignV - Rem; 1363 1364 // Append an array of padding bytes to meet alignment requested 1365 // Note (o + (a - (o % a)) ) % a == 0 1366 // (offset + Padding ) % align == 0 1367 1368 Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding); 1369 LocalVars.push_back(new GlobalVariable( 1370 M, ATy, false, GlobalValue::InternalLinkage, 1371 PoisonValue::get(ATy), "", nullptr, GlobalValue::NotThreadLocal, 1372 AMDGPUAS::LOCAL_ADDRESS, false)); 1373 IsPaddingField.push_back(true); 1374 CurrentOffset += Padding; 1375 } 1376 1377 LocalVars.push_back(FGV); 1378 IsPaddingField.push_back(false); 1379 CurrentOffset += LayoutFields[I].Size; 1380 } 1381 } 1382 1383 std::vector<Type *> LocalVarTypes; 1384 LocalVarTypes.reserve(LocalVars.size()); 1385 std::transform( 1386 LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes), 1387 [](const GlobalVariable *V) -> Type * { return V->getValueType(); }); 1388 1389 StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t"); 1390 1391 Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]); 1392 1393 GlobalVariable *SGV = new GlobalVariable( 1394 M, LDSTy, false, GlobalValue::InternalLinkage, PoisonValue::get(LDSTy), 1395 VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, 1396 false); 1397 SGV->setAlignment(StructAlign); 1398 1399 DenseMap<GlobalVariable *, Constant *> Map; 1400 Type *I32 = Type::getInt32Ty(Ctx); 1401 for (size_t I = 0; I < LocalVars.size(); I++) { 1402 GlobalVariable *GV = LocalVars[I]; 1403 Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)}; 1404 Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true); 1405 if (IsPaddingField[I]) { 1406 assert(GV->use_empty()); 1407 GV->eraseFromParent(); 1408 } else { 1409 Map[GV] = GEP; 1410 } 1411 } 1412 assert(Map.size() == LDSVarsToTransform.size()); 1413 return {SGV, std::move(Map)}; 1414 } 1415 1416 template <typename PredicateTy> 1417 static void replaceLDSVariablesWithStruct( 1418 Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg, 1419 const LDSVariableReplacement &Replacement, PredicateTy Predicate) { 1420 LLVMContext &Ctx = M.getContext(); 1421 const DataLayout &DL = M.getDataLayout(); 1422 1423 // A hack... we need to insert the aliasing info in a predictable order for 1424 // lit tests. Would like to have them in a stable order already, ideally the 1425 // same order they get allocated, which might mean an ordered set container 1426 auto LDSVarsToTransform = sortByName(std::vector<GlobalVariable *>( 1427 LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end())); 1428 1429 // Create alias.scope and their lists. Each field in the new structure 1430 // does not alias with all other fields. 1431 SmallVector<MDNode *> AliasScopes; 1432 SmallVector<Metadata *> NoAliasList; 1433 const size_t NumberVars = LDSVarsToTransform.size(); 1434 if (NumberVars > 1) { 1435 MDBuilder MDB(Ctx); 1436 AliasScopes.reserve(NumberVars); 1437 MDNode *Domain = MDB.createAnonymousAliasScopeDomain(); 1438 for (size_t I = 0; I < NumberVars; I++) { 1439 MDNode *Scope = MDB.createAnonymousAliasScope(Domain); 1440 AliasScopes.push_back(Scope); 1441 } 1442 NoAliasList.append(&AliasScopes[1], AliasScopes.end()); 1443 } 1444 1445 // Replace uses of ith variable with a constantexpr to the corresponding 1446 // field of the instance that will be allocated by AMDGPUMachineFunction 1447 for (size_t I = 0; I < NumberVars; I++) { 1448 GlobalVariable *GV = LDSVarsToTransform[I]; 1449 Constant *GEP = Replacement.LDSVarsToConstantGEP.at(GV); 1450 1451 GV->replaceUsesWithIf(GEP, Predicate); 1452 1453 APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0); 1454 GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff); 1455 uint64_t Offset = APOff.getZExtValue(); 1456 1457 Align A = 1458 commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset); 1459 1460 if (I) 1461 NoAliasList[I - 1] = AliasScopes[I - 1]; 1462 MDNode *NoAlias = 1463 NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList); 1464 MDNode *AliasScope = 1465 AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]}); 1466 1467 refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias); 1468 } 1469 } 1470 1471 static void refineUsesAlignmentAndAA(Value *Ptr, Align A, 1472 const DataLayout &DL, MDNode *AliasScope, 1473 MDNode *NoAlias, unsigned MaxDepth = 5) { 1474 if (!MaxDepth || (A == 1 && !AliasScope)) 1475 return; 1476 1477 for (User *U : Ptr->users()) { 1478 if (auto *I = dyn_cast<Instruction>(U)) { 1479 if (AliasScope && I->mayReadOrWriteMemory()) { 1480 MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope); 1481 AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope) 1482 : AliasScope); 1483 I->setMetadata(LLVMContext::MD_alias_scope, AS); 1484 1485 MDNode *NA = I->getMetadata(LLVMContext::MD_noalias); 1486 NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias); 1487 I->setMetadata(LLVMContext::MD_noalias, NA); 1488 } 1489 } 1490 1491 if (auto *LI = dyn_cast<LoadInst>(U)) { 1492 LI->setAlignment(std::max(A, LI->getAlign())); 1493 continue; 1494 } 1495 if (auto *SI = dyn_cast<StoreInst>(U)) { 1496 if (SI->getPointerOperand() == Ptr) 1497 SI->setAlignment(std::max(A, SI->getAlign())); 1498 continue; 1499 } 1500 if (auto *AI = dyn_cast<AtomicRMWInst>(U)) { 1501 // None of atomicrmw operations can work on pointers, but let's 1502 // check it anyway in case it will or we will process ConstantExpr. 1503 if (AI->getPointerOperand() == Ptr) 1504 AI->setAlignment(std::max(A, AI->getAlign())); 1505 continue; 1506 } 1507 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) { 1508 if (AI->getPointerOperand() == Ptr) 1509 AI->setAlignment(std::max(A, AI->getAlign())); 1510 continue; 1511 } 1512 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 1513 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1514 APInt Off(BitWidth, 0); 1515 if (GEP->getPointerOperand() == Ptr) { 1516 Align GA; 1517 if (GEP->accumulateConstantOffset(DL, Off)) 1518 GA = commonAlignment(A, Off.getLimitedValue()); 1519 refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias, 1520 MaxDepth - 1); 1521 } 1522 continue; 1523 } 1524 if (auto *I = dyn_cast<Instruction>(U)) { 1525 if (I->getOpcode() == Instruction::BitCast || 1526 I->getOpcode() == Instruction::AddrSpaceCast) 1527 refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1); 1528 } 1529 } 1530 } 1531 }; 1532 1533 class AMDGPULowerModuleLDSLegacy : public ModulePass { 1534 public: 1535 const AMDGPUTargetMachine *TM; 1536 static char ID; 1537 1538 AMDGPULowerModuleLDSLegacy(const AMDGPUTargetMachine *TM_ = nullptr) 1539 : ModulePass(ID), TM(TM_) { 1540 initializeAMDGPULowerModuleLDSLegacyPass(*PassRegistry::getPassRegistry()); 1541 } 1542 1543 void getAnalysisUsage(AnalysisUsage &AU) const override { 1544 if (!TM) 1545 AU.addRequired<TargetPassConfig>(); 1546 } 1547 1548 bool runOnModule(Module &M) override { 1549 if (!TM) { 1550 auto &TPC = getAnalysis<TargetPassConfig>(); 1551 TM = &TPC.getTM<AMDGPUTargetMachine>(); 1552 } 1553 1554 return AMDGPULowerModuleLDS(*TM).runOnModule(M); 1555 } 1556 }; 1557 1558 } // namespace 1559 char AMDGPULowerModuleLDSLegacy::ID = 0; 1560 1561 char &llvm::AMDGPULowerModuleLDSLegacyPassID = AMDGPULowerModuleLDSLegacy::ID; 1562 1563 INITIALIZE_PASS_BEGIN(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE, 1564 "Lower uses of LDS variables from non-kernel functions", 1565 false, false) 1566 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 1567 INITIALIZE_PASS_END(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE, 1568 "Lower uses of LDS variables from non-kernel functions", 1569 false, false) 1570 1571 ModulePass * 1572 llvm::createAMDGPULowerModuleLDSLegacyPass(const AMDGPUTargetMachine *TM) { 1573 return new AMDGPULowerModuleLDSLegacy(TM); 1574 } 1575 1576 PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M, 1577 ModuleAnalysisManager &) { 1578 return AMDGPULowerModuleLDS(TM).runOnModule(M) ? PreservedAnalyses::none() 1579 : PreservedAnalyses::all(); 1580 } 1581