xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp (revision 7573d5e4b10cc7befc54d29edd7ec94d9bf11b93)
1 //===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates local data store, LDS, uses from non-kernel functions.
10 // LDS is contiguous memory allocated per kernel execution.
11 //
12 // Background.
13 //
14 // The programming model is global variables, or equivalently function local
15 // static variables, accessible from kernels or other functions. For uses from
16 // kernels this is straightforward - assign an integer to the kernel for the
17 // memory required by all the variables combined, allocate them within that.
18 // For uses from functions there are performance tradeoffs to choose between.
19 //
20 // This model means the GPU runtime can specify the amount of memory allocated.
21 // If this is more than the kernel assumed, the excess can be made available
22 // using a language specific feature, which IR represents as a variable with
23 // no initializer. This feature is referred to here as "Dynamic LDS" and is
24 // lowered slightly differently to the normal case.
25 //
26 // Consequences of this GPU feature:
27 // - memory is limited and exceeding it halts compilation
28 // - a global accessed by one kernel exists independent of other kernels
29 // - a global exists independent of simultaneous execution of the same kernel
30 // - the address of the global may be different from different kernels as they
31 //   do not alias, which permits only allocating variables they use
32 // - if the address is allowed to differ, functions need help to find it
33 //
34 // Uses from kernels are implemented here by grouping them in a per-kernel
35 // struct instance. This duplicates the variables, accurately modelling their
36 // aliasing properties relative to a single global representation. It also
37 // permits control over alignment via padding.
38 //
39 // Uses from functions are more complicated and the primary purpose of this
40 // IR pass. Several different lowering are chosen between to meet requirements
41 // to avoid allocating any LDS where it is not necessary, as that impacts
42 // occupancy and may fail the compilation, while not imposing overhead on a
43 // feature whose primary advantage over global memory is performance. The basic
44 // design goal is to avoid one kernel imposing overhead on another.
45 //
46 // Implementation.
47 //
48 // LDS variables with constant annotation or non-undef initializer are passed
49 // through unchanged for simplification or error diagnostics in later passes.
50 // Non-undef initializers are not yet implemented for LDS.
51 //
52 // LDS variables that are always allocated at the same address can be found
53 // by lookup at that address. Otherwise runtime information/cost is required.
54 //
55 // The simplest strategy possible is to group all LDS variables in a single
56 // struct and allocate that struct in every kernel such that the original
57 // variables are always at the same address. LDS is however a limited resource
58 // so this strategy is unusable in practice. It is not implemented here.
59 //
60 // Strategy | Precise allocation | Zero runtime cost | General purpose |
61 //  --------+--------------------+-------------------+-----------------+
62 //   Module |                 No |               Yes |             Yes |
63 //    Table |                Yes |                No |             Yes |
64 //   Kernel |                Yes |               Yes |              No |
65 //   Hybrid |                Yes |           Partial |             Yes |
66 //
67 // "Module" spends LDS memory to save cycles. "Table" spends cycles and global
68 // memory to save LDS. "Kernel" is as fast as kernel allocation but only works
69 // for variables that are known reachable from a single kernel. "Hybrid" picks
70 // between all three. When forced to choose between LDS and cycles we minimise
71 // LDS use.
72 
73 // The "module" lowering implemented here finds LDS variables which are used by
74 // non-kernel functions and creates a new struct with a field for each of those
75 // LDS variables. Variables that are only used from kernels are excluded.
76 //
77 // The "table" lowering implemented here has three components.
78 // First kernels are assigned a unique integer identifier which is available in
79 // functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
80 // is passed through a specific SGPR, thus works with indirect calls.
81 // Second, each kernel allocates LDS variables independent of other kernels and
82 // writes the addresses it chose for each variable into an array in consistent
83 // order. If the kernel does not allocate a given variable, it writes undef to
84 // the corresponding array location. These arrays are written to a constant
85 // table in the order matching the kernel unique integer identifier.
86 // Third, uses from non-kernel functions are replaced with a table lookup using
87 // the intrinsic function to find the address of the variable.
88 //
89 // "Kernel" lowering is only applicable for variables that are unambiguously
90 // reachable from exactly one kernel. For those cases, accesses to the variable
91 // can be lowered to ConstantExpr address of a struct instance specific to that
92 // one kernel. This is zero cost in space and in compute. It will raise a fatal
93 // error on any variable that might be reachable from multiple kernels and is
94 // thus most easily used as part of the hybrid lowering strategy.
95 //
96 // Hybrid lowering is a mixture of the above. It uses the zero cost kernel
97 // lowering where it can. It lowers the variable accessed by the greatest
98 // number of kernels using the module strategy as that is free for the first
99 // variable. Any futher variables that can be lowered with the module strategy
100 // without incurring LDS memory overhead are. The remaining ones are lowered
101 // via table.
102 //
103 // Consequences
104 // - No heuristics or user controlled magic numbers, hybrid is the right choice
105 // - Kernels that don't use functions (or have had them all inlined) are not
106 //   affected by any lowering for kernels that do.
107 // - Kernels that don't make indirect function calls are not affected by those
108 //   that do.
109 // - Variables which are used by lots of kernels, e.g. those injected by a
110 //   language runtime in most kernels, are expected to have no overhead
111 // - Implementations that instantiate templates per-kernel where those templates
112 //   use LDS are expected to hit the "Kernel" lowering strategy
113 // - The runtime properties impose a cost in compiler implementation complexity
114 //
115 // Dynamic LDS implementation
116 // Dynamic LDS is lowered similarly to the "table" strategy above and uses the
117 // same intrinsic to identify which kernel is at the root of the dynamic call
118 // graph. This relies on the specified behaviour that all dynamic LDS variables
119 // alias one another, i.e. are at the same address, with respect to a given
120 // kernel. Therefore this pass creates new dynamic LDS variables for each kernel
121 // that allocates any dynamic LDS and builds a table of addresses out of those.
122 // The AMDGPUPromoteAlloca pass skips kernels that use dynamic LDS.
123 // The corresponding optimisation for "kernel" lowering where the table lookup
124 // is elided is not implemented.
125 //
126 //
127 // Implementation notes / limitations
128 // A single LDS global variable represents an instance per kernel that can reach
129 // said variables. This pass essentially specialises said variables per kernel.
130 // Handling ConstantExpr during the pass complicated this significantly so now
131 // all ConstantExpr uses of LDS variables are expanded to instructions. This
132 // may need amending when implementing non-undef initialisers.
133 //
134 // Lowering is split between this IR pass and the back end. This pass chooses
135 // where given variables should be allocated and marks them with metadata,
136 // MD_absolute_symbol. The backend places the variables in coincidentally the
137 // same location and raises a fatal error if something has gone awry. This works
138 // in practice because the only pass between this one and the backend that
139 // changes LDS is PromoteAlloca and the changes it makes do not conflict.
140 //
141 // Addresses are written to constant global arrays based on the same metadata.
142 //
143 // The backend lowers LDS variables in the order of traversal of the function.
144 // This is at odds with the deterministic layout required. The workaround is to
145 // allocate the fixed-address variables immediately upon starting the function
146 // where they can be placed as intended. This requires a means of mapping from
147 // the function to the variables that it allocates. For the module scope lds,
148 // this is via metadata indicating whether the variable is not required. If a
149 // pass deletes that metadata, a fatal error on disagreement with the absolute
150 // symbol metadata will occur. For kernel scope and dynamic, this is by _name_
151 // correspondence between the function and the variable. It requires the
152 // kernel to have a name (which is only a limitation for tests in practice) and
153 // for nothing to rename the corresponding symbols. This is a hazard if the pass
154 // is run multiple times during debugging. Alternative schemes considered all
155 // involve bespoke metadata.
156 //
157 // If the name correspondence can be replaced, multiple distinct kernels that
158 // have the same memory layout can map to the same kernel id (as the address
159 // itself is handled by the absolute symbol metadata) and that will allow more
160 // uses of the "kernel" style faster lowering and reduce the size of the lookup
161 // tables.
162 //
163 // There is a test that checks this does not fire for a graphics shader. This
164 // lowering is expected to work for graphics if the isKernel test is changed.
165 //
166 // The current markUsedByKernel is sufficient for PromoteAlloca but is elided
167 // before codegen. Replacing this with an equivalent intrinsic which lasts until
168 // shortly after the machine function lowering of LDS would help break the name
169 // mapping. The other part needed is probably to amend PromoteAlloca to embed
170 // the LDS variables it creates in the same struct created here. That avoids the
171 // current hazard where a PromoteAlloca LDS variable might be allocated before
172 // the kernel scope (and thus error on the address check). Given a new invariant
173 // that no LDS variables exist outside of the structs managed here, and an
174 // intrinsic that lasts until after the LDS frame lowering, it should be
175 // possible to drop the name mapping and fold equivalent memory layouts.
176 //
177 //===----------------------------------------------------------------------===//
178 
179 #include "AMDGPU.h"
180 #include "AMDGPUTargetMachine.h"
181 #include "Utils/AMDGPUBaseInfo.h"
182 #include "Utils/AMDGPUMemoryUtils.h"
183 #include "llvm/ADT/BitVector.h"
184 #include "llvm/ADT/DenseMap.h"
185 #include "llvm/ADT/DenseSet.h"
186 #include "llvm/ADT/STLExtras.h"
187 #include "llvm/ADT/SetOperations.h"
188 #include "llvm/Analysis/CallGraph.h"
189 #include "llvm/CodeGen/TargetPassConfig.h"
190 #include "llvm/IR/Constants.h"
191 #include "llvm/IR/DerivedTypes.h"
192 #include "llvm/IR/IRBuilder.h"
193 #include "llvm/IR/InlineAsm.h"
194 #include "llvm/IR/Instructions.h"
195 #include "llvm/IR/IntrinsicsAMDGPU.h"
196 #include "llvm/IR/MDBuilder.h"
197 #include "llvm/IR/ReplaceConstant.h"
198 #include "llvm/InitializePasses.h"
199 #include "llvm/Pass.h"
200 #include "llvm/Support/CommandLine.h"
201 #include "llvm/Support/Debug.h"
202 #include "llvm/Support/Format.h"
203 #include "llvm/Support/OptimizedStructLayout.h"
204 #include "llvm/Support/raw_ostream.h"
205 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
206 #include "llvm/Transforms/Utils/ModuleUtils.h"
207 
208 #include <vector>
209 
210 #include <cstdio>
211 
212 #define DEBUG_TYPE "amdgpu-lower-module-lds"
213 
214 using namespace llvm;
215 using namespace AMDGPU;
216 
217 namespace {
218 
219 cl::opt<bool> SuperAlignLDSGlobals(
220     "amdgpu-super-align-lds-globals",
221     cl::desc("Increase alignment of LDS if it is not on align boundary"),
222     cl::init(true), cl::Hidden);
223 
224 enum class LoweringKind { module, table, kernel, hybrid };
225 cl::opt<LoweringKind> LoweringKindLoc(
226     "amdgpu-lower-module-lds-strategy",
227     cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
228     cl::init(LoweringKind::hybrid),
229     cl::values(
230         clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
231         clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
232         clEnumValN(
233             LoweringKind::kernel, "kernel",
234             "Lower variables reachable from one kernel, otherwise abort"),
235         clEnumValN(LoweringKind::hybrid, "hybrid",
236                    "Lower via mixture of above strategies")));
237 
238 template <typename T> std::vector<T> sortByName(std::vector<T> &&V) {
239   llvm::sort(V.begin(), V.end(), [](const auto *L, const auto *R) {
240     return L->getName() < R->getName();
241   });
242   return {std::move(V)};
243 }
244 
245 class AMDGPULowerModuleLDS {
246   const AMDGPUTargetMachine &TM;
247 
248   static void
249   removeLocalVarsFromUsedLists(Module &M,
250                                const DenseSet<GlobalVariable *> &LocalVars) {
251     // The verifier rejects used lists containing an inttoptr of a constant
252     // so remove the variables from these lists before replaceAllUsesWith
253     SmallPtrSet<Constant *, 8> LocalVarsSet;
254     for (GlobalVariable *LocalVar : LocalVars)
255       LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
256 
257     removeFromUsedLists(
258         M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
259 
260     for (GlobalVariable *LocalVar : LocalVars)
261       LocalVar->removeDeadConstantUsers();
262   }
263 
264   static void markUsedByKernel(Function *Func, GlobalVariable *SGV) {
265     // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
266     // that might call a function which accesses a field within it. This is
267     // presently approximated to 'all kernels' if there are any such functions
268     // in the module. This implicit use is redefined as an explicit use here so
269     // that later passes, specifically PromoteAlloca, account for the required
270     // memory without any knowledge of this transform.
271 
272     // An operand bundle on llvm.donothing works because the call instruction
273     // survives until after the last pass that needs to account for LDS. It is
274     // better than inline asm as the latter survives until the end of codegen. A
275     // totally robust solution would be a function with the same semantics as
276     // llvm.donothing that takes a pointer to the instance and is lowered to a
277     // no-op after LDS is allocated, but that is not presently necessary.
278 
279     // This intrinsic is eliminated shortly before instruction selection. It
280     // does not suffice to indicate to ISel that a given global which is not
281     // immediately used by the kernel must still be allocated by it. An
282     // equivalent target specific intrinsic which lasts until immediately after
283     // codegen would suffice for that, but one would still need to ensure that
284     // the variables are allocated in the anticpated order.
285     BasicBlock *Entry = &Func->getEntryBlock();
286     IRBuilder<> Builder(Entry, Entry->getFirstNonPHIIt());
287 
288     Function *Decl =
289         Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
290 
291     Value *UseInstance[1] = {
292         Builder.CreateConstInBoundsGEP1_32(SGV->getValueType(), SGV, 0)};
293 
294     Builder.CreateCall(
295         Decl, {}, {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)});
296   }
297 
298 public:
299   AMDGPULowerModuleLDS(const AMDGPUTargetMachine &TM_) : TM(TM_) {}
300 
301   struct LDSVariableReplacement {
302     GlobalVariable *SGV = nullptr;
303     DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
304   };
305 
306   // remap from lds global to a constantexpr gep to where it has been moved to
307   // for each kernel
308   // an array with an element for each kernel containing where the corresponding
309   // variable was remapped to
310 
311   static Constant *getAddressesOfVariablesInKernel(
312       LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables,
313       const DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
314     // Create a ConstantArray containing the address of each Variable within the
315     // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
316     // does not allocate it
317     // TODO: Drop the ptrtoint conversion
318 
319     Type *I32 = Type::getInt32Ty(Ctx);
320 
321     ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
322 
323     SmallVector<Constant *> Elements;
324     for (size_t i = 0; i < Variables.size(); i++) {
325       GlobalVariable *GV = Variables[i];
326       auto ConstantGepIt = LDSVarsToConstantGEP.find(GV);
327       if (ConstantGepIt != LDSVarsToConstantGEP.end()) {
328         auto elt = ConstantExpr::getPtrToInt(ConstantGepIt->second, I32);
329         Elements.push_back(elt);
330       } else {
331         Elements.push_back(PoisonValue::get(I32));
332       }
333     }
334     return ConstantArray::get(KernelOffsetsType, Elements);
335   }
336 
337   static GlobalVariable *buildLookupTable(
338       Module &M, ArrayRef<GlobalVariable *> Variables,
339       ArrayRef<Function *> kernels,
340       DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) {
341     if (Variables.empty()) {
342       return nullptr;
343     }
344     LLVMContext &Ctx = M.getContext();
345 
346     const size_t NumberVariables = Variables.size();
347     const size_t NumberKernels = kernels.size();
348 
349     ArrayType *KernelOffsetsType =
350         ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
351 
352     ArrayType *AllKernelsOffsetsType =
353         ArrayType::get(KernelOffsetsType, NumberKernels);
354 
355     Constant *Missing = PoisonValue::get(KernelOffsetsType);
356     std::vector<Constant *> overallConstantExprElts(NumberKernels);
357     for (size_t i = 0; i < NumberKernels; i++) {
358       auto Replacement = KernelToReplacement.find(kernels[i]);
359       overallConstantExprElts[i] =
360           (Replacement == KernelToReplacement.end())
361               ? Missing
362               : getAddressesOfVariablesInKernel(
363                     Ctx, Variables, Replacement->second.LDSVarsToConstantGEP);
364     }
365 
366     Constant *init =
367         ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
368 
369     return new GlobalVariable(
370         M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
371         "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
372         AMDGPUAS::CONSTANT_ADDRESS);
373   }
374 
375   void replaceUseWithTableLookup(Module &M, IRBuilder<> &Builder,
376                                  GlobalVariable *LookupTable,
377                                  GlobalVariable *GV, Use &U,
378                                  Value *OptionalIndex) {
379     // Table is a constant array of the same length as OrderedKernels
380     LLVMContext &Ctx = M.getContext();
381     Type *I32 = Type::getInt32Ty(Ctx);
382     auto *I = cast<Instruction>(U.getUser());
383 
384     Value *tableKernelIndex = getTableLookupKernelIndex(M, I->getFunction());
385 
386     if (auto *Phi = dyn_cast<PHINode>(I)) {
387       BasicBlock *BB = Phi->getIncomingBlock(U);
388       Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
389     } else {
390       Builder.SetInsertPoint(I);
391     }
392 
393     SmallVector<Value *, 3> GEPIdx = {
394         ConstantInt::get(I32, 0),
395         tableKernelIndex,
396     };
397     if (OptionalIndex)
398       GEPIdx.push_back(OptionalIndex);
399 
400     Value *Address = Builder.CreateInBoundsGEP(
401         LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
402 
403     Value *loaded = Builder.CreateLoad(I32, Address);
404 
405     Value *replacement =
406         Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
407 
408     U.set(replacement);
409   }
410 
411   void replaceUsesInInstructionsWithTableLookup(
412       Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
413       GlobalVariable *LookupTable) {
414 
415     LLVMContext &Ctx = M.getContext();
416     IRBuilder<> Builder(Ctx);
417     Type *I32 = Type::getInt32Ty(Ctx);
418 
419     for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
420       auto *GV = ModuleScopeVariables[Index];
421 
422       for (Use &U : make_early_inc_range(GV->uses())) {
423         auto *I = dyn_cast<Instruction>(U.getUser());
424         if (!I)
425           continue;
426 
427         replaceUseWithTableLookup(M, Builder, LookupTable, GV, U,
428                                   ConstantInt::get(I32, Index));
429       }
430     }
431   }
432 
433   static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
434       Module &M, LDSUsesInfoTy &LDSUsesInfo,
435       DenseSet<GlobalVariable *> const &VariableSet) {
436 
437     DenseSet<Function *> KernelSet;
438 
439     if (VariableSet.empty())
440       return KernelSet;
441 
442     for (Function &Func : M.functions()) {
443       if (Func.isDeclaration() || !isKernelLDS(&Func))
444         continue;
445       for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
446         if (VariableSet.contains(GV)) {
447           KernelSet.insert(&Func);
448           break;
449         }
450       }
451     }
452 
453     return KernelSet;
454   }
455 
456   static GlobalVariable *
457   chooseBestVariableForModuleStrategy(const DataLayout &DL,
458                                       VariableFunctionMap &LDSVars) {
459     // Find the global variable with the most indirect uses from kernels
460 
461     struct CandidateTy {
462       GlobalVariable *GV = nullptr;
463       size_t UserCount = 0;
464       size_t Size = 0;
465 
466       CandidateTy() = default;
467 
468       CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
469           : GV(GV), UserCount(UserCount), Size(AllocSize) {}
470 
471       bool operator<(const CandidateTy &Other) const {
472         // Fewer users makes module scope variable less attractive
473         if (UserCount < Other.UserCount) {
474           return true;
475         }
476         if (UserCount > Other.UserCount) {
477           return false;
478         }
479 
480         // Bigger makes module scope variable less attractive
481         if (Size < Other.Size) {
482           return false;
483         }
484 
485         if (Size > Other.Size) {
486           return true;
487         }
488 
489         // Arbitrary but consistent
490         return GV->getName() < Other.GV->getName();
491       }
492     };
493 
494     CandidateTy MostUsed;
495 
496     for (auto &K : LDSVars) {
497       GlobalVariable *GV = K.first;
498       if (K.second.size() <= 1) {
499         // A variable reachable by only one kernel is best lowered with kernel
500         // strategy
501         continue;
502       }
503       CandidateTy Candidate(
504           GV, K.second.size(),
505           DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
506       if (MostUsed < Candidate)
507         MostUsed = Candidate;
508     }
509 
510     return MostUsed.GV;
511   }
512 
513   static void recordLDSAbsoluteAddress(Module *M, GlobalVariable *GV,
514                                        uint32_t Address) {
515     // Write the specified address into metadata where it can be retrieved by
516     // the assembler. Format is a half open range, [Address Address+1)
517     LLVMContext &Ctx = M->getContext();
518     auto *IntTy =
519         M->getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS);
520     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address));
521     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address + 1));
522     GV->setMetadata(LLVMContext::MD_absolute_symbol,
523                     MDNode::get(Ctx, {MinC, MaxC}));
524   }
525 
526   DenseMap<Function *, Value *> tableKernelIndexCache;
527   Value *getTableLookupKernelIndex(Module &M, Function *F) {
528     // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
529     // lowers to a read from a live in register. Emit it once in the entry
530     // block to spare deduplicating it later.
531     auto [It, Inserted] = tableKernelIndexCache.try_emplace(F);
532     if (Inserted) {
533       Function *Decl =
534           Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
535 
536       auto InsertAt = F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
537       IRBuilder<> Builder(&*InsertAt);
538 
539       It->second = Builder.CreateCall(Decl, {});
540     }
541 
542     return It->second;
543   }
544 
545   static std::vector<Function *> assignLDSKernelIDToEachKernel(
546       Module *M, DenseSet<Function *> const &KernelsThatAllocateTableLDS,
547       DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS) {
548     // Associate kernels in the set with an arbirary but reproducible order and
549     // annotate them with that order in metadata. This metadata is recognised by
550     // the backend and lowered to a SGPR which can be read from using
551     // amdgcn_lds_kernel_id.
552 
553     std::vector<Function *> OrderedKernels;
554     if (!KernelsThatAllocateTableLDS.empty() ||
555         !KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
556 
557       for (Function &Func : M->functions()) {
558         if (Func.isDeclaration())
559           continue;
560         if (!isKernelLDS(&Func))
561           continue;
562 
563         if (KernelsThatAllocateTableLDS.contains(&Func) ||
564             KernelsThatIndirectlyAllocateDynamicLDS.contains(&Func)) {
565           assert(Func.hasName()); // else fatal error earlier
566           OrderedKernels.push_back(&Func);
567         }
568       }
569 
570       // Put them in an arbitrary but reproducible order
571       OrderedKernels = sortByName(std::move(OrderedKernels));
572 
573       // Annotate the kernels with their order in this vector
574       LLVMContext &Ctx = M->getContext();
575       IRBuilder<> Builder(Ctx);
576 
577       if (OrderedKernels.size() > UINT32_MAX) {
578         // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
579         report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
580       }
581 
582       for (size_t i = 0; i < OrderedKernels.size(); i++) {
583         Metadata *AttrMDArgs[1] = {
584             ConstantAsMetadata::get(Builder.getInt32(i)),
585         };
586         OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
587                                        MDNode::get(Ctx, AttrMDArgs));
588       }
589     }
590     return OrderedKernels;
591   }
592 
593   static void partitionVariablesIntoIndirectStrategies(
594       Module &M, LDSUsesInfoTy const &LDSUsesInfo,
595       VariableFunctionMap &LDSToKernelsThatNeedToAccessItIndirectly,
596       DenseSet<GlobalVariable *> &ModuleScopeVariables,
597       DenseSet<GlobalVariable *> &TableLookupVariables,
598       DenseSet<GlobalVariable *> &KernelAccessVariables,
599       DenseSet<GlobalVariable *> &DynamicVariables) {
600 
601     GlobalVariable *HybridModuleRoot =
602         LoweringKindLoc != LoweringKind::hybrid
603             ? nullptr
604             : chooseBestVariableForModuleStrategy(
605                   M.getDataLayout(), LDSToKernelsThatNeedToAccessItIndirectly);
606 
607     DenseSet<Function *> const EmptySet;
608     DenseSet<Function *> const &HybridModuleRootKernels =
609         HybridModuleRoot
610             ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
611             : EmptySet;
612 
613     for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
614       // Each iteration of this loop assigns exactly one global variable to
615       // exactly one of the implementation strategies.
616 
617       GlobalVariable *GV = K.first;
618       assert(AMDGPU::isLDSVariableToLower(*GV));
619       assert(K.second.size() != 0);
620 
621       if (AMDGPU::isDynamicLDS(*GV)) {
622         DynamicVariables.insert(GV);
623         continue;
624       }
625 
626       switch (LoweringKindLoc) {
627       case LoweringKind::module:
628         ModuleScopeVariables.insert(GV);
629         break;
630 
631       case LoweringKind::table:
632         TableLookupVariables.insert(GV);
633         break;
634 
635       case LoweringKind::kernel:
636         if (K.second.size() == 1) {
637           KernelAccessVariables.insert(GV);
638         } else {
639           report_fatal_error(
640               "cannot lower LDS '" + GV->getName() +
641               "' to kernel access as it is reachable from multiple kernels");
642         }
643         break;
644 
645       case LoweringKind::hybrid: {
646         if (GV == HybridModuleRoot) {
647           assert(K.second.size() != 1);
648           ModuleScopeVariables.insert(GV);
649         } else if (K.second.size() == 1) {
650           KernelAccessVariables.insert(GV);
651         } else if (set_is_subset(K.second, HybridModuleRootKernels)) {
652           ModuleScopeVariables.insert(GV);
653         } else {
654           TableLookupVariables.insert(GV);
655         }
656         break;
657       }
658       }
659     }
660 
661     // All LDS variables accessed indirectly have now been partitioned into
662     // the distinct lowering strategies.
663     assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
664                KernelAccessVariables.size() + DynamicVariables.size() ==
665            LDSToKernelsThatNeedToAccessItIndirectly.size());
666   }
667 
668   static GlobalVariable *lowerModuleScopeStructVariables(
669       Module &M, DenseSet<GlobalVariable *> const &ModuleScopeVariables,
670       DenseSet<Function *> const &KernelsThatAllocateModuleLDS) {
671     // Create a struct to hold the ModuleScopeVariables
672     // Replace all uses of those variables from non-kernel functions with the
673     // new struct instance Replace only the uses from kernel functions that will
674     // allocate this instance. That is a space optimisation - kernels that use a
675     // subset of the module scope struct and do not need to allocate it for
676     // indirect calls will only allocate the subset they use (they do so as part
677     // of the per-kernel lowering).
678     if (ModuleScopeVariables.empty()) {
679       return nullptr;
680     }
681 
682     LLVMContext &Ctx = M.getContext();
683 
684     LDSVariableReplacement ModuleScopeReplacement =
685         createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
686                                      ModuleScopeVariables);
687 
688     appendToCompilerUsed(M, {static_cast<GlobalValue *>(
689                                 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
690                                     cast<Constant>(ModuleScopeReplacement.SGV),
691                                     PointerType::getUnqual(Ctx)))});
692 
693     // module.lds will be allocated at zero in any kernel that allocates it
694     recordLDSAbsoluteAddress(&M, ModuleScopeReplacement.SGV, 0);
695 
696     // historic
697     removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
698 
699     // Replace all uses of module scope variable from non-kernel functions
700     replaceLDSVariablesWithStruct(
701         M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
702           Instruction *I = dyn_cast<Instruction>(U.getUser());
703           if (!I) {
704             return false;
705           }
706           Function *F = I->getFunction();
707           return !isKernelLDS(F);
708         });
709 
710     // Replace uses of module scope variable from kernel functions that
711     // allocate the module scope variable, otherwise leave them unchanged
712     // Record on each kernel whether the module scope global is used by it
713 
714     for (Function &Func : M.functions()) {
715       if (Func.isDeclaration() || !isKernelLDS(&Func))
716         continue;
717 
718       if (KernelsThatAllocateModuleLDS.contains(&Func)) {
719         replaceLDSVariablesWithStruct(
720             M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
721               Instruction *I = dyn_cast<Instruction>(U.getUser());
722               if (!I) {
723                 return false;
724               }
725               Function *F = I->getFunction();
726               return F == &Func;
727             });
728 
729         markUsedByKernel(&Func, ModuleScopeReplacement.SGV);
730       }
731     }
732 
733     return ModuleScopeReplacement.SGV;
734   }
735 
736   static DenseMap<Function *, LDSVariableReplacement>
737   lowerKernelScopeStructVariables(
738       Module &M, LDSUsesInfoTy &LDSUsesInfo,
739       DenseSet<GlobalVariable *> const &ModuleScopeVariables,
740       DenseSet<Function *> const &KernelsThatAllocateModuleLDS,
741       GlobalVariable *MaybeModuleScopeStruct) {
742 
743     // Create a struct for each kernel for the non-module-scope variables.
744 
745     DenseMap<Function *, LDSVariableReplacement> KernelToReplacement;
746     for (Function &Func : M.functions()) {
747       if (Func.isDeclaration() || !isKernelLDS(&Func))
748         continue;
749 
750       DenseSet<GlobalVariable *> KernelUsedVariables;
751       // Allocating variables that are used directly in this struct to get
752       // alignment aware allocation and predictable frame size.
753       for (auto &v : LDSUsesInfo.direct_access[&Func]) {
754         if (!AMDGPU::isDynamicLDS(*v)) {
755           KernelUsedVariables.insert(v);
756         }
757       }
758 
759       // Allocating variables that are accessed indirectly so that a lookup of
760       // this struct instance can find them from nested functions.
761       for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
762         if (!AMDGPU::isDynamicLDS(*v)) {
763           KernelUsedVariables.insert(v);
764         }
765       }
766 
767       // Variables allocated in module lds must all resolve to that struct,
768       // not to the per-kernel instance.
769       if (KernelsThatAllocateModuleLDS.contains(&Func)) {
770         for (GlobalVariable *v : ModuleScopeVariables) {
771           KernelUsedVariables.erase(v);
772         }
773       }
774 
775       if (KernelUsedVariables.empty()) {
776         // Either used no LDS, or the LDS it used was all in the module struct
777         // or dynamically sized
778         continue;
779       }
780 
781       // The association between kernel function and LDS struct is done by
782       // symbol name, which only works if the function in question has a
783       // name This is not expected to be a problem in practice as kernels
784       // are called by name making anonymous ones (which are named by the
785       // backend) difficult to use. This does mean that llvm test cases need
786       // to name the kernels.
787       if (!Func.hasName()) {
788         report_fatal_error("Anonymous kernels cannot use LDS variables");
789       }
790 
791       std::string VarName =
792           (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
793 
794       auto Replacement =
795           createLDSVariableReplacement(M, VarName, KernelUsedVariables);
796 
797       // If any indirect uses, create a direct use to ensure allocation
798       // TODO: Simpler to unconditionally mark used but that regresses
799       // codegen in test/CodeGen/AMDGPU/noclobber-barrier.ll
800       auto Accesses = LDSUsesInfo.indirect_access.find(&Func);
801       if ((Accesses != LDSUsesInfo.indirect_access.end()) &&
802           !Accesses->second.empty())
803         markUsedByKernel(&Func, Replacement.SGV);
804 
805       // remove preserves existing codegen
806       removeLocalVarsFromUsedLists(M, KernelUsedVariables);
807       KernelToReplacement[&Func] = Replacement;
808 
809       // Rewrite uses within kernel to the new struct
810       replaceLDSVariablesWithStruct(
811           M, KernelUsedVariables, Replacement, [&Func](Use &U) {
812             Instruction *I = dyn_cast<Instruction>(U.getUser());
813             return I && I->getFunction() == &Func;
814           });
815     }
816     return KernelToReplacement;
817   }
818 
819   static GlobalVariable *
820   buildRepresentativeDynamicLDSInstance(Module &M, LDSUsesInfoTy &LDSUsesInfo,
821                                         Function *func) {
822     // Create a dynamic lds variable with a name associated with the passed
823     // function that has the maximum alignment of any dynamic lds variable
824     // reachable from this kernel. Dynamic LDS is allocated after the static LDS
825     // allocation, possibly after alignment padding. The representative variable
826     // created here has the maximum alignment of any other dynamic variable
827     // reachable by that kernel. All dynamic LDS variables are allocated at the
828     // same address in each kernel in order to provide the documented aliasing
829     // semantics. Setting the alignment here allows this IR pass to accurately
830     // predict the exact constant at which it will be allocated.
831 
832     assert(isKernelLDS(func));
833 
834     LLVMContext &Ctx = M.getContext();
835     const DataLayout &DL = M.getDataLayout();
836     Align MaxDynamicAlignment(1);
837 
838     auto UpdateMaxAlignment = [&MaxDynamicAlignment, &DL](GlobalVariable *GV) {
839       if (AMDGPU::isDynamicLDS(*GV)) {
840         MaxDynamicAlignment =
841             std::max(MaxDynamicAlignment, AMDGPU::getAlign(DL, GV));
842       }
843     };
844 
845     for (GlobalVariable *GV : LDSUsesInfo.indirect_access[func]) {
846       UpdateMaxAlignment(GV);
847     }
848 
849     for (GlobalVariable *GV : LDSUsesInfo.direct_access[func]) {
850       UpdateMaxAlignment(GV);
851     }
852 
853     assert(func->hasName()); // Checked by caller
854     auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
855     GlobalVariable *N = new GlobalVariable(
856         M, emptyCharArray, false, GlobalValue::ExternalLinkage, nullptr,
857         Twine("llvm.amdgcn." + func->getName() + ".dynlds"), nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
858         false);
859     N->setAlignment(MaxDynamicAlignment);
860 
861     assert(AMDGPU::isDynamicLDS(*N));
862     return N;
863   }
864 
865   DenseMap<Function *, GlobalVariable *> lowerDynamicLDSVariables(
866       Module &M, LDSUsesInfoTy &LDSUsesInfo,
867       DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS,
868       DenseSet<GlobalVariable *> const &DynamicVariables,
869       std::vector<Function *> const &OrderedKernels) {
870     DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS;
871     if (!KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
872       LLVMContext &Ctx = M.getContext();
873       IRBuilder<> Builder(Ctx);
874       Type *I32 = Type::getInt32Ty(Ctx);
875 
876       std::vector<Constant *> newDynamicLDS;
877 
878       // Table is built in the same order as OrderedKernels
879       for (auto &func : OrderedKernels) {
880 
881         if (KernelsThatIndirectlyAllocateDynamicLDS.contains(func)) {
882           assert(isKernelLDS(func));
883           if (!func->hasName()) {
884             report_fatal_error("Anonymous kernels cannot use LDS variables");
885           }
886 
887           GlobalVariable *N =
888               buildRepresentativeDynamicLDSInstance(M, LDSUsesInfo, func);
889 
890           KernelToCreatedDynamicLDS[func] = N;
891 
892           markUsedByKernel(func, N);
893 
894           auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
895           auto GEP = ConstantExpr::getGetElementPtr(
896               emptyCharArray, N, ConstantInt::get(I32, 0), true);
897           newDynamicLDS.push_back(ConstantExpr::getPtrToInt(GEP, I32));
898         } else {
899           newDynamicLDS.push_back(PoisonValue::get(I32));
900         }
901       }
902       assert(OrderedKernels.size() == newDynamicLDS.size());
903 
904       ArrayType *t = ArrayType::get(I32, newDynamicLDS.size());
905       Constant *init = ConstantArray::get(t, newDynamicLDS);
906       GlobalVariable *table = new GlobalVariable(
907           M, t, true, GlobalValue::InternalLinkage, init,
908           "llvm.amdgcn.dynlds.offset.table", nullptr,
909           GlobalValue::NotThreadLocal, AMDGPUAS::CONSTANT_ADDRESS);
910 
911       for (GlobalVariable *GV : DynamicVariables) {
912         for (Use &U : make_early_inc_range(GV->uses())) {
913           auto *I = dyn_cast<Instruction>(U.getUser());
914           if (!I)
915             continue;
916           if (isKernelLDS(I->getFunction()))
917             continue;
918 
919           replaceUseWithTableLookup(M, Builder, table, GV, U, nullptr);
920         }
921       }
922     }
923     return KernelToCreatedDynamicLDS;
924   }
925 
926   bool runOnModule(Module &M) {
927     CallGraph CG = CallGraph(M);
928     bool Changed = superAlignLDSGlobals(M);
929 
930     Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
931 
932     Changed = true; // todo: narrow this down
933 
934     // For each kernel, what variables does it access directly or through
935     // callees
936     LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
937 
938     // For each variable accessed through callees, which kernels access it
939     VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
940     for (auto &K : LDSUsesInfo.indirect_access) {
941       Function *F = K.first;
942       assert(isKernelLDS(F));
943       for (GlobalVariable *GV : K.second) {
944         LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
945       }
946     }
947 
948     // Partition variables accessed indirectly into the different strategies
949     DenseSet<GlobalVariable *> ModuleScopeVariables;
950     DenseSet<GlobalVariable *> TableLookupVariables;
951     DenseSet<GlobalVariable *> KernelAccessVariables;
952     DenseSet<GlobalVariable *> DynamicVariables;
953     partitionVariablesIntoIndirectStrategies(
954         M, LDSUsesInfo, LDSToKernelsThatNeedToAccessItIndirectly,
955         ModuleScopeVariables, TableLookupVariables, KernelAccessVariables,
956         DynamicVariables);
957 
958     // If the kernel accesses a variable that is going to be stored in the
959     // module instance through a call then that kernel needs to allocate the
960     // module instance
961     const DenseSet<Function *> KernelsThatAllocateModuleLDS =
962         kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
963                                                         ModuleScopeVariables);
964     const DenseSet<Function *> KernelsThatAllocateTableLDS =
965         kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
966                                                         TableLookupVariables);
967 
968     const DenseSet<Function *> KernelsThatIndirectlyAllocateDynamicLDS =
969         kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
970                                                         DynamicVariables);
971 
972     GlobalVariable *MaybeModuleScopeStruct = lowerModuleScopeStructVariables(
973         M, ModuleScopeVariables, KernelsThatAllocateModuleLDS);
974 
975     DenseMap<Function *, LDSVariableReplacement> KernelToReplacement =
976         lowerKernelScopeStructVariables(M, LDSUsesInfo, ModuleScopeVariables,
977                                         KernelsThatAllocateModuleLDS,
978                                         MaybeModuleScopeStruct);
979 
980     // Lower zero cost accesses to the kernel instances just created
981     for (auto &GV : KernelAccessVariables) {
982       auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
983       assert(funcs.size() == 1); // Only one kernel can access it
984       LDSVariableReplacement Replacement =
985           KernelToReplacement[*(funcs.begin())];
986 
987       DenseSet<GlobalVariable *> Vec;
988       Vec.insert(GV);
989 
990       replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
991         return isa<Instruction>(U.getUser());
992       });
993     }
994 
995     // The ith element of this vector is kernel id i
996     std::vector<Function *> OrderedKernels =
997         assignLDSKernelIDToEachKernel(&M, KernelsThatAllocateTableLDS,
998                                       KernelsThatIndirectlyAllocateDynamicLDS);
999 
1000     if (!KernelsThatAllocateTableLDS.empty()) {
1001       LLVMContext &Ctx = M.getContext();
1002       IRBuilder<> Builder(Ctx);
1003 
1004       // The order must be consistent between lookup table and accesses to
1005       // lookup table
1006       auto TableLookupVariablesOrdered =
1007           sortByName(std::vector<GlobalVariable *>(TableLookupVariables.begin(),
1008                                                    TableLookupVariables.end()));
1009 
1010       GlobalVariable *LookupTable = buildLookupTable(
1011           M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
1012       replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
1013                                                LookupTable);
1014 
1015       // Strip amdgpu-no-lds-kernel-id from all functions reachable from the
1016       // kernel. We may have inferred this wasn't used prior to the pass.
1017       //
1018       // TODO: We could filter out subgraphs that do not access LDS globals.
1019       for (Function *F : KernelsThatAllocateTableLDS)
1020         removeFnAttrFromReachable(CG, F, {"amdgpu-no-lds-kernel-id"});
1021     }
1022 
1023     DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS =
1024         lowerDynamicLDSVariables(M, LDSUsesInfo,
1025                                  KernelsThatIndirectlyAllocateDynamicLDS,
1026                                  DynamicVariables, OrderedKernels);
1027 
1028     // All kernel frames have been allocated. Calculate and record the
1029     // addresses.
1030     {
1031       const DataLayout &DL = M.getDataLayout();
1032 
1033       for (Function &Func : M.functions()) {
1034         if (Func.isDeclaration() || !isKernelLDS(&Func))
1035           continue;
1036 
1037         // All three of these are optional. The first variable is allocated at
1038         // zero. They are allocated by AMDGPUMachineFunction as one block.
1039         // Layout:
1040         //{
1041         //  module.lds
1042         //  alignment padding
1043         //  kernel instance
1044         //  alignment padding
1045         //  dynamic lds variables
1046         //}
1047 
1048         const bool AllocateModuleScopeStruct =
1049             MaybeModuleScopeStruct &&
1050             KernelsThatAllocateModuleLDS.contains(&Func);
1051 
1052         auto Replacement = KernelToReplacement.find(&Func);
1053         const bool AllocateKernelScopeStruct =
1054             Replacement != KernelToReplacement.end();
1055 
1056         const bool AllocateDynamicVariable =
1057             KernelToCreatedDynamicLDS.contains(&Func);
1058 
1059         uint32_t Offset = 0;
1060 
1061         if (AllocateModuleScopeStruct) {
1062           // Allocated at zero, recorded once on construction, not once per
1063           // kernel
1064           Offset += DL.getTypeAllocSize(MaybeModuleScopeStruct->getValueType());
1065         }
1066 
1067         if (AllocateKernelScopeStruct) {
1068           GlobalVariable *KernelStruct = Replacement->second.SGV;
1069           Offset = alignTo(Offset, AMDGPU::getAlign(DL, KernelStruct));
1070           recordLDSAbsoluteAddress(&M, KernelStruct, Offset);
1071           Offset += DL.getTypeAllocSize(KernelStruct->getValueType());
1072         }
1073 
1074         // If there is dynamic allocation, the alignment needed is included in
1075         // the static frame size. There may be no reference to the dynamic
1076         // variable in the kernel itself, so without including it here, that
1077         // alignment padding could be missed.
1078         if (AllocateDynamicVariable) {
1079           GlobalVariable *DynamicVariable = KernelToCreatedDynamicLDS[&Func];
1080           Offset = alignTo(Offset, AMDGPU::getAlign(DL, DynamicVariable));
1081           recordLDSAbsoluteAddress(&M, DynamicVariable, Offset);
1082         }
1083 
1084         if (Offset != 0) {
1085           (void)TM; // TODO: Account for target maximum LDS
1086           std::string Buffer;
1087           raw_string_ostream SS{Buffer};
1088           SS << format("%u", Offset);
1089 
1090           // Instead of explictly marking kernels that access dynamic variables
1091           // using special case metadata, annotate with min-lds == max-lds, i.e.
1092           // that there is no more space available for allocating more static
1093           // LDS variables. That is the right condition to prevent allocating
1094           // more variables which would collide with the addresses assigned to
1095           // dynamic variables.
1096           if (AllocateDynamicVariable)
1097             SS << format(",%u", Offset);
1098 
1099           Func.addFnAttr("amdgpu-lds-size", Buffer);
1100         }
1101       }
1102     }
1103 
1104     for (auto &GV : make_early_inc_range(M.globals()))
1105       if (AMDGPU::isLDSVariableToLower(GV)) {
1106         // probably want to remove from used lists
1107         GV.removeDeadConstantUsers();
1108         if (GV.use_empty())
1109           GV.eraseFromParent();
1110       }
1111 
1112     return Changed;
1113   }
1114 
1115 private:
1116   // Increase the alignment of LDS globals if necessary to maximise the chance
1117   // that we can use aligned LDS instructions to access them.
1118   static bool superAlignLDSGlobals(Module &M) {
1119     const DataLayout &DL = M.getDataLayout();
1120     bool Changed = false;
1121     if (!SuperAlignLDSGlobals) {
1122       return Changed;
1123     }
1124 
1125     for (auto &GV : M.globals()) {
1126       if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
1127         // Only changing alignment of LDS variables
1128         continue;
1129       }
1130       if (!GV.hasInitializer()) {
1131         // cuda/hip extern __shared__ variable, leave alignment alone
1132         continue;
1133       }
1134 
1135       Align Alignment = AMDGPU::getAlign(DL, &GV);
1136       TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
1137 
1138       if (GVSize > 8) {
1139         // We might want to use a b96 or b128 load/store
1140         Alignment = std::max(Alignment, Align(16));
1141       } else if (GVSize > 4) {
1142         // We might want to use a b64 load/store
1143         Alignment = std::max(Alignment, Align(8));
1144       } else if (GVSize > 2) {
1145         // We might want to use a b32 load/store
1146         Alignment = std::max(Alignment, Align(4));
1147       } else if (GVSize > 1) {
1148         // We might want to use a b16 load/store
1149         Alignment = std::max(Alignment, Align(2));
1150       }
1151 
1152       if (Alignment != AMDGPU::getAlign(DL, &GV)) {
1153         Changed = true;
1154         GV.setAlignment(Alignment);
1155       }
1156     }
1157     return Changed;
1158   }
1159 
1160   static LDSVariableReplacement createLDSVariableReplacement(
1161       Module &M, std::string VarName,
1162       DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
1163     // Create a struct instance containing LDSVarsToTransform and map from those
1164     // variables to ConstantExprGEP
1165     // Variables may be introduced to meet alignment requirements. No aliasing
1166     // metadata is useful for these as they have no uses. Erased before return.
1167 
1168     LLVMContext &Ctx = M.getContext();
1169     const DataLayout &DL = M.getDataLayout();
1170     assert(!LDSVarsToTransform.empty());
1171 
1172     SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
1173     LayoutFields.reserve(LDSVarsToTransform.size());
1174     {
1175       // The order of fields in this struct depends on the order of
1176       // varables in the argument which varies when changing how they
1177       // are identified, leading to spurious test breakage.
1178       auto Sorted = sortByName(std::vector<GlobalVariable *>(
1179           LDSVarsToTransform.begin(), LDSVarsToTransform.end()));
1180 
1181       for (GlobalVariable *GV : Sorted) {
1182         OptimizedStructLayoutField F(GV,
1183                                      DL.getTypeAllocSize(GV->getValueType()),
1184                                      AMDGPU::getAlign(DL, GV));
1185         LayoutFields.emplace_back(F);
1186       }
1187     }
1188 
1189     performOptimizedStructLayout(LayoutFields);
1190 
1191     std::vector<GlobalVariable *> LocalVars;
1192     BitVector IsPaddingField;
1193     LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
1194     IsPaddingField.reserve(LDSVarsToTransform.size());
1195     {
1196       uint64_t CurrentOffset = 0;
1197       for (size_t I = 0; I < LayoutFields.size(); I++) {
1198         GlobalVariable *FGV = static_cast<GlobalVariable *>(
1199             const_cast<void *>(LayoutFields[I].Id));
1200         Align DataAlign = LayoutFields[I].Alignment;
1201 
1202         uint64_t DataAlignV = DataAlign.value();
1203         if (uint64_t Rem = CurrentOffset % DataAlignV) {
1204           uint64_t Padding = DataAlignV - Rem;
1205 
1206           // Append an array of padding bytes to meet alignment requested
1207           // Note (o +      (a - (o % a)) ) % a == 0
1208           //      (offset + Padding       ) % align == 0
1209 
1210           Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
1211           LocalVars.push_back(new GlobalVariable(
1212               M, ATy, false, GlobalValue::InternalLinkage,
1213               PoisonValue::get(ATy), "", nullptr, GlobalValue::NotThreadLocal,
1214               AMDGPUAS::LOCAL_ADDRESS, false));
1215           IsPaddingField.push_back(true);
1216           CurrentOffset += Padding;
1217         }
1218 
1219         LocalVars.push_back(FGV);
1220         IsPaddingField.push_back(false);
1221         CurrentOffset += LayoutFields[I].Size;
1222       }
1223     }
1224 
1225     std::vector<Type *> LocalVarTypes;
1226     LocalVarTypes.reserve(LocalVars.size());
1227     std::transform(
1228         LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
1229         [](const GlobalVariable *V) -> Type * { return V->getValueType(); });
1230 
1231     StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
1232 
1233     Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
1234 
1235     GlobalVariable *SGV = new GlobalVariable(
1236         M, LDSTy, false, GlobalValue::InternalLinkage, PoisonValue::get(LDSTy),
1237         VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1238         false);
1239     SGV->setAlignment(StructAlign);
1240 
1241     DenseMap<GlobalVariable *, Constant *> Map;
1242     Type *I32 = Type::getInt32Ty(Ctx);
1243     for (size_t I = 0; I < LocalVars.size(); I++) {
1244       GlobalVariable *GV = LocalVars[I];
1245       Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
1246       Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
1247       if (IsPaddingField[I]) {
1248         assert(GV->use_empty());
1249         GV->eraseFromParent();
1250       } else {
1251         Map[GV] = GEP;
1252       }
1253     }
1254     assert(Map.size() == LDSVarsToTransform.size());
1255     return {SGV, std::move(Map)};
1256   }
1257 
1258   template <typename PredicateTy>
1259   static void replaceLDSVariablesWithStruct(
1260       Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
1261       const LDSVariableReplacement &Replacement, PredicateTy Predicate) {
1262     LLVMContext &Ctx = M.getContext();
1263     const DataLayout &DL = M.getDataLayout();
1264 
1265     // A hack... we need to insert the aliasing info in a predictable order for
1266     // lit tests. Would like to have them in a stable order already, ideally the
1267     // same order they get allocated, which might mean an ordered set container
1268     auto LDSVarsToTransform = sortByName(std::vector<GlobalVariable *>(
1269         LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end()));
1270 
1271     // Create alias.scope and their lists. Each field in the new structure
1272     // does not alias with all other fields.
1273     SmallVector<MDNode *> AliasScopes;
1274     SmallVector<Metadata *> NoAliasList;
1275     const size_t NumberVars = LDSVarsToTransform.size();
1276     if (NumberVars > 1) {
1277       MDBuilder MDB(Ctx);
1278       AliasScopes.reserve(NumberVars);
1279       MDNode *Domain = MDB.createAnonymousAliasScopeDomain();
1280       for (size_t I = 0; I < NumberVars; I++) {
1281         MDNode *Scope = MDB.createAnonymousAliasScope(Domain);
1282         AliasScopes.push_back(Scope);
1283       }
1284       NoAliasList.append(&AliasScopes[1], AliasScopes.end());
1285     }
1286 
1287     // Replace uses of ith variable with a constantexpr to the corresponding
1288     // field of the instance that will be allocated by AMDGPUMachineFunction
1289     for (size_t I = 0; I < NumberVars; I++) {
1290       GlobalVariable *GV = LDSVarsToTransform[I];
1291       Constant *GEP = Replacement.LDSVarsToConstantGEP.at(GV);
1292 
1293       GV->replaceUsesWithIf(GEP, Predicate);
1294 
1295       APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
1296       GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
1297       uint64_t Offset = APOff.getZExtValue();
1298 
1299       Align A =
1300           commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
1301 
1302       if (I)
1303         NoAliasList[I - 1] = AliasScopes[I - 1];
1304       MDNode *NoAlias =
1305           NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
1306       MDNode *AliasScope =
1307           AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
1308 
1309       refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
1310     }
1311   }
1312 
1313   static void refineUsesAlignmentAndAA(Value *Ptr, Align A,
1314                                        const DataLayout &DL, MDNode *AliasScope,
1315                                        MDNode *NoAlias, unsigned MaxDepth = 5) {
1316     if (!MaxDepth || (A == 1 && !AliasScope))
1317       return;
1318 
1319     for (User *U : Ptr->users()) {
1320       if (auto *I = dyn_cast<Instruction>(U)) {
1321         if (AliasScope && I->mayReadOrWriteMemory()) {
1322           MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
1323           AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
1324                    : AliasScope);
1325           I->setMetadata(LLVMContext::MD_alias_scope, AS);
1326 
1327           MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
1328           NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
1329           I->setMetadata(LLVMContext::MD_noalias, NA);
1330         }
1331       }
1332 
1333       if (auto *LI = dyn_cast<LoadInst>(U)) {
1334         LI->setAlignment(std::max(A, LI->getAlign()));
1335         continue;
1336       }
1337       if (auto *SI = dyn_cast<StoreInst>(U)) {
1338         if (SI->getPointerOperand() == Ptr)
1339           SI->setAlignment(std::max(A, SI->getAlign()));
1340         continue;
1341       }
1342       if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
1343         // None of atomicrmw operations can work on pointers, but let's
1344         // check it anyway in case it will or we will process ConstantExpr.
1345         if (AI->getPointerOperand() == Ptr)
1346           AI->setAlignment(std::max(A, AI->getAlign()));
1347         continue;
1348       }
1349       if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
1350         if (AI->getPointerOperand() == Ptr)
1351           AI->setAlignment(std::max(A, AI->getAlign()));
1352         continue;
1353       }
1354       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
1355         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1356         APInt Off(BitWidth, 0);
1357         if (GEP->getPointerOperand() == Ptr) {
1358           Align GA;
1359           if (GEP->accumulateConstantOffset(DL, Off))
1360             GA = commonAlignment(A, Off.getLimitedValue());
1361           refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
1362                                    MaxDepth - 1);
1363         }
1364         continue;
1365       }
1366       if (auto *I = dyn_cast<Instruction>(U)) {
1367         if (I->getOpcode() == Instruction::BitCast ||
1368             I->getOpcode() == Instruction::AddrSpaceCast)
1369           refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
1370       }
1371     }
1372   }
1373 };
1374 
1375 class AMDGPULowerModuleLDSLegacy : public ModulePass {
1376 public:
1377   const AMDGPUTargetMachine *TM;
1378   static char ID;
1379 
1380   AMDGPULowerModuleLDSLegacy(const AMDGPUTargetMachine *TM_ = nullptr)
1381       : ModulePass(ID), TM(TM_) {
1382     initializeAMDGPULowerModuleLDSLegacyPass(*PassRegistry::getPassRegistry());
1383   }
1384 
1385   void getAnalysisUsage(AnalysisUsage &AU) const override {
1386     if (!TM)
1387       AU.addRequired<TargetPassConfig>();
1388   }
1389 
1390   bool runOnModule(Module &M) override {
1391     if (!TM) {
1392       auto &TPC = getAnalysis<TargetPassConfig>();
1393       TM = &TPC.getTM<AMDGPUTargetMachine>();
1394     }
1395 
1396     return AMDGPULowerModuleLDS(*TM).runOnModule(M);
1397   }
1398 };
1399 
1400 } // namespace
1401 char AMDGPULowerModuleLDSLegacy::ID = 0;
1402 
1403 char &llvm::AMDGPULowerModuleLDSLegacyPassID = AMDGPULowerModuleLDSLegacy::ID;
1404 
1405 INITIALIZE_PASS_BEGIN(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
1406                       "Lower uses of LDS variables from non-kernel functions",
1407                       false, false)
1408 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1409 INITIALIZE_PASS_END(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
1410                     "Lower uses of LDS variables from non-kernel functions",
1411                     false, false)
1412 
1413 ModulePass *
1414 llvm::createAMDGPULowerModuleLDSLegacyPass(const AMDGPUTargetMachine *TM) {
1415   return new AMDGPULowerModuleLDSLegacy(TM);
1416 }
1417 
1418 PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
1419                                                 ModuleAnalysisManager &) {
1420   return AMDGPULowerModuleLDS(TM).runOnModule(M) ? PreservedAnalyses::none()
1421                                                  : PreservedAnalyses::all();
1422 }
1423