1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This file does AMD library function optimizations. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "amdgpu-simplifylib" 16 17 #include "AMDGPU.h" 18 #include "AMDGPULibFunc.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/ADT/StringSet.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <vector> 34 #include <cmath> 35 36 using namespace llvm; 37 38 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 39 cl::desc("Enable pre-link mode optimizations"), 40 cl::init(false), 41 cl::Hidden); 42 43 static cl::list<std::string> UseNative("amdgpu-use-native", 44 cl::desc("Comma separated list of functions to replace with native, or all"), 45 cl::CommaSeparated, cl::ValueOptional, 46 cl::Hidden); 47 48 #define MATH_PI 3.14159265358979323846264338327950288419716939937511 49 #define MATH_E 2.71828182845904523536028747135266249775724709369996 50 #define MATH_SQRT2 1.41421356237309504880168872420969807856967187537695 51 52 #define MATH_LOG2E 1.4426950408889634073599246810018921374266459541529859 53 #define MATH_LOG10E 0.4342944819032518276511289189166050822943970058036665 54 // Value of log2(10) 55 #define MATH_LOG2_10 3.3219280948873623478703194294893901758648313930245806 56 // Value of 1 / log2(10) 57 #define MATH_RLOG2_10 0.3010299956639811952137388947244930267681898814621085 58 // Value of 1 / M_LOG2E_F = 1 / log2(e) 59 #define MATH_RLOG2_E 0.6931471805599453094172321214581765680755001343602552 60 61 namespace llvm { 62 63 class AMDGPULibCalls { 64 private: 65 66 typedef llvm::AMDGPULibFunc FuncInfo; 67 68 // -fuse-native. 69 bool AllNative = false; 70 71 bool useNativeFunc(const StringRef F) const; 72 73 // Return a pointer (pointer expr) to the function if function defintion with 74 // "FuncName" exists. It may create a new function prototype in pre-link mode. 75 Constant *getFunction(Module *M, const FuncInfo& fInfo); 76 77 // Replace a normal function with its native version. 78 bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); 79 80 bool parseFunctionName(const StringRef& FMangledName, 81 FuncInfo *FInfo=nullptr /*out*/); 82 83 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 84 85 /* Specialized optimizations */ 86 87 // recip (half or native) 88 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 89 90 // divide (half or native) 91 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 92 93 // pow/powr/pown 94 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 95 96 // rootn 97 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 98 99 // fma/mad 100 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 101 102 // -fuse-native for sincos 103 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 104 105 // evaluate calls if calls' arguments are constants. 106 bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, 107 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); 108 bool evaluateCall(CallInst *aCI, FuncInfo &FInfo); 109 110 // exp 111 bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 112 113 // exp2 114 bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 115 116 // exp10 117 bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 118 119 // log 120 bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 121 122 // log2 123 bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 124 125 // log10 126 bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 127 128 // sqrt 129 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 130 131 // sin/cos 132 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); 133 134 // __read_pipe/__write_pipe 135 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo); 136 137 // Get insertion point at entry. 138 BasicBlock::iterator getEntryIns(CallInst * UI); 139 // Insert an Alloc instruction. 140 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); 141 // Get a scalar native builtin signle argument FP function 142 Constant* getNativeFunction(Module* M, const FuncInfo &FInfo); 143 144 protected: 145 CallInst *CI; 146 147 bool isUnsafeMath(const CallInst *CI) const; 148 149 void replaceCall(Value *With) { 150 CI->replaceAllUsesWith(With); 151 CI->eraseFromParent(); 152 } 153 154 public: 155 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); 156 157 void initNativeFuncs(); 158 159 // Replace a normal math function call with that native version 160 bool useNative(CallInst *CI); 161 }; 162 163 } // end llvm namespace 164 165 namespace { 166 167 class AMDGPUSimplifyLibCalls : public FunctionPass { 168 169 AMDGPULibCalls Simplifier; 170 171 public: 172 static char ID; // Pass identification 173 174 AMDGPUSimplifyLibCalls() : FunctionPass(ID) { 175 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 176 } 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override { 179 AU.addRequired<AAResultsWrapperPass>(); 180 } 181 182 bool runOnFunction(Function &M) override; 183 }; 184 185 class AMDGPUUseNativeCalls : public FunctionPass { 186 187 AMDGPULibCalls Simplifier; 188 189 public: 190 static char ID; // Pass identification 191 192 AMDGPUUseNativeCalls() : FunctionPass(ID) { 193 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); 194 Simplifier.initNativeFuncs(); 195 } 196 197 bool runOnFunction(Function &F) override; 198 }; 199 200 } // end anonymous namespace. 201 202 char AMDGPUSimplifyLibCalls::ID = 0; 203 char AMDGPUUseNativeCalls::ID = 0; 204 205 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 206 "Simplify well-known AMD library calls", false, false) 207 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 208 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 209 "Simplify well-known AMD library calls", false, false) 210 211 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", 212 "Replace builtin math calls with that native versions.", 213 false, false) 214 215 template <typename IRB> 216 CallInst *CreateCallEx(IRB &B, Value *Callee, Value *Arg, const Twine &Name="") 217 { 218 CallInst *R = B.CreateCall(Callee, Arg, Name); 219 if (Function* F = dyn_cast<Function>(Callee)) 220 R->setCallingConv(F->getCallingConv()); 221 return R; 222 } 223 224 template <typename IRB> 225 CallInst *CreateCallEx2(IRB &B, Value *Callee, Value *Arg1, Value *Arg2, 226 const Twine &Name="") { 227 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 228 if (Function* F = dyn_cast<Function>(Callee)) 229 R->setCallingConv(F->getCallingConv()); 230 return R; 231 } 232 233 // Data structures for table-driven optimizations. 234 // FuncTbl works for both f32 and f64 functions with 1 input argument 235 236 struct TableEntry { 237 double result; 238 double input; 239 }; 240 241 /* a list of {result, input} */ 242 static const TableEntry tbl_acos[] = { 243 {MATH_PI/2.0, 0.0}, 244 {MATH_PI/2.0, -0.0}, 245 {0.0, 1.0}, 246 {MATH_PI, -1.0} 247 }; 248 static const TableEntry tbl_acosh[] = { 249 {0.0, 1.0} 250 }; 251 static const TableEntry tbl_acospi[] = { 252 {0.5, 0.0}, 253 {0.5, -0.0}, 254 {0.0, 1.0}, 255 {1.0, -1.0} 256 }; 257 static const TableEntry tbl_asin[] = { 258 {0.0, 0.0}, 259 {-0.0, -0.0}, 260 {MATH_PI/2.0, 1.0}, 261 {-MATH_PI/2.0, -1.0} 262 }; 263 static const TableEntry tbl_asinh[] = { 264 {0.0, 0.0}, 265 {-0.0, -0.0} 266 }; 267 static const TableEntry tbl_asinpi[] = { 268 {0.0, 0.0}, 269 {-0.0, -0.0}, 270 {0.5, 1.0}, 271 {-0.5, -1.0} 272 }; 273 static const TableEntry tbl_atan[] = { 274 {0.0, 0.0}, 275 {-0.0, -0.0}, 276 {MATH_PI/4.0, 1.0}, 277 {-MATH_PI/4.0, -1.0} 278 }; 279 static const TableEntry tbl_atanh[] = { 280 {0.0, 0.0}, 281 {-0.0, -0.0} 282 }; 283 static const TableEntry tbl_atanpi[] = { 284 {0.0, 0.0}, 285 {-0.0, -0.0}, 286 {0.25, 1.0}, 287 {-0.25, -1.0} 288 }; 289 static const TableEntry tbl_cbrt[] = { 290 {0.0, 0.0}, 291 {-0.0, -0.0}, 292 {1.0, 1.0}, 293 {-1.0, -1.0}, 294 }; 295 static const TableEntry tbl_cos[] = { 296 {1.0, 0.0}, 297 {1.0, -0.0} 298 }; 299 static const TableEntry tbl_cosh[] = { 300 {1.0, 0.0}, 301 {1.0, -0.0} 302 }; 303 static const TableEntry tbl_cospi[] = { 304 {1.0, 0.0}, 305 {1.0, -0.0} 306 }; 307 static const TableEntry tbl_erfc[] = { 308 {1.0, 0.0}, 309 {1.0, -0.0} 310 }; 311 static const TableEntry tbl_erf[] = { 312 {0.0, 0.0}, 313 {-0.0, -0.0} 314 }; 315 static const TableEntry tbl_exp[] = { 316 {1.0, 0.0}, 317 {1.0, -0.0}, 318 {MATH_E, 1.0} 319 }; 320 static const TableEntry tbl_exp2[] = { 321 {1.0, 0.0}, 322 {1.0, -0.0}, 323 {2.0, 1.0} 324 }; 325 static const TableEntry tbl_exp10[] = { 326 {1.0, 0.0}, 327 {1.0, -0.0}, 328 {10.0, 1.0} 329 }; 330 static const TableEntry tbl_expm1[] = { 331 {0.0, 0.0}, 332 {-0.0, -0.0} 333 }; 334 static const TableEntry tbl_log[] = { 335 {0.0, 1.0}, 336 {1.0, MATH_E} 337 }; 338 static const TableEntry tbl_log2[] = { 339 {0.0, 1.0}, 340 {1.0, 2.0} 341 }; 342 static const TableEntry tbl_log10[] = { 343 {0.0, 1.0}, 344 {1.0, 10.0} 345 }; 346 static const TableEntry tbl_rsqrt[] = { 347 {1.0, 1.0}, 348 {1.0/MATH_SQRT2, 2.0} 349 }; 350 static const TableEntry tbl_sin[] = { 351 {0.0, 0.0}, 352 {-0.0, -0.0} 353 }; 354 static const TableEntry tbl_sinh[] = { 355 {0.0, 0.0}, 356 {-0.0, -0.0} 357 }; 358 static const TableEntry tbl_sinpi[] = { 359 {0.0, 0.0}, 360 {-0.0, -0.0} 361 }; 362 static const TableEntry tbl_sqrt[] = { 363 {0.0, 0.0}, 364 {1.0, 1.0}, 365 {MATH_SQRT2, 2.0} 366 }; 367 static const TableEntry tbl_tan[] = { 368 {0.0, 0.0}, 369 {-0.0, -0.0} 370 }; 371 static const TableEntry tbl_tanh[] = { 372 {0.0, 0.0}, 373 {-0.0, -0.0} 374 }; 375 static const TableEntry tbl_tanpi[] = { 376 {0.0, 0.0}, 377 {-0.0, -0.0} 378 }; 379 static const TableEntry tbl_tgamma[] = { 380 {1.0, 1.0}, 381 {1.0, 2.0}, 382 {2.0, 3.0}, 383 {6.0, 4.0} 384 }; 385 386 static bool HasNative(AMDGPULibFunc::EFuncId id) { 387 switch(id) { 388 case AMDGPULibFunc::EI_DIVIDE: 389 case AMDGPULibFunc::EI_COS: 390 case AMDGPULibFunc::EI_EXP: 391 case AMDGPULibFunc::EI_EXP2: 392 case AMDGPULibFunc::EI_EXP10: 393 case AMDGPULibFunc::EI_LOG: 394 case AMDGPULibFunc::EI_LOG2: 395 case AMDGPULibFunc::EI_LOG10: 396 case AMDGPULibFunc::EI_POWR: 397 case AMDGPULibFunc::EI_RECIP: 398 case AMDGPULibFunc::EI_RSQRT: 399 case AMDGPULibFunc::EI_SIN: 400 case AMDGPULibFunc::EI_SINCOS: 401 case AMDGPULibFunc::EI_SQRT: 402 case AMDGPULibFunc::EI_TAN: 403 return true; 404 default:; 405 } 406 return false; 407 } 408 409 struct TableRef { 410 size_t size; 411 const TableEntry *table; // variable size: from 0 to (size - 1) 412 413 TableRef() : size(0), table(nullptr) {} 414 415 template <size_t N> 416 TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} 417 }; 418 419 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 420 switch(id) { 421 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 422 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 423 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 424 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 425 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 426 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 427 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 428 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 429 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 430 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 431 case AMDGPULibFunc::EI_NCOS: 432 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 433 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 434 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 435 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 436 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 437 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 438 case AMDGPULibFunc::EI_NEXP2: 439 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 440 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 441 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 442 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 443 case AMDGPULibFunc::EI_NLOG2: 444 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 445 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 446 case AMDGPULibFunc::EI_NRSQRT: 447 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 448 case AMDGPULibFunc::EI_NSIN: 449 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 450 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 451 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 452 case AMDGPULibFunc::EI_NSQRT: 453 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 454 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 455 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 456 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 457 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 458 default:; 459 } 460 return TableRef(); 461 } 462 463 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 464 return FInfo.getLeads()[0].VectorSize; 465 } 466 467 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 468 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 469 } 470 471 Constant *AMDGPULibCalls::getFunction(Module *M, const FuncInfo& fInfo) { 472 // If we are doing PreLinkOpt, the function is external. So it is safe to 473 // use getOrInsertFunction() at this stage. 474 475 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 476 : AMDGPULibFunc::getFunction(M, fInfo); 477 } 478 479 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName, 480 FuncInfo *FInfo) { 481 return AMDGPULibFunc::parse(FMangledName, *FInfo); 482 } 483 484 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { 485 if (auto Op = dyn_cast<FPMathOperator>(CI)) 486 if (Op->hasUnsafeAlgebra()) 487 return true; 488 const Function *F = CI->getParent()->getParent(); 489 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 490 return Attr.getValueAsString() == "true"; 491 } 492 493 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 494 return AllNative || 495 std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end(); 496 } 497 498 void AMDGPULibCalls::initNativeFuncs() { 499 AllNative = useNativeFunc("all") || 500 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 501 UseNative.begin()->empty()); 502 } 503 504 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 505 bool native_sin = useNativeFunc("sin"); 506 bool native_cos = useNativeFunc("cos"); 507 508 if (native_sin && native_cos) { 509 Module *M = aCI->getModule(); 510 Value *opr0 = aCI->getArgOperand(0); 511 512 AMDGPULibFunc nf; 513 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 514 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 515 516 nf.setPrefix(AMDGPULibFunc::NATIVE); 517 nf.setId(AMDGPULibFunc::EI_SIN); 518 Constant *sinExpr = getFunction(M, nf); 519 520 nf.setPrefix(AMDGPULibFunc::NATIVE); 521 nf.setId(AMDGPULibFunc::EI_COS); 522 Constant *cosExpr = getFunction(M, nf); 523 if (sinExpr && cosExpr) { 524 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 525 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 526 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 527 528 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 529 << " with native version of sin/cos"); 530 531 replaceCall(sinval); 532 return true; 533 } 534 } 535 return false; 536 } 537 538 bool AMDGPULibCalls::useNative(CallInst *aCI) { 539 CI = aCI; 540 Function *Callee = aCI->getCalledFunction(); 541 542 FuncInfo FInfo; 543 if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() || 544 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 545 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 546 !(AllNative || useNativeFunc(FInfo.getName()))) { 547 return false; 548 } 549 550 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 551 return sincosUseNative(aCI, FInfo); 552 553 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 554 Constant *F = getFunction(aCI->getModule(), FInfo); 555 if (!F) 556 return false; 557 558 aCI->setCalledFunction(F); 559 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 560 << " with native version"); 561 return true; 562 } 563 564 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 565 // builtin, with appended type size and alignment arguments, where 2 or 4 566 // indicates the original number of arguments. The library has optimized version 567 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 568 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 569 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 570 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 571 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 572 FuncInfo &FInfo) { 573 auto *Callee = CI->getCalledFunction(); 574 if (!Callee->isDeclaration()) 575 return false; 576 577 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 578 auto *M = Callee->getParent(); 579 auto &Ctx = M->getContext(); 580 std::string Name = Callee->getName(); 581 auto NumArg = CI->getNumArgOperands(); 582 if (NumArg != 4 && NumArg != 6) 583 return false; 584 auto *PacketSize = CI->getArgOperand(NumArg - 2); 585 auto *PacketAlign = CI->getArgOperand(NumArg - 1); 586 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) 587 return false; 588 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); 589 unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue(); 590 if (Size != Align || !isPowerOf2_32(Size)) 591 return false; 592 593 Type *PtrElemTy; 594 if (Size <= 8) 595 PtrElemTy = Type::getIntNTy(Ctx, Size * 8); 596 else 597 PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8); 598 unsigned PtrArgLoc = CI->getNumArgOperands() - 3; 599 auto PtrArg = CI->getArgOperand(PtrArgLoc); 600 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); 601 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); 602 603 SmallVector<llvm::Type *, 6> ArgTys; 604 for (unsigned I = 0; I != PtrArgLoc; ++I) 605 ArgTys.push_back(CI->getArgOperand(I)->getType()); 606 ArgTys.push_back(PtrTy); 607 608 Name = Name + "_" + std::to_string(Size); 609 auto *FTy = FunctionType::get(Callee->getReturnType(), 610 ArrayRef<Type *>(ArgTys), false); 611 AMDGPULibFunc NewLibFunc(Name, FTy); 612 auto *F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 613 if (!F) 614 return false; 615 616 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); 617 SmallVector<Value *, 6> Args; 618 for (unsigned I = 0; I != PtrArgLoc; ++I) 619 Args.push_back(CI->getArgOperand(I)); 620 Args.push_back(BCast); 621 622 auto *NCI = B.CreateCall(F, Args); 623 NCI->setAttributes(CI->getAttributes()); 624 CI->replaceAllUsesWith(NCI); 625 CI->dropAllReferences(); 626 CI->eraseFromParent(); 627 628 return true; 629 } 630 631 // This function returns false if no change; return true otherwise. 632 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { 633 this->CI = CI; 634 Function *Callee = CI->getCalledFunction(); 635 636 // Ignore indirect calls. 637 if (Callee == 0) return false; 638 639 FuncInfo FInfo; 640 if (!parseFunctionName(Callee->getName(), &FInfo)) 641 return false; 642 643 // Further check the number of arguments to see if they match. 644 if (CI->getNumArgOperands() != FInfo.getNumArgs()) 645 return false; 646 647 BasicBlock *BB = CI->getParent(); 648 LLVMContext &Context = CI->getParent()->getContext(); 649 IRBuilder<> B(Context); 650 651 // Set the builder to the instruction after the call. 652 B.SetInsertPoint(BB, CI->getIterator()); 653 654 // Copy fast flags from the original call. 655 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) 656 B.setFastMathFlags(FPOp->getFastMathFlags()); 657 658 if (TDOFold(CI, FInfo)) 659 return true; 660 661 // Under unsafe-math, evaluate calls if possible. 662 // According to Brian Sumner, we can do this for all f32 function calls 663 // using host's double function calls. 664 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) 665 return true; 666 667 // Specilized optimizations for each function call 668 switch (FInfo.getId()) { 669 case AMDGPULibFunc::EI_RECIP: 670 // skip vector function 671 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 672 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 673 "recip must be an either native or half function"); 674 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); 675 676 case AMDGPULibFunc::EI_DIVIDE: 677 // skip vector function 678 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 679 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 680 "divide must be an either native or half function"); 681 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); 682 683 case AMDGPULibFunc::EI_POW: 684 case AMDGPULibFunc::EI_POWR: 685 case AMDGPULibFunc::EI_POWN: 686 return fold_pow(CI, B, FInfo); 687 688 case AMDGPULibFunc::EI_ROOTN: 689 // skip vector function 690 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); 691 692 case AMDGPULibFunc::EI_FMA: 693 case AMDGPULibFunc::EI_MAD: 694 case AMDGPULibFunc::EI_NFMA: 695 // skip vector function 696 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); 697 698 case AMDGPULibFunc::EI_SQRT: 699 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); 700 case AMDGPULibFunc::EI_COS: 701 case AMDGPULibFunc::EI_SIN: 702 if ((getArgType(FInfo) == AMDGPULibFunc::F32 || 703 getArgType(FInfo) == AMDGPULibFunc::F64) 704 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) 705 return fold_sincos(CI, B, AA); 706 707 break; 708 case AMDGPULibFunc::EI_READ_PIPE_2: 709 case AMDGPULibFunc::EI_READ_PIPE_4: 710 case AMDGPULibFunc::EI_WRITE_PIPE_2: 711 case AMDGPULibFunc::EI_WRITE_PIPE_4: 712 return fold_read_write_pipe(CI, B, FInfo); 713 714 default: 715 break; 716 } 717 718 return false; 719 } 720 721 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 722 // Table-Driven optimization 723 const TableRef tr = getOptTable(FInfo.getId()); 724 if (tr.size==0) 725 return false; 726 727 int const sz = (int)tr.size; 728 const TableEntry * const ftbl = tr.table; 729 Value *opr0 = CI->getArgOperand(0); 730 731 if (getVecSize(FInfo) > 1) { 732 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 733 SmallVector<double, 0> DVal; 734 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 735 ConstantFP *eltval = dyn_cast<ConstantFP>( 736 CV->getElementAsConstant((unsigned)eltNo)); 737 assert(eltval && "Non-FP arguments in math function!"); 738 bool found = false; 739 for (int i=0; i < sz; ++i) { 740 if (eltval->isExactlyValue(ftbl[i].input)) { 741 DVal.push_back(ftbl[i].result); 742 found = true; 743 break; 744 } 745 } 746 if (!found) { 747 // This vector constants not handled yet. 748 return false; 749 } 750 } 751 LLVMContext &context = CI->getParent()->getParent()->getContext(); 752 Constant *nval; 753 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 754 SmallVector<float, 0> FVal; 755 for (unsigned i = 0; i < DVal.size(); ++i) { 756 FVal.push_back((float)DVal[i]); 757 } 758 ArrayRef<float> tmp(FVal); 759 nval = ConstantDataVector::get(context, tmp); 760 } else { // F64 761 ArrayRef<double> tmp(DVal); 762 nval = ConstantDataVector::get(context, tmp); 763 } 764 DEBUG(errs() << "AMDIC: " << *CI 765 << " ---> " << *nval << "\n"); 766 replaceCall(nval); 767 return true; 768 } 769 } else { 770 // Scalar version 771 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 772 for (int i = 0; i < sz; ++i) { 773 if (CF->isExactlyValue(ftbl[i].input)) { 774 Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); 775 DEBUG(errs() << "AMDIC: " << *CI 776 << " ---> " << *nval << "\n"); 777 replaceCall(nval); 778 return true; 779 } 780 } 781 } 782 } 783 784 return false; 785 } 786 787 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { 788 Module *M = CI->getModule(); 789 if (getArgType(FInfo) != AMDGPULibFunc::F32 || 790 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 791 !HasNative(FInfo.getId())) 792 return false; 793 794 AMDGPULibFunc nf = FInfo; 795 nf.setPrefix(AMDGPULibFunc::NATIVE); 796 if (Constant *FPExpr = getFunction(M, nf)) { 797 DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); 798 799 CI->setCalledFunction(FPExpr); 800 801 DEBUG(dbgs() << *CI << '\n'); 802 803 return true; 804 } 805 return false; 806 } 807 808 // [native_]half_recip(c) ==> 1.0/c 809 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, 810 const FuncInfo &FInfo) { 811 Value *opr0 = CI->getArgOperand(0); 812 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 813 // Just create a normal div. Later, InstCombine will be able 814 // to compute the divide into a constant (avoid check float infinity 815 // or subnormal at this point). 816 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), 817 opr0, 818 "recip2div"); 819 DEBUG(errs() << "AMDIC: " << *CI 820 << " ---> " << *nval << "\n"); 821 replaceCall(nval); 822 return true; 823 } 824 return false; 825 } 826 827 // [native_]half_divide(x, c) ==> x/c 828 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, 829 const FuncInfo &FInfo) { 830 Value *opr0 = CI->getArgOperand(0); 831 Value *opr1 = CI->getArgOperand(1); 832 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 833 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 834 835 if ((CF0 && CF1) || // both are constants 836 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) 837 // CF1 is constant && f32 divide 838 { 839 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), 840 opr1, "__div2recip"); 841 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); 842 replaceCall(nval); 843 return true; 844 } 845 return false; 846 } 847 848 namespace llvm { 849 static double log2(double V) { 850 #if _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L 851 return ::log2(V); 852 #else 853 return log(V) / 0.693147180559945309417; 854 #endif 855 } 856 } 857 858 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, 859 const FuncInfo &FInfo) { 860 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 861 FInfo.getId() == AMDGPULibFunc::EI_POWR || 862 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 863 "fold_pow: encounter a wrong function call"); 864 865 Value *opr0, *opr1; 866 ConstantFP *CF; 867 ConstantInt *CINT; 868 ConstantAggregateZero *CZero; 869 Type *eltType; 870 871 opr0 = CI->getArgOperand(0); 872 opr1 = CI->getArgOperand(1); 873 CZero = dyn_cast<ConstantAggregateZero>(opr1); 874 if (getVecSize(FInfo) == 1) { 875 eltType = opr0->getType(); 876 CF = dyn_cast<ConstantFP>(opr1); 877 CINT = dyn_cast<ConstantInt>(opr1); 878 } else { 879 VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); 880 assert(VTy && "Oprand of vector function should be of vectortype"); 881 eltType = VTy->getElementType(); 882 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); 883 884 // Now, only Handle vector const whose elements have the same value. 885 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; 886 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; 887 } 888 889 // No unsafe math , no constant argument, do nothing 890 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) 891 return false; 892 893 // 0x1111111 means that we don't do anything for this call. 894 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 895 896 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { 897 // pow/powr/pown(x, 0) == 1 898 DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); 899 Constant *cnval = ConstantFP::get(eltType, 1.0); 900 if (getVecSize(FInfo) > 1) { 901 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 902 } 903 replaceCall(cnval); 904 return true; 905 } 906 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 907 // pow/powr/pown(x, 1.0) = x 908 DEBUG(errs() << "AMDIC: " << *CI 909 << " ---> " << *opr0 << "\n"); 910 replaceCall(opr0); 911 return true; 912 } 913 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 914 // pow/powr/pown(x, 2.0) = x*x 915 DEBUG(errs() << "AMDIC: " << *CI 916 << " ---> " << *opr0 << " * " << *opr0 << "\n"); 917 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 918 replaceCall(nval); 919 return true; 920 } 921 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 922 // pow/powr/pown(x, -1.0) = 1.0/x 923 DEBUG(errs() << "AMDIC: " << *CI 924 << " ---> 1 / " << *opr0 << "\n"); 925 Constant *cnval = ConstantFP::get(eltType, 1.0); 926 if (getVecSize(FInfo) > 1) { 927 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 928 } 929 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 930 replaceCall(nval); 931 return true; 932 } 933 934 Module *M = CI->getModule(); 935 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 936 // pow[r](x, [-]0.5) = sqrt(x) 937 bool issqrt = CF->isExactlyValue(0.5); 938 if (Constant *FPExpr = getFunction(M, 939 AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 940 : AMDGPULibFunc::EI_RSQRT, FInfo))) { 941 DEBUG(errs() << "AMDIC: " << *CI << " ---> " 942 << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); 943 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 944 : "__pow2rsqrt"); 945 replaceCall(nval); 946 return true; 947 } 948 } 949 950 if (!isUnsafeMath(CI)) 951 return false; 952 953 // Unsafe Math optimization 954 955 // Remember that ci_opr1 is set if opr1 is integral 956 if (CF) { 957 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 958 ? (double)CF->getValueAPF().convertToFloat() 959 : CF->getValueAPF().convertToDouble(); 960 int ival = (int)dval; 961 if ((double)ival == dval) { 962 ci_opr1 = ival; 963 } else 964 ci_opr1 = 0x11111111; 965 } 966 967 // pow/powr/pown(x, c) = [1/](x*x*..x); where 968 // trunc(c) == c && the number of x == c && |c| <= 12 969 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 970 if (abs_opr1 <= 12) { 971 Constant *cnval; 972 Value *nval; 973 if (abs_opr1 == 0) { 974 cnval = ConstantFP::get(eltType, 1.0); 975 if (getVecSize(FInfo) > 1) { 976 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 977 } 978 nval = cnval; 979 } else { 980 Value *valx2 = nullptr; 981 nval = nullptr; 982 while (abs_opr1 > 0) { 983 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 984 if (abs_opr1 & 1) { 985 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 986 } 987 abs_opr1 >>= 1; 988 } 989 } 990 991 if (ci_opr1 < 0) { 992 cnval = ConstantFP::get(eltType, 1.0); 993 if (getVecSize(FInfo) > 1) { 994 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 995 } 996 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 997 } 998 DEBUG(errs() << "AMDIC: " << *CI << " ---> " 999 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 << ")\n"); 1000 replaceCall(nval); 1001 return true; 1002 } 1003 1004 // powr ---> exp2(y * log2(x)) 1005 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 1006 Constant *ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, 1007 FInfo)); 1008 if (!ExpExpr) 1009 return false; 1010 1011 bool needlog = false; 1012 bool needabs = false; 1013 bool needcopysign = false; 1014 Constant *cnval = nullptr; 1015 if (getVecSize(FInfo) == 1) { 1016 CF = dyn_cast<ConstantFP>(opr0); 1017 1018 if (CF) { 1019 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1020 ? (double)CF->getValueAPF().convertToFloat() 1021 : CF->getValueAPF().convertToDouble(); 1022 1023 V = log2(std::abs(V)); 1024 cnval = ConstantFP::get(eltType, V); 1025 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 1026 CF->isNegative(); 1027 } else { 1028 needlog = true; 1029 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && 1030 (!CF || CF->isNegative()); 1031 } 1032 } else { 1033 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1034 1035 if (!CDV) { 1036 needlog = true; 1037 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1038 } else { 1039 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1040 "Wrong vector size detected"); 1041 1042 SmallVector<double, 0> DVal; 1043 for (int i=0; i < getVecSize(FInfo); ++i) { 1044 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1045 ? (double)CDV->getElementAsFloat(i) 1046 : CDV->getElementAsDouble(i); 1047 if (V < 0.0) needcopysign = true; 1048 V = log2(std::abs(V)); 1049 DVal.push_back(V); 1050 } 1051 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1052 SmallVector<float, 0> FVal; 1053 for (unsigned i=0; i < DVal.size(); ++i) { 1054 FVal.push_back((float)DVal[i]); 1055 } 1056 ArrayRef<float> tmp(FVal); 1057 cnval = ConstantDataVector::get(M->getContext(), tmp); 1058 } else { 1059 ArrayRef<double> tmp(DVal); 1060 cnval = ConstantDataVector::get(M->getContext(), tmp); 1061 } 1062 } 1063 } 1064 1065 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1066 // We cannot handle corner cases for a general pow() function, give up 1067 // unless y is a constant integral value. Then proceed as if it were pown. 1068 if (getVecSize(FInfo) == 1) { 1069 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { 1070 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1071 ? (double)CF->getValueAPF().convertToFloat() 1072 : CF->getValueAPF().convertToDouble(); 1073 if (y != (double)(int64_t)y) 1074 return false; 1075 } else 1076 return false; 1077 } else { 1078 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { 1079 for (int i=0; i < getVecSize(FInfo); ++i) { 1080 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1081 ? (double)CDV->getElementAsFloat(i) 1082 : CDV->getElementAsDouble(i); 1083 if (y != (double)(int64_t)y) 1084 return false; 1085 } 1086 } else 1087 return false; 1088 } 1089 } 1090 1091 Value *nval; 1092 if (needabs) { 1093 Constant *AbsExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, 1094 FInfo)); 1095 if (!AbsExpr) 1096 return false; 1097 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); 1098 } else { 1099 nval = cnval ? cnval : opr0; 1100 } 1101 if (needlog) { 1102 Constant *LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, 1103 FInfo)); 1104 if (!LogExpr) 1105 return false; 1106 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1107 } 1108 1109 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1110 // convert int(32) to fp(f32 or f64) 1111 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1112 } 1113 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1114 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1115 1116 if (needcopysign) { 1117 Value *opr_n; 1118 Type* rTy = opr0->getType(); 1119 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); 1120 Type *nTy = nTyS; 1121 if (const VectorType *vTy = dyn_cast<VectorType>(rTy)) 1122 nTy = VectorType::get(nTyS, vTy->getNumElements()); 1123 unsigned size = nTy->getScalarSizeInBits(); 1124 opr_n = CI->getArgOperand(1); 1125 if (opr_n->getType()->isIntegerTy()) 1126 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); 1127 else 1128 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1129 1130 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1131 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1132 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1133 nval = B.CreateBitCast(nval, opr0->getType()); 1134 } 1135 1136 DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1137 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1138 replaceCall(nval); 1139 1140 return true; 1141 } 1142 1143 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, 1144 const FuncInfo &FInfo) { 1145 Value *opr0 = CI->getArgOperand(0); 1146 Value *opr1 = CI->getArgOperand(1); 1147 1148 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1149 if (!CINT) { 1150 return false; 1151 } 1152 int ci_opr1 = (int)CINT->getSExtValue(); 1153 if (ci_opr1 == 1) { // rootn(x, 1) = x 1154 DEBUG(errs() << "AMDIC: " << *CI 1155 << " ---> " << *opr0 << "\n"); 1156 replaceCall(opr0); 1157 return true; 1158 } 1159 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1160 std::vector<const Type*> ParamsTys; 1161 ParamsTys.push_back(opr0->getType()); 1162 Module *M = CI->getModule(); 1163 if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, 1164 FInfo))) { 1165 DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); 1166 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1167 replaceCall(nval); 1168 return true; 1169 } 1170 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1171 Module *M = CI->getModule(); 1172 if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, 1173 FInfo))) { 1174 DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); 1175 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1176 replaceCall(nval); 1177 return true; 1178 } 1179 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1180 DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); 1181 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1182 opr0, 1183 "__rootn2div"); 1184 replaceCall(nval); 1185 return true; 1186 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1187 std::vector<const Type*> ParamsTys; 1188 ParamsTys.push_back(opr0->getType()); 1189 Module *M = CI->getModule(); 1190 if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, 1191 FInfo))) { 1192 DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 << ")\n"); 1193 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1194 replaceCall(nval); 1195 return true; 1196 } 1197 } 1198 return false; 1199 } 1200 1201 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, 1202 const FuncInfo &FInfo) { 1203 Value *opr0 = CI->getArgOperand(0); 1204 Value *opr1 = CI->getArgOperand(1); 1205 Value *opr2 = CI->getArgOperand(2); 1206 1207 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 1208 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 1209 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { 1210 // fma/mad(a, b, c) = c if a=0 || b=0 1211 DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); 1212 replaceCall(opr2); 1213 return true; 1214 } 1215 if (CF0 && CF0->isExactlyValue(1.0f)) { 1216 // fma/mad(a, b, c) = b+c if a=1 1217 DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1218 << *opr1 << " + " << *opr2 << "\n"); 1219 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); 1220 replaceCall(nval); 1221 return true; 1222 } 1223 if (CF1 && CF1->isExactlyValue(1.0f)) { 1224 // fma/mad(a, b, c) = a+c if b=1 1225 DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1226 << *opr0 << " + " << *opr2 << "\n"); 1227 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); 1228 replaceCall(nval); 1229 return true; 1230 } 1231 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { 1232 if (CF->isZero()) { 1233 // fma/mad(a, b, c) = a*b if c=0 1234 DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1235 << *opr0 << " * " << *opr1 << "\n"); 1236 Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); 1237 replaceCall(nval); 1238 return true; 1239 } 1240 } 1241 1242 return false; 1243 } 1244 1245 // Get a scalar native builtin signle argument FP function 1246 Constant* AMDGPULibCalls::getNativeFunction(Module* M, const FuncInfo& FInfo) { 1247 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1248 return nullptr; 1249 FuncInfo nf = FInfo; 1250 nf.setPrefix(AMDGPULibFunc::NATIVE); 1251 return getFunction(M, nf); 1252 } 1253 1254 // fold sqrt -> native_sqrt (x) 1255 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, 1256 const FuncInfo &FInfo) { 1257 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && 1258 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { 1259 if (Constant *FPExpr = getNativeFunction( 1260 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1261 Value *opr0 = CI->getArgOperand(0); 1262 DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1263 << "sqrt(" << *opr0 << ")\n"); 1264 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); 1265 replaceCall(nval); 1266 return true; 1267 } 1268 } 1269 return false; 1270 } 1271 1272 // fold sin, cos -> sincos. 1273 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, 1274 AliasAnalysis *AA) { 1275 AMDGPULibFunc fInfo; 1276 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) 1277 return false; 1278 1279 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1280 fInfo.getId() == AMDGPULibFunc::EI_COS); 1281 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1282 1283 Value *CArgVal = CI->getArgOperand(0); 1284 BasicBlock * const CBB = CI->getParent(); 1285 1286 int const MaxScan = 30; 1287 1288 { // fold in load value. 1289 LoadInst *LI = dyn_cast<LoadInst>(CArgVal); 1290 if (LI && LI->getParent() == CBB) { 1291 BasicBlock::iterator BBI = LI->getIterator(); 1292 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); 1293 if (AvailableVal) { 1294 CArgVal->replaceAllUsesWith(AvailableVal); 1295 if (CArgVal->getNumUses() == 0) 1296 LI->eraseFromParent(); 1297 CArgVal = CI->getArgOperand(0); 1298 } 1299 } 1300 } 1301 1302 Module *M = CI->getModule(); 1303 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); 1304 std::string const PairName = fInfo.mangle(); 1305 1306 CallInst *UI = nullptr; 1307 for (User* U : CArgVal->users()) { 1308 CallInst *XI = dyn_cast_or_null<CallInst>(U); 1309 if (!XI || XI == CI || XI->getParent() != CBB) 1310 continue; 1311 1312 Function *UCallee = XI->getCalledFunction(); 1313 if (!UCallee || !UCallee->getName().equals(PairName)) 1314 continue; 1315 1316 BasicBlock::iterator BBI = CI->getIterator(); 1317 if (BBI == CI->getParent()->begin()) 1318 break; 1319 --BBI; 1320 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { 1321 if (cast<Instruction>(BBI) == XI) { 1322 UI = XI; 1323 break; 1324 } 1325 } 1326 if (UI) break; 1327 } 1328 1329 if (!UI) return false; 1330 1331 // Merge the sin and cos. 1332 1333 // for OpenCL 2.0 we have only generic implementation of sincos 1334 // function. 1335 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); 1336 nf.getLeads()[0].PtrKind = AMDGPULibFunc::GENERIC; 1337 Function *Fsincos = dyn_cast_or_null<Function>(getFunction(M, nf)); 1338 if (!Fsincos) return false; 1339 1340 BasicBlock::iterator ItOld = B.GetInsertPoint(); 1341 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); 1342 B.SetInsertPoint(UI); 1343 1344 Value *P = Alloc; 1345 Type *PTy = Fsincos->getFunctionType()->getParamType(1); 1346 // The allocaInst allocates the memory in private address space. This need 1347 // to be bitcasted to point to the address space of cos pointer type. 1348 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1349 const AMDGPUAS AS = AMDGPU::getAMDGPUAS(*M); 1350 if (PTy->getPointerAddressSpace() != AS.PRIVATE_ADDRESS) 1351 P = B.CreateAddrSpaceCast(Alloc, PTy); 1352 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); 1353 1354 DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI 1355 << ") with " << *Call << "\n"); 1356 1357 if (!isSin) { // CI->cos, UI->sin 1358 B.SetInsertPoint(&*ItOld); 1359 UI->replaceAllUsesWith(&*Call); 1360 Instruction *Reload = B.CreateLoad(Alloc); 1361 CI->replaceAllUsesWith(Reload); 1362 UI->eraseFromParent(); 1363 CI->eraseFromParent(); 1364 } else { // CI->sin, UI->cos 1365 Instruction *Reload = B.CreateLoad(Alloc); 1366 UI->replaceAllUsesWith(Reload); 1367 CI->replaceAllUsesWith(Call); 1368 UI->eraseFromParent(); 1369 CI->eraseFromParent(); 1370 } 1371 return true; 1372 } 1373 1374 // Get insertion point at entry. 1375 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { 1376 Function * Func = UI->getParent()->getParent(); 1377 BasicBlock * BB = &Func->getEntryBlock(); 1378 assert(BB && "Entry block not found!"); 1379 BasicBlock::iterator ItNew = BB->begin(); 1380 return ItNew; 1381 } 1382 1383 // Insert a AllocsInst at the beginning of function entry block. 1384 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, 1385 const char *prefix) { 1386 BasicBlock::iterator ItNew = getEntryIns(UI); 1387 Function *UCallee = UI->getCalledFunction(); 1388 Type *RetType = UCallee->getReturnType(); 1389 B.SetInsertPoint(&*ItNew); 1390 AllocaInst *Alloc = B.CreateAlloca(RetType, 0, 1391 std::string(prefix) + UI->getName()); 1392 Alloc->setAlignment(UCallee->getParent()->getDataLayout() 1393 .getTypeAllocSize(RetType)); 1394 return Alloc; 1395 } 1396 1397 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo, 1398 double& Res0, double& Res1, 1399 Constant *copr0, Constant *copr1, 1400 Constant *copr2) { 1401 // By default, opr0/opr1/opr3 holds values of float/double type. 1402 // If they are not float/double, each function has to its 1403 // operand separately. 1404 double opr0=0.0, opr1=0.0, opr2=0.0; 1405 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1406 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1407 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); 1408 if (fpopr0) { 1409 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1410 ? fpopr0->getValueAPF().convertToDouble() 1411 : (double)fpopr0->getValueAPF().convertToFloat(); 1412 } 1413 1414 if (fpopr1) { 1415 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1416 ? fpopr1->getValueAPF().convertToDouble() 1417 : (double)fpopr1->getValueAPF().convertToFloat(); 1418 } 1419 1420 if (fpopr2) { 1421 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1422 ? fpopr2->getValueAPF().convertToDouble() 1423 : (double)fpopr2->getValueAPF().convertToFloat(); 1424 } 1425 1426 switch (FInfo.getId()) { 1427 default : return false; 1428 1429 case AMDGPULibFunc::EI_ACOS: 1430 Res0 = acos(opr0); 1431 return true; 1432 1433 case AMDGPULibFunc::EI_ACOSH: 1434 // acosh(x) == log(x + sqrt(x*x - 1)) 1435 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1436 return true; 1437 1438 case AMDGPULibFunc::EI_ACOSPI: 1439 Res0 = acos(opr0) / MATH_PI; 1440 return true; 1441 1442 case AMDGPULibFunc::EI_ASIN: 1443 Res0 = asin(opr0); 1444 return true; 1445 1446 case AMDGPULibFunc::EI_ASINH: 1447 // asinh(x) == log(x + sqrt(x*x + 1)) 1448 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1449 return true; 1450 1451 case AMDGPULibFunc::EI_ASINPI: 1452 Res0 = asin(opr0) / MATH_PI; 1453 return true; 1454 1455 case AMDGPULibFunc::EI_ATAN: 1456 Res0 = atan(opr0); 1457 return true; 1458 1459 case AMDGPULibFunc::EI_ATANH: 1460 // atanh(x) == (log(x+1) - log(x-1))/2; 1461 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1462 return true; 1463 1464 case AMDGPULibFunc::EI_ATANPI: 1465 Res0 = atan(opr0) / MATH_PI; 1466 return true; 1467 1468 case AMDGPULibFunc::EI_CBRT: 1469 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1470 return true; 1471 1472 case AMDGPULibFunc::EI_COS: 1473 Res0 = cos(opr0); 1474 return true; 1475 1476 case AMDGPULibFunc::EI_COSH: 1477 Res0 = cosh(opr0); 1478 return true; 1479 1480 case AMDGPULibFunc::EI_COSPI: 1481 Res0 = cos(MATH_PI * opr0); 1482 return true; 1483 1484 case AMDGPULibFunc::EI_EXP: 1485 Res0 = exp(opr0); 1486 return true; 1487 1488 case AMDGPULibFunc::EI_EXP2: 1489 Res0 = pow(2.0, opr0); 1490 return true; 1491 1492 case AMDGPULibFunc::EI_EXP10: 1493 Res0 = pow(10.0, opr0); 1494 return true; 1495 1496 case AMDGPULibFunc::EI_EXPM1: 1497 Res0 = exp(opr0) - 1.0; 1498 return true; 1499 1500 case AMDGPULibFunc::EI_LOG: 1501 Res0 = log(opr0); 1502 return true; 1503 1504 case AMDGPULibFunc::EI_LOG2: 1505 Res0 = log(opr0) / log(2.0); 1506 return true; 1507 1508 case AMDGPULibFunc::EI_LOG10: 1509 Res0 = log(opr0) / log(10.0); 1510 return true; 1511 1512 case AMDGPULibFunc::EI_RSQRT: 1513 Res0 = 1.0 / sqrt(opr0); 1514 return true; 1515 1516 case AMDGPULibFunc::EI_SIN: 1517 Res0 = sin(opr0); 1518 return true; 1519 1520 case AMDGPULibFunc::EI_SINH: 1521 Res0 = sinh(opr0); 1522 return true; 1523 1524 case AMDGPULibFunc::EI_SINPI: 1525 Res0 = sin(MATH_PI * opr0); 1526 return true; 1527 1528 case AMDGPULibFunc::EI_SQRT: 1529 Res0 = sqrt(opr0); 1530 return true; 1531 1532 case AMDGPULibFunc::EI_TAN: 1533 Res0 = tan(opr0); 1534 return true; 1535 1536 case AMDGPULibFunc::EI_TANH: 1537 Res0 = tanh(opr0); 1538 return true; 1539 1540 case AMDGPULibFunc::EI_TANPI: 1541 Res0 = tan(MATH_PI * opr0); 1542 return true; 1543 1544 case AMDGPULibFunc::EI_RECIP: 1545 Res0 = 1.0 / opr0; 1546 return true; 1547 1548 // two-arg functions 1549 case AMDGPULibFunc::EI_DIVIDE: 1550 Res0 = opr0 / opr1; 1551 return true; 1552 1553 case AMDGPULibFunc::EI_POW: 1554 case AMDGPULibFunc::EI_POWR: 1555 Res0 = pow(opr0, opr1); 1556 return true; 1557 1558 case AMDGPULibFunc::EI_POWN: { 1559 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1560 double val = (double)iopr1->getSExtValue(); 1561 Res0 = pow(opr0, val); 1562 return true; 1563 } 1564 return false; 1565 } 1566 1567 case AMDGPULibFunc::EI_ROOTN: { 1568 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1569 double val = (double)iopr1->getSExtValue(); 1570 Res0 = pow(opr0, 1.0 / val); 1571 return true; 1572 } 1573 return false; 1574 } 1575 1576 // with ptr arg 1577 case AMDGPULibFunc::EI_SINCOS: 1578 Res0 = sin(opr0); 1579 Res1 = cos(opr0); 1580 return true; 1581 1582 // three-arg functions 1583 case AMDGPULibFunc::EI_FMA: 1584 case AMDGPULibFunc::EI_MAD: 1585 Res0 = opr0 * opr1 + opr2; 1586 return true; 1587 } 1588 1589 return false; 1590 } 1591 1592 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) { 1593 int numArgs = (int)aCI->getNumArgOperands(); 1594 if (numArgs > 3) 1595 return false; 1596 1597 Constant *copr0 = nullptr; 1598 Constant *copr1 = nullptr; 1599 Constant *copr2 = nullptr; 1600 if (numArgs > 0) { 1601 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1602 return false; 1603 } 1604 1605 if (numArgs > 1) { 1606 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1607 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1608 return false; 1609 } 1610 } 1611 1612 if (numArgs > 2) { 1613 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) 1614 return false; 1615 } 1616 1617 // At this point, all arguments to aCI are constants. 1618 1619 // max vector size is 16, and sincos will generate two results. 1620 double DVal0[16], DVal1[16]; 1621 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1622 if (getVecSize(FInfo) == 1) { 1623 if (!evaluateScalarMathFunc(FInfo, DVal0[0], 1624 DVal1[0], copr0, copr1, copr2)) { 1625 return false; 1626 } 1627 } else { 1628 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1629 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1630 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); 1631 for (int i=0; i < getVecSize(FInfo); ++i) { 1632 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1633 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1634 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; 1635 if (!evaluateScalarMathFunc(FInfo, DVal0[i], 1636 DVal1[i], celt0, celt1, celt2)) { 1637 return false; 1638 } 1639 } 1640 } 1641 1642 LLVMContext &context = CI->getParent()->getParent()->getContext(); 1643 Constant *nval0, *nval1; 1644 if (getVecSize(FInfo) == 1) { 1645 nval0 = ConstantFP::get(CI->getType(), DVal0[0]); 1646 if (hasTwoResults) 1647 nval1 = ConstantFP::get(CI->getType(), DVal1[0]); 1648 } else { 1649 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1650 SmallVector <float, 0> FVal0, FVal1; 1651 for (int i=0; i < getVecSize(FInfo); ++i) 1652 FVal0.push_back((float)DVal0[i]); 1653 ArrayRef<float> tmp0(FVal0); 1654 nval0 = ConstantDataVector::get(context, tmp0); 1655 if (hasTwoResults) { 1656 for (int i=0; i < getVecSize(FInfo); ++i) 1657 FVal1.push_back((float)DVal1[i]); 1658 ArrayRef<float> tmp1(FVal1); 1659 nval1 = ConstantDataVector::get(context, tmp1); 1660 } 1661 } else { 1662 ArrayRef<double> tmp0(DVal0); 1663 nval0 = ConstantDataVector::get(context, tmp0); 1664 if (hasTwoResults) { 1665 ArrayRef<double> tmp1(DVal1); 1666 nval1 = ConstantDataVector::get(context, tmp1); 1667 } 1668 } 1669 } 1670 1671 if (hasTwoResults) { 1672 // sincos 1673 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1674 "math function with ptr arg not supported yet"); 1675 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1676 } 1677 1678 replaceCall(nval0); 1679 return true; 1680 } 1681 1682 // Public interface to the Simplify LibCalls pass. 1683 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass() { 1684 return new AMDGPUSimplifyLibCalls(); 1685 } 1686 1687 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { 1688 return new AMDGPUUseNativeCalls(); 1689 } 1690 1691 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { 1692 if (skipFunction(F)) 1693 return false; 1694 1695 bool Changed = false; 1696 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1697 1698 DEBUG(dbgs() << "AMDIC: process function "; 1699 F.printAsOperand(dbgs(), false, F.getParent()); 1700 dbgs() << '\n';); 1701 1702 for (auto &BB : F) { 1703 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1704 // Ignore non-calls. 1705 CallInst *CI = dyn_cast<CallInst>(I); 1706 ++I; 1707 if (!CI) continue; 1708 1709 // Ignore indirect calls. 1710 Function *Callee = CI->getCalledFunction(); 1711 if (Callee == 0) continue; 1712 1713 DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1714 dbgs().flush()); 1715 if(Simplifier.fold(CI, AA)) 1716 Changed = true; 1717 } 1718 } 1719 return Changed; 1720 } 1721 1722 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { 1723 if (skipFunction(F) || UseNative.empty()) 1724 return false; 1725 1726 bool Changed = false; 1727 for (auto &BB : F) { 1728 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1729 // Ignore non-calls. 1730 CallInst *CI = dyn_cast<CallInst>(I); 1731 ++I; 1732 if (!CI) continue; 1733 1734 // Ignore indirect calls. 1735 Function *Callee = CI->getCalledFunction(); 1736 if (Callee == 0) continue; 1737 1738 if(Simplifier.useNative(CI)) 1739 Changed = true; 1740 } 1741 } 1742 return Changed; 1743 } 1744