1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPULibFunc.h" 16 #include "GCNSubtarget.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/AttributeMask.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 #include "llvm/IR/MDBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include <cmath> 29 30 #define DEBUG_TYPE "amdgpu-simplifylib" 31 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 36 cl::desc("Enable pre-link mode optimizations"), 37 cl::init(false), 38 cl::Hidden); 39 40 static cl::list<std::string> UseNative("amdgpu-use-native", 41 cl::desc("Comma separated list of functions to replace with native, or all"), 42 cl::CommaSeparated, cl::ValueOptional, 43 cl::Hidden); 44 45 #define MATH_PI numbers::pi 46 #define MATH_E numbers::e 47 #define MATH_SQRT2 numbers::sqrt2 48 #define MATH_SQRT1_2 numbers::inv_sqrt2 49 50 namespace llvm { 51 52 class AMDGPULibCalls { 53 private: 54 const TargetLibraryInfo *TLInfo = nullptr; 55 AssumptionCache *AC = nullptr; 56 DominatorTree *DT = nullptr; 57 58 typedef llvm::AMDGPULibFunc FuncInfo; 59 60 bool UnsafeFPMath = false; 61 62 // -fuse-native. 63 bool AllNative = false; 64 65 bool useNativeFunc(const StringRef F) const; 66 67 // Return a pointer (pointer expr) to the function if function definition with 68 // "FuncName" exists. It may create a new function prototype in pre-link mode. 69 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 70 71 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo); 72 73 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 74 75 /* Specialized optimizations */ 76 77 // pow/powr/pown 78 bool fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); 79 80 // rootn 81 bool fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); 82 83 // -fuse-native for sincos 84 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 85 86 // evaluate calls if calls' arguments are constants. 87 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, double &Res1, 88 Constant *copr0, Constant *copr1); 89 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo); 90 91 /// Insert a value to sincos function \p Fsincos. Returns (value of sin, value 92 /// of cos, sincos call). 93 std::tuple<Value *, Value *, Value *> insertSinCos(Value *Arg, 94 FastMathFlags FMF, 95 IRBuilder<> &B, 96 FunctionCallee Fsincos); 97 98 // sin/cos 99 bool fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); 100 101 // __read_pipe/__write_pipe 102 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 103 const FuncInfo &FInfo); 104 105 // Get a scalar native builtin single argument FP function 106 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 107 108 /// Substitute a call to a known libcall with an intrinsic call. If \p 109 /// AllowMinSize is true, allow the replacement in a minsize function. 110 bool shouldReplaceLibcallWithIntrinsic(const CallInst *CI, 111 bool AllowMinSizeF32 = false, 112 bool AllowF64 = false, 113 bool AllowStrictFP = false); 114 void replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI, 115 Intrinsic::ID IntrID); 116 117 bool tryReplaceLibcallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI, 118 Intrinsic::ID IntrID, 119 bool AllowMinSizeF32 = false, 120 bool AllowF64 = false, 121 bool AllowStrictFP = false); 122 123 protected: 124 bool isUnsafeMath(const FPMathOperator *FPOp) const; 125 bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const; 126 127 bool canIncreasePrecisionOfConstantFold(const FPMathOperator *FPOp) const; 128 129 static void replaceCall(Instruction *I, Value *With) { 130 I->replaceAllUsesWith(With); 131 I->eraseFromParent(); 132 } 133 134 static void replaceCall(FPMathOperator *I, Value *With) { 135 replaceCall(cast<Instruction>(I), With); 136 } 137 138 public: 139 AMDGPULibCalls() {} 140 141 bool fold(CallInst *CI); 142 143 void initFunction(Function &F, FunctionAnalysisManager &FAM); 144 void initNativeFuncs(); 145 146 // Replace a normal math function call with that native version 147 bool useNative(CallInst *CI); 148 }; 149 150 } // end llvm namespace 151 152 template <typename IRB> 153 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 154 const Twine &Name = "") { 155 CallInst *R = B.CreateCall(Callee, Arg, Name); 156 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 157 R->setCallingConv(F->getCallingConv()); 158 return R; 159 } 160 161 template <typename IRB> 162 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 163 Value *Arg2, const Twine &Name = "") { 164 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 165 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 166 R->setCallingConv(F->getCallingConv()); 167 return R; 168 } 169 170 static FunctionType *getPownType(FunctionType *FT) { 171 Type *PowNExpTy = Type::getInt32Ty(FT->getContext()); 172 if (VectorType *VecTy = dyn_cast<VectorType>(FT->getReturnType())) 173 PowNExpTy = VectorType::get(PowNExpTy, VecTy->getElementCount()); 174 175 return FunctionType::get(FT->getReturnType(), 176 {FT->getParamType(0), PowNExpTy}, false); 177 } 178 179 // Data structures for table-driven optimizations. 180 // FuncTbl works for both f32 and f64 functions with 1 input argument 181 182 struct TableEntry { 183 double result; 184 double input; 185 }; 186 187 /* a list of {result, input} */ 188 static const TableEntry tbl_acos[] = { 189 {MATH_PI / 2.0, 0.0}, 190 {MATH_PI / 2.0, -0.0}, 191 {0.0, 1.0}, 192 {MATH_PI, -1.0} 193 }; 194 static const TableEntry tbl_acosh[] = { 195 {0.0, 1.0} 196 }; 197 static const TableEntry tbl_acospi[] = { 198 {0.5, 0.0}, 199 {0.5, -0.0}, 200 {0.0, 1.0}, 201 {1.0, -1.0} 202 }; 203 static const TableEntry tbl_asin[] = { 204 {0.0, 0.0}, 205 {-0.0, -0.0}, 206 {MATH_PI / 2.0, 1.0}, 207 {-MATH_PI / 2.0, -1.0} 208 }; 209 static const TableEntry tbl_asinh[] = { 210 {0.0, 0.0}, 211 {-0.0, -0.0} 212 }; 213 static const TableEntry tbl_asinpi[] = { 214 {0.0, 0.0}, 215 {-0.0, -0.0}, 216 {0.5, 1.0}, 217 {-0.5, -1.0} 218 }; 219 static const TableEntry tbl_atan[] = { 220 {0.0, 0.0}, 221 {-0.0, -0.0}, 222 {MATH_PI / 4.0, 1.0}, 223 {-MATH_PI / 4.0, -1.0} 224 }; 225 static const TableEntry tbl_atanh[] = { 226 {0.0, 0.0}, 227 {-0.0, -0.0} 228 }; 229 static const TableEntry tbl_atanpi[] = { 230 {0.0, 0.0}, 231 {-0.0, -0.0}, 232 {0.25, 1.0}, 233 {-0.25, -1.0} 234 }; 235 static const TableEntry tbl_cbrt[] = { 236 {0.0, 0.0}, 237 {-0.0, -0.0}, 238 {1.0, 1.0}, 239 {-1.0, -1.0}, 240 }; 241 static const TableEntry tbl_cos[] = { 242 {1.0, 0.0}, 243 {1.0, -0.0} 244 }; 245 static const TableEntry tbl_cosh[] = { 246 {1.0, 0.0}, 247 {1.0, -0.0} 248 }; 249 static const TableEntry tbl_cospi[] = { 250 {1.0, 0.0}, 251 {1.0, -0.0} 252 }; 253 static const TableEntry tbl_erfc[] = { 254 {1.0, 0.0}, 255 {1.0, -0.0} 256 }; 257 static const TableEntry tbl_erf[] = { 258 {0.0, 0.0}, 259 {-0.0, -0.0} 260 }; 261 static const TableEntry tbl_exp[] = { 262 {1.0, 0.0}, 263 {1.0, -0.0}, 264 {MATH_E, 1.0} 265 }; 266 static const TableEntry tbl_exp2[] = { 267 {1.0, 0.0}, 268 {1.0, -0.0}, 269 {2.0, 1.0} 270 }; 271 static const TableEntry tbl_exp10[] = { 272 {1.0, 0.0}, 273 {1.0, -0.0}, 274 {10.0, 1.0} 275 }; 276 static const TableEntry tbl_expm1[] = { 277 {0.0, 0.0}, 278 {-0.0, -0.0} 279 }; 280 static const TableEntry tbl_log[] = { 281 {0.0, 1.0}, 282 {1.0, MATH_E} 283 }; 284 static const TableEntry tbl_log2[] = { 285 {0.0, 1.0}, 286 {1.0, 2.0} 287 }; 288 static const TableEntry tbl_log10[] = { 289 {0.0, 1.0}, 290 {1.0, 10.0} 291 }; 292 static const TableEntry tbl_rsqrt[] = { 293 {1.0, 1.0}, 294 {MATH_SQRT1_2, 2.0} 295 }; 296 static const TableEntry tbl_sin[] = { 297 {0.0, 0.0}, 298 {-0.0, -0.0} 299 }; 300 static const TableEntry tbl_sinh[] = { 301 {0.0, 0.0}, 302 {-0.0, -0.0} 303 }; 304 static const TableEntry tbl_sinpi[] = { 305 {0.0, 0.0}, 306 {-0.0, -0.0} 307 }; 308 static const TableEntry tbl_sqrt[] = { 309 {0.0, 0.0}, 310 {1.0, 1.0}, 311 {MATH_SQRT2, 2.0} 312 }; 313 static const TableEntry tbl_tan[] = { 314 {0.0, 0.0}, 315 {-0.0, -0.0} 316 }; 317 static const TableEntry tbl_tanh[] = { 318 {0.0, 0.0}, 319 {-0.0, -0.0} 320 }; 321 static const TableEntry tbl_tanpi[] = { 322 {0.0, 0.0}, 323 {-0.0, -0.0} 324 }; 325 static const TableEntry tbl_tgamma[] = { 326 {1.0, 1.0}, 327 {1.0, 2.0}, 328 {2.0, 3.0}, 329 {6.0, 4.0} 330 }; 331 332 static bool HasNative(AMDGPULibFunc::EFuncId id) { 333 switch(id) { 334 case AMDGPULibFunc::EI_DIVIDE: 335 case AMDGPULibFunc::EI_COS: 336 case AMDGPULibFunc::EI_EXP: 337 case AMDGPULibFunc::EI_EXP2: 338 case AMDGPULibFunc::EI_EXP10: 339 case AMDGPULibFunc::EI_LOG: 340 case AMDGPULibFunc::EI_LOG2: 341 case AMDGPULibFunc::EI_LOG10: 342 case AMDGPULibFunc::EI_POWR: 343 case AMDGPULibFunc::EI_RECIP: 344 case AMDGPULibFunc::EI_RSQRT: 345 case AMDGPULibFunc::EI_SIN: 346 case AMDGPULibFunc::EI_SINCOS: 347 case AMDGPULibFunc::EI_SQRT: 348 case AMDGPULibFunc::EI_TAN: 349 return true; 350 default:; 351 } 352 return false; 353 } 354 355 using TableRef = ArrayRef<TableEntry>; 356 357 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 358 switch(id) { 359 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 360 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 361 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 362 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 363 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 364 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 365 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 366 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 367 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 368 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 369 case AMDGPULibFunc::EI_NCOS: 370 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 371 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 372 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 373 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 374 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 375 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 376 case AMDGPULibFunc::EI_NEXP2: 377 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 378 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 379 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 380 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 381 case AMDGPULibFunc::EI_NLOG2: 382 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 383 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 384 case AMDGPULibFunc::EI_NRSQRT: 385 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 386 case AMDGPULibFunc::EI_NSIN: 387 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 388 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 389 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 390 case AMDGPULibFunc::EI_NSQRT: 391 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 392 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 393 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 394 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 395 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 396 default:; 397 } 398 return TableRef(); 399 } 400 401 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 402 return FInfo.getLeads()[0].VectorSize; 403 } 404 405 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 406 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 407 } 408 409 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 410 // If we are doing PreLinkOpt, the function is external. So it is safe to 411 // use getOrInsertFunction() at this stage. 412 413 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 414 : AMDGPULibFunc::getFunction(M, fInfo); 415 } 416 417 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName, 418 FuncInfo &FInfo) { 419 return AMDGPULibFunc::parse(FMangledName, FInfo); 420 } 421 422 bool AMDGPULibCalls::isUnsafeMath(const FPMathOperator *FPOp) const { 423 return UnsafeFPMath || FPOp->isFast(); 424 } 425 426 bool AMDGPULibCalls::isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const { 427 return UnsafeFPMath || 428 (FPOp->hasApproxFunc() && FPOp->hasNoNaNs() && FPOp->hasNoInfs()); 429 } 430 431 bool AMDGPULibCalls::canIncreasePrecisionOfConstantFold( 432 const FPMathOperator *FPOp) const { 433 // TODO: Refine to approxFunc or contract 434 return isUnsafeMath(FPOp); 435 } 436 437 void AMDGPULibCalls::initFunction(Function &F, FunctionAnalysisManager &FAM) { 438 UnsafeFPMath = F.getFnAttribute("unsafe-fp-math").getValueAsBool(); 439 AC = &FAM.getResult<AssumptionAnalysis>(F); 440 TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); 441 DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 442 } 443 444 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 445 return AllNative || llvm::is_contained(UseNative, F); 446 } 447 448 void AMDGPULibCalls::initNativeFuncs() { 449 AllNative = useNativeFunc("all") || 450 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 451 UseNative.begin()->empty()); 452 } 453 454 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 455 bool native_sin = useNativeFunc("sin"); 456 bool native_cos = useNativeFunc("cos"); 457 458 if (native_sin && native_cos) { 459 Module *M = aCI->getModule(); 460 Value *opr0 = aCI->getArgOperand(0); 461 462 AMDGPULibFunc nf; 463 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 464 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 465 466 nf.setPrefix(AMDGPULibFunc::NATIVE); 467 nf.setId(AMDGPULibFunc::EI_SIN); 468 FunctionCallee sinExpr = getFunction(M, nf); 469 470 nf.setPrefix(AMDGPULibFunc::NATIVE); 471 nf.setId(AMDGPULibFunc::EI_COS); 472 FunctionCallee cosExpr = getFunction(M, nf); 473 if (sinExpr && cosExpr) { 474 Value *sinval = 475 CallInst::Create(sinExpr, opr0, "splitsin", aCI->getIterator()); 476 Value *cosval = 477 CallInst::Create(cosExpr, opr0, "splitcos", aCI->getIterator()); 478 new StoreInst(cosval, aCI->getArgOperand(1), aCI->getIterator()); 479 480 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 481 << " with native version of sin/cos"); 482 483 replaceCall(aCI, sinval); 484 return true; 485 } 486 } 487 return false; 488 } 489 490 bool AMDGPULibCalls::useNative(CallInst *aCI) { 491 Function *Callee = aCI->getCalledFunction(); 492 if (!Callee || aCI->isNoBuiltin()) 493 return false; 494 495 FuncInfo FInfo; 496 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() || 497 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 498 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 499 !(AllNative || useNativeFunc(FInfo.getName()))) { 500 return false; 501 } 502 503 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 504 return sincosUseNative(aCI, FInfo); 505 506 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 507 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 508 if (!F) 509 return false; 510 511 aCI->setCalledFunction(F); 512 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 513 << " with native version"); 514 return true; 515 } 516 517 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 518 // builtin, with appended type size and alignment arguments, where 2 or 4 519 // indicates the original number of arguments. The library has optimized version 520 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 521 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 522 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 523 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 524 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 525 const FuncInfo &FInfo) { 526 auto *Callee = CI->getCalledFunction(); 527 if (!Callee->isDeclaration()) 528 return false; 529 530 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 531 auto *M = Callee->getParent(); 532 std::string Name = std::string(Callee->getName()); 533 auto NumArg = CI->arg_size(); 534 if (NumArg != 4 && NumArg != 6) 535 return false; 536 ConstantInt *PacketSize = 537 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 2)); 538 ConstantInt *PacketAlign = 539 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 1)); 540 if (!PacketSize || !PacketAlign) 541 return false; 542 543 unsigned Size = PacketSize->getZExtValue(); 544 Align Alignment = PacketAlign->getAlignValue(); 545 if (Alignment != Size) 546 return false; 547 548 unsigned PtrArgLoc = CI->arg_size() - 3; 549 Value *PtrArg = CI->getArgOperand(PtrArgLoc); 550 Type *PtrTy = PtrArg->getType(); 551 552 SmallVector<llvm::Type *, 6> ArgTys; 553 for (unsigned I = 0; I != PtrArgLoc; ++I) 554 ArgTys.push_back(CI->getArgOperand(I)->getType()); 555 ArgTys.push_back(PtrTy); 556 557 Name = Name + "_" + std::to_string(Size); 558 auto *FTy = FunctionType::get(Callee->getReturnType(), 559 ArrayRef<Type *>(ArgTys), false); 560 AMDGPULibFunc NewLibFunc(Name, FTy); 561 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 562 if (!F) 563 return false; 564 565 SmallVector<Value *, 6> Args; 566 for (unsigned I = 0; I != PtrArgLoc; ++I) 567 Args.push_back(CI->getArgOperand(I)); 568 Args.push_back(PtrArg); 569 570 auto *NCI = B.CreateCall(F, Args); 571 NCI->setAttributes(CI->getAttributes()); 572 CI->replaceAllUsesWith(NCI); 573 CI->dropAllReferences(); 574 CI->eraseFromParent(); 575 576 return true; 577 } 578 579 static bool isKnownIntegral(const Value *V, const DataLayout &DL, 580 FastMathFlags FMF) { 581 if (isa<PoisonValue>(V)) 582 return true; 583 if (isa<UndefValue>(V)) 584 return false; 585 586 if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) 587 return CF->getValueAPF().isInteger(); 588 589 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 590 const Constant *CV = dyn_cast<Constant>(V); 591 if (VFVTy && CV) { 592 unsigned NumElts = VFVTy->getNumElements(); 593 for (unsigned i = 0; i != NumElts; ++i) { 594 Constant *Elt = CV->getAggregateElement(i); 595 if (!Elt) 596 return false; 597 if (isa<PoisonValue>(Elt)) 598 continue; 599 600 const ConstantFP *CFP = dyn_cast<ConstantFP>(Elt); 601 if (!CFP || !CFP->getValue().isInteger()) 602 return false; 603 } 604 605 return true; 606 } 607 608 const Instruction *I = dyn_cast<Instruction>(V); 609 if (!I) 610 return false; 611 612 switch (I->getOpcode()) { 613 case Instruction::SIToFP: 614 case Instruction::UIToFP: 615 // TODO: Could check nofpclass(inf) on incoming argument 616 if (FMF.noInfs()) 617 return true; 618 619 // Need to check int size cannot produce infinity, which computeKnownFPClass 620 // knows how to do already. 621 return isKnownNeverInfinity(I, /*Depth=*/0, SimplifyQuery(DL)); 622 case Instruction::Call: { 623 const CallInst *CI = cast<CallInst>(I); 624 switch (CI->getIntrinsicID()) { 625 case Intrinsic::trunc: 626 case Intrinsic::floor: 627 case Intrinsic::ceil: 628 case Intrinsic::rint: 629 case Intrinsic::nearbyint: 630 case Intrinsic::round: 631 case Intrinsic::roundeven: 632 return (FMF.noInfs() && FMF.noNaNs()) || 633 isKnownNeverInfOrNaN(I, /*Depth=*/0, SimplifyQuery(DL)); 634 default: 635 break; 636 } 637 638 break; 639 } 640 default: 641 break; 642 } 643 644 return false; 645 } 646 647 // This function returns false if no change; return true otherwise. 648 bool AMDGPULibCalls::fold(CallInst *CI) { 649 Function *Callee = CI->getCalledFunction(); 650 // Ignore indirect calls. 651 if (!Callee || Callee->isIntrinsic() || CI->isNoBuiltin()) 652 return false; 653 654 FuncInfo FInfo; 655 if (!parseFunctionName(Callee->getName(), FInfo)) 656 return false; 657 658 // Further check the number of arguments to see if they match. 659 // TODO: Check calling convention matches too 660 if (!FInfo.isCompatibleSignature(CI->getFunctionType())) 661 return false; 662 663 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << '\n'); 664 665 if (TDOFold(CI, FInfo)) 666 return true; 667 668 IRBuilder<> B(CI); 669 if (CI->isStrictFP()) 670 B.setIsFPConstrained(true); 671 672 if (FPMathOperator *FPOp = dyn_cast<FPMathOperator>(CI)) { 673 // Under unsafe-math, evaluate calls if possible. 674 // According to Brian Sumner, we can do this for all f32 function calls 675 // using host's double function calls. 676 if (canIncreasePrecisionOfConstantFold(FPOp) && evaluateCall(CI, FInfo)) 677 return true; 678 679 // Copy fast flags from the original call. 680 FastMathFlags FMF = FPOp->getFastMathFlags(); 681 B.setFastMathFlags(FMF); 682 683 // Specialized optimizations for each function call. 684 // 685 // TODO: Handle native functions 686 switch (FInfo.getId()) { 687 case AMDGPULibFunc::EI_EXP: 688 if (FMF.none()) 689 return false; 690 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp, 691 FMF.approxFunc()); 692 case AMDGPULibFunc::EI_EXP2: 693 if (FMF.none()) 694 return false; 695 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp2, 696 FMF.approxFunc()); 697 case AMDGPULibFunc::EI_LOG: 698 if (FMF.none()) 699 return false; 700 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log, 701 FMF.approxFunc()); 702 case AMDGPULibFunc::EI_LOG2: 703 if (FMF.none()) 704 return false; 705 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log2, 706 FMF.approxFunc()); 707 case AMDGPULibFunc::EI_LOG10: 708 if (FMF.none()) 709 return false; 710 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log10, 711 FMF.approxFunc()); 712 case AMDGPULibFunc::EI_FMIN: 713 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::minnum, 714 true, true); 715 case AMDGPULibFunc::EI_FMAX: 716 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::maxnum, 717 true, true); 718 case AMDGPULibFunc::EI_FMA: 719 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fma, true, 720 true); 721 case AMDGPULibFunc::EI_MAD: 722 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fmuladd, 723 true, true); 724 case AMDGPULibFunc::EI_FABS: 725 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fabs, true, 726 true, true); 727 case AMDGPULibFunc::EI_COPYSIGN: 728 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::copysign, 729 true, true, true); 730 case AMDGPULibFunc::EI_FLOOR: 731 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::floor, true, 732 true); 733 case AMDGPULibFunc::EI_CEIL: 734 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::ceil, true, 735 true); 736 case AMDGPULibFunc::EI_TRUNC: 737 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::trunc, true, 738 true); 739 case AMDGPULibFunc::EI_RINT: 740 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::rint, true, 741 true); 742 case AMDGPULibFunc::EI_ROUND: 743 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::round, true, 744 true); 745 case AMDGPULibFunc::EI_LDEXP: { 746 if (!shouldReplaceLibcallWithIntrinsic(CI, true, true)) 747 return false; 748 749 Value *Arg1 = CI->getArgOperand(1); 750 if (VectorType *VecTy = dyn_cast<VectorType>(CI->getType()); 751 VecTy && !isa<VectorType>(Arg1->getType())) { 752 Value *SplatArg1 = B.CreateVectorSplat(VecTy->getElementCount(), Arg1); 753 CI->setArgOperand(1, SplatArg1); 754 } 755 756 CI->setCalledFunction(Intrinsic::getDeclaration( 757 CI->getModule(), Intrinsic::ldexp, 758 {CI->getType(), CI->getArgOperand(1)->getType()})); 759 return true; 760 } 761 case AMDGPULibFunc::EI_POW: { 762 Module *M = Callee->getParent(); 763 AMDGPULibFunc PowrInfo(AMDGPULibFunc::EI_POWR, FInfo); 764 FunctionCallee PowrFunc = getFunction(M, PowrInfo); 765 CallInst *Call = cast<CallInst>(FPOp); 766 767 // pow(x, y) -> powr(x, y) for x >= -0.0 768 // TODO: Account for flags on current call 769 if (PowrFunc && 770 cannotBeOrderedLessThanZero( 771 FPOp->getOperand(0), /*Depth=*/0, 772 SimplifyQuery(M->getDataLayout(), TLInfo, DT, AC, Call))) { 773 Call->setCalledFunction(PowrFunc); 774 return fold_pow(FPOp, B, PowrInfo) || true; 775 } 776 777 // pow(x, y) -> pown(x, y) for known integral y 778 if (isKnownIntegral(FPOp->getOperand(1), M->getDataLayout(), 779 FPOp->getFastMathFlags())) { 780 FunctionType *PownType = getPownType(CI->getFunctionType()); 781 AMDGPULibFunc PownInfo(AMDGPULibFunc::EI_POWN, PownType, true); 782 FunctionCallee PownFunc = getFunction(M, PownInfo); 783 if (PownFunc) { 784 // TODO: If the incoming integral value is an sitofp/uitofp, it won't 785 // fold out without a known range. We can probably take the source 786 // value directly. 787 Value *CastedArg = 788 B.CreateFPToSI(FPOp->getOperand(1), PownType->getParamType(1)); 789 // Have to drop any nofpclass attributes on the original call site. 790 Call->removeParamAttrs( 791 1, AttributeFuncs::typeIncompatible(CastedArg->getType())); 792 Call->setCalledFunction(PownFunc); 793 Call->setArgOperand(1, CastedArg); 794 return fold_pow(FPOp, B, PownInfo) || true; 795 } 796 } 797 798 return fold_pow(FPOp, B, FInfo); 799 } 800 case AMDGPULibFunc::EI_POWR: 801 case AMDGPULibFunc::EI_POWN: 802 return fold_pow(FPOp, B, FInfo); 803 case AMDGPULibFunc::EI_ROOTN: 804 return fold_rootn(FPOp, B, FInfo); 805 case AMDGPULibFunc::EI_SQRT: 806 // TODO: Allow with strictfp + constrained intrinsic 807 return tryReplaceLibcallWithSimpleIntrinsic( 808 B, CI, Intrinsic::sqrt, true, true, /*AllowStrictFP=*/false); 809 case AMDGPULibFunc::EI_COS: 810 case AMDGPULibFunc::EI_SIN: 811 return fold_sincos(FPOp, B, FInfo); 812 default: 813 break; 814 } 815 } else { 816 // Specialized optimizations for each function call 817 switch (FInfo.getId()) { 818 case AMDGPULibFunc::EI_READ_PIPE_2: 819 case AMDGPULibFunc::EI_READ_PIPE_4: 820 case AMDGPULibFunc::EI_WRITE_PIPE_2: 821 case AMDGPULibFunc::EI_WRITE_PIPE_4: 822 return fold_read_write_pipe(CI, B, FInfo); 823 default: 824 break; 825 } 826 } 827 828 return false; 829 } 830 831 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 832 // Table-Driven optimization 833 const TableRef tr = getOptTable(FInfo.getId()); 834 if (tr.empty()) 835 return false; 836 837 int const sz = (int)tr.size(); 838 Value *opr0 = CI->getArgOperand(0); 839 840 if (getVecSize(FInfo) > 1) { 841 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 842 SmallVector<double, 0> DVal; 843 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 844 ConstantFP *eltval = dyn_cast<ConstantFP>( 845 CV->getElementAsConstant((unsigned)eltNo)); 846 assert(eltval && "Non-FP arguments in math function!"); 847 bool found = false; 848 for (int i=0; i < sz; ++i) { 849 if (eltval->isExactlyValue(tr[i].input)) { 850 DVal.push_back(tr[i].result); 851 found = true; 852 break; 853 } 854 } 855 if (!found) { 856 // This vector constants not handled yet. 857 return false; 858 } 859 } 860 LLVMContext &context = CI->getParent()->getParent()->getContext(); 861 Constant *nval; 862 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 863 SmallVector<float, 0> FVal; 864 for (unsigned i = 0; i < DVal.size(); ++i) { 865 FVal.push_back((float)DVal[i]); 866 } 867 ArrayRef<float> tmp(FVal); 868 nval = ConstantDataVector::get(context, tmp); 869 } else { // F64 870 ArrayRef<double> tmp(DVal); 871 nval = ConstantDataVector::get(context, tmp); 872 } 873 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 874 replaceCall(CI, nval); 875 return true; 876 } 877 } else { 878 // Scalar version 879 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 880 for (int i = 0; i < sz; ++i) { 881 if (CF->isExactlyValue(tr[i].input)) { 882 Value *nval = ConstantFP::get(CF->getType(), tr[i].result); 883 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 884 replaceCall(CI, nval); 885 return true; 886 } 887 } 888 } 889 } 890 891 return false; 892 } 893 894 namespace llvm { 895 static double log2(double V) { 896 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 897 return ::log2(V); 898 #else 899 return log(V) / numbers::ln2; 900 #endif 901 } 902 } 903 904 bool AMDGPULibCalls::fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, 905 const FuncInfo &FInfo) { 906 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 907 FInfo.getId() == AMDGPULibFunc::EI_POWR || 908 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 909 "fold_pow: encounter a wrong function call"); 910 911 Module *M = B.GetInsertBlock()->getModule(); 912 Type *eltType = FPOp->getType()->getScalarType(); 913 Value *opr0 = FPOp->getOperand(0); 914 Value *opr1 = FPOp->getOperand(1); 915 916 const APFloat *CF = nullptr; 917 const APInt *CINT = nullptr; 918 if (!match(opr1, m_APFloatAllowPoison(CF))) 919 match(opr1, m_APIntAllowPoison(CINT)); 920 921 // 0x1111111 means that we don't do anything for this call. 922 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 923 924 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0)) { 925 // pow/powr/pown(x, 0) == 1 926 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1\n"); 927 Constant *cnval = ConstantFP::get(eltType, 1.0); 928 if (getVecSize(FInfo) > 1) { 929 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 930 } 931 replaceCall(FPOp, cnval); 932 return true; 933 } 934 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 935 // pow/powr/pown(x, 1.0) = x 936 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << "\n"); 937 replaceCall(FPOp, opr0); 938 return true; 939 } 940 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 941 // pow/powr/pown(x, 2.0) = x*x 942 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << " * " 943 << *opr0 << "\n"); 944 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 945 replaceCall(FPOp, nval); 946 return true; 947 } 948 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 949 // pow/powr/pown(x, -1.0) = 1.0/x 950 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1 / " << *opr0 << "\n"); 951 Constant *cnval = ConstantFP::get(eltType, 1.0); 952 if (getVecSize(FInfo) > 1) { 953 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 954 } 955 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 956 replaceCall(FPOp, nval); 957 return true; 958 } 959 960 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 961 // pow[r](x, [-]0.5) = sqrt(x) 962 bool issqrt = CF->isExactlyValue(0.5); 963 if (FunctionCallee FPExpr = 964 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 965 : AMDGPULibFunc::EI_RSQRT, 966 FInfo))) { 967 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << FInfo.getName() 968 << '(' << *opr0 << ")\n"); 969 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 970 : "__pow2rsqrt"); 971 replaceCall(FPOp, nval); 972 return true; 973 } 974 } 975 976 if (!isUnsafeFiniteOnlyMath(FPOp)) 977 return false; 978 979 // Unsafe Math optimization 980 981 // Remember that ci_opr1 is set if opr1 is integral 982 if (CF) { 983 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 984 ? (double)CF->convertToFloat() 985 : CF->convertToDouble(); 986 int ival = (int)dval; 987 if ((double)ival == dval) { 988 ci_opr1 = ival; 989 } else 990 ci_opr1 = 0x11111111; 991 } 992 993 // pow/powr/pown(x, c) = [1/](x*x*..x); where 994 // trunc(c) == c && the number of x == c && |c| <= 12 995 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 996 if (abs_opr1 <= 12) { 997 Constant *cnval; 998 Value *nval; 999 if (abs_opr1 == 0) { 1000 cnval = ConstantFP::get(eltType, 1.0); 1001 if (getVecSize(FInfo) > 1) { 1002 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 1003 } 1004 nval = cnval; 1005 } else { 1006 Value *valx2 = nullptr; 1007 nval = nullptr; 1008 while (abs_opr1 > 0) { 1009 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 1010 if (abs_opr1 & 1) { 1011 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 1012 } 1013 abs_opr1 >>= 1; 1014 } 1015 } 1016 1017 if (ci_opr1 < 0) { 1018 cnval = ConstantFP::get(eltType, 1.0); 1019 if (getVecSize(FInfo) > 1) { 1020 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 1021 } 1022 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 1023 } 1024 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " 1025 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 1026 << ")\n"); 1027 replaceCall(FPOp, nval); 1028 return true; 1029 } 1030 1031 // If we should use the generic intrinsic instead of emitting a libcall 1032 const bool ShouldUseIntrinsic = eltType->isFloatTy() || eltType->isHalfTy(); 1033 1034 // powr ---> exp2(y * log2(x)) 1035 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 1036 FunctionCallee ExpExpr; 1037 if (ShouldUseIntrinsic) 1038 ExpExpr = Intrinsic::getDeclaration(M, Intrinsic::exp2, {FPOp->getType()}); 1039 else { 1040 ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 1041 if (!ExpExpr) 1042 return false; 1043 } 1044 1045 bool needlog = false; 1046 bool needabs = false; 1047 bool needcopysign = false; 1048 Constant *cnval = nullptr; 1049 if (getVecSize(FInfo) == 1) { 1050 CF = nullptr; 1051 match(opr0, m_APFloatAllowPoison(CF)); 1052 1053 if (CF) { 1054 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1055 ? (double)CF->convertToFloat() 1056 : CF->convertToDouble(); 1057 1058 V = log2(std::abs(V)); 1059 cnval = ConstantFP::get(eltType, V); 1060 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 1061 CF->isNegative(); 1062 } else { 1063 needlog = true; 1064 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1065 } 1066 } else { 1067 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1068 1069 if (!CDV) { 1070 needlog = true; 1071 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1072 } else { 1073 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1074 "Wrong vector size detected"); 1075 1076 SmallVector<double, 0> DVal; 1077 for (int i=0; i < getVecSize(FInfo); ++i) { 1078 double V = CDV->getElementAsAPFloat(i).convertToDouble(); 1079 if (V < 0.0) needcopysign = true; 1080 V = log2(std::abs(V)); 1081 DVal.push_back(V); 1082 } 1083 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1084 SmallVector<float, 0> FVal; 1085 for (unsigned i=0; i < DVal.size(); ++i) { 1086 FVal.push_back((float)DVal[i]); 1087 } 1088 ArrayRef<float> tmp(FVal); 1089 cnval = ConstantDataVector::get(M->getContext(), tmp); 1090 } else { 1091 ArrayRef<double> tmp(DVal); 1092 cnval = ConstantDataVector::get(M->getContext(), tmp); 1093 } 1094 } 1095 } 1096 1097 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1098 // We cannot handle corner cases for a general pow() function, give up 1099 // unless y is a constant integral value. Then proceed as if it were pown. 1100 if (!isKnownIntegral(opr1, M->getDataLayout(), FPOp->getFastMathFlags())) 1101 return false; 1102 } 1103 1104 Value *nval; 1105 if (needabs) { 1106 nval = B.CreateUnaryIntrinsic(Intrinsic::fabs, opr0, nullptr, "__fabs"); 1107 } else { 1108 nval = cnval ? cnval : opr0; 1109 } 1110 if (needlog) { 1111 FunctionCallee LogExpr; 1112 if (ShouldUseIntrinsic) { 1113 LogExpr = 1114 Intrinsic::getDeclaration(M, Intrinsic::log2, {FPOp->getType()}); 1115 } else { 1116 LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1117 if (!LogExpr) 1118 return false; 1119 } 1120 1121 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1122 } 1123 1124 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1125 // convert int(32) to fp(f32 or f64) 1126 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1127 } 1128 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1129 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1130 1131 if (needcopysign) { 1132 Type* nTyS = B.getIntNTy(eltType->getPrimitiveSizeInBits()); 1133 Type *nTy = FPOp->getType()->getWithNewType(nTyS); 1134 Value *opr_n = FPOp->getOperand(1); 1135 if (opr_n->getType()->getScalarType()->isIntegerTy()) 1136 opr_n = B.CreateZExtOrTrunc(opr_n, nTy, "__ytou"); 1137 else 1138 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1139 1140 unsigned size = nTy->getScalarSizeInBits(); 1141 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1142 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1143 1144 nval = B.CreateCopySign(nval, B.CreateBitCast(sign, nval->getType()), 1145 nullptr, "__pow_sign"); 1146 } 1147 1148 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " 1149 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1150 replaceCall(FPOp, nval); 1151 1152 return true; 1153 } 1154 1155 bool AMDGPULibCalls::fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, 1156 const FuncInfo &FInfo) { 1157 Value *opr0 = FPOp->getOperand(0); 1158 Value *opr1 = FPOp->getOperand(1); 1159 1160 const APInt *CINT = nullptr; 1161 if (!match(opr1, m_APIntAllowPoison(CINT))) 1162 return false; 1163 1164 Function *Parent = B.GetInsertBlock()->getParent(); 1165 1166 int ci_opr1 = (int)CINT->getSExtValue(); 1167 if (ci_opr1 == 1 && !Parent->hasFnAttribute(Attribute::StrictFP)) { 1168 // rootn(x, 1) = x 1169 // 1170 // TODO: Insert constrained canonicalize for strictfp case. 1171 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << '\n'); 1172 replaceCall(FPOp, opr0); 1173 return true; 1174 } 1175 1176 Module *M = B.GetInsertBlock()->getModule(); 1177 1178 CallInst *CI = cast<CallInst>(FPOp); 1179 if (ci_opr1 == 2 && 1180 shouldReplaceLibcallWithIntrinsic(CI, 1181 /*AllowMinSizeF32=*/true, 1182 /*AllowF64=*/true)) { 1183 // rootn(x, 2) = sqrt(x) 1184 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> sqrt(" << *opr0 << ")\n"); 1185 1186 CallInst *NewCall = B.CreateUnaryIntrinsic(Intrinsic::sqrt, opr0, CI); 1187 NewCall->takeName(CI); 1188 1189 // OpenCL rootn has a looser ulp of 2 requirement than sqrt, so add some 1190 // metadata. 1191 MDBuilder MDHelper(M->getContext()); 1192 MDNode *FPMD = MDHelper.createFPMath(std::max(FPOp->getFPAccuracy(), 2.0f)); 1193 NewCall->setMetadata(LLVMContext::MD_fpmath, FPMD); 1194 1195 replaceCall(CI, NewCall); 1196 return true; 1197 } 1198 1199 if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1200 if (FunctionCallee FPExpr = 1201 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1202 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> cbrt(" << *opr0 1203 << ")\n"); 1204 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1205 replaceCall(FPOp, nval); 1206 return true; 1207 } 1208 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1209 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1.0 / " << *opr0 << "\n"); 1210 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1211 opr0, 1212 "__rootn2div"); 1213 replaceCall(FPOp, nval); 1214 return true; 1215 } 1216 1217 if (ci_opr1 == -2 && 1218 shouldReplaceLibcallWithIntrinsic(CI, 1219 /*AllowMinSizeF32=*/true, 1220 /*AllowF64=*/true)) { 1221 // rootn(x, -2) = rsqrt(x) 1222 1223 // The original rootn had looser ulp requirements than the resultant sqrt 1224 // and fdiv. 1225 MDBuilder MDHelper(M->getContext()); 1226 MDNode *FPMD = MDHelper.createFPMath(std::max(FPOp->getFPAccuracy(), 2.0f)); 1227 1228 // TODO: Could handle strictfp but need to fix strict sqrt emission 1229 FastMathFlags FMF = FPOp->getFastMathFlags(); 1230 FMF.setAllowContract(true); 1231 1232 CallInst *Sqrt = B.CreateUnaryIntrinsic(Intrinsic::sqrt, opr0, CI); 1233 Instruction *RSqrt = cast<Instruction>( 1234 B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), Sqrt)); 1235 Sqrt->setFastMathFlags(FMF); 1236 RSqrt->setFastMathFlags(FMF); 1237 RSqrt->setMetadata(LLVMContext::MD_fpmath, FPMD); 1238 1239 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> rsqrt(" << *opr0 1240 << ")\n"); 1241 replaceCall(CI, RSqrt); 1242 return true; 1243 } 1244 1245 return false; 1246 } 1247 1248 // Get a scalar native builtin single argument FP function 1249 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1250 const FuncInfo &FInfo) { 1251 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1252 return nullptr; 1253 FuncInfo nf = FInfo; 1254 nf.setPrefix(AMDGPULibFunc::NATIVE); 1255 return getFunction(M, nf); 1256 } 1257 1258 // Some library calls are just wrappers around llvm intrinsics, but compiled 1259 // conservatively. Preserve the flags from the original call site by 1260 // substituting them with direct calls with all the flags. 1261 bool AMDGPULibCalls::shouldReplaceLibcallWithIntrinsic(const CallInst *CI, 1262 bool AllowMinSizeF32, 1263 bool AllowF64, 1264 bool AllowStrictFP) { 1265 Type *FltTy = CI->getType()->getScalarType(); 1266 const bool IsF32 = FltTy->isFloatTy(); 1267 1268 // f64 intrinsics aren't implemented for most operations. 1269 if (!IsF32 && !FltTy->isHalfTy() && (!AllowF64 || !FltTy->isDoubleTy())) 1270 return false; 1271 1272 // We're implicitly inlining by replacing the libcall with the intrinsic, so 1273 // don't do it for noinline call sites. 1274 if (CI->isNoInline()) 1275 return false; 1276 1277 const Function *ParentF = CI->getFunction(); 1278 // TODO: Handle strictfp 1279 if (!AllowStrictFP && ParentF->hasFnAttribute(Attribute::StrictFP)) 1280 return false; 1281 1282 if (IsF32 && !AllowMinSizeF32 && ParentF->hasMinSize()) 1283 return false; 1284 return true; 1285 } 1286 1287 void AMDGPULibCalls::replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, 1288 CallInst *CI, 1289 Intrinsic::ID IntrID) { 1290 if (CI->arg_size() == 2) { 1291 Value *Arg0 = CI->getArgOperand(0); 1292 Value *Arg1 = CI->getArgOperand(1); 1293 VectorType *Arg0VecTy = dyn_cast<VectorType>(Arg0->getType()); 1294 VectorType *Arg1VecTy = dyn_cast<VectorType>(Arg1->getType()); 1295 if (Arg0VecTy && !Arg1VecTy) { 1296 Value *SplatRHS = B.CreateVectorSplat(Arg0VecTy->getElementCount(), Arg1); 1297 CI->setArgOperand(1, SplatRHS); 1298 } else if (!Arg0VecTy && Arg1VecTy) { 1299 Value *SplatLHS = B.CreateVectorSplat(Arg1VecTy->getElementCount(), Arg0); 1300 CI->setArgOperand(0, SplatLHS); 1301 } 1302 } 1303 1304 CI->setCalledFunction( 1305 Intrinsic::getDeclaration(CI->getModule(), IntrID, {CI->getType()})); 1306 } 1307 1308 bool AMDGPULibCalls::tryReplaceLibcallWithSimpleIntrinsic( 1309 IRBuilder<> &B, CallInst *CI, Intrinsic::ID IntrID, bool AllowMinSizeF32, 1310 bool AllowF64, bool AllowStrictFP) { 1311 if (!shouldReplaceLibcallWithIntrinsic(CI, AllowMinSizeF32, AllowF64, 1312 AllowStrictFP)) 1313 return false; 1314 replaceLibCallWithSimpleIntrinsic(B, CI, IntrID); 1315 return true; 1316 } 1317 1318 std::tuple<Value *, Value *, Value *> 1319 AMDGPULibCalls::insertSinCos(Value *Arg, FastMathFlags FMF, IRBuilder<> &B, 1320 FunctionCallee Fsincos) { 1321 DebugLoc DL = B.getCurrentDebugLocation(); 1322 Function *F = B.GetInsertBlock()->getParent(); 1323 B.SetInsertPointPastAllocas(F); 1324 1325 AllocaInst *Alloc = B.CreateAlloca(Arg->getType(), nullptr, "__sincos_"); 1326 1327 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1328 // If the argument is an instruction, it must dominate all uses so put our 1329 // sincos call there. Otherwise, right after the allocas works well enough 1330 // if it's an argument or constant. 1331 1332 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1333 1334 // SetInsertPoint unwelcomely always tries to set the debug loc. 1335 B.SetCurrentDebugLocation(DL); 1336 } 1337 1338 Type *CosPtrTy = Fsincos.getFunctionType()->getParamType(1); 1339 1340 // The allocaInst allocates the memory in private address space. This need 1341 // to be addrspacecasted to point to the address space of cos pointer type. 1342 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1343 Value *CastAlloc = B.CreateAddrSpaceCast(Alloc, CosPtrTy); 1344 1345 CallInst *SinCos = CreateCallEx2(B, Fsincos, Arg, CastAlloc); 1346 1347 // TODO: Is it worth trying to preserve the location for the cos calls for the 1348 // load? 1349 1350 LoadInst *LoadCos = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1351 return {SinCos, LoadCos, SinCos}; 1352 } 1353 1354 // fold sin, cos -> sincos. 1355 bool AMDGPULibCalls::fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, 1356 const FuncInfo &fInfo) { 1357 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1358 fInfo.getId() == AMDGPULibFunc::EI_COS); 1359 1360 if ((getArgType(fInfo) != AMDGPULibFunc::F32 && 1361 getArgType(fInfo) != AMDGPULibFunc::F64) || 1362 fInfo.getPrefix() != AMDGPULibFunc::NOPFX) 1363 return false; 1364 1365 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1366 1367 Value *CArgVal = FPOp->getOperand(0); 1368 CallInst *CI = cast<CallInst>(FPOp); 1369 1370 Function *F = B.GetInsertBlock()->getParent(); 1371 Module *M = F->getParent(); 1372 1373 // Merge the sin and cos. For OpenCL 2.0, there may only be a generic pointer 1374 // implementation. Prefer the private form if available. 1375 AMDGPULibFunc SinCosLibFuncPrivate(AMDGPULibFunc::EI_SINCOS, fInfo); 1376 SinCosLibFuncPrivate.getLeads()[0].PtrKind = 1377 AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::PRIVATE_ADDRESS); 1378 1379 AMDGPULibFunc SinCosLibFuncGeneric(AMDGPULibFunc::EI_SINCOS, fInfo); 1380 SinCosLibFuncGeneric.getLeads()[0].PtrKind = 1381 AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1382 1383 FunctionCallee FSinCosPrivate = getFunction(M, SinCosLibFuncPrivate); 1384 FunctionCallee FSinCosGeneric = getFunction(M, SinCosLibFuncGeneric); 1385 FunctionCallee FSinCos = FSinCosPrivate ? FSinCosPrivate : FSinCosGeneric; 1386 if (!FSinCos) 1387 return false; 1388 1389 SmallVector<CallInst *> SinCalls; 1390 SmallVector<CallInst *> CosCalls; 1391 SmallVector<CallInst *> SinCosCalls; 1392 FuncInfo PartnerInfo(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN, 1393 fInfo); 1394 const std::string PairName = PartnerInfo.mangle(); 1395 1396 StringRef SinName = isSin ? CI->getCalledFunction()->getName() : PairName; 1397 StringRef CosName = isSin ? PairName : CI->getCalledFunction()->getName(); 1398 const std::string SinCosPrivateName = SinCosLibFuncPrivate.mangle(); 1399 const std::string SinCosGenericName = SinCosLibFuncGeneric.mangle(); 1400 1401 // Intersect the two sets of flags. 1402 FastMathFlags FMF = FPOp->getFastMathFlags(); 1403 MDNode *FPMath = CI->getMetadata(LLVMContext::MD_fpmath); 1404 1405 SmallVector<DILocation *> MergeDbgLocs = {CI->getDebugLoc()}; 1406 1407 for (User* U : CArgVal->users()) { 1408 CallInst *XI = dyn_cast<CallInst>(U); 1409 if (!XI || XI->getFunction() != F || XI->isNoBuiltin()) 1410 continue; 1411 1412 Function *UCallee = XI->getCalledFunction(); 1413 if (!UCallee) 1414 continue; 1415 1416 bool Handled = true; 1417 1418 if (UCallee->getName() == SinName) 1419 SinCalls.push_back(XI); 1420 else if (UCallee->getName() == CosName) 1421 CosCalls.push_back(XI); 1422 else if (UCallee->getName() == SinCosPrivateName || 1423 UCallee->getName() == SinCosGenericName) 1424 SinCosCalls.push_back(XI); 1425 else 1426 Handled = false; 1427 1428 if (Handled) { 1429 MergeDbgLocs.push_back(XI->getDebugLoc()); 1430 auto *OtherOp = cast<FPMathOperator>(XI); 1431 FMF &= OtherOp->getFastMathFlags(); 1432 FPMath = MDNode::getMostGenericFPMath( 1433 FPMath, XI->getMetadata(LLVMContext::MD_fpmath)); 1434 } 1435 } 1436 1437 if (SinCalls.empty() || CosCalls.empty()) 1438 return false; 1439 1440 B.setFastMathFlags(FMF); 1441 B.setDefaultFPMathTag(FPMath); 1442 DILocation *DbgLoc = DILocation::getMergedLocations(MergeDbgLocs); 1443 B.SetCurrentDebugLocation(DbgLoc); 1444 1445 auto [Sin, Cos, SinCos] = insertSinCos(CArgVal, FMF, B, FSinCos); 1446 1447 auto replaceTrigInsts = [](ArrayRef<CallInst *> Calls, Value *Res) { 1448 for (CallInst *C : Calls) 1449 C->replaceAllUsesWith(Res); 1450 1451 // Leave the other dead instructions to avoid clobbering iterators. 1452 }; 1453 1454 replaceTrigInsts(SinCalls, Sin); 1455 replaceTrigInsts(CosCalls, Cos); 1456 replaceTrigInsts(SinCosCalls, SinCos); 1457 1458 // It's safe to delete the original now. 1459 CI->eraseFromParent(); 1460 return true; 1461 } 1462 1463 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, 1464 double &Res1, Constant *copr0, 1465 Constant *copr1) { 1466 // By default, opr0/opr1/opr3 holds values of float/double type. 1467 // If they are not float/double, each function has to its 1468 // operand separately. 1469 double opr0 = 0.0, opr1 = 0.0; 1470 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1471 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1472 if (fpopr0) { 1473 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1474 ? fpopr0->getValueAPF().convertToDouble() 1475 : (double)fpopr0->getValueAPF().convertToFloat(); 1476 } 1477 1478 if (fpopr1) { 1479 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1480 ? fpopr1->getValueAPF().convertToDouble() 1481 : (double)fpopr1->getValueAPF().convertToFloat(); 1482 } 1483 1484 switch (FInfo.getId()) { 1485 default : return false; 1486 1487 case AMDGPULibFunc::EI_ACOS: 1488 Res0 = acos(opr0); 1489 return true; 1490 1491 case AMDGPULibFunc::EI_ACOSH: 1492 // acosh(x) == log(x + sqrt(x*x - 1)) 1493 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1494 return true; 1495 1496 case AMDGPULibFunc::EI_ACOSPI: 1497 Res0 = acos(opr0) / MATH_PI; 1498 return true; 1499 1500 case AMDGPULibFunc::EI_ASIN: 1501 Res0 = asin(opr0); 1502 return true; 1503 1504 case AMDGPULibFunc::EI_ASINH: 1505 // asinh(x) == log(x + sqrt(x*x + 1)) 1506 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1507 return true; 1508 1509 case AMDGPULibFunc::EI_ASINPI: 1510 Res0 = asin(opr0) / MATH_PI; 1511 return true; 1512 1513 case AMDGPULibFunc::EI_ATAN: 1514 Res0 = atan(opr0); 1515 return true; 1516 1517 case AMDGPULibFunc::EI_ATANH: 1518 // atanh(x) == (log(x+1) - log(x-1))/2; 1519 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1520 return true; 1521 1522 case AMDGPULibFunc::EI_ATANPI: 1523 Res0 = atan(opr0) / MATH_PI; 1524 return true; 1525 1526 case AMDGPULibFunc::EI_CBRT: 1527 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1528 return true; 1529 1530 case AMDGPULibFunc::EI_COS: 1531 Res0 = cos(opr0); 1532 return true; 1533 1534 case AMDGPULibFunc::EI_COSH: 1535 Res0 = cosh(opr0); 1536 return true; 1537 1538 case AMDGPULibFunc::EI_COSPI: 1539 Res0 = cos(MATH_PI * opr0); 1540 return true; 1541 1542 case AMDGPULibFunc::EI_EXP: 1543 Res0 = exp(opr0); 1544 return true; 1545 1546 case AMDGPULibFunc::EI_EXP2: 1547 Res0 = pow(2.0, opr0); 1548 return true; 1549 1550 case AMDGPULibFunc::EI_EXP10: 1551 Res0 = pow(10.0, opr0); 1552 return true; 1553 1554 case AMDGPULibFunc::EI_LOG: 1555 Res0 = log(opr0); 1556 return true; 1557 1558 case AMDGPULibFunc::EI_LOG2: 1559 Res0 = log(opr0) / log(2.0); 1560 return true; 1561 1562 case AMDGPULibFunc::EI_LOG10: 1563 Res0 = log(opr0) / log(10.0); 1564 return true; 1565 1566 case AMDGPULibFunc::EI_RSQRT: 1567 Res0 = 1.0 / sqrt(opr0); 1568 return true; 1569 1570 case AMDGPULibFunc::EI_SIN: 1571 Res0 = sin(opr0); 1572 return true; 1573 1574 case AMDGPULibFunc::EI_SINH: 1575 Res0 = sinh(opr0); 1576 return true; 1577 1578 case AMDGPULibFunc::EI_SINPI: 1579 Res0 = sin(MATH_PI * opr0); 1580 return true; 1581 1582 case AMDGPULibFunc::EI_TAN: 1583 Res0 = tan(opr0); 1584 return true; 1585 1586 case AMDGPULibFunc::EI_TANH: 1587 Res0 = tanh(opr0); 1588 return true; 1589 1590 case AMDGPULibFunc::EI_TANPI: 1591 Res0 = tan(MATH_PI * opr0); 1592 return true; 1593 1594 // two-arg functions 1595 case AMDGPULibFunc::EI_POW: 1596 case AMDGPULibFunc::EI_POWR: 1597 Res0 = pow(opr0, opr1); 1598 return true; 1599 1600 case AMDGPULibFunc::EI_POWN: { 1601 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1602 double val = (double)iopr1->getSExtValue(); 1603 Res0 = pow(opr0, val); 1604 return true; 1605 } 1606 return false; 1607 } 1608 1609 case AMDGPULibFunc::EI_ROOTN: { 1610 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1611 double val = (double)iopr1->getSExtValue(); 1612 Res0 = pow(opr0, 1.0 / val); 1613 return true; 1614 } 1615 return false; 1616 } 1617 1618 // with ptr arg 1619 case AMDGPULibFunc::EI_SINCOS: 1620 Res0 = sin(opr0); 1621 Res1 = cos(opr0); 1622 return true; 1623 } 1624 1625 return false; 1626 } 1627 1628 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) { 1629 int numArgs = (int)aCI->arg_size(); 1630 if (numArgs > 3) 1631 return false; 1632 1633 Constant *copr0 = nullptr; 1634 Constant *copr1 = nullptr; 1635 if (numArgs > 0) { 1636 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1637 return false; 1638 } 1639 1640 if (numArgs > 1) { 1641 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1642 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1643 return false; 1644 } 1645 } 1646 1647 // At this point, all arguments to aCI are constants. 1648 1649 // max vector size is 16, and sincos will generate two results. 1650 double DVal0[16], DVal1[16]; 1651 int FuncVecSize = getVecSize(FInfo); 1652 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1653 if (FuncVecSize == 1) { 1654 if (!evaluateScalarMathFunc(FInfo, DVal0[0], DVal1[0], copr0, copr1)) { 1655 return false; 1656 } 1657 } else { 1658 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1659 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1660 for (int i = 0; i < FuncVecSize; ++i) { 1661 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1662 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1663 if (!evaluateScalarMathFunc(FInfo, DVal0[i], DVal1[i], celt0, celt1)) { 1664 return false; 1665 } 1666 } 1667 } 1668 1669 LLVMContext &context = aCI->getContext(); 1670 Constant *nval0, *nval1; 1671 if (FuncVecSize == 1) { 1672 nval0 = ConstantFP::get(aCI->getType(), DVal0[0]); 1673 if (hasTwoResults) 1674 nval1 = ConstantFP::get(aCI->getType(), DVal1[0]); 1675 } else { 1676 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1677 SmallVector <float, 0> FVal0, FVal1; 1678 for (int i = 0; i < FuncVecSize; ++i) 1679 FVal0.push_back((float)DVal0[i]); 1680 ArrayRef<float> tmp0(FVal0); 1681 nval0 = ConstantDataVector::get(context, tmp0); 1682 if (hasTwoResults) { 1683 for (int i = 0; i < FuncVecSize; ++i) 1684 FVal1.push_back((float)DVal1[i]); 1685 ArrayRef<float> tmp1(FVal1); 1686 nval1 = ConstantDataVector::get(context, tmp1); 1687 } 1688 } else { 1689 ArrayRef<double> tmp0(DVal0); 1690 nval0 = ConstantDataVector::get(context, tmp0); 1691 if (hasTwoResults) { 1692 ArrayRef<double> tmp1(DVal1); 1693 nval1 = ConstantDataVector::get(context, tmp1); 1694 } 1695 } 1696 } 1697 1698 if (hasTwoResults) { 1699 // sincos 1700 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1701 "math function with ptr arg not supported yet"); 1702 new StoreInst(nval1, aCI->getArgOperand(1), aCI->getIterator()); 1703 } 1704 1705 replaceCall(aCI, nval0); 1706 return true; 1707 } 1708 1709 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F, 1710 FunctionAnalysisManager &AM) { 1711 AMDGPULibCalls Simplifier; 1712 Simplifier.initNativeFuncs(); 1713 Simplifier.initFunction(F, AM); 1714 1715 bool Changed = false; 1716 1717 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1718 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1719 1720 for (auto &BB : F) { 1721 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1722 // Ignore non-calls. 1723 CallInst *CI = dyn_cast<CallInst>(I); 1724 ++I; 1725 1726 if (CI) { 1727 if (Simplifier.fold(CI)) 1728 Changed = true; 1729 } 1730 } 1731 } 1732 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1733 } 1734 1735 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F, 1736 FunctionAnalysisManager &AM) { 1737 if (UseNative.empty()) 1738 return PreservedAnalyses::all(); 1739 1740 AMDGPULibCalls Simplifier; 1741 Simplifier.initNativeFuncs(); 1742 Simplifier.initFunction(F, AM); 1743 1744 bool Changed = false; 1745 for (auto &BB : F) { 1746 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1747 // Ignore non-calls. 1748 CallInst *CI = dyn_cast<CallInst>(I); 1749 ++I; 1750 if (CI && Simplifier.useNative(CI)) 1751 Changed = true; 1752 } 1753 } 1754 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1755 } 1756