1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPULibFunc.h" 16 #include "GCNSubtarget.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/IntrinsicsAMDGPU.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Target/TargetMachine.h" 23 24 #define DEBUG_TYPE "amdgpu-simplifylib" 25 26 using namespace llvm; 27 28 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 29 cl::desc("Enable pre-link mode optimizations"), 30 cl::init(false), 31 cl::Hidden); 32 33 static cl::list<std::string> UseNative("amdgpu-use-native", 34 cl::desc("Comma separated list of functions to replace with native, or all"), 35 cl::CommaSeparated, cl::ValueOptional, 36 cl::Hidden); 37 38 #define MATH_PI numbers::pi 39 #define MATH_E numbers::e 40 #define MATH_SQRT2 numbers::sqrt2 41 #define MATH_SQRT1_2 numbers::inv_sqrt2 42 43 namespace llvm { 44 45 class AMDGPULibCalls { 46 private: 47 48 typedef llvm::AMDGPULibFunc FuncInfo; 49 50 const TargetMachine *TM; 51 52 // -fuse-native. 53 bool AllNative = false; 54 55 bool useNativeFunc(const StringRef F) const; 56 57 // Return a pointer (pointer expr) to the function if function definition with 58 // "FuncName" exists. It may create a new function prototype in pre-link mode. 59 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 60 61 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo); 62 63 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 64 65 /* Specialized optimizations */ 66 67 // recip (half or native) 68 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 69 70 // divide (half or native) 71 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 72 73 // pow/powr/pown 74 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 75 76 // rootn 77 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 78 79 // fma/mad 80 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 81 82 // -fuse-native for sincos 83 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 84 85 // evaluate calls if calls' arguments are constants. 86 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double& Res0, 87 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); 88 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo); 89 90 // sqrt 91 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 92 93 // sin/cos 94 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); 95 96 // __read_pipe/__write_pipe 97 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 98 const FuncInfo &FInfo); 99 100 // llvm.amdgcn.wavefrontsize 101 bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B); 102 103 // Get insertion point at entry. 104 BasicBlock::iterator getEntryIns(CallInst * UI); 105 // Insert an Alloc instruction. 106 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); 107 // Get a scalar native builtin single argument FP function 108 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 109 110 protected: 111 CallInst *CI; 112 113 bool isUnsafeMath(const CallInst *CI) const; 114 115 void replaceCall(Value *With) { 116 CI->replaceAllUsesWith(With); 117 CI->eraseFromParent(); 118 } 119 120 public: 121 AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {} 122 123 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); 124 125 void initNativeFuncs(); 126 127 // Replace a normal math function call with that native version 128 bool useNative(CallInst *CI); 129 }; 130 131 } // end llvm namespace 132 133 namespace { 134 135 class AMDGPUSimplifyLibCalls : public FunctionPass { 136 137 AMDGPULibCalls Simplifier; 138 139 public: 140 static char ID; // Pass identification 141 142 AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr) 143 : FunctionPass(ID), Simplifier(TM) { 144 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 145 } 146 147 void getAnalysisUsage(AnalysisUsage &AU) const override { 148 AU.addRequired<AAResultsWrapperPass>(); 149 } 150 151 bool runOnFunction(Function &M) override; 152 }; 153 154 class AMDGPUUseNativeCalls : public FunctionPass { 155 156 AMDGPULibCalls Simplifier; 157 158 public: 159 static char ID; // Pass identification 160 161 AMDGPUUseNativeCalls() : FunctionPass(ID) { 162 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); 163 Simplifier.initNativeFuncs(); 164 } 165 166 bool runOnFunction(Function &F) override; 167 }; 168 169 } // end anonymous namespace. 170 171 char AMDGPUSimplifyLibCalls::ID = 0; 172 char AMDGPUUseNativeCalls::ID = 0; 173 174 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 175 "Simplify well-known AMD library calls", false, false) 176 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 177 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 178 "Simplify well-known AMD library calls", false, false) 179 180 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", 181 "Replace builtin math calls with that native versions.", 182 false, false) 183 184 template <typename IRB> 185 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 186 const Twine &Name = "") { 187 CallInst *R = B.CreateCall(Callee, Arg, Name); 188 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 189 R->setCallingConv(F->getCallingConv()); 190 return R; 191 } 192 193 template <typename IRB> 194 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 195 Value *Arg2, const Twine &Name = "") { 196 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 197 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 198 R->setCallingConv(F->getCallingConv()); 199 return R; 200 } 201 202 // Data structures for table-driven optimizations. 203 // FuncTbl works for both f32 and f64 functions with 1 input argument 204 205 struct TableEntry { 206 double result; 207 double input; 208 }; 209 210 /* a list of {result, input} */ 211 static const TableEntry tbl_acos[] = { 212 {MATH_PI / 2.0, 0.0}, 213 {MATH_PI / 2.0, -0.0}, 214 {0.0, 1.0}, 215 {MATH_PI, -1.0} 216 }; 217 static const TableEntry tbl_acosh[] = { 218 {0.0, 1.0} 219 }; 220 static const TableEntry tbl_acospi[] = { 221 {0.5, 0.0}, 222 {0.5, -0.0}, 223 {0.0, 1.0}, 224 {1.0, -1.0} 225 }; 226 static const TableEntry tbl_asin[] = { 227 {0.0, 0.0}, 228 {-0.0, -0.0}, 229 {MATH_PI / 2.0, 1.0}, 230 {-MATH_PI / 2.0, -1.0} 231 }; 232 static const TableEntry tbl_asinh[] = { 233 {0.0, 0.0}, 234 {-0.0, -0.0} 235 }; 236 static const TableEntry tbl_asinpi[] = { 237 {0.0, 0.0}, 238 {-0.0, -0.0}, 239 {0.5, 1.0}, 240 {-0.5, -1.0} 241 }; 242 static const TableEntry tbl_atan[] = { 243 {0.0, 0.0}, 244 {-0.0, -0.0}, 245 {MATH_PI / 4.0, 1.0}, 246 {-MATH_PI / 4.0, -1.0} 247 }; 248 static const TableEntry tbl_atanh[] = { 249 {0.0, 0.0}, 250 {-0.0, -0.0} 251 }; 252 static const TableEntry tbl_atanpi[] = { 253 {0.0, 0.0}, 254 {-0.0, -0.0}, 255 {0.25, 1.0}, 256 {-0.25, -1.0} 257 }; 258 static const TableEntry tbl_cbrt[] = { 259 {0.0, 0.0}, 260 {-0.0, -0.0}, 261 {1.0, 1.0}, 262 {-1.0, -1.0}, 263 }; 264 static const TableEntry tbl_cos[] = { 265 {1.0, 0.0}, 266 {1.0, -0.0} 267 }; 268 static const TableEntry tbl_cosh[] = { 269 {1.0, 0.0}, 270 {1.0, -0.0} 271 }; 272 static const TableEntry tbl_cospi[] = { 273 {1.0, 0.0}, 274 {1.0, -0.0} 275 }; 276 static const TableEntry tbl_erfc[] = { 277 {1.0, 0.0}, 278 {1.0, -0.0} 279 }; 280 static const TableEntry tbl_erf[] = { 281 {0.0, 0.0}, 282 {-0.0, -0.0} 283 }; 284 static const TableEntry tbl_exp[] = { 285 {1.0, 0.0}, 286 {1.0, -0.0}, 287 {MATH_E, 1.0} 288 }; 289 static const TableEntry tbl_exp2[] = { 290 {1.0, 0.0}, 291 {1.0, -0.0}, 292 {2.0, 1.0} 293 }; 294 static const TableEntry tbl_exp10[] = { 295 {1.0, 0.0}, 296 {1.0, -0.0}, 297 {10.0, 1.0} 298 }; 299 static const TableEntry tbl_expm1[] = { 300 {0.0, 0.0}, 301 {-0.0, -0.0} 302 }; 303 static const TableEntry tbl_log[] = { 304 {0.0, 1.0}, 305 {1.0, MATH_E} 306 }; 307 static const TableEntry tbl_log2[] = { 308 {0.0, 1.0}, 309 {1.0, 2.0} 310 }; 311 static const TableEntry tbl_log10[] = { 312 {0.0, 1.0}, 313 {1.0, 10.0} 314 }; 315 static const TableEntry tbl_rsqrt[] = { 316 {1.0, 1.0}, 317 {MATH_SQRT1_2, 2.0} 318 }; 319 static const TableEntry tbl_sin[] = { 320 {0.0, 0.0}, 321 {-0.0, -0.0} 322 }; 323 static const TableEntry tbl_sinh[] = { 324 {0.0, 0.0}, 325 {-0.0, -0.0} 326 }; 327 static const TableEntry tbl_sinpi[] = { 328 {0.0, 0.0}, 329 {-0.0, -0.0} 330 }; 331 static const TableEntry tbl_sqrt[] = { 332 {0.0, 0.0}, 333 {1.0, 1.0}, 334 {MATH_SQRT2, 2.0} 335 }; 336 static const TableEntry tbl_tan[] = { 337 {0.0, 0.0}, 338 {-0.0, -0.0} 339 }; 340 static const TableEntry tbl_tanh[] = { 341 {0.0, 0.0}, 342 {-0.0, -0.0} 343 }; 344 static const TableEntry tbl_tanpi[] = { 345 {0.0, 0.0}, 346 {-0.0, -0.0} 347 }; 348 static const TableEntry tbl_tgamma[] = { 349 {1.0, 1.0}, 350 {1.0, 2.0}, 351 {2.0, 3.0}, 352 {6.0, 4.0} 353 }; 354 355 static bool HasNative(AMDGPULibFunc::EFuncId id) { 356 switch(id) { 357 case AMDGPULibFunc::EI_DIVIDE: 358 case AMDGPULibFunc::EI_COS: 359 case AMDGPULibFunc::EI_EXP: 360 case AMDGPULibFunc::EI_EXP2: 361 case AMDGPULibFunc::EI_EXP10: 362 case AMDGPULibFunc::EI_LOG: 363 case AMDGPULibFunc::EI_LOG2: 364 case AMDGPULibFunc::EI_LOG10: 365 case AMDGPULibFunc::EI_POWR: 366 case AMDGPULibFunc::EI_RECIP: 367 case AMDGPULibFunc::EI_RSQRT: 368 case AMDGPULibFunc::EI_SIN: 369 case AMDGPULibFunc::EI_SINCOS: 370 case AMDGPULibFunc::EI_SQRT: 371 case AMDGPULibFunc::EI_TAN: 372 return true; 373 default:; 374 } 375 return false; 376 } 377 378 struct TableRef { 379 size_t size; 380 const TableEntry *table; // variable size: from 0 to (size - 1) 381 382 TableRef() : size(0), table(nullptr) {} 383 384 template <size_t N> 385 TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} 386 }; 387 388 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 389 switch(id) { 390 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 391 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 392 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 393 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 394 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 395 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 396 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 397 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 398 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 399 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 400 case AMDGPULibFunc::EI_NCOS: 401 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 402 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 403 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 404 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 405 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 406 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 407 case AMDGPULibFunc::EI_NEXP2: 408 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 409 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 410 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 411 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 412 case AMDGPULibFunc::EI_NLOG2: 413 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 414 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 415 case AMDGPULibFunc::EI_NRSQRT: 416 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 417 case AMDGPULibFunc::EI_NSIN: 418 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 419 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 420 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 421 case AMDGPULibFunc::EI_NSQRT: 422 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 423 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 424 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 425 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 426 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 427 default:; 428 } 429 return TableRef(); 430 } 431 432 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 433 return FInfo.getLeads()[0].VectorSize; 434 } 435 436 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 437 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 438 } 439 440 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 441 // If we are doing PreLinkOpt, the function is external. So it is safe to 442 // use getOrInsertFunction() at this stage. 443 444 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 445 : AMDGPULibFunc::getFunction(M, fInfo); 446 } 447 448 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName, 449 FuncInfo &FInfo) { 450 return AMDGPULibFunc::parse(FMangledName, FInfo); 451 } 452 453 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { 454 if (auto Op = dyn_cast<FPMathOperator>(CI)) 455 if (Op->isFast()) 456 return true; 457 const Function *F = CI->getParent()->getParent(); 458 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 459 return Attr.getValueAsBool(); 460 } 461 462 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 463 return AllNative || llvm::is_contained(UseNative, F); 464 } 465 466 void AMDGPULibCalls::initNativeFuncs() { 467 AllNative = useNativeFunc("all") || 468 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 469 UseNative.begin()->empty()); 470 } 471 472 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 473 bool native_sin = useNativeFunc("sin"); 474 bool native_cos = useNativeFunc("cos"); 475 476 if (native_sin && native_cos) { 477 Module *M = aCI->getModule(); 478 Value *opr0 = aCI->getArgOperand(0); 479 480 AMDGPULibFunc nf; 481 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 482 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 483 484 nf.setPrefix(AMDGPULibFunc::NATIVE); 485 nf.setId(AMDGPULibFunc::EI_SIN); 486 FunctionCallee sinExpr = getFunction(M, nf); 487 488 nf.setPrefix(AMDGPULibFunc::NATIVE); 489 nf.setId(AMDGPULibFunc::EI_COS); 490 FunctionCallee cosExpr = getFunction(M, nf); 491 if (sinExpr && cosExpr) { 492 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 493 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 494 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 495 496 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 497 << " with native version of sin/cos"); 498 499 replaceCall(sinval); 500 return true; 501 } 502 } 503 return false; 504 } 505 506 bool AMDGPULibCalls::useNative(CallInst *aCI) { 507 CI = aCI; 508 Function *Callee = aCI->getCalledFunction(); 509 510 FuncInfo FInfo; 511 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() || 512 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 513 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 514 !(AllNative || useNativeFunc(FInfo.getName()))) { 515 return false; 516 } 517 518 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 519 return sincosUseNative(aCI, FInfo); 520 521 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 522 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 523 if (!F) 524 return false; 525 526 aCI->setCalledFunction(F); 527 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 528 << " with native version"); 529 return true; 530 } 531 532 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 533 // builtin, with appended type size and alignment arguments, where 2 or 4 534 // indicates the original number of arguments. The library has optimized version 535 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 536 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 537 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 538 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 539 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 540 const FuncInfo &FInfo) { 541 auto *Callee = CI->getCalledFunction(); 542 if (!Callee->isDeclaration()) 543 return false; 544 545 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 546 auto *M = Callee->getParent(); 547 auto &Ctx = M->getContext(); 548 std::string Name = std::string(Callee->getName()); 549 auto NumArg = CI->arg_size(); 550 if (NumArg != 4 && NumArg != 6) 551 return false; 552 auto *PacketSize = CI->getArgOperand(NumArg - 2); 553 auto *PacketAlign = CI->getArgOperand(NumArg - 1); 554 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) 555 return false; 556 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); 557 Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue(); 558 if (Alignment != Size) 559 return false; 560 561 Type *PtrElemTy; 562 if (Size <= 8) 563 PtrElemTy = Type::getIntNTy(Ctx, Size * 8); 564 else 565 PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8); 566 unsigned PtrArgLoc = CI->arg_size() - 3; 567 auto PtrArg = CI->getArgOperand(PtrArgLoc); 568 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); 569 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); 570 571 SmallVector<llvm::Type *, 6> ArgTys; 572 for (unsigned I = 0; I != PtrArgLoc; ++I) 573 ArgTys.push_back(CI->getArgOperand(I)->getType()); 574 ArgTys.push_back(PtrTy); 575 576 Name = Name + "_" + std::to_string(Size); 577 auto *FTy = FunctionType::get(Callee->getReturnType(), 578 ArrayRef<Type *>(ArgTys), false); 579 AMDGPULibFunc NewLibFunc(Name, FTy); 580 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 581 if (!F) 582 return false; 583 584 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); 585 SmallVector<Value *, 6> Args; 586 for (unsigned I = 0; I != PtrArgLoc; ++I) 587 Args.push_back(CI->getArgOperand(I)); 588 Args.push_back(BCast); 589 590 auto *NCI = B.CreateCall(F, Args); 591 NCI->setAttributes(CI->getAttributes()); 592 CI->replaceAllUsesWith(NCI); 593 CI->dropAllReferences(); 594 CI->eraseFromParent(); 595 596 return true; 597 } 598 599 // This function returns false if no change; return true otherwise. 600 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { 601 this->CI = CI; 602 Function *Callee = CI->getCalledFunction(); 603 604 // Ignore indirect calls. 605 if (Callee == nullptr) 606 return false; 607 608 BasicBlock *BB = CI->getParent(); 609 LLVMContext &Context = CI->getParent()->getContext(); 610 IRBuilder<> B(Context); 611 612 // Set the builder to the instruction after the call. 613 B.SetInsertPoint(BB, CI->getIterator()); 614 615 // Copy fast flags from the original call. 616 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) 617 B.setFastMathFlags(FPOp->getFastMathFlags()); 618 619 switch (Callee->getIntrinsicID()) { 620 default: 621 break; 622 case Intrinsic::amdgcn_wavefrontsize: 623 return !EnablePreLink && fold_wavefrontsize(CI, B); 624 } 625 626 FuncInfo FInfo; 627 if (!parseFunctionName(Callee->getName(), FInfo)) 628 return false; 629 630 // Further check the number of arguments to see if they match. 631 if (CI->arg_size() != FInfo.getNumArgs()) 632 return false; 633 634 if (TDOFold(CI, FInfo)) 635 return true; 636 637 // Under unsafe-math, evaluate calls if possible. 638 // According to Brian Sumner, we can do this for all f32 function calls 639 // using host's double function calls. 640 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) 641 return true; 642 643 // Specialized optimizations for each function call 644 switch (FInfo.getId()) { 645 case AMDGPULibFunc::EI_RECIP: 646 // skip vector function 647 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 648 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 649 "recip must be an either native or half function"); 650 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); 651 652 case AMDGPULibFunc::EI_DIVIDE: 653 // skip vector function 654 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 655 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 656 "divide must be an either native or half function"); 657 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); 658 659 case AMDGPULibFunc::EI_POW: 660 case AMDGPULibFunc::EI_POWR: 661 case AMDGPULibFunc::EI_POWN: 662 return fold_pow(CI, B, FInfo); 663 664 case AMDGPULibFunc::EI_ROOTN: 665 // skip vector function 666 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); 667 668 case AMDGPULibFunc::EI_FMA: 669 case AMDGPULibFunc::EI_MAD: 670 case AMDGPULibFunc::EI_NFMA: 671 // skip vector function 672 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); 673 674 case AMDGPULibFunc::EI_SQRT: 675 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); 676 case AMDGPULibFunc::EI_COS: 677 case AMDGPULibFunc::EI_SIN: 678 if ((getArgType(FInfo) == AMDGPULibFunc::F32 || 679 getArgType(FInfo) == AMDGPULibFunc::F64) 680 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) 681 return fold_sincos(CI, B, AA); 682 683 break; 684 case AMDGPULibFunc::EI_READ_PIPE_2: 685 case AMDGPULibFunc::EI_READ_PIPE_4: 686 case AMDGPULibFunc::EI_WRITE_PIPE_2: 687 case AMDGPULibFunc::EI_WRITE_PIPE_4: 688 return fold_read_write_pipe(CI, B, FInfo); 689 690 default: 691 break; 692 } 693 694 return false; 695 } 696 697 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 698 // Table-Driven optimization 699 const TableRef tr = getOptTable(FInfo.getId()); 700 if (tr.size==0) 701 return false; 702 703 int const sz = (int)tr.size; 704 const TableEntry * const ftbl = tr.table; 705 Value *opr0 = CI->getArgOperand(0); 706 707 if (getVecSize(FInfo) > 1) { 708 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 709 SmallVector<double, 0> DVal; 710 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 711 ConstantFP *eltval = dyn_cast<ConstantFP>( 712 CV->getElementAsConstant((unsigned)eltNo)); 713 assert(eltval && "Non-FP arguments in math function!"); 714 bool found = false; 715 for (int i=0; i < sz; ++i) { 716 if (eltval->isExactlyValue(ftbl[i].input)) { 717 DVal.push_back(ftbl[i].result); 718 found = true; 719 break; 720 } 721 } 722 if (!found) { 723 // This vector constants not handled yet. 724 return false; 725 } 726 } 727 LLVMContext &context = CI->getParent()->getParent()->getContext(); 728 Constant *nval; 729 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 730 SmallVector<float, 0> FVal; 731 for (unsigned i = 0; i < DVal.size(); ++i) { 732 FVal.push_back((float)DVal[i]); 733 } 734 ArrayRef<float> tmp(FVal); 735 nval = ConstantDataVector::get(context, tmp); 736 } else { // F64 737 ArrayRef<double> tmp(DVal); 738 nval = ConstantDataVector::get(context, tmp); 739 } 740 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 741 replaceCall(nval); 742 return true; 743 } 744 } else { 745 // Scalar version 746 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 747 for (int i = 0; i < sz; ++i) { 748 if (CF->isExactlyValue(ftbl[i].input)) { 749 Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); 750 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 751 replaceCall(nval); 752 return true; 753 } 754 } 755 } 756 } 757 758 return false; 759 } 760 761 // [native_]half_recip(c) ==> 1.0/c 762 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, 763 const FuncInfo &FInfo) { 764 Value *opr0 = CI->getArgOperand(0); 765 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 766 // Just create a normal div. Later, InstCombine will be able 767 // to compute the divide into a constant (avoid check float infinity 768 // or subnormal at this point). 769 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), 770 opr0, 771 "recip2div"); 772 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 773 replaceCall(nval); 774 return true; 775 } 776 return false; 777 } 778 779 // [native_]half_divide(x, c) ==> x/c 780 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, 781 const FuncInfo &FInfo) { 782 Value *opr0 = CI->getArgOperand(0); 783 Value *opr1 = CI->getArgOperand(1); 784 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 785 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 786 787 if ((CF0 && CF1) || // both are constants 788 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) 789 // CF1 is constant && f32 divide 790 { 791 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), 792 opr1, "__div2recip"); 793 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); 794 replaceCall(nval); 795 return true; 796 } 797 return false; 798 } 799 800 namespace llvm { 801 static double log2(double V) { 802 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 803 return ::log2(V); 804 #else 805 return log(V) / numbers::ln2; 806 #endif 807 } 808 } 809 810 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, 811 const FuncInfo &FInfo) { 812 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 813 FInfo.getId() == AMDGPULibFunc::EI_POWR || 814 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 815 "fold_pow: encounter a wrong function call"); 816 817 Value *opr0, *opr1; 818 ConstantFP *CF; 819 ConstantInt *CINT; 820 ConstantAggregateZero *CZero; 821 Type *eltType; 822 823 opr0 = CI->getArgOperand(0); 824 opr1 = CI->getArgOperand(1); 825 CZero = dyn_cast<ConstantAggregateZero>(opr1); 826 if (getVecSize(FInfo) == 1) { 827 eltType = opr0->getType(); 828 CF = dyn_cast<ConstantFP>(opr1); 829 CINT = dyn_cast<ConstantInt>(opr1); 830 } else { 831 VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); 832 assert(VTy && "Oprand of vector function should be of vectortype"); 833 eltType = VTy->getElementType(); 834 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); 835 836 // Now, only Handle vector const whose elements have the same value. 837 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; 838 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; 839 } 840 841 // No unsafe math , no constant argument, do nothing 842 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) 843 return false; 844 845 // 0x1111111 means that we don't do anything for this call. 846 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 847 848 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { 849 // pow/powr/pown(x, 0) == 1 850 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); 851 Constant *cnval = ConstantFP::get(eltType, 1.0); 852 if (getVecSize(FInfo) > 1) { 853 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 854 } 855 replaceCall(cnval); 856 return true; 857 } 858 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 859 // pow/powr/pown(x, 1.0) = x 860 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 861 replaceCall(opr0); 862 return true; 863 } 864 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 865 // pow/powr/pown(x, 2.0) = x*x 866 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 867 << "\n"); 868 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 869 replaceCall(nval); 870 return true; 871 } 872 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 873 // pow/powr/pown(x, -1.0) = 1.0/x 874 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); 875 Constant *cnval = ConstantFP::get(eltType, 1.0); 876 if (getVecSize(FInfo) > 1) { 877 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 878 } 879 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 880 replaceCall(nval); 881 return true; 882 } 883 884 Module *M = CI->getModule(); 885 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 886 // pow[r](x, [-]0.5) = sqrt(x) 887 bool issqrt = CF->isExactlyValue(0.5); 888 if (FunctionCallee FPExpr = 889 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 890 : AMDGPULibFunc::EI_RSQRT, 891 FInfo))) { 892 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 893 << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); 894 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 895 : "__pow2rsqrt"); 896 replaceCall(nval); 897 return true; 898 } 899 } 900 901 if (!isUnsafeMath(CI)) 902 return false; 903 904 // Unsafe Math optimization 905 906 // Remember that ci_opr1 is set if opr1 is integral 907 if (CF) { 908 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 909 ? (double)CF->getValueAPF().convertToFloat() 910 : CF->getValueAPF().convertToDouble(); 911 int ival = (int)dval; 912 if ((double)ival == dval) { 913 ci_opr1 = ival; 914 } else 915 ci_opr1 = 0x11111111; 916 } 917 918 // pow/powr/pown(x, c) = [1/](x*x*..x); where 919 // trunc(c) == c && the number of x == c && |c| <= 12 920 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 921 if (abs_opr1 <= 12) { 922 Constant *cnval; 923 Value *nval; 924 if (abs_opr1 == 0) { 925 cnval = ConstantFP::get(eltType, 1.0); 926 if (getVecSize(FInfo) > 1) { 927 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 928 } 929 nval = cnval; 930 } else { 931 Value *valx2 = nullptr; 932 nval = nullptr; 933 while (abs_opr1 > 0) { 934 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 935 if (abs_opr1 & 1) { 936 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 937 } 938 abs_opr1 >>= 1; 939 } 940 } 941 942 if (ci_opr1 < 0) { 943 cnval = ConstantFP::get(eltType, 1.0); 944 if (getVecSize(FInfo) > 1) { 945 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 946 } 947 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 948 } 949 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 950 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 951 << ")\n"); 952 replaceCall(nval); 953 return true; 954 } 955 956 // powr ---> exp2(y * log2(x)) 957 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 958 FunctionCallee ExpExpr = 959 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 960 if (!ExpExpr) 961 return false; 962 963 bool needlog = false; 964 bool needabs = false; 965 bool needcopysign = false; 966 Constant *cnval = nullptr; 967 if (getVecSize(FInfo) == 1) { 968 CF = dyn_cast<ConstantFP>(opr0); 969 970 if (CF) { 971 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 972 ? (double)CF->getValueAPF().convertToFloat() 973 : CF->getValueAPF().convertToDouble(); 974 975 V = log2(std::abs(V)); 976 cnval = ConstantFP::get(eltType, V); 977 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 978 CF->isNegative(); 979 } else { 980 needlog = true; 981 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && 982 (!CF || CF->isNegative()); 983 } 984 } else { 985 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 986 987 if (!CDV) { 988 needlog = true; 989 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 990 } else { 991 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 992 "Wrong vector size detected"); 993 994 SmallVector<double, 0> DVal; 995 for (int i=0; i < getVecSize(FInfo); ++i) { 996 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 997 ? (double)CDV->getElementAsFloat(i) 998 : CDV->getElementAsDouble(i); 999 if (V < 0.0) needcopysign = true; 1000 V = log2(std::abs(V)); 1001 DVal.push_back(V); 1002 } 1003 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1004 SmallVector<float, 0> FVal; 1005 for (unsigned i=0; i < DVal.size(); ++i) { 1006 FVal.push_back((float)DVal[i]); 1007 } 1008 ArrayRef<float> tmp(FVal); 1009 cnval = ConstantDataVector::get(M->getContext(), tmp); 1010 } else { 1011 ArrayRef<double> tmp(DVal); 1012 cnval = ConstantDataVector::get(M->getContext(), tmp); 1013 } 1014 } 1015 } 1016 1017 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1018 // We cannot handle corner cases for a general pow() function, give up 1019 // unless y is a constant integral value. Then proceed as if it were pown. 1020 if (getVecSize(FInfo) == 1) { 1021 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { 1022 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1023 ? (double)CF->getValueAPF().convertToFloat() 1024 : CF->getValueAPF().convertToDouble(); 1025 if (y != (double)(int64_t)y) 1026 return false; 1027 } else 1028 return false; 1029 } else { 1030 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { 1031 for (int i=0; i < getVecSize(FInfo); ++i) { 1032 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1033 ? (double)CDV->getElementAsFloat(i) 1034 : CDV->getElementAsDouble(i); 1035 if (y != (double)(int64_t)y) 1036 return false; 1037 } 1038 } else 1039 return false; 1040 } 1041 } 1042 1043 Value *nval; 1044 if (needabs) { 1045 FunctionCallee AbsExpr = 1046 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo)); 1047 if (!AbsExpr) 1048 return false; 1049 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); 1050 } else { 1051 nval = cnval ? cnval : opr0; 1052 } 1053 if (needlog) { 1054 FunctionCallee LogExpr = 1055 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1056 if (!LogExpr) 1057 return false; 1058 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1059 } 1060 1061 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1062 // convert int(32) to fp(f32 or f64) 1063 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1064 } 1065 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1066 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1067 1068 if (needcopysign) { 1069 Value *opr_n; 1070 Type* rTy = opr0->getType(); 1071 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); 1072 Type *nTy = nTyS; 1073 if (const auto *vTy = dyn_cast<FixedVectorType>(rTy)) 1074 nTy = FixedVectorType::get(nTyS, vTy); 1075 unsigned size = nTy->getScalarSizeInBits(); 1076 opr_n = CI->getArgOperand(1); 1077 if (opr_n->getType()->isIntegerTy()) 1078 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); 1079 else 1080 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1081 1082 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1083 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1084 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1085 nval = B.CreateBitCast(nval, opr0->getType()); 1086 } 1087 1088 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1089 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1090 replaceCall(nval); 1091 1092 return true; 1093 } 1094 1095 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, 1096 const FuncInfo &FInfo) { 1097 Value *opr0 = CI->getArgOperand(0); 1098 Value *opr1 = CI->getArgOperand(1); 1099 1100 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1101 if (!CINT) { 1102 return false; 1103 } 1104 int ci_opr1 = (int)CINT->getSExtValue(); 1105 if (ci_opr1 == 1) { // rootn(x, 1) = x 1106 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 1107 replaceCall(opr0); 1108 return true; 1109 } 1110 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1111 Module *M = CI->getModule(); 1112 if (FunctionCallee FPExpr = 1113 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1114 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); 1115 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1116 replaceCall(nval); 1117 return true; 1118 } 1119 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1120 Module *M = CI->getModule(); 1121 if (FunctionCallee FPExpr = 1122 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1123 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); 1124 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1125 replaceCall(nval); 1126 return true; 1127 } 1128 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1129 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); 1130 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1131 opr0, 1132 "__rootn2div"); 1133 replaceCall(nval); 1134 return true; 1135 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1136 Module *M = CI->getModule(); 1137 if (FunctionCallee FPExpr = 1138 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { 1139 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 1140 << ")\n"); 1141 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1142 replaceCall(nval); 1143 return true; 1144 } 1145 } 1146 return false; 1147 } 1148 1149 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, 1150 const FuncInfo &FInfo) { 1151 Value *opr0 = CI->getArgOperand(0); 1152 Value *opr1 = CI->getArgOperand(1); 1153 Value *opr2 = CI->getArgOperand(2); 1154 1155 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 1156 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 1157 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { 1158 // fma/mad(a, b, c) = c if a=0 || b=0 1159 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); 1160 replaceCall(opr2); 1161 return true; 1162 } 1163 if (CF0 && CF0->isExactlyValue(1.0f)) { 1164 // fma/mad(a, b, c) = b+c if a=1 1165 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 1166 << "\n"); 1167 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); 1168 replaceCall(nval); 1169 return true; 1170 } 1171 if (CF1 && CF1->isExactlyValue(1.0f)) { 1172 // fma/mad(a, b, c) = a+c if b=1 1173 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 1174 << "\n"); 1175 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); 1176 replaceCall(nval); 1177 return true; 1178 } 1179 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { 1180 if (CF->isZero()) { 1181 // fma/mad(a, b, c) = a*b if c=0 1182 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " 1183 << *opr1 << "\n"); 1184 Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); 1185 replaceCall(nval); 1186 return true; 1187 } 1188 } 1189 1190 return false; 1191 } 1192 1193 // Get a scalar native builtin single argument FP function 1194 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1195 const FuncInfo &FInfo) { 1196 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1197 return nullptr; 1198 FuncInfo nf = FInfo; 1199 nf.setPrefix(AMDGPULibFunc::NATIVE); 1200 return getFunction(M, nf); 1201 } 1202 1203 // fold sqrt -> native_sqrt (x) 1204 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, 1205 const FuncInfo &FInfo) { 1206 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && 1207 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { 1208 if (FunctionCallee FPExpr = getNativeFunction( 1209 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1210 Value *opr0 = CI->getArgOperand(0); 1211 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1212 << "sqrt(" << *opr0 << ")\n"); 1213 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); 1214 replaceCall(nval); 1215 return true; 1216 } 1217 } 1218 return false; 1219 } 1220 1221 // fold sin, cos -> sincos. 1222 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, 1223 AliasAnalysis *AA) { 1224 AMDGPULibFunc fInfo; 1225 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) 1226 return false; 1227 1228 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1229 fInfo.getId() == AMDGPULibFunc::EI_COS); 1230 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1231 1232 Value *CArgVal = CI->getArgOperand(0); 1233 BasicBlock * const CBB = CI->getParent(); 1234 1235 int const MaxScan = 30; 1236 bool Changed = false; 1237 1238 { // fold in load value. 1239 LoadInst *LI = dyn_cast<LoadInst>(CArgVal); 1240 if (LI && LI->getParent() == CBB) { 1241 BasicBlock::iterator BBI = LI->getIterator(); 1242 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); 1243 if (AvailableVal) { 1244 Changed = true; 1245 CArgVal->replaceAllUsesWith(AvailableVal); 1246 if (CArgVal->getNumUses() == 0) 1247 LI->eraseFromParent(); 1248 CArgVal = CI->getArgOperand(0); 1249 } 1250 } 1251 } 1252 1253 Module *M = CI->getModule(); 1254 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); 1255 std::string const PairName = fInfo.mangle(); 1256 1257 CallInst *UI = nullptr; 1258 for (User* U : CArgVal->users()) { 1259 CallInst *XI = dyn_cast_or_null<CallInst>(U); 1260 if (!XI || XI == CI || XI->getParent() != CBB) 1261 continue; 1262 1263 Function *UCallee = XI->getCalledFunction(); 1264 if (!UCallee || !UCallee->getName().equals(PairName)) 1265 continue; 1266 1267 BasicBlock::iterator BBI = CI->getIterator(); 1268 if (BBI == CI->getParent()->begin()) 1269 break; 1270 --BBI; 1271 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { 1272 if (cast<Instruction>(BBI) == XI) { 1273 UI = XI; 1274 break; 1275 } 1276 } 1277 if (UI) break; 1278 } 1279 1280 if (!UI) 1281 return Changed; 1282 1283 // Merge the sin and cos. 1284 1285 // for OpenCL 2.0 we have only generic implementation of sincos 1286 // function. 1287 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); 1288 nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1289 FunctionCallee Fsincos = getFunction(M, nf); 1290 if (!Fsincos) 1291 return Changed; 1292 1293 BasicBlock::iterator ItOld = B.GetInsertPoint(); 1294 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); 1295 B.SetInsertPoint(UI); 1296 1297 Value *P = Alloc; 1298 Type *PTy = Fsincos.getFunctionType()->getParamType(1); 1299 // The allocaInst allocates the memory in private address space. This need 1300 // to be bitcasted to point to the address space of cos pointer type. 1301 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1302 if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) 1303 P = B.CreateAddrSpaceCast(Alloc, PTy); 1304 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); 1305 1306 LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " 1307 << *Call << "\n"); 1308 1309 if (!isSin) { // CI->cos, UI->sin 1310 B.SetInsertPoint(&*ItOld); 1311 UI->replaceAllUsesWith(&*Call); 1312 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1313 CI->replaceAllUsesWith(Reload); 1314 UI->eraseFromParent(); 1315 CI->eraseFromParent(); 1316 } else { // CI->sin, UI->cos 1317 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1318 UI->replaceAllUsesWith(Reload); 1319 CI->replaceAllUsesWith(Call); 1320 UI->eraseFromParent(); 1321 CI->eraseFromParent(); 1322 } 1323 return true; 1324 } 1325 1326 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) { 1327 if (!TM) 1328 return false; 1329 1330 StringRef CPU = TM->getTargetCPU(); 1331 StringRef Features = TM->getTargetFeatureString(); 1332 if ((CPU.empty() || CPU.equals_insensitive("generic")) && 1333 (Features.empty() || !Features.contains_insensitive("wavefrontsize"))) 1334 return false; 1335 1336 Function *F = CI->getParent()->getParent(); 1337 const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F); 1338 unsigned N = ST.getWavefrontSize(); 1339 1340 LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with " 1341 << N << "\n"); 1342 1343 CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N)); 1344 CI->eraseFromParent(); 1345 return true; 1346 } 1347 1348 // Get insertion point at entry. 1349 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { 1350 Function * Func = UI->getParent()->getParent(); 1351 BasicBlock * BB = &Func->getEntryBlock(); 1352 assert(BB && "Entry block not found!"); 1353 BasicBlock::iterator ItNew = BB->begin(); 1354 return ItNew; 1355 } 1356 1357 // Insert a AllocsInst at the beginning of function entry block. 1358 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, 1359 const char *prefix) { 1360 BasicBlock::iterator ItNew = getEntryIns(UI); 1361 Function *UCallee = UI->getCalledFunction(); 1362 Type *RetType = UCallee->getReturnType(); 1363 B.SetInsertPoint(&*ItNew); 1364 AllocaInst *Alloc = 1365 B.CreateAlloca(RetType, nullptr, std::string(prefix) + UI->getName()); 1366 Alloc->setAlignment( 1367 Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType))); 1368 return Alloc; 1369 } 1370 1371 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, 1372 double& Res0, double& Res1, 1373 Constant *copr0, Constant *copr1, 1374 Constant *copr2) { 1375 // By default, opr0/opr1/opr3 holds values of float/double type. 1376 // If they are not float/double, each function has to its 1377 // operand separately. 1378 double opr0=0.0, opr1=0.0, opr2=0.0; 1379 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1380 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1381 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); 1382 if (fpopr0) { 1383 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1384 ? fpopr0->getValueAPF().convertToDouble() 1385 : (double)fpopr0->getValueAPF().convertToFloat(); 1386 } 1387 1388 if (fpopr1) { 1389 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1390 ? fpopr1->getValueAPF().convertToDouble() 1391 : (double)fpopr1->getValueAPF().convertToFloat(); 1392 } 1393 1394 if (fpopr2) { 1395 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1396 ? fpopr2->getValueAPF().convertToDouble() 1397 : (double)fpopr2->getValueAPF().convertToFloat(); 1398 } 1399 1400 switch (FInfo.getId()) { 1401 default : return false; 1402 1403 case AMDGPULibFunc::EI_ACOS: 1404 Res0 = acos(opr0); 1405 return true; 1406 1407 case AMDGPULibFunc::EI_ACOSH: 1408 // acosh(x) == log(x + sqrt(x*x - 1)) 1409 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1410 return true; 1411 1412 case AMDGPULibFunc::EI_ACOSPI: 1413 Res0 = acos(opr0) / MATH_PI; 1414 return true; 1415 1416 case AMDGPULibFunc::EI_ASIN: 1417 Res0 = asin(opr0); 1418 return true; 1419 1420 case AMDGPULibFunc::EI_ASINH: 1421 // asinh(x) == log(x + sqrt(x*x + 1)) 1422 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1423 return true; 1424 1425 case AMDGPULibFunc::EI_ASINPI: 1426 Res0 = asin(opr0) / MATH_PI; 1427 return true; 1428 1429 case AMDGPULibFunc::EI_ATAN: 1430 Res0 = atan(opr0); 1431 return true; 1432 1433 case AMDGPULibFunc::EI_ATANH: 1434 // atanh(x) == (log(x+1) - log(x-1))/2; 1435 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1436 return true; 1437 1438 case AMDGPULibFunc::EI_ATANPI: 1439 Res0 = atan(opr0) / MATH_PI; 1440 return true; 1441 1442 case AMDGPULibFunc::EI_CBRT: 1443 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1444 return true; 1445 1446 case AMDGPULibFunc::EI_COS: 1447 Res0 = cos(opr0); 1448 return true; 1449 1450 case AMDGPULibFunc::EI_COSH: 1451 Res0 = cosh(opr0); 1452 return true; 1453 1454 case AMDGPULibFunc::EI_COSPI: 1455 Res0 = cos(MATH_PI * opr0); 1456 return true; 1457 1458 case AMDGPULibFunc::EI_EXP: 1459 Res0 = exp(opr0); 1460 return true; 1461 1462 case AMDGPULibFunc::EI_EXP2: 1463 Res0 = pow(2.0, opr0); 1464 return true; 1465 1466 case AMDGPULibFunc::EI_EXP10: 1467 Res0 = pow(10.0, opr0); 1468 return true; 1469 1470 case AMDGPULibFunc::EI_EXPM1: 1471 Res0 = exp(opr0) - 1.0; 1472 return true; 1473 1474 case AMDGPULibFunc::EI_LOG: 1475 Res0 = log(opr0); 1476 return true; 1477 1478 case AMDGPULibFunc::EI_LOG2: 1479 Res0 = log(opr0) / log(2.0); 1480 return true; 1481 1482 case AMDGPULibFunc::EI_LOG10: 1483 Res0 = log(opr0) / log(10.0); 1484 return true; 1485 1486 case AMDGPULibFunc::EI_RSQRT: 1487 Res0 = 1.0 / sqrt(opr0); 1488 return true; 1489 1490 case AMDGPULibFunc::EI_SIN: 1491 Res0 = sin(opr0); 1492 return true; 1493 1494 case AMDGPULibFunc::EI_SINH: 1495 Res0 = sinh(opr0); 1496 return true; 1497 1498 case AMDGPULibFunc::EI_SINPI: 1499 Res0 = sin(MATH_PI * opr0); 1500 return true; 1501 1502 case AMDGPULibFunc::EI_SQRT: 1503 Res0 = sqrt(opr0); 1504 return true; 1505 1506 case AMDGPULibFunc::EI_TAN: 1507 Res0 = tan(opr0); 1508 return true; 1509 1510 case AMDGPULibFunc::EI_TANH: 1511 Res0 = tanh(opr0); 1512 return true; 1513 1514 case AMDGPULibFunc::EI_TANPI: 1515 Res0 = tan(MATH_PI * opr0); 1516 return true; 1517 1518 case AMDGPULibFunc::EI_RECIP: 1519 Res0 = 1.0 / opr0; 1520 return true; 1521 1522 // two-arg functions 1523 case AMDGPULibFunc::EI_DIVIDE: 1524 Res0 = opr0 / opr1; 1525 return true; 1526 1527 case AMDGPULibFunc::EI_POW: 1528 case AMDGPULibFunc::EI_POWR: 1529 Res0 = pow(opr0, opr1); 1530 return true; 1531 1532 case AMDGPULibFunc::EI_POWN: { 1533 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1534 double val = (double)iopr1->getSExtValue(); 1535 Res0 = pow(opr0, val); 1536 return true; 1537 } 1538 return false; 1539 } 1540 1541 case AMDGPULibFunc::EI_ROOTN: { 1542 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1543 double val = (double)iopr1->getSExtValue(); 1544 Res0 = pow(opr0, 1.0 / val); 1545 return true; 1546 } 1547 return false; 1548 } 1549 1550 // with ptr arg 1551 case AMDGPULibFunc::EI_SINCOS: 1552 Res0 = sin(opr0); 1553 Res1 = cos(opr0); 1554 return true; 1555 1556 // three-arg functions 1557 case AMDGPULibFunc::EI_FMA: 1558 case AMDGPULibFunc::EI_MAD: 1559 Res0 = opr0 * opr1 + opr2; 1560 return true; 1561 } 1562 1563 return false; 1564 } 1565 1566 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) { 1567 int numArgs = (int)aCI->arg_size(); 1568 if (numArgs > 3) 1569 return false; 1570 1571 Constant *copr0 = nullptr; 1572 Constant *copr1 = nullptr; 1573 Constant *copr2 = nullptr; 1574 if (numArgs > 0) { 1575 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1576 return false; 1577 } 1578 1579 if (numArgs > 1) { 1580 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1581 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1582 return false; 1583 } 1584 } 1585 1586 if (numArgs > 2) { 1587 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) 1588 return false; 1589 } 1590 1591 // At this point, all arguments to aCI are constants. 1592 1593 // max vector size is 16, and sincos will generate two results. 1594 double DVal0[16], DVal1[16]; 1595 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1596 if (getVecSize(FInfo) == 1) { 1597 if (!evaluateScalarMathFunc(FInfo, DVal0[0], 1598 DVal1[0], copr0, copr1, copr2)) { 1599 return false; 1600 } 1601 } else { 1602 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1603 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1604 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); 1605 for (int i=0; i < getVecSize(FInfo); ++i) { 1606 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1607 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1608 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; 1609 if (!evaluateScalarMathFunc(FInfo, DVal0[i], 1610 DVal1[i], celt0, celt1, celt2)) { 1611 return false; 1612 } 1613 } 1614 } 1615 1616 LLVMContext &context = CI->getParent()->getParent()->getContext(); 1617 Constant *nval0, *nval1; 1618 if (getVecSize(FInfo) == 1) { 1619 nval0 = ConstantFP::get(CI->getType(), DVal0[0]); 1620 if (hasTwoResults) 1621 nval1 = ConstantFP::get(CI->getType(), DVal1[0]); 1622 } else { 1623 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1624 SmallVector <float, 0> FVal0, FVal1; 1625 for (int i=0; i < getVecSize(FInfo); ++i) 1626 FVal0.push_back((float)DVal0[i]); 1627 ArrayRef<float> tmp0(FVal0); 1628 nval0 = ConstantDataVector::get(context, tmp0); 1629 if (hasTwoResults) { 1630 for (int i=0; i < getVecSize(FInfo); ++i) 1631 FVal1.push_back((float)DVal1[i]); 1632 ArrayRef<float> tmp1(FVal1); 1633 nval1 = ConstantDataVector::get(context, tmp1); 1634 } 1635 } else { 1636 ArrayRef<double> tmp0(DVal0); 1637 nval0 = ConstantDataVector::get(context, tmp0); 1638 if (hasTwoResults) { 1639 ArrayRef<double> tmp1(DVal1); 1640 nval1 = ConstantDataVector::get(context, tmp1); 1641 } 1642 } 1643 } 1644 1645 if (hasTwoResults) { 1646 // sincos 1647 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1648 "math function with ptr arg not supported yet"); 1649 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1650 } 1651 1652 replaceCall(nval0); 1653 return true; 1654 } 1655 1656 // Public interface to the Simplify LibCalls pass. 1657 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) { 1658 return new AMDGPUSimplifyLibCalls(TM); 1659 } 1660 1661 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { 1662 return new AMDGPUUseNativeCalls(); 1663 } 1664 1665 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { 1666 if (skipFunction(F)) 1667 return false; 1668 1669 bool Changed = false; 1670 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1671 1672 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1673 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1674 1675 for (auto &BB : F) { 1676 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1677 // Ignore non-calls. 1678 CallInst *CI = dyn_cast<CallInst>(I); 1679 ++I; 1680 // Ignore intrinsics that do not become real instructions. 1681 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1682 continue; 1683 1684 // Ignore indirect calls. 1685 Function *Callee = CI->getCalledFunction(); 1686 if (Callee == nullptr) 1687 continue; 1688 1689 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1690 dbgs().flush()); 1691 if(Simplifier.fold(CI, AA)) 1692 Changed = true; 1693 } 1694 } 1695 return Changed; 1696 } 1697 1698 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F, 1699 FunctionAnalysisManager &AM) { 1700 AMDGPULibCalls Simplifier(&TM); 1701 Simplifier.initNativeFuncs(); 1702 1703 bool Changed = false; 1704 auto AA = &AM.getResult<AAManager>(F); 1705 1706 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1707 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1708 1709 for (auto &BB : F) { 1710 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1711 // Ignore non-calls. 1712 CallInst *CI = dyn_cast<CallInst>(I); 1713 ++I; 1714 // Ignore intrinsics that do not become real instructions. 1715 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1716 continue; 1717 1718 // Ignore indirect calls. 1719 Function *Callee = CI->getCalledFunction(); 1720 if (Callee == nullptr) 1721 continue; 1722 1723 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1724 dbgs().flush()); 1725 if (Simplifier.fold(CI, AA)) 1726 Changed = true; 1727 } 1728 } 1729 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1730 } 1731 1732 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { 1733 if (skipFunction(F) || UseNative.empty()) 1734 return false; 1735 1736 bool Changed = false; 1737 for (auto &BB : F) { 1738 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1739 // Ignore non-calls. 1740 CallInst *CI = dyn_cast<CallInst>(I); 1741 ++I; 1742 if (!CI) continue; 1743 1744 // Ignore indirect calls. 1745 Function *Callee = CI->getCalledFunction(); 1746 if (Callee == nullptr) 1747 continue; 1748 1749 if (Simplifier.useNative(CI)) 1750 Changed = true; 1751 } 1752 } 1753 return Changed; 1754 } 1755 1756 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F, 1757 FunctionAnalysisManager &AM) { 1758 if (UseNative.empty()) 1759 return PreservedAnalyses::all(); 1760 1761 AMDGPULibCalls Simplifier; 1762 Simplifier.initNativeFuncs(); 1763 1764 bool Changed = false; 1765 for (auto &BB : F) { 1766 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1767 // Ignore non-calls. 1768 CallInst *CI = dyn_cast<CallInst>(I); 1769 ++I; 1770 if (!CI) 1771 continue; 1772 1773 // Ignore indirect calls. 1774 Function *Callee = CI->getCalledFunction(); 1775 if (Callee == nullptr) 1776 continue; 1777 1778 if (Simplifier.useNative(CI)) 1779 Changed = true; 1780 } 1781 } 1782 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1783 } 1784