xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp (revision 902cbcd59e22ccd853f6b0c22acc772fd955dc46)
1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file does AMD library function optimizations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPULibFunc.h"
16 #include "AMDGPUSubtarget.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/StringSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/ValueSymbolTable.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cmath>
36 #include <vector>
37 
38 #define DEBUG_TYPE "amdgpu-simplifylib"
39 
40 using namespace llvm;
41 
42 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
43   cl::desc("Enable pre-link mode optimizations"),
44   cl::init(false),
45   cl::Hidden);
46 
47 static cl::list<std::string> UseNative("amdgpu-use-native",
48   cl::desc("Comma separated list of functions to replace with native, or all"),
49   cl::CommaSeparated, cl::ValueOptional,
50   cl::Hidden);
51 
52 #define MATH_PI      numbers::pi
53 #define MATH_E       numbers::e
54 #define MATH_SQRT2   numbers::sqrt2
55 #define MATH_SQRT1_2 numbers::inv_sqrt2
56 
57 namespace llvm {
58 
59 class AMDGPULibCalls {
60 private:
61 
62   typedef llvm::AMDGPULibFunc FuncInfo;
63 
64   const TargetMachine *TM;
65 
66   // -fuse-native.
67   bool AllNative = false;
68 
69   bool useNativeFunc(const StringRef F) const;
70 
71   // Return a pointer (pointer expr) to the function if function defintion with
72   // "FuncName" exists. It may create a new function prototype in pre-link mode.
73   FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
74 
75   // Replace a normal function with its native version.
76   bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
77 
78   bool parseFunctionName(const StringRef& FMangledName,
79                          FuncInfo *FInfo=nullptr /*out*/);
80 
81   bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
82 
83   /* Specialized optimizations */
84 
85   // recip (half or native)
86   bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
87 
88   // divide (half or native)
89   bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
90 
91   // pow/powr/pown
92   bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
93 
94   // rootn
95   bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
96 
97   // fma/mad
98   bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
99 
100   // -fuse-native for sincos
101   bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
102 
103   // evaluate calls if calls' arguments are constants.
104   bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
105     double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
106   bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
107 
108   // exp
109   bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
110 
111   // exp2
112   bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
113 
114   // exp10
115   bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
116 
117   // log
118   bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
119 
120   // log2
121   bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
122 
123   // log10
124   bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
125 
126   // sqrt
127   bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
128 
129   // sin/cos
130   bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
131 
132   // __read_pipe/__write_pipe
133   bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
134 
135   // llvm.amdgcn.wavefrontsize
136   bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B);
137 
138   // Get insertion point at entry.
139   BasicBlock::iterator getEntryIns(CallInst * UI);
140   // Insert an Alloc instruction.
141   AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
142   // Get a scalar native builtin signle argument FP function
143   FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
144 
145 protected:
146   CallInst *CI;
147 
148   bool isUnsafeMath(const CallInst *CI) const;
149 
150   void replaceCall(Value *With) {
151     CI->replaceAllUsesWith(With);
152     CI->eraseFromParent();
153   }
154 
155 public:
156   AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {}
157 
158   bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
159 
160   void initNativeFuncs();
161 
162   // Replace a normal math function call with that native version
163   bool useNative(CallInst *CI);
164 };
165 
166 } // end llvm namespace
167 
168 namespace {
169 
170   class AMDGPUSimplifyLibCalls : public FunctionPass {
171 
172   AMDGPULibCalls Simplifier;
173 
174   public:
175     static char ID; // Pass identification
176 
177     AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr)
178       : FunctionPass(ID), Simplifier(TM) {
179       initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
180     }
181 
182     void getAnalysisUsage(AnalysisUsage &AU) const override {
183       AU.addRequired<AAResultsWrapperPass>();
184     }
185 
186     bool runOnFunction(Function &M) override;
187   };
188 
189   class AMDGPUUseNativeCalls : public FunctionPass {
190 
191   AMDGPULibCalls Simplifier;
192 
193   public:
194     static char ID; // Pass identification
195 
196     AMDGPUUseNativeCalls() : FunctionPass(ID) {
197       initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
198       Simplifier.initNativeFuncs();
199     }
200 
201     bool runOnFunction(Function &F) override;
202   };
203 
204 } // end anonymous namespace.
205 
206 char AMDGPUSimplifyLibCalls::ID = 0;
207 char AMDGPUUseNativeCalls::ID = 0;
208 
209 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
210                       "Simplify well-known AMD library calls", false, false)
211 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
212 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
213                     "Simplify well-known AMD library calls", false, false)
214 
215 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
216                 "Replace builtin math calls with that native versions.",
217                 false, false)
218 
219 template <typename IRB>
220 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
221                               const Twine &Name = "") {
222   CallInst *R = B.CreateCall(Callee, Arg, Name);
223   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
224     R->setCallingConv(F->getCallingConv());
225   return R;
226 }
227 
228 template <typename IRB>
229 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
230                                Value *Arg2, const Twine &Name = "") {
231   CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
232   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
233     R->setCallingConv(F->getCallingConv());
234   return R;
235 }
236 
237 //  Data structures for table-driven optimizations.
238 //  FuncTbl works for both f32 and f64 functions with 1 input argument
239 
240 struct TableEntry {
241   double   result;
242   double   input;
243 };
244 
245 /* a list of {result, input} */
246 static const TableEntry tbl_acos[] = {
247   {MATH_PI / 2.0, 0.0},
248   {MATH_PI / 2.0, -0.0},
249   {0.0, 1.0},
250   {MATH_PI, -1.0}
251 };
252 static const TableEntry tbl_acosh[] = {
253   {0.0, 1.0}
254 };
255 static const TableEntry tbl_acospi[] = {
256   {0.5, 0.0},
257   {0.5, -0.0},
258   {0.0, 1.0},
259   {1.0, -1.0}
260 };
261 static const TableEntry tbl_asin[] = {
262   {0.0, 0.0},
263   {-0.0, -0.0},
264   {MATH_PI / 2.0, 1.0},
265   {-MATH_PI / 2.0, -1.0}
266 };
267 static const TableEntry tbl_asinh[] = {
268   {0.0, 0.0},
269   {-0.0, -0.0}
270 };
271 static const TableEntry tbl_asinpi[] = {
272   {0.0, 0.0},
273   {-0.0, -0.0},
274   {0.5, 1.0},
275   {-0.5, -1.0}
276 };
277 static const TableEntry tbl_atan[] = {
278   {0.0, 0.0},
279   {-0.0, -0.0},
280   {MATH_PI / 4.0, 1.0},
281   {-MATH_PI / 4.0, -1.0}
282 };
283 static const TableEntry tbl_atanh[] = {
284   {0.0, 0.0},
285   {-0.0, -0.0}
286 };
287 static const TableEntry tbl_atanpi[] = {
288   {0.0, 0.0},
289   {-0.0, -0.0},
290   {0.25, 1.0},
291   {-0.25, -1.0}
292 };
293 static const TableEntry tbl_cbrt[] = {
294   {0.0, 0.0},
295   {-0.0, -0.0},
296   {1.0, 1.0},
297   {-1.0, -1.0},
298 };
299 static const TableEntry tbl_cos[] = {
300   {1.0, 0.0},
301   {1.0, -0.0}
302 };
303 static const TableEntry tbl_cosh[] = {
304   {1.0, 0.0},
305   {1.0, -0.0}
306 };
307 static const TableEntry tbl_cospi[] = {
308   {1.0, 0.0},
309   {1.0, -0.0}
310 };
311 static const TableEntry tbl_erfc[] = {
312   {1.0, 0.0},
313   {1.0, -0.0}
314 };
315 static const TableEntry tbl_erf[] = {
316   {0.0, 0.0},
317   {-0.0, -0.0}
318 };
319 static const TableEntry tbl_exp[] = {
320   {1.0, 0.0},
321   {1.0, -0.0},
322   {MATH_E, 1.0}
323 };
324 static const TableEntry tbl_exp2[] = {
325   {1.0, 0.0},
326   {1.0, -0.0},
327   {2.0, 1.0}
328 };
329 static const TableEntry tbl_exp10[] = {
330   {1.0, 0.0},
331   {1.0, -0.0},
332   {10.0, 1.0}
333 };
334 static const TableEntry tbl_expm1[] = {
335   {0.0, 0.0},
336   {-0.0, -0.0}
337 };
338 static const TableEntry tbl_log[] = {
339   {0.0, 1.0},
340   {1.0, MATH_E}
341 };
342 static const TableEntry tbl_log2[] = {
343   {0.0, 1.0},
344   {1.0, 2.0}
345 };
346 static const TableEntry tbl_log10[] = {
347   {0.0, 1.0},
348   {1.0, 10.0}
349 };
350 static const TableEntry tbl_rsqrt[] = {
351   {1.0, 1.0},
352   {MATH_SQRT1_2, 2.0}
353 };
354 static const TableEntry tbl_sin[] = {
355   {0.0, 0.0},
356   {-0.0, -0.0}
357 };
358 static const TableEntry tbl_sinh[] = {
359   {0.0, 0.0},
360   {-0.0, -0.0}
361 };
362 static const TableEntry tbl_sinpi[] = {
363   {0.0, 0.0},
364   {-0.0, -0.0}
365 };
366 static const TableEntry tbl_sqrt[] = {
367   {0.0, 0.0},
368   {1.0, 1.0},
369   {MATH_SQRT2, 2.0}
370 };
371 static const TableEntry tbl_tan[] = {
372   {0.0, 0.0},
373   {-0.0, -0.0}
374 };
375 static const TableEntry tbl_tanh[] = {
376   {0.0, 0.0},
377   {-0.0, -0.0}
378 };
379 static const TableEntry tbl_tanpi[] = {
380   {0.0, 0.0},
381   {-0.0, -0.0}
382 };
383 static const TableEntry tbl_tgamma[] = {
384   {1.0, 1.0},
385   {1.0, 2.0},
386   {2.0, 3.0},
387   {6.0, 4.0}
388 };
389 
390 static bool HasNative(AMDGPULibFunc::EFuncId id) {
391   switch(id) {
392   case AMDGPULibFunc::EI_DIVIDE:
393   case AMDGPULibFunc::EI_COS:
394   case AMDGPULibFunc::EI_EXP:
395   case AMDGPULibFunc::EI_EXP2:
396   case AMDGPULibFunc::EI_EXP10:
397   case AMDGPULibFunc::EI_LOG:
398   case AMDGPULibFunc::EI_LOG2:
399   case AMDGPULibFunc::EI_LOG10:
400   case AMDGPULibFunc::EI_POWR:
401   case AMDGPULibFunc::EI_RECIP:
402   case AMDGPULibFunc::EI_RSQRT:
403   case AMDGPULibFunc::EI_SIN:
404   case AMDGPULibFunc::EI_SINCOS:
405   case AMDGPULibFunc::EI_SQRT:
406   case AMDGPULibFunc::EI_TAN:
407     return true;
408   default:;
409   }
410   return false;
411 }
412 
413 struct TableRef {
414   size_t size;
415   const TableEntry *table; // variable size: from 0 to (size - 1)
416 
417   TableRef() : size(0), table(nullptr) {}
418 
419   template <size_t N>
420   TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
421 };
422 
423 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
424   switch(id) {
425   case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
426   case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
427   case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
428   case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
429   case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
430   case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
431   case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
432   case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
433   case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
434   case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
435   case AMDGPULibFunc::EI_NCOS:
436   case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
437   case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
438   case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
439   case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
440   case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
441   case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
442   case AMDGPULibFunc::EI_NEXP2:
443   case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
444   case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
445   case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
446   case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
447   case AMDGPULibFunc::EI_NLOG2:
448   case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
449   case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
450   case AMDGPULibFunc::EI_NRSQRT:
451   case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
452   case AMDGPULibFunc::EI_NSIN:
453   case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
454   case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
455   case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
456   case AMDGPULibFunc::EI_NSQRT:
457   case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
458   case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
459   case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
460   case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
461   case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
462   default:;
463   }
464   return TableRef();
465 }
466 
467 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
468   return FInfo.getLeads()[0].VectorSize;
469 }
470 
471 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
472   return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
473 }
474 
475 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
476   // If we are doing PreLinkOpt, the function is external. So it is safe to
477   // use getOrInsertFunction() at this stage.
478 
479   return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
480                        : AMDGPULibFunc::getFunction(M, fInfo);
481 }
482 
483 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
484                                     FuncInfo *FInfo) {
485   return AMDGPULibFunc::parse(FMangledName, *FInfo);
486 }
487 
488 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
489   if (auto Op = dyn_cast<FPMathOperator>(CI))
490     if (Op->isFast())
491       return true;
492   const Function *F = CI->getParent()->getParent();
493   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
494   return Attr.getValueAsString() == "true";
495 }
496 
497 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
498   return AllNative || llvm::is_contained(UseNative, F);
499 }
500 
501 void AMDGPULibCalls::initNativeFuncs() {
502   AllNative = useNativeFunc("all") ||
503               (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
504                UseNative.begin()->empty());
505 }
506 
507 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
508   bool native_sin = useNativeFunc("sin");
509   bool native_cos = useNativeFunc("cos");
510 
511   if (native_sin && native_cos) {
512     Module *M = aCI->getModule();
513     Value *opr0 = aCI->getArgOperand(0);
514 
515     AMDGPULibFunc nf;
516     nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
517     nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
518 
519     nf.setPrefix(AMDGPULibFunc::NATIVE);
520     nf.setId(AMDGPULibFunc::EI_SIN);
521     FunctionCallee sinExpr = getFunction(M, nf);
522 
523     nf.setPrefix(AMDGPULibFunc::NATIVE);
524     nf.setId(AMDGPULibFunc::EI_COS);
525     FunctionCallee cosExpr = getFunction(M, nf);
526     if (sinExpr && cosExpr) {
527       Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
528       Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
529       new StoreInst(cosval, aCI->getArgOperand(1), aCI);
530 
531       DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
532                                           << " with native version of sin/cos");
533 
534       replaceCall(sinval);
535       return true;
536     }
537   }
538   return false;
539 }
540 
541 bool AMDGPULibCalls::useNative(CallInst *aCI) {
542   CI = aCI;
543   Function *Callee = aCI->getCalledFunction();
544 
545   FuncInfo FInfo;
546   if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
547       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
548       getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
549       !(AllNative || useNativeFunc(FInfo.getName()))) {
550     return false;
551   }
552 
553   if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
554     return sincosUseNative(aCI, FInfo);
555 
556   FInfo.setPrefix(AMDGPULibFunc::NATIVE);
557   FunctionCallee F = getFunction(aCI->getModule(), FInfo);
558   if (!F)
559     return false;
560 
561   aCI->setCalledFunction(F);
562   DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
563                                       << " with native version");
564   return true;
565 }
566 
567 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
568 // builtin, with appended type size and alignment arguments, where 2 or 4
569 // indicates the original number of arguments. The library has optimized version
570 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
571 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
572 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
573 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
574 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
575                                           FuncInfo &FInfo) {
576   auto *Callee = CI->getCalledFunction();
577   if (!Callee->isDeclaration())
578     return false;
579 
580   assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
581   auto *M = Callee->getParent();
582   auto &Ctx = M->getContext();
583   std::string Name = std::string(Callee->getName());
584   auto NumArg = CI->getNumArgOperands();
585   if (NumArg != 4 && NumArg != 6)
586     return false;
587   auto *PacketSize = CI->getArgOperand(NumArg - 2);
588   auto *PacketAlign = CI->getArgOperand(NumArg - 1);
589   if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
590     return false;
591   unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
592   Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue();
593   if (Alignment != Size)
594     return false;
595 
596   Type *PtrElemTy;
597   if (Size <= 8)
598     PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
599   else
600     PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8);
601   unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
602   auto PtrArg = CI->getArgOperand(PtrArgLoc);
603   unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
604   auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
605 
606   SmallVector<llvm::Type *, 6> ArgTys;
607   for (unsigned I = 0; I != PtrArgLoc; ++I)
608     ArgTys.push_back(CI->getArgOperand(I)->getType());
609   ArgTys.push_back(PtrTy);
610 
611   Name = Name + "_" + std::to_string(Size);
612   auto *FTy = FunctionType::get(Callee->getReturnType(),
613                                 ArrayRef<Type *>(ArgTys), false);
614   AMDGPULibFunc NewLibFunc(Name, FTy);
615   FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
616   if (!F)
617     return false;
618 
619   auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
620   SmallVector<Value *, 6> Args;
621   for (unsigned I = 0; I != PtrArgLoc; ++I)
622     Args.push_back(CI->getArgOperand(I));
623   Args.push_back(BCast);
624 
625   auto *NCI = B.CreateCall(F, Args);
626   NCI->setAttributes(CI->getAttributes());
627   CI->replaceAllUsesWith(NCI);
628   CI->dropAllReferences();
629   CI->eraseFromParent();
630 
631   return true;
632 }
633 
634 // This function returns false if no change; return true otherwise.
635 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
636   this->CI = CI;
637   Function *Callee = CI->getCalledFunction();
638 
639   // Ignore indirect calls.
640   if (Callee == 0) return false;
641 
642   BasicBlock *BB = CI->getParent();
643   LLVMContext &Context = CI->getParent()->getContext();
644   IRBuilder<> B(Context);
645 
646   // Set the builder to the instruction after the call.
647   B.SetInsertPoint(BB, CI->getIterator());
648 
649   // Copy fast flags from the original call.
650   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
651     B.setFastMathFlags(FPOp->getFastMathFlags());
652 
653   switch (Callee->getIntrinsicID()) {
654   default:
655     break;
656   case Intrinsic::amdgcn_wavefrontsize:
657     return !EnablePreLink && fold_wavefrontsize(CI, B);
658   }
659 
660   FuncInfo FInfo;
661   if (!parseFunctionName(Callee->getName(), &FInfo))
662     return false;
663 
664   // Further check the number of arguments to see if they match.
665   if (CI->getNumArgOperands() != FInfo.getNumArgs())
666     return false;
667 
668   if (TDOFold(CI, FInfo))
669     return true;
670 
671   // Under unsafe-math, evaluate calls if possible.
672   // According to Brian Sumner, we can do this for all f32 function calls
673   // using host's double function calls.
674   if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
675     return true;
676 
677   // Specilized optimizations for each function call
678   switch (FInfo.getId()) {
679   case AMDGPULibFunc::EI_RECIP:
680     // skip vector function
681     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
682              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
683             "recip must be an either native or half function");
684     return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
685 
686   case AMDGPULibFunc::EI_DIVIDE:
687     // skip vector function
688     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
689              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
690             "divide must be an either native or half function");
691     return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
692 
693   case AMDGPULibFunc::EI_POW:
694   case AMDGPULibFunc::EI_POWR:
695   case AMDGPULibFunc::EI_POWN:
696     return fold_pow(CI, B, FInfo);
697 
698   case AMDGPULibFunc::EI_ROOTN:
699     // skip vector function
700     return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
701 
702   case AMDGPULibFunc::EI_FMA:
703   case AMDGPULibFunc::EI_MAD:
704   case AMDGPULibFunc::EI_NFMA:
705     // skip vector function
706     return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
707 
708   case AMDGPULibFunc::EI_SQRT:
709     return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
710   case AMDGPULibFunc::EI_COS:
711   case AMDGPULibFunc::EI_SIN:
712     if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
713          getArgType(FInfo) == AMDGPULibFunc::F64)
714         && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
715       return fold_sincos(CI, B, AA);
716 
717     break;
718   case AMDGPULibFunc::EI_READ_PIPE_2:
719   case AMDGPULibFunc::EI_READ_PIPE_4:
720   case AMDGPULibFunc::EI_WRITE_PIPE_2:
721   case AMDGPULibFunc::EI_WRITE_PIPE_4:
722     return fold_read_write_pipe(CI, B, FInfo);
723 
724   default:
725     break;
726   }
727 
728   return false;
729 }
730 
731 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
732   // Table-Driven optimization
733   const TableRef tr = getOptTable(FInfo.getId());
734   if (tr.size==0)
735     return false;
736 
737   int const sz = (int)tr.size;
738   const TableEntry * const ftbl = tr.table;
739   Value *opr0 = CI->getArgOperand(0);
740 
741   if (getVecSize(FInfo) > 1) {
742     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
743       SmallVector<double, 0> DVal;
744       for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
745         ConstantFP *eltval = dyn_cast<ConstantFP>(
746                                CV->getElementAsConstant((unsigned)eltNo));
747         assert(eltval && "Non-FP arguments in math function!");
748         bool found = false;
749         for (int i=0; i < sz; ++i) {
750           if (eltval->isExactlyValue(ftbl[i].input)) {
751             DVal.push_back(ftbl[i].result);
752             found = true;
753             break;
754           }
755         }
756         if (!found) {
757           // This vector constants not handled yet.
758           return false;
759         }
760       }
761       LLVMContext &context = CI->getParent()->getParent()->getContext();
762       Constant *nval;
763       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
764         SmallVector<float, 0> FVal;
765         for (unsigned i = 0; i < DVal.size(); ++i) {
766           FVal.push_back((float)DVal[i]);
767         }
768         ArrayRef<float> tmp(FVal);
769         nval = ConstantDataVector::get(context, tmp);
770       } else { // F64
771         ArrayRef<double> tmp(DVal);
772         nval = ConstantDataVector::get(context, tmp);
773       }
774       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
775       replaceCall(nval);
776       return true;
777     }
778   } else {
779     // Scalar version
780     if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
781       for (int i = 0; i < sz; ++i) {
782         if (CF->isExactlyValue(ftbl[i].input)) {
783           Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
784           LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
785           replaceCall(nval);
786           return true;
787         }
788       }
789     }
790   }
791 
792   return false;
793 }
794 
795 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
796   Module *M = CI->getModule();
797   if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
798       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
799       !HasNative(FInfo.getId()))
800     return false;
801 
802   AMDGPULibFunc nf = FInfo;
803   nf.setPrefix(AMDGPULibFunc::NATIVE);
804   if (FunctionCallee FPExpr = getFunction(M, nf)) {
805     LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
806 
807     CI->setCalledFunction(FPExpr);
808 
809     LLVM_DEBUG(dbgs() << *CI << '\n');
810 
811     return true;
812   }
813   return false;
814 }
815 
816 //  [native_]half_recip(c) ==> 1.0/c
817 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
818                                 const FuncInfo &FInfo) {
819   Value *opr0 = CI->getArgOperand(0);
820   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
821     // Just create a normal div. Later, InstCombine will be able
822     // to compute the divide into a constant (avoid check float infinity
823     // or subnormal at this point).
824     Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
825                                opr0,
826                                "recip2div");
827     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
828     replaceCall(nval);
829     return true;
830   }
831   return false;
832 }
833 
834 //  [native_]half_divide(x, c) ==> x/c
835 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
836                                  const FuncInfo &FInfo) {
837   Value *opr0 = CI->getArgOperand(0);
838   Value *opr1 = CI->getArgOperand(1);
839   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
840   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
841 
842   if ((CF0 && CF1) ||  // both are constants
843       (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
844       // CF1 is constant && f32 divide
845   {
846     Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
847                                 opr1, "__div2recip");
848     Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
849     replaceCall(nval);
850     return true;
851   }
852   return false;
853 }
854 
855 namespace llvm {
856 static double log2(double V) {
857 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
858   return ::log2(V);
859 #else
860   return log(V) / numbers::ln2;
861 #endif
862 }
863 }
864 
865 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
866                               const FuncInfo &FInfo) {
867   assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
868           FInfo.getId() == AMDGPULibFunc::EI_POWR ||
869           FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
870          "fold_pow: encounter a wrong function call");
871 
872   Value *opr0, *opr1;
873   ConstantFP *CF;
874   ConstantInt *CINT;
875   ConstantAggregateZero *CZero;
876   Type *eltType;
877 
878   opr0 = CI->getArgOperand(0);
879   opr1 = CI->getArgOperand(1);
880   CZero = dyn_cast<ConstantAggregateZero>(opr1);
881   if (getVecSize(FInfo) == 1) {
882     eltType = opr0->getType();
883     CF = dyn_cast<ConstantFP>(opr1);
884     CINT = dyn_cast<ConstantInt>(opr1);
885   } else {
886     VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
887     assert(VTy && "Oprand of vector function should be of vectortype");
888     eltType = VTy->getElementType();
889     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
890 
891     // Now, only Handle vector const whose elements have the same value.
892     CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
893     CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
894   }
895 
896   // No unsafe math , no constant argument, do nothing
897   if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
898     return false;
899 
900   // 0x1111111 means that we don't do anything for this call.
901   int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
902 
903   if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
904     //  pow/powr/pown(x, 0) == 1
905     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
906     Constant *cnval = ConstantFP::get(eltType, 1.0);
907     if (getVecSize(FInfo) > 1) {
908       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
909     }
910     replaceCall(cnval);
911     return true;
912   }
913   if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
914     // pow/powr/pown(x, 1.0) = x
915     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
916     replaceCall(opr0);
917     return true;
918   }
919   if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
920     // pow/powr/pown(x, 2.0) = x*x
921     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
922                       << "\n");
923     Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
924     replaceCall(nval);
925     return true;
926   }
927   if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
928     // pow/powr/pown(x, -1.0) = 1.0/x
929     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
930     Constant *cnval = ConstantFP::get(eltType, 1.0);
931     if (getVecSize(FInfo) > 1) {
932       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
933     }
934     Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
935     replaceCall(nval);
936     return true;
937   }
938 
939   Module *M = CI->getModule();
940   if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
941     // pow[r](x, [-]0.5) = sqrt(x)
942     bool issqrt = CF->isExactlyValue(0.5);
943     if (FunctionCallee FPExpr =
944             getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
945                                                 : AMDGPULibFunc::EI_RSQRT,
946                                          FInfo))) {
947       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
948                         << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
949       Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
950                                                         : "__pow2rsqrt");
951       replaceCall(nval);
952       return true;
953     }
954   }
955 
956   if (!isUnsafeMath(CI))
957     return false;
958 
959   // Unsafe Math optimization
960 
961   // Remember that ci_opr1 is set if opr1 is integral
962   if (CF) {
963     double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
964                     ? (double)CF->getValueAPF().convertToFloat()
965                     : CF->getValueAPF().convertToDouble();
966     int ival = (int)dval;
967     if ((double)ival == dval) {
968       ci_opr1 = ival;
969     } else
970       ci_opr1 = 0x11111111;
971   }
972 
973   // pow/powr/pown(x, c) = [1/](x*x*..x); where
974   //   trunc(c) == c && the number of x == c && |c| <= 12
975   unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
976   if (abs_opr1 <= 12) {
977     Constant *cnval;
978     Value *nval;
979     if (abs_opr1 == 0) {
980       cnval = ConstantFP::get(eltType, 1.0);
981       if (getVecSize(FInfo) > 1) {
982         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
983       }
984       nval = cnval;
985     } else {
986       Value *valx2 = nullptr;
987       nval = nullptr;
988       while (abs_opr1 > 0) {
989         valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
990         if (abs_opr1 & 1) {
991           nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
992         }
993         abs_opr1 >>= 1;
994       }
995     }
996 
997     if (ci_opr1 < 0) {
998       cnval = ConstantFP::get(eltType, 1.0);
999       if (getVecSize(FInfo) > 1) {
1000         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1001       }
1002       nval = B.CreateFDiv(cnval, nval, "__1powprod");
1003     }
1004     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1005                       << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
1006                       << ")\n");
1007     replaceCall(nval);
1008     return true;
1009   }
1010 
1011   // powr ---> exp2(y * log2(x))
1012   // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1013   FunctionCallee ExpExpr =
1014       getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
1015   if (!ExpExpr)
1016     return false;
1017 
1018   bool needlog = false;
1019   bool needabs = false;
1020   bool needcopysign = false;
1021   Constant *cnval = nullptr;
1022   if (getVecSize(FInfo) == 1) {
1023     CF = dyn_cast<ConstantFP>(opr0);
1024 
1025     if (CF) {
1026       double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1027                    ? (double)CF->getValueAPF().convertToFloat()
1028                    : CF->getValueAPF().convertToDouble();
1029 
1030       V = log2(std::abs(V));
1031       cnval = ConstantFP::get(eltType, V);
1032       needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1033                      CF->isNegative();
1034     } else {
1035       needlog = true;
1036       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
1037                                (!CF || CF->isNegative());
1038     }
1039   } else {
1040     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1041 
1042     if (!CDV) {
1043       needlog = true;
1044       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1045     } else {
1046       assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1047               "Wrong vector size detected");
1048 
1049       SmallVector<double, 0> DVal;
1050       for (int i=0; i < getVecSize(FInfo); ++i) {
1051         double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1052                      ? (double)CDV->getElementAsFloat(i)
1053                      : CDV->getElementAsDouble(i);
1054         if (V < 0.0) needcopysign = true;
1055         V = log2(std::abs(V));
1056         DVal.push_back(V);
1057       }
1058       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1059         SmallVector<float, 0> FVal;
1060         for (unsigned i=0; i < DVal.size(); ++i) {
1061           FVal.push_back((float)DVal[i]);
1062         }
1063         ArrayRef<float> tmp(FVal);
1064         cnval = ConstantDataVector::get(M->getContext(), tmp);
1065       } else {
1066         ArrayRef<double> tmp(DVal);
1067         cnval = ConstantDataVector::get(M->getContext(), tmp);
1068       }
1069     }
1070   }
1071 
1072   if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1073     // We cannot handle corner cases for a general pow() function, give up
1074     // unless y is a constant integral value. Then proceed as if it were pown.
1075     if (getVecSize(FInfo) == 1) {
1076       if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1077         double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1078                    ? (double)CF->getValueAPF().convertToFloat()
1079                    : CF->getValueAPF().convertToDouble();
1080         if (y != (double)(int64_t)y)
1081           return false;
1082       } else
1083         return false;
1084     } else {
1085       if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1086         for (int i=0; i < getVecSize(FInfo); ++i) {
1087           double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1088                      ? (double)CDV->getElementAsFloat(i)
1089                      : CDV->getElementAsDouble(i);
1090           if (y != (double)(int64_t)y)
1091             return false;
1092         }
1093       } else
1094         return false;
1095     }
1096   }
1097 
1098   Value *nval;
1099   if (needabs) {
1100     FunctionCallee AbsExpr =
1101         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
1102     if (!AbsExpr)
1103       return false;
1104     nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1105   } else {
1106     nval = cnval ? cnval : opr0;
1107   }
1108   if (needlog) {
1109     FunctionCallee LogExpr =
1110         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1111     if (!LogExpr)
1112       return false;
1113     nval = CreateCallEx(B,LogExpr, nval, "__log2");
1114   }
1115 
1116   if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1117     // convert int(32) to fp(f32 or f64)
1118     opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1119   }
1120   nval = B.CreateFMul(opr1, nval, "__ylogx");
1121   nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1122 
1123   if (needcopysign) {
1124     Value *opr_n;
1125     Type* rTy = opr0->getType();
1126     Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1127     Type *nTy = nTyS;
1128     if (const auto *vTy = dyn_cast<FixedVectorType>(rTy))
1129       nTy = FixedVectorType::get(nTyS, vTy);
1130     unsigned size = nTy->getScalarSizeInBits();
1131     opr_n = CI->getArgOperand(1);
1132     if (opr_n->getType()->isIntegerTy())
1133       opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1134     else
1135       opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1136 
1137     Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1138     sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1139     nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1140     nval = B.CreateBitCast(nval, opr0->getType());
1141   }
1142 
1143   LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1144                     << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1145   replaceCall(nval);
1146 
1147   return true;
1148 }
1149 
1150 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1151                                 const FuncInfo &FInfo) {
1152   Value *opr0 = CI->getArgOperand(0);
1153   Value *opr1 = CI->getArgOperand(1);
1154 
1155   ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1156   if (!CINT) {
1157     return false;
1158   }
1159   int ci_opr1 = (int)CINT->getSExtValue();
1160   if (ci_opr1 == 1) {  // rootn(x, 1) = x
1161     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1162     replaceCall(opr0);
1163     return true;
1164   }
1165   if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
1166     Module *M = CI->getModule();
1167     if (FunctionCallee FPExpr =
1168             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1169       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1170       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1171       replaceCall(nval);
1172       return true;
1173     }
1174   } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1175     Module *M = CI->getModule();
1176     if (FunctionCallee FPExpr =
1177             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1178       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1179       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1180       replaceCall(nval);
1181       return true;
1182     }
1183   } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1184     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1185     Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1186                                opr0,
1187                                "__rootn2div");
1188     replaceCall(nval);
1189     return true;
1190   } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
1191     Module *M = CI->getModule();
1192     if (FunctionCallee FPExpr =
1193             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
1194       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1195                         << ")\n");
1196       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1197       replaceCall(nval);
1198       return true;
1199     }
1200   }
1201   return false;
1202 }
1203 
1204 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1205                                   const FuncInfo &FInfo) {
1206   Value *opr0 = CI->getArgOperand(0);
1207   Value *opr1 = CI->getArgOperand(1);
1208   Value *opr2 = CI->getArgOperand(2);
1209 
1210   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1211   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1212   if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1213     // fma/mad(a, b, c) = c if a=0 || b=0
1214     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1215     replaceCall(opr2);
1216     return true;
1217   }
1218   if (CF0 && CF0->isExactlyValue(1.0f)) {
1219     // fma/mad(a, b, c) = b+c if a=1
1220     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1221                       << "\n");
1222     Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1223     replaceCall(nval);
1224     return true;
1225   }
1226   if (CF1 && CF1->isExactlyValue(1.0f)) {
1227     // fma/mad(a, b, c) = a+c if b=1
1228     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1229                       << "\n");
1230     Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1231     replaceCall(nval);
1232     return true;
1233   }
1234   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1235     if (CF->isZero()) {
1236       // fma/mad(a, b, c) = a*b if c=0
1237       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1238                         << *opr1 << "\n");
1239       Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1240       replaceCall(nval);
1241       return true;
1242     }
1243   }
1244 
1245   return false;
1246 }
1247 
1248 // Get a scalar native builtin signle argument FP function
1249 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1250                                                  const FuncInfo &FInfo) {
1251   if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1252     return nullptr;
1253   FuncInfo nf = FInfo;
1254   nf.setPrefix(AMDGPULibFunc::NATIVE);
1255   return getFunction(M, nf);
1256 }
1257 
1258 // fold sqrt -> native_sqrt (x)
1259 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1260                                const FuncInfo &FInfo) {
1261   if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1262       (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1263     if (FunctionCallee FPExpr = getNativeFunction(
1264             CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1265       Value *opr0 = CI->getArgOperand(0);
1266       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1267                         << "sqrt(" << *opr0 << ")\n");
1268       Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1269       replaceCall(nval);
1270       return true;
1271     }
1272   }
1273   return false;
1274 }
1275 
1276 // fold sin, cos -> sincos.
1277 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1278                                  AliasAnalysis *AA) {
1279   AMDGPULibFunc fInfo;
1280   if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1281     return false;
1282 
1283   assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1284          fInfo.getId() == AMDGPULibFunc::EI_COS);
1285   bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1286 
1287   Value *CArgVal = CI->getArgOperand(0);
1288   BasicBlock * const CBB = CI->getParent();
1289 
1290   int const MaxScan = 30;
1291 
1292   { // fold in load value.
1293     LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1294     if (LI && LI->getParent() == CBB) {
1295       BasicBlock::iterator BBI = LI->getIterator();
1296       Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1297       if (AvailableVal) {
1298         CArgVal->replaceAllUsesWith(AvailableVal);
1299         if (CArgVal->getNumUses() == 0)
1300           LI->eraseFromParent();
1301         CArgVal = CI->getArgOperand(0);
1302       }
1303     }
1304   }
1305 
1306   Module *M = CI->getModule();
1307   fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1308   std::string const PairName = fInfo.mangle();
1309 
1310   CallInst *UI = nullptr;
1311   for (User* U : CArgVal->users()) {
1312     CallInst *XI = dyn_cast_or_null<CallInst>(U);
1313     if (!XI || XI == CI || XI->getParent() != CBB)
1314       continue;
1315 
1316     Function *UCallee = XI->getCalledFunction();
1317     if (!UCallee || !UCallee->getName().equals(PairName))
1318       continue;
1319 
1320     BasicBlock::iterator BBI = CI->getIterator();
1321     if (BBI == CI->getParent()->begin())
1322       break;
1323     --BBI;
1324     for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1325       if (cast<Instruction>(BBI) == XI) {
1326         UI = XI;
1327         break;
1328       }
1329     }
1330     if (UI) break;
1331   }
1332 
1333   if (!UI) return false;
1334 
1335   // Merge the sin and cos.
1336 
1337   // for OpenCL 2.0 we have only generic implementation of sincos
1338   // function.
1339   AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1340   nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
1341   FunctionCallee Fsincos = getFunction(M, nf);
1342   if (!Fsincos) return false;
1343 
1344   BasicBlock::iterator ItOld = B.GetInsertPoint();
1345   AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1346   B.SetInsertPoint(UI);
1347 
1348   Value *P = Alloc;
1349   Type *PTy = Fsincos.getFunctionType()->getParamType(1);
1350   // The allocaInst allocates the memory in private address space. This need
1351   // to be bitcasted to point to the address space of cos pointer type.
1352   // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1353   if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
1354     P = B.CreateAddrSpaceCast(Alloc, PTy);
1355   CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1356 
1357   LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1358                     << *Call << "\n");
1359 
1360   if (!isSin) { // CI->cos, UI->sin
1361     B.SetInsertPoint(&*ItOld);
1362     UI->replaceAllUsesWith(&*Call);
1363     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1364     CI->replaceAllUsesWith(Reload);
1365     UI->eraseFromParent();
1366     CI->eraseFromParent();
1367   } else { // CI->sin, UI->cos
1368     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1369     UI->replaceAllUsesWith(Reload);
1370     CI->replaceAllUsesWith(Call);
1371     UI->eraseFromParent();
1372     CI->eraseFromParent();
1373   }
1374   return true;
1375 }
1376 
1377 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) {
1378   if (!TM)
1379     return false;
1380 
1381   StringRef CPU = TM->getTargetCPU();
1382   StringRef Features = TM->getTargetFeatureString();
1383   if ((CPU.empty() || CPU.equals_lower("generic")) &&
1384       (Features.empty() ||
1385        Features.find_lower("wavefrontsize") == StringRef::npos))
1386     return false;
1387 
1388   Function *F = CI->getParent()->getParent();
1389   const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F);
1390   unsigned N = ST.getWavefrontSize();
1391 
1392   LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with "
1393                << N << "\n");
1394 
1395   CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N));
1396   CI->eraseFromParent();
1397   return true;
1398 }
1399 
1400 // Get insertion point at entry.
1401 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1402   Function * Func = UI->getParent()->getParent();
1403   BasicBlock * BB = &Func->getEntryBlock();
1404   assert(BB && "Entry block not found!");
1405   BasicBlock::iterator ItNew = BB->begin();
1406   return ItNew;
1407 }
1408 
1409 // Insert a AllocsInst at the beginning of function entry block.
1410 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1411                                          const char *prefix) {
1412   BasicBlock::iterator ItNew = getEntryIns(UI);
1413   Function *UCallee = UI->getCalledFunction();
1414   Type *RetType = UCallee->getReturnType();
1415   B.SetInsertPoint(&*ItNew);
1416   AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
1417     std::string(prefix) + UI->getName());
1418   Alloc->setAlignment(
1419       Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType)));
1420   return Alloc;
1421 }
1422 
1423 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
1424                                             double& Res0, double& Res1,
1425                                             Constant *copr0, Constant *copr1,
1426                                             Constant *copr2) {
1427   // By default, opr0/opr1/opr3 holds values of float/double type.
1428   // If they are not float/double, each function has to its
1429   // operand separately.
1430   double opr0=0.0, opr1=0.0, opr2=0.0;
1431   ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1432   ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1433   ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1434   if (fpopr0) {
1435     opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1436              ? fpopr0->getValueAPF().convertToDouble()
1437              : (double)fpopr0->getValueAPF().convertToFloat();
1438   }
1439 
1440   if (fpopr1) {
1441     opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1442              ? fpopr1->getValueAPF().convertToDouble()
1443              : (double)fpopr1->getValueAPF().convertToFloat();
1444   }
1445 
1446   if (fpopr2) {
1447     opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1448              ? fpopr2->getValueAPF().convertToDouble()
1449              : (double)fpopr2->getValueAPF().convertToFloat();
1450   }
1451 
1452   switch (FInfo.getId()) {
1453   default : return false;
1454 
1455   case AMDGPULibFunc::EI_ACOS:
1456     Res0 = acos(opr0);
1457     return true;
1458 
1459   case AMDGPULibFunc::EI_ACOSH:
1460     // acosh(x) == log(x + sqrt(x*x - 1))
1461     Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1462     return true;
1463 
1464   case AMDGPULibFunc::EI_ACOSPI:
1465     Res0 = acos(opr0) / MATH_PI;
1466     return true;
1467 
1468   case AMDGPULibFunc::EI_ASIN:
1469     Res0 = asin(opr0);
1470     return true;
1471 
1472   case AMDGPULibFunc::EI_ASINH:
1473     // asinh(x) == log(x + sqrt(x*x + 1))
1474     Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1475     return true;
1476 
1477   case AMDGPULibFunc::EI_ASINPI:
1478     Res0 = asin(opr0) / MATH_PI;
1479     return true;
1480 
1481   case AMDGPULibFunc::EI_ATAN:
1482     Res0 = atan(opr0);
1483     return true;
1484 
1485   case AMDGPULibFunc::EI_ATANH:
1486     // atanh(x) == (log(x+1) - log(x-1))/2;
1487     Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1488     return true;
1489 
1490   case AMDGPULibFunc::EI_ATANPI:
1491     Res0 = atan(opr0) / MATH_PI;
1492     return true;
1493 
1494   case AMDGPULibFunc::EI_CBRT:
1495     Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1496     return true;
1497 
1498   case AMDGPULibFunc::EI_COS:
1499     Res0 = cos(opr0);
1500     return true;
1501 
1502   case AMDGPULibFunc::EI_COSH:
1503     Res0 = cosh(opr0);
1504     return true;
1505 
1506   case AMDGPULibFunc::EI_COSPI:
1507     Res0 = cos(MATH_PI * opr0);
1508     return true;
1509 
1510   case AMDGPULibFunc::EI_EXP:
1511     Res0 = exp(opr0);
1512     return true;
1513 
1514   case AMDGPULibFunc::EI_EXP2:
1515     Res0 = pow(2.0, opr0);
1516     return true;
1517 
1518   case AMDGPULibFunc::EI_EXP10:
1519     Res0 = pow(10.0, opr0);
1520     return true;
1521 
1522   case AMDGPULibFunc::EI_EXPM1:
1523     Res0 = exp(opr0) - 1.0;
1524     return true;
1525 
1526   case AMDGPULibFunc::EI_LOG:
1527     Res0 = log(opr0);
1528     return true;
1529 
1530   case AMDGPULibFunc::EI_LOG2:
1531     Res0 = log(opr0) / log(2.0);
1532     return true;
1533 
1534   case AMDGPULibFunc::EI_LOG10:
1535     Res0 = log(opr0) / log(10.0);
1536     return true;
1537 
1538   case AMDGPULibFunc::EI_RSQRT:
1539     Res0 = 1.0 / sqrt(opr0);
1540     return true;
1541 
1542   case AMDGPULibFunc::EI_SIN:
1543     Res0 = sin(opr0);
1544     return true;
1545 
1546   case AMDGPULibFunc::EI_SINH:
1547     Res0 = sinh(opr0);
1548     return true;
1549 
1550   case AMDGPULibFunc::EI_SINPI:
1551     Res0 = sin(MATH_PI * opr0);
1552     return true;
1553 
1554   case AMDGPULibFunc::EI_SQRT:
1555     Res0 = sqrt(opr0);
1556     return true;
1557 
1558   case AMDGPULibFunc::EI_TAN:
1559     Res0 = tan(opr0);
1560     return true;
1561 
1562   case AMDGPULibFunc::EI_TANH:
1563     Res0 = tanh(opr0);
1564     return true;
1565 
1566   case AMDGPULibFunc::EI_TANPI:
1567     Res0 = tan(MATH_PI * opr0);
1568     return true;
1569 
1570   case AMDGPULibFunc::EI_RECIP:
1571     Res0 = 1.0 / opr0;
1572     return true;
1573 
1574   // two-arg functions
1575   case AMDGPULibFunc::EI_DIVIDE:
1576     Res0 = opr0 / opr1;
1577     return true;
1578 
1579   case AMDGPULibFunc::EI_POW:
1580   case AMDGPULibFunc::EI_POWR:
1581     Res0 = pow(opr0, opr1);
1582     return true;
1583 
1584   case AMDGPULibFunc::EI_POWN: {
1585     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1586       double val = (double)iopr1->getSExtValue();
1587       Res0 = pow(opr0, val);
1588       return true;
1589     }
1590     return false;
1591   }
1592 
1593   case AMDGPULibFunc::EI_ROOTN: {
1594     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1595       double val = (double)iopr1->getSExtValue();
1596       Res0 = pow(opr0, 1.0 / val);
1597       return true;
1598     }
1599     return false;
1600   }
1601 
1602   // with ptr arg
1603   case AMDGPULibFunc::EI_SINCOS:
1604     Res0 = sin(opr0);
1605     Res1 = cos(opr0);
1606     return true;
1607 
1608   // three-arg functions
1609   case AMDGPULibFunc::EI_FMA:
1610   case AMDGPULibFunc::EI_MAD:
1611     Res0 = opr0 * opr1 + opr2;
1612     return true;
1613   }
1614 
1615   return false;
1616 }
1617 
1618 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
1619   int numArgs = (int)aCI->getNumArgOperands();
1620   if (numArgs > 3)
1621     return false;
1622 
1623   Constant *copr0 = nullptr;
1624   Constant *copr1 = nullptr;
1625   Constant *copr2 = nullptr;
1626   if (numArgs > 0) {
1627     if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1628       return false;
1629   }
1630 
1631   if (numArgs > 1) {
1632     if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1633       if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1634         return false;
1635     }
1636   }
1637 
1638   if (numArgs > 2) {
1639     if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1640       return false;
1641   }
1642 
1643   // At this point, all arguments to aCI are constants.
1644 
1645   // max vector size is 16, and sincos will generate two results.
1646   double DVal0[16], DVal1[16];
1647   bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1648   if (getVecSize(FInfo) == 1) {
1649     if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1650                                 DVal1[0], copr0, copr1, copr2)) {
1651       return false;
1652     }
1653   } else {
1654     ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1655     ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1656     ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1657     for (int i=0; i < getVecSize(FInfo); ++i) {
1658       Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1659       Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1660       Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1661       if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1662                                   DVal1[i], celt0, celt1, celt2)) {
1663         return false;
1664       }
1665     }
1666   }
1667 
1668   LLVMContext &context = CI->getParent()->getParent()->getContext();
1669   Constant *nval0, *nval1;
1670   if (getVecSize(FInfo) == 1) {
1671     nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1672     if (hasTwoResults)
1673       nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1674   } else {
1675     if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1676       SmallVector <float, 0> FVal0, FVal1;
1677       for (int i=0; i < getVecSize(FInfo); ++i)
1678         FVal0.push_back((float)DVal0[i]);
1679       ArrayRef<float> tmp0(FVal0);
1680       nval0 = ConstantDataVector::get(context, tmp0);
1681       if (hasTwoResults) {
1682         for (int i=0; i < getVecSize(FInfo); ++i)
1683           FVal1.push_back((float)DVal1[i]);
1684         ArrayRef<float> tmp1(FVal1);
1685         nval1 = ConstantDataVector::get(context, tmp1);
1686       }
1687     } else {
1688       ArrayRef<double> tmp0(DVal0);
1689       nval0 = ConstantDataVector::get(context, tmp0);
1690       if (hasTwoResults) {
1691         ArrayRef<double> tmp1(DVal1);
1692         nval1 = ConstantDataVector::get(context, tmp1);
1693       }
1694     }
1695   }
1696 
1697   if (hasTwoResults) {
1698     // sincos
1699     assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1700            "math function with ptr arg not supported yet");
1701     new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1702   }
1703 
1704   replaceCall(nval0);
1705   return true;
1706 }
1707 
1708 // Public interface to the Simplify LibCalls pass.
1709 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) {
1710   return new AMDGPUSimplifyLibCalls(TM);
1711 }
1712 
1713 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1714   return new AMDGPUUseNativeCalls();
1715 }
1716 
1717 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1718   if (skipFunction(F))
1719     return false;
1720 
1721   bool Changed = false;
1722   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1723 
1724   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1725              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1726 
1727   for (auto &BB : F) {
1728     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1729       // Ignore non-calls.
1730       CallInst *CI = dyn_cast<CallInst>(I);
1731       ++I;
1732       // Ignore intrinsics that do not become real instructions.
1733       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1734         continue;
1735 
1736       // Ignore indirect calls.
1737       Function *Callee = CI->getCalledFunction();
1738       if (Callee == 0) continue;
1739 
1740       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1741                  dbgs().flush());
1742       if(Simplifier.fold(CI, AA))
1743         Changed = true;
1744     }
1745   }
1746   return Changed;
1747 }
1748 
1749 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1750   if (skipFunction(F) || UseNative.empty())
1751     return false;
1752 
1753   bool Changed = false;
1754   for (auto &BB : F) {
1755     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1756       // Ignore non-calls.
1757       CallInst *CI = dyn_cast<CallInst>(I);
1758       ++I;
1759       if (!CI) continue;
1760 
1761       // Ignore indirect calls.
1762       Function *Callee = CI->getCalledFunction();
1763       if (Callee == 0) continue;
1764 
1765       if(Simplifier.useNative(CI))
1766         Changed = true;
1767     }
1768   }
1769   return Changed;
1770 }
1771