1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPULibFunc.h" 16 #include "GCNSubtarget.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/IntrinsicsAMDGPU.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Target/TargetMachine.h" 23 24 #define DEBUG_TYPE "amdgpu-simplifylib" 25 26 using namespace llvm; 27 28 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 29 cl::desc("Enable pre-link mode optimizations"), 30 cl::init(false), 31 cl::Hidden); 32 33 static cl::list<std::string> UseNative("amdgpu-use-native", 34 cl::desc("Comma separated list of functions to replace with native, or all"), 35 cl::CommaSeparated, cl::ValueOptional, 36 cl::Hidden); 37 38 #define MATH_PI numbers::pi 39 #define MATH_E numbers::e 40 #define MATH_SQRT2 numbers::sqrt2 41 #define MATH_SQRT1_2 numbers::inv_sqrt2 42 43 namespace llvm { 44 45 class AMDGPULibCalls { 46 private: 47 48 typedef llvm::AMDGPULibFunc FuncInfo; 49 50 const TargetMachine *TM; 51 52 // -fuse-native. 53 bool AllNative = false; 54 55 bool useNativeFunc(const StringRef F) const; 56 57 // Return a pointer (pointer expr) to the function if function definition with 58 // "FuncName" exists. It may create a new function prototype in pre-link mode. 59 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 60 61 // Replace a normal function with its native version. 62 bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); 63 64 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo); 65 66 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 67 68 /* Specialized optimizations */ 69 70 // recip (half or native) 71 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 72 73 // divide (half or native) 74 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 75 76 // pow/powr/pown 77 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 78 79 // rootn 80 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 81 82 // fma/mad 83 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 84 85 // -fuse-native for sincos 86 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 87 88 // evaluate calls if calls' arguments are constants. 89 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double& Res0, 90 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); 91 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo); 92 93 // exp 94 bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 95 96 // exp2 97 bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 98 99 // exp10 100 bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 101 102 // log 103 bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 104 105 // log2 106 bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 107 108 // log10 109 bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 110 111 // sqrt 112 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 113 114 // sin/cos 115 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); 116 117 // __read_pipe/__write_pipe 118 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 119 const FuncInfo &FInfo); 120 121 // llvm.amdgcn.wavefrontsize 122 bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B); 123 124 // Get insertion point at entry. 125 BasicBlock::iterator getEntryIns(CallInst * UI); 126 // Insert an Alloc instruction. 127 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); 128 // Get a scalar native builtin single argument FP function 129 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 130 131 protected: 132 CallInst *CI; 133 134 bool isUnsafeMath(const CallInst *CI) const; 135 136 void replaceCall(Value *With) { 137 CI->replaceAllUsesWith(With); 138 CI->eraseFromParent(); 139 } 140 141 public: 142 AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {} 143 144 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); 145 146 void initNativeFuncs(); 147 148 // Replace a normal math function call with that native version 149 bool useNative(CallInst *CI); 150 }; 151 152 } // end llvm namespace 153 154 namespace { 155 156 class AMDGPUSimplifyLibCalls : public FunctionPass { 157 158 AMDGPULibCalls Simplifier; 159 160 public: 161 static char ID; // Pass identification 162 163 AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr) 164 : FunctionPass(ID), Simplifier(TM) { 165 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 166 } 167 168 void getAnalysisUsage(AnalysisUsage &AU) const override { 169 AU.addRequired<AAResultsWrapperPass>(); 170 } 171 172 bool runOnFunction(Function &M) override; 173 }; 174 175 class AMDGPUUseNativeCalls : public FunctionPass { 176 177 AMDGPULibCalls Simplifier; 178 179 public: 180 static char ID; // Pass identification 181 182 AMDGPUUseNativeCalls() : FunctionPass(ID) { 183 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); 184 Simplifier.initNativeFuncs(); 185 } 186 187 bool runOnFunction(Function &F) override; 188 }; 189 190 } // end anonymous namespace. 191 192 char AMDGPUSimplifyLibCalls::ID = 0; 193 char AMDGPUUseNativeCalls::ID = 0; 194 195 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 196 "Simplify well-known AMD library calls", false, false) 197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 198 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 199 "Simplify well-known AMD library calls", false, false) 200 201 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", 202 "Replace builtin math calls with that native versions.", 203 false, false) 204 205 template <typename IRB> 206 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 207 const Twine &Name = "") { 208 CallInst *R = B.CreateCall(Callee, Arg, Name); 209 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 210 R->setCallingConv(F->getCallingConv()); 211 return R; 212 } 213 214 template <typename IRB> 215 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 216 Value *Arg2, const Twine &Name = "") { 217 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 218 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 219 R->setCallingConv(F->getCallingConv()); 220 return R; 221 } 222 223 // Data structures for table-driven optimizations. 224 // FuncTbl works for both f32 and f64 functions with 1 input argument 225 226 struct TableEntry { 227 double result; 228 double input; 229 }; 230 231 /* a list of {result, input} */ 232 static const TableEntry tbl_acos[] = { 233 {MATH_PI / 2.0, 0.0}, 234 {MATH_PI / 2.0, -0.0}, 235 {0.0, 1.0}, 236 {MATH_PI, -1.0} 237 }; 238 static const TableEntry tbl_acosh[] = { 239 {0.0, 1.0} 240 }; 241 static const TableEntry tbl_acospi[] = { 242 {0.5, 0.0}, 243 {0.5, -0.0}, 244 {0.0, 1.0}, 245 {1.0, -1.0} 246 }; 247 static const TableEntry tbl_asin[] = { 248 {0.0, 0.0}, 249 {-0.0, -0.0}, 250 {MATH_PI / 2.0, 1.0}, 251 {-MATH_PI / 2.0, -1.0} 252 }; 253 static const TableEntry tbl_asinh[] = { 254 {0.0, 0.0}, 255 {-0.0, -0.0} 256 }; 257 static const TableEntry tbl_asinpi[] = { 258 {0.0, 0.0}, 259 {-0.0, -0.0}, 260 {0.5, 1.0}, 261 {-0.5, -1.0} 262 }; 263 static const TableEntry tbl_atan[] = { 264 {0.0, 0.0}, 265 {-0.0, -0.0}, 266 {MATH_PI / 4.0, 1.0}, 267 {-MATH_PI / 4.0, -1.0} 268 }; 269 static const TableEntry tbl_atanh[] = { 270 {0.0, 0.0}, 271 {-0.0, -0.0} 272 }; 273 static const TableEntry tbl_atanpi[] = { 274 {0.0, 0.0}, 275 {-0.0, -0.0}, 276 {0.25, 1.0}, 277 {-0.25, -1.0} 278 }; 279 static const TableEntry tbl_cbrt[] = { 280 {0.0, 0.0}, 281 {-0.0, -0.0}, 282 {1.0, 1.0}, 283 {-1.0, -1.0}, 284 }; 285 static const TableEntry tbl_cos[] = { 286 {1.0, 0.0}, 287 {1.0, -0.0} 288 }; 289 static const TableEntry tbl_cosh[] = { 290 {1.0, 0.0}, 291 {1.0, -0.0} 292 }; 293 static const TableEntry tbl_cospi[] = { 294 {1.0, 0.0}, 295 {1.0, -0.0} 296 }; 297 static const TableEntry tbl_erfc[] = { 298 {1.0, 0.0}, 299 {1.0, -0.0} 300 }; 301 static const TableEntry tbl_erf[] = { 302 {0.0, 0.0}, 303 {-0.0, -0.0} 304 }; 305 static const TableEntry tbl_exp[] = { 306 {1.0, 0.0}, 307 {1.0, -0.0}, 308 {MATH_E, 1.0} 309 }; 310 static const TableEntry tbl_exp2[] = { 311 {1.0, 0.0}, 312 {1.0, -0.0}, 313 {2.0, 1.0} 314 }; 315 static const TableEntry tbl_exp10[] = { 316 {1.0, 0.0}, 317 {1.0, -0.0}, 318 {10.0, 1.0} 319 }; 320 static const TableEntry tbl_expm1[] = { 321 {0.0, 0.0}, 322 {-0.0, -0.0} 323 }; 324 static const TableEntry tbl_log[] = { 325 {0.0, 1.0}, 326 {1.0, MATH_E} 327 }; 328 static const TableEntry tbl_log2[] = { 329 {0.0, 1.0}, 330 {1.0, 2.0} 331 }; 332 static const TableEntry tbl_log10[] = { 333 {0.0, 1.0}, 334 {1.0, 10.0} 335 }; 336 static const TableEntry tbl_rsqrt[] = { 337 {1.0, 1.0}, 338 {MATH_SQRT1_2, 2.0} 339 }; 340 static const TableEntry tbl_sin[] = { 341 {0.0, 0.0}, 342 {-0.0, -0.0} 343 }; 344 static const TableEntry tbl_sinh[] = { 345 {0.0, 0.0}, 346 {-0.0, -0.0} 347 }; 348 static const TableEntry tbl_sinpi[] = { 349 {0.0, 0.0}, 350 {-0.0, -0.0} 351 }; 352 static const TableEntry tbl_sqrt[] = { 353 {0.0, 0.0}, 354 {1.0, 1.0}, 355 {MATH_SQRT2, 2.0} 356 }; 357 static const TableEntry tbl_tan[] = { 358 {0.0, 0.0}, 359 {-0.0, -0.0} 360 }; 361 static const TableEntry tbl_tanh[] = { 362 {0.0, 0.0}, 363 {-0.0, -0.0} 364 }; 365 static const TableEntry tbl_tanpi[] = { 366 {0.0, 0.0}, 367 {-0.0, -0.0} 368 }; 369 static const TableEntry tbl_tgamma[] = { 370 {1.0, 1.0}, 371 {1.0, 2.0}, 372 {2.0, 3.0}, 373 {6.0, 4.0} 374 }; 375 376 static bool HasNative(AMDGPULibFunc::EFuncId id) { 377 switch(id) { 378 case AMDGPULibFunc::EI_DIVIDE: 379 case AMDGPULibFunc::EI_COS: 380 case AMDGPULibFunc::EI_EXP: 381 case AMDGPULibFunc::EI_EXP2: 382 case AMDGPULibFunc::EI_EXP10: 383 case AMDGPULibFunc::EI_LOG: 384 case AMDGPULibFunc::EI_LOG2: 385 case AMDGPULibFunc::EI_LOG10: 386 case AMDGPULibFunc::EI_POWR: 387 case AMDGPULibFunc::EI_RECIP: 388 case AMDGPULibFunc::EI_RSQRT: 389 case AMDGPULibFunc::EI_SIN: 390 case AMDGPULibFunc::EI_SINCOS: 391 case AMDGPULibFunc::EI_SQRT: 392 case AMDGPULibFunc::EI_TAN: 393 return true; 394 default:; 395 } 396 return false; 397 } 398 399 struct TableRef { 400 size_t size; 401 const TableEntry *table; // variable size: from 0 to (size - 1) 402 403 TableRef() : size(0), table(nullptr) {} 404 405 template <size_t N> 406 TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} 407 }; 408 409 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 410 switch(id) { 411 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 412 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 413 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 414 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 415 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 416 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 417 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 418 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 419 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 420 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 421 case AMDGPULibFunc::EI_NCOS: 422 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 423 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 424 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 425 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 426 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 427 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 428 case AMDGPULibFunc::EI_NEXP2: 429 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 430 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 431 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 432 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 433 case AMDGPULibFunc::EI_NLOG2: 434 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 435 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 436 case AMDGPULibFunc::EI_NRSQRT: 437 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 438 case AMDGPULibFunc::EI_NSIN: 439 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 440 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 441 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 442 case AMDGPULibFunc::EI_NSQRT: 443 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 444 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 445 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 446 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 447 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 448 default:; 449 } 450 return TableRef(); 451 } 452 453 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 454 return FInfo.getLeads()[0].VectorSize; 455 } 456 457 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 458 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 459 } 460 461 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 462 // If we are doing PreLinkOpt, the function is external. So it is safe to 463 // use getOrInsertFunction() at this stage. 464 465 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 466 : AMDGPULibFunc::getFunction(M, fInfo); 467 } 468 469 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName, 470 FuncInfo &FInfo) { 471 return AMDGPULibFunc::parse(FMangledName, FInfo); 472 } 473 474 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { 475 if (auto Op = dyn_cast<FPMathOperator>(CI)) 476 if (Op->isFast()) 477 return true; 478 const Function *F = CI->getParent()->getParent(); 479 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 480 return Attr.getValueAsBool(); 481 } 482 483 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 484 return AllNative || llvm::is_contained(UseNative, F); 485 } 486 487 void AMDGPULibCalls::initNativeFuncs() { 488 AllNative = useNativeFunc("all") || 489 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 490 UseNative.begin()->empty()); 491 } 492 493 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 494 bool native_sin = useNativeFunc("sin"); 495 bool native_cos = useNativeFunc("cos"); 496 497 if (native_sin && native_cos) { 498 Module *M = aCI->getModule(); 499 Value *opr0 = aCI->getArgOperand(0); 500 501 AMDGPULibFunc nf; 502 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 503 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 504 505 nf.setPrefix(AMDGPULibFunc::NATIVE); 506 nf.setId(AMDGPULibFunc::EI_SIN); 507 FunctionCallee sinExpr = getFunction(M, nf); 508 509 nf.setPrefix(AMDGPULibFunc::NATIVE); 510 nf.setId(AMDGPULibFunc::EI_COS); 511 FunctionCallee cosExpr = getFunction(M, nf); 512 if (sinExpr && cosExpr) { 513 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 514 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 515 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 516 517 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 518 << " with native version of sin/cos"); 519 520 replaceCall(sinval); 521 return true; 522 } 523 } 524 return false; 525 } 526 527 bool AMDGPULibCalls::useNative(CallInst *aCI) { 528 CI = aCI; 529 Function *Callee = aCI->getCalledFunction(); 530 531 FuncInfo FInfo; 532 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() || 533 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 534 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 535 !(AllNative || useNativeFunc(FInfo.getName()))) { 536 return false; 537 } 538 539 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 540 return sincosUseNative(aCI, FInfo); 541 542 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 543 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 544 if (!F) 545 return false; 546 547 aCI->setCalledFunction(F); 548 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 549 << " with native version"); 550 return true; 551 } 552 553 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 554 // builtin, with appended type size and alignment arguments, where 2 or 4 555 // indicates the original number of arguments. The library has optimized version 556 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 557 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 558 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 559 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 560 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 561 const FuncInfo &FInfo) { 562 auto *Callee = CI->getCalledFunction(); 563 if (!Callee->isDeclaration()) 564 return false; 565 566 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 567 auto *M = Callee->getParent(); 568 auto &Ctx = M->getContext(); 569 std::string Name = std::string(Callee->getName()); 570 auto NumArg = CI->arg_size(); 571 if (NumArg != 4 && NumArg != 6) 572 return false; 573 auto *PacketSize = CI->getArgOperand(NumArg - 2); 574 auto *PacketAlign = CI->getArgOperand(NumArg - 1); 575 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) 576 return false; 577 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); 578 Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue(); 579 if (Alignment != Size) 580 return false; 581 582 Type *PtrElemTy; 583 if (Size <= 8) 584 PtrElemTy = Type::getIntNTy(Ctx, Size * 8); 585 else 586 PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8); 587 unsigned PtrArgLoc = CI->arg_size() - 3; 588 auto PtrArg = CI->getArgOperand(PtrArgLoc); 589 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); 590 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); 591 592 SmallVector<llvm::Type *, 6> ArgTys; 593 for (unsigned I = 0; I != PtrArgLoc; ++I) 594 ArgTys.push_back(CI->getArgOperand(I)->getType()); 595 ArgTys.push_back(PtrTy); 596 597 Name = Name + "_" + std::to_string(Size); 598 auto *FTy = FunctionType::get(Callee->getReturnType(), 599 ArrayRef<Type *>(ArgTys), false); 600 AMDGPULibFunc NewLibFunc(Name, FTy); 601 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 602 if (!F) 603 return false; 604 605 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); 606 SmallVector<Value *, 6> Args; 607 for (unsigned I = 0; I != PtrArgLoc; ++I) 608 Args.push_back(CI->getArgOperand(I)); 609 Args.push_back(BCast); 610 611 auto *NCI = B.CreateCall(F, Args); 612 NCI->setAttributes(CI->getAttributes()); 613 CI->replaceAllUsesWith(NCI); 614 CI->dropAllReferences(); 615 CI->eraseFromParent(); 616 617 return true; 618 } 619 620 // This function returns false if no change; return true otherwise. 621 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { 622 this->CI = CI; 623 Function *Callee = CI->getCalledFunction(); 624 625 // Ignore indirect calls. 626 if (Callee == nullptr) 627 return false; 628 629 BasicBlock *BB = CI->getParent(); 630 LLVMContext &Context = CI->getParent()->getContext(); 631 IRBuilder<> B(Context); 632 633 // Set the builder to the instruction after the call. 634 B.SetInsertPoint(BB, CI->getIterator()); 635 636 // Copy fast flags from the original call. 637 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) 638 B.setFastMathFlags(FPOp->getFastMathFlags()); 639 640 switch (Callee->getIntrinsicID()) { 641 default: 642 break; 643 case Intrinsic::amdgcn_wavefrontsize: 644 return !EnablePreLink && fold_wavefrontsize(CI, B); 645 } 646 647 FuncInfo FInfo; 648 if (!parseFunctionName(Callee->getName(), FInfo)) 649 return false; 650 651 // Further check the number of arguments to see if they match. 652 if (CI->arg_size() != FInfo.getNumArgs()) 653 return false; 654 655 if (TDOFold(CI, FInfo)) 656 return true; 657 658 // Under unsafe-math, evaluate calls if possible. 659 // According to Brian Sumner, we can do this for all f32 function calls 660 // using host's double function calls. 661 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) 662 return true; 663 664 // Specialized optimizations for each function call 665 switch (FInfo.getId()) { 666 case AMDGPULibFunc::EI_RECIP: 667 // skip vector function 668 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 669 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 670 "recip must be an either native or half function"); 671 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); 672 673 case AMDGPULibFunc::EI_DIVIDE: 674 // skip vector function 675 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 676 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 677 "divide must be an either native or half function"); 678 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); 679 680 case AMDGPULibFunc::EI_POW: 681 case AMDGPULibFunc::EI_POWR: 682 case AMDGPULibFunc::EI_POWN: 683 return fold_pow(CI, B, FInfo); 684 685 case AMDGPULibFunc::EI_ROOTN: 686 // skip vector function 687 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); 688 689 case AMDGPULibFunc::EI_FMA: 690 case AMDGPULibFunc::EI_MAD: 691 case AMDGPULibFunc::EI_NFMA: 692 // skip vector function 693 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); 694 695 case AMDGPULibFunc::EI_SQRT: 696 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); 697 case AMDGPULibFunc::EI_COS: 698 case AMDGPULibFunc::EI_SIN: 699 if ((getArgType(FInfo) == AMDGPULibFunc::F32 || 700 getArgType(FInfo) == AMDGPULibFunc::F64) 701 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) 702 return fold_sincos(CI, B, AA); 703 704 break; 705 case AMDGPULibFunc::EI_READ_PIPE_2: 706 case AMDGPULibFunc::EI_READ_PIPE_4: 707 case AMDGPULibFunc::EI_WRITE_PIPE_2: 708 case AMDGPULibFunc::EI_WRITE_PIPE_4: 709 return fold_read_write_pipe(CI, B, FInfo); 710 711 default: 712 break; 713 } 714 715 return false; 716 } 717 718 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 719 // Table-Driven optimization 720 const TableRef tr = getOptTable(FInfo.getId()); 721 if (tr.size==0) 722 return false; 723 724 int const sz = (int)tr.size; 725 const TableEntry * const ftbl = tr.table; 726 Value *opr0 = CI->getArgOperand(0); 727 728 if (getVecSize(FInfo) > 1) { 729 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 730 SmallVector<double, 0> DVal; 731 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 732 ConstantFP *eltval = dyn_cast<ConstantFP>( 733 CV->getElementAsConstant((unsigned)eltNo)); 734 assert(eltval && "Non-FP arguments in math function!"); 735 bool found = false; 736 for (int i=0; i < sz; ++i) { 737 if (eltval->isExactlyValue(ftbl[i].input)) { 738 DVal.push_back(ftbl[i].result); 739 found = true; 740 break; 741 } 742 } 743 if (!found) { 744 // This vector constants not handled yet. 745 return false; 746 } 747 } 748 LLVMContext &context = CI->getParent()->getParent()->getContext(); 749 Constant *nval; 750 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 751 SmallVector<float, 0> FVal; 752 for (unsigned i = 0; i < DVal.size(); ++i) { 753 FVal.push_back((float)DVal[i]); 754 } 755 ArrayRef<float> tmp(FVal); 756 nval = ConstantDataVector::get(context, tmp); 757 } else { // F64 758 ArrayRef<double> tmp(DVal); 759 nval = ConstantDataVector::get(context, tmp); 760 } 761 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 762 replaceCall(nval); 763 return true; 764 } 765 } else { 766 // Scalar version 767 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 768 for (int i = 0; i < sz; ++i) { 769 if (CF->isExactlyValue(ftbl[i].input)) { 770 Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); 771 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 772 replaceCall(nval); 773 return true; 774 } 775 } 776 } 777 } 778 779 return false; 780 } 781 782 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { 783 Module *M = CI->getModule(); 784 if (getArgType(FInfo) != AMDGPULibFunc::F32 || 785 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 786 !HasNative(FInfo.getId())) 787 return false; 788 789 AMDGPULibFunc nf = FInfo; 790 nf.setPrefix(AMDGPULibFunc::NATIVE); 791 if (FunctionCallee FPExpr = getFunction(M, nf)) { 792 LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); 793 794 CI->setCalledFunction(FPExpr); 795 796 LLVM_DEBUG(dbgs() << *CI << '\n'); 797 798 return true; 799 } 800 return false; 801 } 802 803 // [native_]half_recip(c) ==> 1.0/c 804 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, 805 const FuncInfo &FInfo) { 806 Value *opr0 = CI->getArgOperand(0); 807 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 808 // Just create a normal div. Later, InstCombine will be able 809 // to compute the divide into a constant (avoid check float infinity 810 // or subnormal at this point). 811 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), 812 opr0, 813 "recip2div"); 814 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 815 replaceCall(nval); 816 return true; 817 } 818 return false; 819 } 820 821 // [native_]half_divide(x, c) ==> x/c 822 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, 823 const FuncInfo &FInfo) { 824 Value *opr0 = CI->getArgOperand(0); 825 Value *opr1 = CI->getArgOperand(1); 826 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 827 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 828 829 if ((CF0 && CF1) || // both are constants 830 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) 831 // CF1 is constant && f32 divide 832 { 833 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), 834 opr1, "__div2recip"); 835 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); 836 replaceCall(nval); 837 return true; 838 } 839 return false; 840 } 841 842 namespace llvm { 843 static double log2(double V) { 844 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 845 return ::log2(V); 846 #else 847 return log(V) / numbers::ln2; 848 #endif 849 } 850 } 851 852 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, 853 const FuncInfo &FInfo) { 854 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 855 FInfo.getId() == AMDGPULibFunc::EI_POWR || 856 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 857 "fold_pow: encounter a wrong function call"); 858 859 Value *opr0, *opr1; 860 ConstantFP *CF; 861 ConstantInt *CINT; 862 ConstantAggregateZero *CZero; 863 Type *eltType; 864 865 opr0 = CI->getArgOperand(0); 866 opr1 = CI->getArgOperand(1); 867 CZero = dyn_cast<ConstantAggregateZero>(opr1); 868 if (getVecSize(FInfo) == 1) { 869 eltType = opr0->getType(); 870 CF = dyn_cast<ConstantFP>(opr1); 871 CINT = dyn_cast<ConstantInt>(opr1); 872 } else { 873 VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); 874 assert(VTy && "Oprand of vector function should be of vectortype"); 875 eltType = VTy->getElementType(); 876 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); 877 878 // Now, only Handle vector const whose elements have the same value. 879 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; 880 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; 881 } 882 883 // No unsafe math , no constant argument, do nothing 884 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) 885 return false; 886 887 // 0x1111111 means that we don't do anything for this call. 888 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 889 890 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { 891 // pow/powr/pown(x, 0) == 1 892 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); 893 Constant *cnval = ConstantFP::get(eltType, 1.0); 894 if (getVecSize(FInfo) > 1) { 895 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 896 } 897 replaceCall(cnval); 898 return true; 899 } 900 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 901 // pow/powr/pown(x, 1.0) = x 902 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 903 replaceCall(opr0); 904 return true; 905 } 906 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 907 // pow/powr/pown(x, 2.0) = x*x 908 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 909 << "\n"); 910 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 911 replaceCall(nval); 912 return true; 913 } 914 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 915 // pow/powr/pown(x, -1.0) = 1.0/x 916 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); 917 Constant *cnval = ConstantFP::get(eltType, 1.0); 918 if (getVecSize(FInfo) > 1) { 919 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 920 } 921 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 922 replaceCall(nval); 923 return true; 924 } 925 926 Module *M = CI->getModule(); 927 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 928 // pow[r](x, [-]0.5) = sqrt(x) 929 bool issqrt = CF->isExactlyValue(0.5); 930 if (FunctionCallee FPExpr = 931 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 932 : AMDGPULibFunc::EI_RSQRT, 933 FInfo))) { 934 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 935 << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); 936 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 937 : "__pow2rsqrt"); 938 replaceCall(nval); 939 return true; 940 } 941 } 942 943 if (!isUnsafeMath(CI)) 944 return false; 945 946 // Unsafe Math optimization 947 948 // Remember that ci_opr1 is set if opr1 is integral 949 if (CF) { 950 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 951 ? (double)CF->getValueAPF().convertToFloat() 952 : CF->getValueAPF().convertToDouble(); 953 int ival = (int)dval; 954 if ((double)ival == dval) { 955 ci_opr1 = ival; 956 } else 957 ci_opr1 = 0x11111111; 958 } 959 960 // pow/powr/pown(x, c) = [1/](x*x*..x); where 961 // trunc(c) == c && the number of x == c && |c| <= 12 962 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 963 if (abs_opr1 <= 12) { 964 Constant *cnval; 965 Value *nval; 966 if (abs_opr1 == 0) { 967 cnval = ConstantFP::get(eltType, 1.0); 968 if (getVecSize(FInfo) > 1) { 969 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 970 } 971 nval = cnval; 972 } else { 973 Value *valx2 = nullptr; 974 nval = nullptr; 975 while (abs_opr1 > 0) { 976 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 977 if (abs_opr1 & 1) { 978 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 979 } 980 abs_opr1 >>= 1; 981 } 982 } 983 984 if (ci_opr1 < 0) { 985 cnval = ConstantFP::get(eltType, 1.0); 986 if (getVecSize(FInfo) > 1) { 987 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 988 } 989 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 990 } 991 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 992 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 993 << ")\n"); 994 replaceCall(nval); 995 return true; 996 } 997 998 // powr ---> exp2(y * log2(x)) 999 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 1000 FunctionCallee ExpExpr = 1001 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 1002 if (!ExpExpr) 1003 return false; 1004 1005 bool needlog = false; 1006 bool needabs = false; 1007 bool needcopysign = false; 1008 Constant *cnval = nullptr; 1009 if (getVecSize(FInfo) == 1) { 1010 CF = dyn_cast<ConstantFP>(opr0); 1011 1012 if (CF) { 1013 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1014 ? (double)CF->getValueAPF().convertToFloat() 1015 : CF->getValueAPF().convertToDouble(); 1016 1017 V = log2(std::abs(V)); 1018 cnval = ConstantFP::get(eltType, V); 1019 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 1020 CF->isNegative(); 1021 } else { 1022 needlog = true; 1023 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && 1024 (!CF || CF->isNegative()); 1025 } 1026 } else { 1027 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1028 1029 if (!CDV) { 1030 needlog = true; 1031 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1032 } else { 1033 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1034 "Wrong vector size detected"); 1035 1036 SmallVector<double, 0> DVal; 1037 for (int i=0; i < getVecSize(FInfo); ++i) { 1038 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1039 ? (double)CDV->getElementAsFloat(i) 1040 : CDV->getElementAsDouble(i); 1041 if (V < 0.0) needcopysign = true; 1042 V = log2(std::abs(V)); 1043 DVal.push_back(V); 1044 } 1045 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1046 SmallVector<float, 0> FVal; 1047 for (unsigned i=0; i < DVal.size(); ++i) { 1048 FVal.push_back((float)DVal[i]); 1049 } 1050 ArrayRef<float> tmp(FVal); 1051 cnval = ConstantDataVector::get(M->getContext(), tmp); 1052 } else { 1053 ArrayRef<double> tmp(DVal); 1054 cnval = ConstantDataVector::get(M->getContext(), tmp); 1055 } 1056 } 1057 } 1058 1059 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1060 // We cannot handle corner cases for a general pow() function, give up 1061 // unless y is a constant integral value. Then proceed as if it were pown. 1062 if (getVecSize(FInfo) == 1) { 1063 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { 1064 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1065 ? (double)CF->getValueAPF().convertToFloat() 1066 : CF->getValueAPF().convertToDouble(); 1067 if (y != (double)(int64_t)y) 1068 return false; 1069 } else 1070 return false; 1071 } else { 1072 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { 1073 for (int i=0; i < getVecSize(FInfo); ++i) { 1074 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1075 ? (double)CDV->getElementAsFloat(i) 1076 : CDV->getElementAsDouble(i); 1077 if (y != (double)(int64_t)y) 1078 return false; 1079 } 1080 } else 1081 return false; 1082 } 1083 } 1084 1085 Value *nval; 1086 if (needabs) { 1087 FunctionCallee AbsExpr = 1088 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo)); 1089 if (!AbsExpr) 1090 return false; 1091 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); 1092 } else { 1093 nval = cnval ? cnval : opr0; 1094 } 1095 if (needlog) { 1096 FunctionCallee LogExpr = 1097 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1098 if (!LogExpr) 1099 return false; 1100 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1101 } 1102 1103 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1104 // convert int(32) to fp(f32 or f64) 1105 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1106 } 1107 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1108 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1109 1110 if (needcopysign) { 1111 Value *opr_n; 1112 Type* rTy = opr0->getType(); 1113 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); 1114 Type *nTy = nTyS; 1115 if (const auto *vTy = dyn_cast<FixedVectorType>(rTy)) 1116 nTy = FixedVectorType::get(nTyS, vTy); 1117 unsigned size = nTy->getScalarSizeInBits(); 1118 opr_n = CI->getArgOperand(1); 1119 if (opr_n->getType()->isIntegerTy()) 1120 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); 1121 else 1122 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1123 1124 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1125 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1126 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1127 nval = B.CreateBitCast(nval, opr0->getType()); 1128 } 1129 1130 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1131 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1132 replaceCall(nval); 1133 1134 return true; 1135 } 1136 1137 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, 1138 const FuncInfo &FInfo) { 1139 Value *opr0 = CI->getArgOperand(0); 1140 Value *opr1 = CI->getArgOperand(1); 1141 1142 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1143 if (!CINT) { 1144 return false; 1145 } 1146 int ci_opr1 = (int)CINT->getSExtValue(); 1147 if (ci_opr1 == 1) { // rootn(x, 1) = x 1148 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 1149 replaceCall(opr0); 1150 return true; 1151 } 1152 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1153 Module *M = CI->getModule(); 1154 if (FunctionCallee FPExpr = 1155 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1156 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); 1157 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1158 replaceCall(nval); 1159 return true; 1160 } 1161 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1162 Module *M = CI->getModule(); 1163 if (FunctionCallee FPExpr = 1164 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1165 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); 1166 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1167 replaceCall(nval); 1168 return true; 1169 } 1170 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1171 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); 1172 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1173 opr0, 1174 "__rootn2div"); 1175 replaceCall(nval); 1176 return true; 1177 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1178 Module *M = CI->getModule(); 1179 if (FunctionCallee FPExpr = 1180 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { 1181 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 1182 << ")\n"); 1183 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1184 replaceCall(nval); 1185 return true; 1186 } 1187 } 1188 return false; 1189 } 1190 1191 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, 1192 const FuncInfo &FInfo) { 1193 Value *opr0 = CI->getArgOperand(0); 1194 Value *opr1 = CI->getArgOperand(1); 1195 Value *opr2 = CI->getArgOperand(2); 1196 1197 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 1198 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 1199 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { 1200 // fma/mad(a, b, c) = c if a=0 || b=0 1201 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); 1202 replaceCall(opr2); 1203 return true; 1204 } 1205 if (CF0 && CF0->isExactlyValue(1.0f)) { 1206 // fma/mad(a, b, c) = b+c if a=1 1207 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 1208 << "\n"); 1209 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); 1210 replaceCall(nval); 1211 return true; 1212 } 1213 if (CF1 && CF1->isExactlyValue(1.0f)) { 1214 // fma/mad(a, b, c) = a+c if b=1 1215 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 1216 << "\n"); 1217 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); 1218 replaceCall(nval); 1219 return true; 1220 } 1221 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { 1222 if (CF->isZero()) { 1223 // fma/mad(a, b, c) = a*b if c=0 1224 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " 1225 << *opr1 << "\n"); 1226 Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); 1227 replaceCall(nval); 1228 return true; 1229 } 1230 } 1231 1232 return false; 1233 } 1234 1235 // Get a scalar native builtin single argument FP function 1236 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1237 const FuncInfo &FInfo) { 1238 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1239 return nullptr; 1240 FuncInfo nf = FInfo; 1241 nf.setPrefix(AMDGPULibFunc::NATIVE); 1242 return getFunction(M, nf); 1243 } 1244 1245 // fold sqrt -> native_sqrt (x) 1246 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, 1247 const FuncInfo &FInfo) { 1248 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && 1249 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { 1250 if (FunctionCallee FPExpr = getNativeFunction( 1251 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1252 Value *opr0 = CI->getArgOperand(0); 1253 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1254 << "sqrt(" << *opr0 << ")\n"); 1255 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); 1256 replaceCall(nval); 1257 return true; 1258 } 1259 } 1260 return false; 1261 } 1262 1263 // fold sin, cos -> sincos. 1264 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, 1265 AliasAnalysis *AA) { 1266 AMDGPULibFunc fInfo; 1267 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) 1268 return false; 1269 1270 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1271 fInfo.getId() == AMDGPULibFunc::EI_COS); 1272 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1273 1274 Value *CArgVal = CI->getArgOperand(0); 1275 BasicBlock * const CBB = CI->getParent(); 1276 1277 int const MaxScan = 30; 1278 bool Changed = false; 1279 1280 { // fold in load value. 1281 LoadInst *LI = dyn_cast<LoadInst>(CArgVal); 1282 if (LI && LI->getParent() == CBB) { 1283 BasicBlock::iterator BBI = LI->getIterator(); 1284 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); 1285 if (AvailableVal) { 1286 Changed = true; 1287 CArgVal->replaceAllUsesWith(AvailableVal); 1288 if (CArgVal->getNumUses() == 0) 1289 LI->eraseFromParent(); 1290 CArgVal = CI->getArgOperand(0); 1291 } 1292 } 1293 } 1294 1295 Module *M = CI->getModule(); 1296 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); 1297 std::string const PairName = fInfo.mangle(); 1298 1299 CallInst *UI = nullptr; 1300 for (User* U : CArgVal->users()) { 1301 CallInst *XI = dyn_cast_or_null<CallInst>(U); 1302 if (!XI || XI == CI || XI->getParent() != CBB) 1303 continue; 1304 1305 Function *UCallee = XI->getCalledFunction(); 1306 if (!UCallee || !UCallee->getName().equals(PairName)) 1307 continue; 1308 1309 BasicBlock::iterator BBI = CI->getIterator(); 1310 if (BBI == CI->getParent()->begin()) 1311 break; 1312 --BBI; 1313 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { 1314 if (cast<Instruction>(BBI) == XI) { 1315 UI = XI; 1316 break; 1317 } 1318 } 1319 if (UI) break; 1320 } 1321 1322 if (!UI) 1323 return Changed; 1324 1325 // Merge the sin and cos. 1326 1327 // for OpenCL 2.0 we have only generic implementation of sincos 1328 // function. 1329 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); 1330 nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1331 FunctionCallee Fsincos = getFunction(M, nf); 1332 if (!Fsincos) 1333 return Changed; 1334 1335 BasicBlock::iterator ItOld = B.GetInsertPoint(); 1336 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); 1337 B.SetInsertPoint(UI); 1338 1339 Value *P = Alloc; 1340 Type *PTy = Fsincos.getFunctionType()->getParamType(1); 1341 // The allocaInst allocates the memory in private address space. This need 1342 // to be bitcasted to point to the address space of cos pointer type. 1343 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1344 if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) 1345 P = B.CreateAddrSpaceCast(Alloc, PTy); 1346 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); 1347 1348 LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " 1349 << *Call << "\n"); 1350 1351 if (!isSin) { // CI->cos, UI->sin 1352 B.SetInsertPoint(&*ItOld); 1353 UI->replaceAllUsesWith(&*Call); 1354 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1355 CI->replaceAllUsesWith(Reload); 1356 UI->eraseFromParent(); 1357 CI->eraseFromParent(); 1358 } else { // CI->sin, UI->cos 1359 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1360 UI->replaceAllUsesWith(Reload); 1361 CI->replaceAllUsesWith(Call); 1362 UI->eraseFromParent(); 1363 CI->eraseFromParent(); 1364 } 1365 return true; 1366 } 1367 1368 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) { 1369 if (!TM) 1370 return false; 1371 1372 StringRef CPU = TM->getTargetCPU(); 1373 StringRef Features = TM->getTargetFeatureString(); 1374 if ((CPU.empty() || CPU.equals_insensitive("generic")) && 1375 (Features.empty() || !Features.contains_insensitive("wavefrontsize"))) 1376 return false; 1377 1378 Function *F = CI->getParent()->getParent(); 1379 const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F); 1380 unsigned N = ST.getWavefrontSize(); 1381 1382 LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with " 1383 << N << "\n"); 1384 1385 CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N)); 1386 CI->eraseFromParent(); 1387 return true; 1388 } 1389 1390 // Get insertion point at entry. 1391 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { 1392 Function * Func = UI->getParent()->getParent(); 1393 BasicBlock * BB = &Func->getEntryBlock(); 1394 assert(BB && "Entry block not found!"); 1395 BasicBlock::iterator ItNew = BB->begin(); 1396 return ItNew; 1397 } 1398 1399 // Insert a AllocsInst at the beginning of function entry block. 1400 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, 1401 const char *prefix) { 1402 BasicBlock::iterator ItNew = getEntryIns(UI); 1403 Function *UCallee = UI->getCalledFunction(); 1404 Type *RetType = UCallee->getReturnType(); 1405 B.SetInsertPoint(&*ItNew); 1406 AllocaInst *Alloc = 1407 B.CreateAlloca(RetType, nullptr, std::string(prefix) + UI->getName()); 1408 Alloc->setAlignment( 1409 Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType))); 1410 return Alloc; 1411 } 1412 1413 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, 1414 double& Res0, double& Res1, 1415 Constant *copr0, Constant *copr1, 1416 Constant *copr2) { 1417 // By default, opr0/opr1/opr3 holds values of float/double type. 1418 // If they are not float/double, each function has to its 1419 // operand separately. 1420 double opr0=0.0, opr1=0.0, opr2=0.0; 1421 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1422 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1423 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); 1424 if (fpopr0) { 1425 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1426 ? fpopr0->getValueAPF().convertToDouble() 1427 : (double)fpopr0->getValueAPF().convertToFloat(); 1428 } 1429 1430 if (fpopr1) { 1431 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1432 ? fpopr1->getValueAPF().convertToDouble() 1433 : (double)fpopr1->getValueAPF().convertToFloat(); 1434 } 1435 1436 if (fpopr2) { 1437 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1438 ? fpopr2->getValueAPF().convertToDouble() 1439 : (double)fpopr2->getValueAPF().convertToFloat(); 1440 } 1441 1442 switch (FInfo.getId()) { 1443 default : return false; 1444 1445 case AMDGPULibFunc::EI_ACOS: 1446 Res0 = acos(opr0); 1447 return true; 1448 1449 case AMDGPULibFunc::EI_ACOSH: 1450 // acosh(x) == log(x + sqrt(x*x - 1)) 1451 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1452 return true; 1453 1454 case AMDGPULibFunc::EI_ACOSPI: 1455 Res0 = acos(opr0) / MATH_PI; 1456 return true; 1457 1458 case AMDGPULibFunc::EI_ASIN: 1459 Res0 = asin(opr0); 1460 return true; 1461 1462 case AMDGPULibFunc::EI_ASINH: 1463 // asinh(x) == log(x + sqrt(x*x + 1)) 1464 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1465 return true; 1466 1467 case AMDGPULibFunc::EI_ASINPI: 1468 Res0 = asin(opr0) / MATH_PI; 1469 return true; 1470 1471 case AMDGPULibFunc::EI_ATAN: 1472 Res0 = atan(opr0); 1473 return true; 1474 1475 case AMDGPULibFunc::EI_ATANH: 1476 // atanh(x) == (log(x+1) - log(x-1))/2; 1477 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1478 return true; 1479 1480 case AMDGPULibFunc::EI_ATANPI: 1481 Res0 = atan(opr0) / MATH_PI; 1482 return true; 1483 1484 case AMDGPULibFunc::EI_CBRT: 1485 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1486 return true; 1487 1488 case AMDGPULibFunc::EI_COS: 1489 Res0 = cos(opr0); 1490 return true; 1491 1492 case AMDGPULibFunc::EI_COSH: 1493 Res0 = cosh(opr0); 1494 return true; 1495 1496 case AMDGPULibFunc::EI_COSPI: 1497 Res0 = cos(MATH_PI * opr0); 1498 return true; 1499 1500 case AMDGPULibFunc::EI_EXP: 1501 Res0 = exp(opr0); 1502 return true; 1503 1504 case AMDGPULibFunc::EI_EXP2: 1505 Res0 = pow(2.0, opr0); 1506 return true; 1507 1508 case AMDGPULibFunc::EI_EXP10: 1509 Res0 = pow(10.0, opr0); 1510 return true; 1511 1512 case AMDGPULibFunc::EI_EXPM1: 1513 Res0 = exp(opr0) - 1.0; 1514 return true; 1515 1516 case AMDGPULibFunc::EI_LOG: 1517 Res0 = log(opr0); 1518 return true; 1519 1520 case AMDGPULibFunc::EI_LOG2: 1521 Res0 = log(opr0) / log(2.0); 1522 return true; 1523 1524 case AMDGPULibFunc::EI_LOG10: 1525 Res0 = log(opr0) / log(10.0); 1526 return true; 1527 1528 case AMDGPULibFunc::EI_RSQRT: 1529 Res0 = 1.0 / sqrt(opr0); 1530 return true; 1531 1532 case AMDGPULibFunc::EI_SIN: 1533 Res0 = sin(opr0); 1534 return true; 1535 1536 case AMDGPULibFunc::EI_SINH: 1537 Res0 = sinh(opr0); 1538 return true; 1539 1540 case AMDGPULibFunc::EI_SINPI: 1541 Res0 = sin(MATH_PI * opr0); 1542 return true; 1543 1544 case AMDGPULibFunc::EI_SQRT: 1545 Res0 = sqrt(opr0); 1546 return true; 1547 1548 case AMDGPULibFunc::EI_TAN: 1549 Res0 = tan(opr0); 1550 return true; 1551 1552 case AMDGPULibFunc::EI_TANH: 1553 Res0 = tanh(opr0); 1554 return true; 1555 1556 case AMDGPULibFunc::EI_TANPI: 1557 Res0 = tan(MATH_PI * opr0); 1558 return true; 1559 1560 case AMDGPULibFunc::EI_RECIP: 1561 Res0 = 1.0 / opr0; 1562 return true; 1563 1564 // two-arg functions 1565 case AMDGPULibFunc::EI_DIVIDE: 1566 Res0 = opr0 / opr1; 1567 return true; 1568 1569 case AMDGPULibFunc::EI_POW: 1570 case AMDGPULibFunc::EI_POWR: 1571 Res0 = pow(opr0, opr1); 1572 return true; 1573 1574 case AMDGPULibFunc::EI_POWN: { 1575 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1576 double val = (double)iopr1->getSExtValue(); 1577 Res0 = pow(opr0, val); 1578 return true; 1579 } 1580 return false; 1581 } 1582 1583 case AMDGPULibFunc::EI_ROOTN: { 1584 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1585 double val = (double)iopr1->getSExtValue(); 1586 Res0 = pow(opr0, 1.0 / val); 1587 return true; 1588 } 1589 return false; 1590 } 1591 1592 // with ptr arg 1593 case AMDGPULibFunc::EI_SINCOS: 1594 Res0 = sin(opr0); 1595 Res1 = cos(opr0); 1596 return true; 1597 1598 // three-arg functions 1599 case AMDGPULibFunc::EI_FMA: 1600 case AMDGPULibFunc::EI_MAD: 1601 Res0 = opr0 * opr1 + opr2; 1602 return true; 1603 } 1604 1605 return false; 1606 } 1607 1608 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) { 1609 int numArgs = (int)aCI->arg_size(); 1610 if (numArgs > 3) 1611 return false; 1612 1613 Constant *copr0 = nullptr; 1614 Constant *copr1 = nullptr; 1615 Constant *copr2 = nullptr; 1616 if (numArgs > 0) { 1617 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1618 return false; 1619 } 1620 1621 if (numArgs > 1) { 1622 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1623 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1624 return false; 1625 } 1626 } 1627 1628 if (numArgs > 2) { 1629 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) 1630 return false; 1631 } 1632 1633 // At this point, all arguments to aCI are constants. 1634 1635 // max vector size is 16, and sincos will generate two results. 1636 double DVal0[16], DVal1[16]; 1637 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1638 if (getVecSize(FInfo) == 1) { 1639 if (!evaluateScalarMathFunc(FInfo, DVal0[0], 1640 DVal1[0], copr0, copr1, copr2)) { 1641 return false; 1642 } 1643 } else { 1644 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1645 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1646 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); 1647 for (int i=0; i < getVecSize(FInfo); ++i) { 1648 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1649 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1650 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; 1651 if (!evaluateScalarMathFunc(FInfo, DVal0[i], 1652 DVal1[i], celt0, celt1, celt2)) { 1653 return false; 1654 } 1655 } 1656 } 1657 1658 LLVMContext &context = CI->getParent()->getParent()->getContext(); 1659 Constant *nval0, *nval1; 1660 if (getVecSize(FInfo) == 1) { 1661 nval0 = ConstantFP::get(CI->getType(), DVal0[0]); 1662 if (hasTwoResults) 1663 nval1 = ConstantFP::get(CI->getType(), DVal1[0]); 1664 } else { 1665 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1666 SmallVector <float, 0> FVal0, FVal1; 1667 for (int i=0; i < getVecSize(FInfo); ++i) 1668 FVal0.push_back((float)DVal0[i]); 1669 ArrayRef<float> tmp0(FVal0); 1670 nval0 = ConstantDataVector::get(context, tmp0); 1671 if (hasTwoResults) { 1672 for (int i=0; i < getVecSize(FInfo); ++i) 1673 FVal1.push_back((float)DVal1[i]); 1674 ArrayRef<float> tmp1(FVal1); 1675 nval1 = ConstantDataVector::get(context, tmp1); 1676 } 1677 } else { 1678 ArrayRef<double> tmp0(DVal0); 1679 nval0 = ConstantDataVector::get(context, tmp0); 1680 if (hasTwoResults) { 1681 ArrayRef<double> tmp1(DVal1); 1682 nval1 = ConstantDataVector::get(context, tmp1); 1683 } 1684 } 1685 } 1686 1687 if (hasTwoResults) { 1688 // sincos 1689 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1690 "math function with ptr arg not supported yet"); 1691 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1692 } 1693 1694 replaceCall(nval0); 1695 return true; 1696 } 1697 1698 // Public interface to the Simplify LibCalls pass. 1699 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) { 1700 return new AMDGPUSimplifyLibCalls(TM); 1701 } 1702 1703 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { 1704 return new AMDGPUUseNativeCalls(); 1705 } 1706 1707 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { 1708 if (skipFunction(F)) 1709 return false; 1710 1711 bool Changed = false; 1712 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1713 1714 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1715 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1716 1717 for (auto &BB : F) { 1718 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1719 // Ignore non-calls. 1720 CallInst *CI = dyn_cast<CallInst>(I); 1721 ++I; 1722 // Ignore intrinsics that do not become real instructions. 1723 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1724 continue; 1725 1726 // Ignore indirect calls. 1727 Function *Callee = CI->getCalledFunction(); 1728 if (Callee == nullptr) 1729 continue; 1730 1731 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1732 dbgs().flush()); 1733 if(Simplifier.fold(CI, AA)) 1734 Changed = true; 1735 } 1736 } 1737 return Changed; 1738 } 1739 1740 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F, 1741 FunctionAnalysisManager &AM) { 1742 AMDGPULibCalls Simplifier(&TM); 1743 Simplifier.initNativeFuncs(); 1744 1745 bool Changed = false; 1746 auto AA = &AM.getResult<AAManager>(F); 1747 1748 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1749 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1750 1751 for (auto &BB : F) { 1752 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1753 // Ignore non-calls. 1754 CallInst *CI = dyn_cast<CallInst>(I); 1755 ++I; 1756 // Ignore intrinsics that do not become real instructions. 1757 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1758 continue; 1759 1760 // Ignore indirect calls. 1761 Function *Callee = CI->getCalledFunction(); 1762 if (Callee == nullptr) 1763 continue; 1764 1765 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1766 dbgs().flush()); 1767 if (Simplifier.fold(CI, AA)) 1768 Changed = true; 1769 } 1770 } 1771 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1772 } 1773 1774 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { 1775 if (skipFunction(F) || UseNative.empty()) 1776 return false; 1777 1778 bool Changed = false; 1779 for (auto &BB : F) { 1780 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1781 // Ignore non-calls. 1782 CallInst *CI = dyn_cast<CallInst>(I); 1783 ++I; 1784 if (!CI) continue; 1785 1786 // Ignore indirect calls. 1787 Function *Callee = CI->getCalledFunction(); 1788 if (Callee == nullptr) 1789 continue; 1790 1791 if (Simplifier.useNative(CI)) 1792 Changed = true; 1793 } 1794 } 1795 return Changed; 1796 } 1797 1798 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F, 1799 FunctionAnalysisManager &AM) { 1800 if (UseNative.empty()) 1801 return PreservedAnalyses::all(); 1802 1803 AMDGPULibCalls Simplifier; 1804 Simplifier.initNativeFuncs(); 1805 1806 bool Changed = false; 1807 for (auto &BB : F) { 1808 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1809 // Ignore non-calls. 1810 CallInst *CI = dyn_cast<CallInst>(I); 1811 ++I; 1812 if (!CI) 1813 continue; 1814 1815 // Ignore indirect calls. 1816 Function *Callee = CI->getCalledFunction(); 1817 if (Callee == nullptr) 1818 continue; 1819 1820 if (Simplifier.useNative(CI)) 1821 Changed = true; 1822 } 1823 } 1824 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1825 } 1826