1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "amdgpu-simplifylib" 15 16 #include "AMDGPU.h" 17 #include "AMDGPULibFunc.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/ADT/StringSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetOptions.h" 33 #include <vector> 34 #include <cmath> 35 36 using namespace llvm; 37 38 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 39 cl::desc("Enable pre-link mode optimizations"), 40 cl::init(false), 41 cl::Hidden); 42 43 static cl::list<std::string> UseNative("amdgpu-use-native", 44 cl::desc("Comma separated list of functions to replace with native, or all"), 45 cl::CommaSeparated, cl::ValueOptional, 46 cl::Hidden); 47 48 #define MATH_PI 3.14159265358979323846264338327950288419716939937511 49 #define MATH_E 2.71828182845904523536028747135266249775724709369996 50 #define MATH_SQRT2 1.41421356237309504880168872420969807856967187537695 51 52 #define MATH_LOG2E 1.4426950408889634073599246810018921374266459541529859 53 #define MATH_LOG10E 0.4342944819032518276511289189166050822943970058036665 54 // Value of log2(10) 55 #define MATH_LOG2_10 3.3219280948873623478703194294893901758648313930245806 56 // Value of 1 / log2(10) 57 #define MATH_RLOG2_10 0.3010299956639811952137388947244930267681898814621085 58 // Value of 1 / M_LOG2E_F = 1 / log2(e) 59 #define MATH_RLOG2_E 0.6931471805599453094172321214581765680755001343602552 60 61 namespace llvm { 62 63 class AMDGPULibCalls { 64 private: 65 66 typedef llvm::AMDGPULibFunc FuncInfo; 67 68 // -fuse-native. 69 bool AllNative = false; 70 71 bool useNativeFunc(const StringRef F) const; 72 73 // Return a pointer (pointer expr) to the function if function defintion with 74 // "FuncName" exists. It may create a new function prototype in pre-link mode. 75 Constant *getFunction(Module *M, const FuncInfo& fInfo); 76 77 // Replace a normal function with its native version. 78 bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); 79 80 bool parseFunctionName(const StringRef& FMangledName, 81 FuncInfo *FInfo=nullptr /*out*/); 82 83 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 84 85 /* Specialized optimizations */ 86 87 // recip (half or native) 88 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 89 90 // divide (half or native) 91 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 92 93 // pow/powr/pown 94 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 95 96 // rootn 97 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 98 99 // fma/mad 100 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 101 102 // -fuse-native for sincos 103 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 104 105 // evaluate calls if calls' arguments are constants. 106 bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, 107 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); 108 bool evaluateCall(CallInst *aCI, FuncInfo &FInfo); 109 110 // exp 111 bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 112 113 // exp2 114 bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 115 116 // exp10 117 bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 118 119 // log 120 bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 121 122 // log2 123 bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 124 125 // log10 126 bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 127 128 // sqrt 129 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 130 131 // sin/cos 132 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); 133 134 // __read_pipe/__write_pipe 135 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo); 136 137 // Get insertion point at entry. 138 BasicBlock::iterator getEntryIns(CallInst * UI); 139 // Insert an Alloc instruction. 140 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); 141 // Get a scalar native builtin signle argument FP function 142 Constant* getNativeFunction(Module* M, const FuncInfo &FInfo); 143 144 protected: 145 CallInst *CI; 146 147 bool isUnsafeMath(const CallInst *CI) const; 148 149 void replaceCall(Value *With) { 150 CI->replaceAllUsesWith(With); 151 CI->eraseFromParent(); 152 } 153 154 public: 155 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); 156 157 void initNativeFuncs(); 158 159 // Replace a normal math function call with that native version 160 bool useNative(CallInst *CI); 161 }; 162 163 } // end llvm namespace 164 165 namespace { 166 167 class AMDGPUSimplifyLibCalls : public FunctionPass { 168 169 AMDGPULibCalls Simplifier; 170 171 const TargetOptions Options; 172 173 public: 174 static char ID; // Pass identification 175 176 AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions()) 177 : FunctionPass(ID), Options(Opt) { 178 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 179 } 180 181 void getAnalysisUsage(AnalysisUsage &AU) const override { 182 AU.addRequired<AAResultsWrapperPass>(); 183 } 184 185 bool runOnFunction(Function &M) override; 186 }; 187 188 class AMDGPUUseNativeCalls : public FunctionPass { 189 190 AMDGPULibCalls Simplifier; 191 192 public: 193 static char ID; // Pass identification 194 195 AMDGPUUseNativeCalls() : FunctionPass(ID) { 196 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); 197 Simplifier.initNativeFuncs(); 198 } 199 200 bool runOnFunction(Function &F) override; 201 }; 202 203 } // end anonymous namespace. 204 205 char AMDGPUSimplifyLibCalls::ID = 0; 206 char AMDGPUUseNativeCalls::ID = 0; 207 208 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 209 "Simplify well-known AMD library calls", false, false) 210 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 211 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 212 "Simplify well-known AMD library calls", false, false) 213 214 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", 215 "Replace builtin math calls with that native versions.", 216 false, false) 217 218 template <typename IRB> 219 static CallInst *CreateCallEx(IRB &B, Value *Callee, Value *Arg, 220 const Twine &Name = "") { 221 CallInst *R = B.CreateCall(Callee, Arg, Name); 222 if (Function* F = dyn_cast<Function>(Callee)) 223 R->setCallingConv(F->getCallingConv()); 224 return R; 225 } 226 227 template <typename IRB> 228 static CallInst *CreateCallEx2(IRB &B, Value *Callee, Value *Arg1, Value *Arg2, 229 const Twine &Name = "") { 230 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 231 if (Function* F = dyn_cast<Function>(Callee)) 232 R->setCallingConv(F->getCallingConv()); 233 return R; 234 } 235 236 // Data structures for table-driven optimizations. 237 // FuncTbl works for both f32 and f64 functions with 1 input argument 238 239 struct TableEntry { 240 double result; 241 double input; 242 }; 243 244 /* a list of {result, input} */ 245 static const TableEntry tbl_acos[] = { 246 {MATH_PI/2.0, 0.0}, 247 {MATH_PI/2.0, -0.0}, 248 {0.0, 1.0}, 249 {MATH_PI, -1.0} 250 }; 251 static const TableEntry tbl_acosh[] = { 252 {0.0, 1.0} 253 }; 254 static const TableEntry tbl_acospi[] = { 255 {0.5, 0.0}, 256 {0.5, -0.0}, 257 {0.0, 1.0}, 258 {1.0, -1.0} 259 }; 260 static const TableEntry tbl_asin[] = { 261 {0.0, 0.0}, 262 {-0.0, -0.0}, 263 {MATH_PI/2.0, 1.0}, 264 {-MATH_PI/2.0, -1.0} 265 }; 266 static const TableEntry tbl_asinh[] = { 267 {0.0, 0.0}, 268 {-0.0, -0.0} 269 }; 270 static const TableEntry tbl_asinpi[] = { 271 {0.0, 0.0}, 272 {-0.0, -0.0}, 273 {0.5, 1.0}, 274 {-0.5, -1.0} 275 }; 276 static const TableEntry tbl_atan[] = { 277 {0.0, 0.0}, 278 {-0.0, -0.0}, 279 {MATH_PI/4.0, 1.0}, 280 {-MATH_PI/4.0, -1.0} 281 }; 282 static const TableEntry tbl_atanh[] = { 283 {0.0, 0.0}, 284 {-0.0, -0.0} 285 }; 286 static const TableEntry tbl_atanpi[] = { 287 {0.0, 0.0}, 288 {-0.0, -0.0}, 289 {0.25, 1.0}, 290 {-0.25, -1.0} 291 }; 292 static const TableEntry tbl_cbrt[] = { 293 {0.0, 0.0}, 294 {-0.0, -0.0}, 295 {1.0, 1.0}, 296 {-1.0, -1.0}, 297 }; 298 static const TableEntry tbl_cos[] = { 299 {1.0, 0.0}, 300 {1.0, -0.0} 301 }; 302 static const TableEntry tbl_cosh[] = { 303 {1.0, 0.0}, 304 {1.0, -0.0} 305 }; 306 static const TableEntry tbl_cospi[] = { 307 {1.0, 0.0}, 308 {1.0, -0.0} 309 }; 310 static const TableEntry tbl_erfc[] = { 311 {1.0, 0.0}, 312 {1.0, -0.0} 313 }; 314 static const TableEntry tbl_erf[] = { 315 {0.0, 0.0}, 316 {-0.0, -0.0} 317 }; 318 static const TableEntry tbl_exp[] = { 319 {1.0, 0.0}, 320 {1.0, -0.0}, 321 {MATH_E, 1.0} 322 }; 323 static const TableEntry tbl_exp2[] = { 324 {1.0, 0.0}, 325 {1.0, -0.0}, 326 {2.0, 1.0} 327 }; 328 static const TableEntry tbl_exp10[] = { 329 {1.0, 0.0}, 330 {1.0, -0.0}, 331 {10.0, 1.0} 332 }; 333 static const TableEntry tbl_expm1[] = { 334 {0.0, 0.0}, 335 {-0.0, -0.0} 336 }; 337 static const TableEntry tbl_log[] = { 338 {0.0, 1.0}, 339 {1.0, MATH_E} 340 }; 341 static const TableEntry tbl_log2[] = { 342 {0.0, 1.0}, 343 {1.0, 2.0} 344 }; 345 static const TableEntry tbl_log10[] = { 346 {0.0, 1.0}, 347 {1.0, 10.0} 348 }; 349 static const TableEntry tbl_rsqrt[] = { 350 {1.0, 1.0}, 351 {1.0/MATH_SQRT2, 2.0} 352 }; 353 static const TableEntry tbl_sin[] = { 354 {0.0, 0.0}, 355 {-0.0, -0.0} 356 }; 357 static const TableEntry tbl_sinh[] = { 358 {0.0, 0.0}, 359 {-0.0, -0.0} 360 }; 361 static const TableEntry tbl_sinpi[] = { 362 {0.0, 0.0}, 363 {-0.0, -0.0} 364 }; 365 static const TableEntry tbl_sqrt[] = { 366 {0.0, 0.0}, 367 {1.0, 1.0}, 368 {MATH_SQRT2, 2.0} 369 }; 370 static const TableEntry tbl_tan[] = { 371 {0.0, 0.0}, 372 {-0.0, -0.0} 373 }; 374 static const TableEntry tbl_tanh[] = { 375 {0.0, 0.0}, 376 {-0.0, -0.0} 377 }; 378 static const TableEntry tbl_tanpi[] = { 379 {0.0, 0.0}, 380 {-0.0, -0.0} 381 }; 382 static const TableEntry tbl_tgamma[] = { 383 {1.0, 1.0}, 384 {1.0, 2.0}, 385 {2.0, 3.0}, 386 {6.0, 4.0} 387 }; 388 389 static bool HasNative(AMDGPULibFunc::EFuncId id) { 390 switch(id) { 391 case AMDGPULibFunc::EI_DIVIDE: 392 case AMDGPULibFunc::EI_COS: 393 case AMDGPULibFunc::EI_EXP: 394 case AMDGPULibFunc::EI_EXP2: 395 case AMDGPULibFunc::EI_EXP10: 396 case AMDGPULibFunc::EI_LOG: 397 case AMDGPULibFunc::EI_LOG2: 398 case AMDGPULibFunc::EI_LOG10: 399 case AMDGPULibFunc::EI_POWR: 400 case AMDGPULibFunc::EI_RECIP: 401 case AMDGPULibFunc::EI_RSQRT: 402 case AMDGPULibFunc::EI_SIN: 403 case AMDGPULibFunc::EI_SINCOS: 404 case AMDGPULibFunc::EI_SQRT: 405 case AMDGPULibFunc::EI_TAN: 406 return true; 407 default:; 408 } 409 return false; 410 } 411 412 struct TableRef { 413 size_t size; 414 const TableEntry *table; // variable size: from 0 to (size - 1) 415 416 TableRef() : size(0), table(nullptr) {} 417 418 template <size_t N> 419 TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} 420 }; 421 422 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 423 switch(id) { 424 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 425 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 426 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 427 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 428 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 429 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 430 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 431 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 432 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 433 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 434 case AMDGPULibFunc::EI_NCOS: 435 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 436 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 437 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 438 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 439 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 440 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 441 case AMDGPULibFunc::EI_NEXP2: 442 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 443 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 444 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 445 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 446 case AMDGPULibFunc::EI_NLOG2: 447 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 448 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 449 case AMDGPULibFunc::EI_NRSQRT: 450 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 451 case AMDGPULibFunc::EI_NSIN: 452 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 453 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 454 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 455 case AMDGPULibFunc::EI_NSQRT: 456 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 457 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 458 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 459 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 460 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 461 default:; 462 } 463 return TableRef(); 464 } 465 466 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 467 return FInfo.getLeads()[0].VectorSize; 468 } 469 470 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 471 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 472 } 473 474 Constant *AMDGPULibCalls::getFunction(Module *M, const FuncInfo& fInfo) { 475 // If we are doing PreLinkOpt, the function is external. So it is safe to 476 // use getOrInsertFunction() at this stage. 477 478 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 479 : AMDGPULibFunc::getFunction(M, fInfo); 480 } 481 482 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName, 483 FuncInfo *FInfo) { 484 return AMDGPULibFunc::parse(FMangledName, *FInfo); 485 } 486 487 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { 488 if (auto Op = dyn_cast<FPMathOperator>(CI)) 489 if (Op->isFast()) 490 return true; 491 const Function *F = CI->getParent()->getParent(); 492 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 493 return Attr.getValueAsString() == "true"; 494 } 495 496 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 497 return AllNative || 498 std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end(); 499 } 500 501 void AMDGPULibCalls::initNativeFuncs() { 502 AllNative = useNativeFunc("all") || 503 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 504 UseNative.begin()->empty()); 505 } 506 507 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 508 bool native_sin = useNativeFunc("sin"); 509 bool native_cos = useNativeFunc("cos"); 510 511 if (native_sin && native_cos) { 512 Module *M = aCI->getModule(); 513 Value *opr0 = aCI->getArgOperand(0); 514 515 AMDGPULibFunc nf; 516 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 517 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 518 519 nf.setPrefix(AMDGPULibFunc::NATIVE); 520 nf.setId(AMDGPULibFunc::EI_SIN); 521 Constant *sinExpr = getFunction(M, nf); 522 523 nf.setPrefix(AMDGPULibFunc::NATIVE); 524 nf.setId(AMDGPULibFunc::EI_COS); 525 Constant *cosExpr = getFunction(M, nf); 526 if (sinExpr && cosExpr) { 527 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 528 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 529 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 530 531 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 532 << " with native version of sin/cos"); 533 534 replaceCall(sinval); 535 return true; 536 } 537 } 538 return false; 539 } 540 541 bool AMDGPULibCalls::useNative(CallInst *aCI) { 542 CI = aCI; 543 Function *Callee = aCI->getCalledFunction(); 544 545 FuncInfo FInfo; 546 if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() || 547 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 548 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 549 !(AllNative || useNativeFunc(FInfo.getName()))) { 550 return false; 551 } 552 553 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 554 return sincosUseNative(aCI, FInfo); 555 556 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 557 Constant *F = getFunction(aCI->getModule(), FInfo); 558 if (!F) 559 return false; 560 561 aCI->setCalledFunction(F); 562 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 563 << " with native version"); 564 return true; 565 } 566 567 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 568 // builtin, with appended type size and alignment arguments, where 2 or 4 569 // indicates the original number of arguments. The library has optimized version 570 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 571 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 572 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 573 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 574 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 575 FuncInfo &FInfo) { 576 auto *Callee = CI->getCalledFunction(); 577 if (!Callee->isDeclaration()) 578 return false; 579 580 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 581 auto *M = Callee->getParent(); 582 auto &Ctx = M->getContext(); 583 std::string Name = Callee->getName(); 584 auto NumArg = CI->getNumArgOperands(); 585 if (NumArg != 4 && NumArg != 6) 586 return false; 587 auto *PacketSize = CI->getArgOperand(NumArg - 2); 588 auto *PacketAlign = CI->getArgOperand(NumArg - 1); 589 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) 590 return false; 591 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); 592 unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue(); 593 if (Size != Align || !isPowerOf2_32(Size)) 594 return false; 595 596 Type *PtrElemTy; 597 if (Size <= 8) 598 PtrElemTy = Type::getIntNTy(Ctx, Size * 8); 599 else 600 PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8); 601 unsigned PtrArgLoc = CI->getNumArgOperands() - 3; 602 auto PtrArg = CI->getArgOperand(PtrArgLoc); 603 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); 604 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); 605 606 SmallVector<llvm::Type *, 6> ArgTys; 607 for (unsigned I = 0; I != PtrArgLoc; ++I) 608 ArgTys.push_back(CI->getArgOperand(I)->getType()); 609 ArgTys.push_back(PtrTy); 610 611 Name = Name + "_" + std::to_string(Size); 612 auto *FTy = FunctionType::get(Callee->getReturnType(), 613 ArrayRef<Type *>(ArgTys), false); 614 AMDGPULibFunc NewLibFunc(Name, FTy); 615 auto *F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 616 if (!F) 617 return false; 618 619 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); 620 SmallVector<Value *, 6> Args; 621 for (unsigned I = 0; I != PtrArgLoc; ++I) 622 Args.push_back(CI->getArgOperand(I)); 623 Args.push_back(BCast); 624 625 auto *NCI = B.CreateCall(F, Args); 626 NCI->setAttributes(CI->getAttributes()); 627 CI->replaceAllUsesWith(NCI); 628 CI->dropAllReferences(); 629 CI->eraseFromParent(); 630 631 return true; 632 } 633 634 // This function returns false if no change; return true otherwise. 635 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { 636 this->CI = CI; 637 Function *Callee = CI->getCalledFunction(); 638 639 // Ignore indirect calls. 640 if (Callee == 0) return false; 641 642 FuncInfo FInfo; 643 if (!parseFunctionName(Callee->getName(), &FInfo)) 644 return false; 645 646 // Further check the number of arguments to see if they match. 647 if (CI->getNumArgOperands() != FInfo.getNumArgs()) 648 return false; 649 650 BasicBlock *BB = CI->getParent(); 651 LLVMContext &Context = CI->getParent()->getContext(); 652 IRBuilder<> B(Context); 653 654 // Set the builder to the instruction after the call. 655 B.SetInsertPoint(BB, CI->getIterator()); 656 657 // Copy fast flags from the original call. 658 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) 659 B.setFastMathFlags(FPOp->getFastMathFlags()); 660 661 if (TDOFold(CI, FInfo)) 662 return true; 663 664 // Under unsafe-math, evaluate calls if possible. 665 // According to Brian Sumner, we can do this for all f32 function calls 666 // using host's double function calls. 667 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) 668 return true; 669 670 // Specilized optimizations for each function call 671 switch (FInfo.getId()) { 672 case AMDGPULibFunc::EI_RECIP: 673 // skip vector function 674 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 675 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 676 "recip must be an either native or half function"); 677 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); 678 679 case AMDGPULibFunc::EI_DIVIDE: 680 // skip vector function 681 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 682 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 683 "divide must be an either native or half function"); 684 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); 685 686 case AMDGPULibFunc::EI_POW: 687 case AMDGPULibFunc::EI_POWR: 688 case AMDGPULibFunc::EI_POWN: 689 return fold_pow(CI, B, FInfo); 690 691 case AMDGPULibFunc::EI_ROOTN: 692 // skip vector function 693 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); 694 695 case AMDGPULibFunc::EI_FMA: 696 case AMDGPULibFunc::EI_MAD: 697 case AMDGPULibFunc::EI_NFMA: 698 // skip vector function 699 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); 700 701 case AMDGPULibFunc::EI_SQRT: 702 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); 703 case AMDGPULibFunc::EI_COS: 704 case AMDGPULibFunc::EI_SIN: 705 if ((getArgType(FInfo) == AMDGPULibFunc::F32 || 706 getArgType(FInfo) == AMDGPULibFunc::F64) 707 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) 708 return fold_sincos(CI, B, AA); 709 710 break; 711 case AMDGPULibFunc::EI_READ_PIPE_2: 712 case AMDGPULibFunc::EI_READ_PIPE_4: 713 case AMDGPULibFunc::EI_WRITE_PIPE_2: 714 case AMDGPULibFunc::EI_WRITE_PIPE_4: 715 return fold_read_write_pipe(CI, B, FInfo); 716 717 default: 718 break; 719 } 720 721 return false; 722 } 723 724 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 725 // Table-Driven optimization 726 const TableRef tr = getOptTable(FInfo.getId()); 727 if (tr.size==0) 728 return false; 729 730 int const sz = (int)tr.size; 731 const TableEntry * const ftbl = tr.table; 732 Value *opr0 = CI->getArgOperand(0); 733 734 if (getVecSize(FInfo) > 1) { 735 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 736 SmallVector<double, 0> DVal; 737 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 738 ConstantFP *eltval = dyn_cast<ConstantFP>( 739 CV->getElementAsConstant((unsigned)eltNo)); 740 assert(eltval && "Non-FP arguments in math function!"); 741 bool found = false; 742 for (int i=0; i < sz; ++i) { 743 if (eltval->isExactlyValue(ftbl[i].input)) { 744 DVal.push_back(ftbl[i].result); 745 found = true; 746 break; 747 } 748 } 749 if (!found) { 750 // This vector constants not handled yet. 751 return false; 752 } 753 } 754 LLVMContext &context = CI->getParent()->getParent()->getContext(); 755 Constant *nval; 756 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 757 SmallVector<float, 0> FVal; 758 for (unsigned i = 0; i < DVal.size(); ++i) { 759 FVal.push_back((float)DVal[i]); 760 } 761 ArrayRef<float> tmp(FVal); 762 nval = ConstantDataVector::get(context, tmp); 763 } else { // F64 764 ArrayRef<double> tmp(DVal); 765 nval = ConstantDataVector::get(context, tmp); 766 } 767 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 768 replaceCall(nval); 769 return true; 770 } 771 } else { 772 // Scalar version 773 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 774 for (int i = 0; i < sz; ++i) { 775 if (CF->isExactlyValue(ftbl[i].input)) { 776 Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); 777 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 778 replaceCall(nval); 779 return true; 780 } 781 } 782 } 783 } 784 785 return false; 786 } 787 788 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { 789 Module *M = CI->getModule(); 790 if (getArgType(FInfo) != AMDGPULibFunc::F32 || 791 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 792 !HasNative(FInfo.getId())) 793 return false; 794 795 AMDGPULibFunc nf = FInfo; 796 nf.setPrefix(AMDGPULibFunc::NATIVE); 797 if (Constant *FPExpr = getFunction(M, nf)) { 798 LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); 799 800 CI->setCalledFunction(FPExpr); 801 802 LLVM_DEBUG(dbgs() << *CI << '\n'); 803 804 return true; 805 } 806 return false; 807 } 808 809 // [native_]half_recip(c) ==> 1.0/c 810 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, 811 const FuncInfo &FInfo) { 812 Value *opr0 = CI->getArgOperand(0); 813 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 814 // Just create a normal div. Later, InstCombine will be able 815 // to compute the divide into a constant (avoid check float infinity 816 // or subnormal at this point). 817 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), 818 opr0, 819 "recip2div"); 820 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 821 replaceCall(nval); 822 return true; 823 } 824 return false; 825 } 826 827 // [native_]half_divide(x, c) ==> x/c 828 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, 829 const FuncInfo &FInfo) { 830 Value *opr0 = CI->getArgOperand(0); 831 Value *opr1 = CI->getArgOperand(1); 832 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 833 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 834 835 if ((CF0 && CF1) || // both are constants 836 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) 837 // CF1 is constant && f32 divide 838 { 839 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), 840 opr1, "__div2recip"); 841 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); 842 replaceCall(nval); 843 return true; 844 } 845 return false; 846 } 847 848 namespace llvm { 849 static double log2(double V) { 850 #if _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L 851 return ::log2(V); 852 #else 853 return log(V) / 0.693147180559945309417; 854 #endif 855 } 856 } 857 858 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, 859 const FuncInfo &FInfo) { 860 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 861 FInfo.getId() == AMDGPULibFunc::EI_POWR || 862 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 863 "fold_pow: encounter a wrong function call"); 864 865 Value *opr0, *opr1; 866 ConstantFP *CF; 867 ConstantInt *CINT; 868 ConstantAggregateZero *CZero; 869 Type *eltType; 870 871 opr0 = CI->getArgOperand(0); 872 opr1 = CI->getArgOperand(1); 873 CZero = dyn_cast<ConstantAggregateZero>(opr1); 874 if (getVecSize(FInfo) == 1) { 875 eltType = opr0->getType(); 876 CF = dyn_cast<ConstantFP>(opr1); 877 CINT = dyn_cast<ConstantInt>(opr1); 878 } else { 879 VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); 880 assert(VTy && "Oprand of vector function should be of vectortype"); 881 eltType = VTy->getElementType(); 882 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); 883 884 // Now, only Handle vector const whose elements have the same value. 885 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; 886 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; 887 } 888 889 // No unsafe math , no constant argument, do nothing 890 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) 891 return false; 892 893 // 0x1111111 means that we don't do anything for this call. 894 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 895 896 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { 897 // pow/powr/pown(x, 0) == 1 898 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); 899 Constant *cnval = ConstantFP::get(eltType, 1.0); 900 if (getVecSize(FInfo) > 1) { 901 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 902 } 903 replaceCall(cnval); 904 return true; 905 } 906 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 907 // pow/powr/pown(x, 1.0) = x 908 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 909 replaceCall(opr0); 910 return true; 911 } 912 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 913 // pow/powr/pown(x, 2.0) = x*x 914 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 915 << "\n"); 916 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 917 replaceCall(nval); 918 return true; 919 } 920 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 921 // pow/powr/pown(x, -1.0) = 1.0/x 922 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); 923 Constant *cnval = ConstantFP::get(eltType, 1.0); 924 if (getVecSize(FInfo) > 1) { 925 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 926 } 927 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 928 replaceCall(nval); 929 return true; 930 } 931 932 Module *M = CI->getModule(); 933 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 934 // pow[r](x, [-]0.5) = sqrt(x) 935 bool issqrt = CF->isExactlyValue(0.5); 936 if (Constant *FPExpr = getFunction(M, 937 AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 938 : AMDGPULibFunc::EI_RSQRT, FInfo))) { 939 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 940 << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); 941 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 942 : "__pow2rsqrt"); 943 replaceCall(nval); 944 return true; 945 } 946 } 947 948 if (!isUnsafeMath(CI)) 949 return false; 950 951 // Unsafe Math optimization 952 953 // Remember that ci_opr1 is set if opr1 is integral 954 if (CF) { 955 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 956 ? (double)CF->getValueAPF().convertToFloat() 957 : CF->getValueAPF().convertToDouble(); 958 int ival = (int)dval; 959 if ((double)ival == dval) { 960 ci_opr1 = ival; 961 } else 962 ci_opr1 = 0x11111111; 963 } 964 965 // pow/powr/pown(x, c) = [1/](x*x*..x); where 966 // trunc(c) == c && the number of x == c && |c| <= 12 967 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 968 if (abs_opr1 <= 12) { 969 Constant *cnval; 970 Value *nval; 971 if (abs_opr1 == 0) { 972 cnval = ConstantFP::get(eltType, 1.0); 973 if (getVecSize(FInfo) > 1) { 974 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 975 } 976 nval = cnval; 977 } else { 978 Value *valx2 = nullptr; 979 nval = nullptr; 980 while (abs_opr1 > 0) { 981 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 982 if (abs_opr1 & 1) { 983 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 984 } 985 abs_opr1 >>= 1; 986 } 987 } 988 989 if (ci_opr1 < 0) { 990 cnval = ConstantFP::get(eltType, 1.0); 991 if (getVecSize(FInfo) > 1) { 992 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 993 } 994 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 995 } 996 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 997 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 998 << ")\n"); 999 replaceCall(nval); 1000 return true; 1001 } 1002 1003 // powr ---> exp2(y * log2(x)) 1004 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 1005 Constant *ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, 1006 FInfo)); 1007 if (!ExpExpr) 1008 return false; 1009 1010 bool needlog = false; 1011 bool needabs = false; 1012 bool needcopysign = false; 1013 Constant *cnval = nullptr; 1014 if (getVecSize(FInfo) == 1) { 1015 CF = dyn_cast<ConstantFP>(opr0); 1016 1017 if (CF) { 1018 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1019 ? (double)CF->getValueAPF().convertToFloat() 1020 : CF->getValueAPF().convertToDouble(); 1021 1022 V = log2(std::abs(V)); 1023 cnval = ConstantFP::get(eltType, V); 1024 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 1025 CF->isNegative(); 1026 } else { 1027 needlog = true; 1028 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && 1029 (!CF || CF->isNegative()); 1030 } 1031 } else { 1032 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1033 1034 if (!CDV) { 1035 needlog = true; 1036 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1037 } else { 1038 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1039 "Wrong vector size detected"); 1040 1041 SmallVector<double, 0> DVal; 1042 for (int i=0; i < getVecSize(FInfo); ++i) { 1043 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1044 ? (double)CDV->getElementAsFloat(i) 1045 : CDV->getElementAsDouble(i); 1046 if (V < 0.0) needcopysign = true; 1047 V = log2(std::abs(V)); 1048 DVal.push_back(V); 1049 } 1050 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1051 SmallVector<float, 0> FVal; 1052 for (unsigned i=0; i < DVal.size(); ++i) { 1053 FVal.push_back((float)DVal[i]); 1054 } 1055 ArrayRef<float> tmp(FVal); 1056 cnval = ConstantDataVector::get(M->getContext(), tmp); 1057 } else { 1058 ArrayRef<double> tmp(DVal); 1059 cnval = ConstantDataVector::get(M->getContext(), tmp); 1060 } 1061 } 1062 } 1063 1064 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1065 // We cannot handle corner cases for a general pow() function, give up 1066 // unless y is a constant integral value. Then proceed as if it were pown. 1067 if (getVecSize(FInfo) == 1) { 1068 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { 1069 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1070 ? (double)CF->getValueAPF().convertToFloat() 1071 : CF->getValueAPF().convertToDouble(); 1072 if (y != (double)(int64_t)y) 1073 return false; 1074 } else 1075 return false; 1076 } else { 1077 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { 1078 for (int i=0; i < getVecSize(FInfo); ++i) { 1079 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1080 ? (double)CDV->getElementAsFloat(i) 1081 : CDV->getElementAsDouble(i); 1082 if (y != (double)(int64_t)y) 1083 return false; 1084 } 1085 } else 1086 return false; 1087 } 1088 } 1089 1090 Value *nval; 1091 if (needabs) { 1092 Constant *AbsExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, 1093 FInfo)); 1094 if (!AbsExpr) 1095 return false; 1096 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); 1097 } else { 1098 nval = cnval ? cnval : opr0; 1099 } 1100 if (needlog) { 1101 Constant *LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, 1102 FInfo)); 1103 if (!LogExpr) 1104 return false; 1105 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1106 } 1107 1108 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1109 // convert int(32) to fp(f32 or f64) 1110 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1111 } 1112 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1113 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1114 1115 if (needcopysign) { 1116 Value *opr_n; 1117 Type* rTy = opr0->getType(); 1118 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); 1119 Type *nTy = nTyS; 1120 if (const VectorType *vTy = dyn_cast<VectorType>(rTy)) 1121 nTy = VectorType::get(nTyS, vTy->getNumElements()); 1122 unsigned size = nTy->getScalarSizeInBits(); 1123 opr_n = CI->getArgOperand(1); 1124 if (opr_n->getType()->isIntegerTy()) 1125 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); 1126 else 1127 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1128 1129 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1130 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1131 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1132 nval = B.CreateBitCast(nval, opr0->getType()); 1133 } 1134 1135 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1136 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1137 replaceCall(nval); 1138 1139 return true; 1140 } 1141 1142 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, 1143 const FuncInfo &FInfo) { 1144 Value *opr0 = CI->getArgOperand(0); 1145 Value *opr1 = CI->getArgOperand(1); 1146 1147 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1148 if (!CINT) { 1149 return false; 1150 } 1151 int ci_opr1 = (int)CINT->getSExtValue(); 1152 if (ci_opr1 == 1) { // rootn(x, 1) = x 1153 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 1154 replaceCall(opr0); 1155 return true; 1156 } 1157 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1158 std::vector<const Type*> ParamsTys; 1159 ParamsTys.push_back(opr0->getType()); 1160 Module *M = CI->getModule(); 1161 if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, 1162 FInfo))) { 1163 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); 1164 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1165 replaceCall(nval); 1166 return true; 1167 } 1168 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1169 Module *M = CI->getModule(); 1170 if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, 1171 FInfo))) { 1172 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); 1173 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1174 replaceCall(nval); 1175 return true; 1176 } 1177 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1178 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); 1179 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1180 opr0, 1181 "__rootn2div"); 1182 replaceCall(nval); 1183 return true; 1184 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1185 std::vector<const Type*> ParamsTys; 1186 ParamsTys.push_back(opr0->getType()); 1187 Module *M = CI->getModule(); 1188 if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, 1189 FInfo))) { 1190 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 1191 << ")\n"); 1192 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1193 replaceCall(nval); 1194 return true; 1195 } 1196 } 1197 return false; 1198 } 1199 1200 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, 1201 const FuncInfo &FInfo) { 1202 Value *opr0 = CI->getArgOperand(0); 1203 Value *opr1 = CI->getArgOperand(1); 1204 Value *opr2 = CI->getArgOperand(2); 1205 1206 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 1207 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 1208 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { 1209 // fma/mad(a, b, c) = c if a=0 || b=0 1210 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); 1211 replaceCall(opr2); 1212 return true; 1213 } 1214 if (CF0 && CF0->isExactlyValue(1.0f)) { 1215 // fma/mad(a, b, c) = b+c if a=1 1216 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 1217 << "\n"); 1218 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); 1219 replaceCall(nval); 1220 return true; 1221 } 1222 if (CF1 && CF1->isExactlyValue(1.0f)) { 1223 // fma/mad(a, b, c) = a+c if b=1 1224 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 1225 << "\n"); 1226 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); 1227 replaceCall(nval); 1228 return true; 1229 } 1230 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { 1231 if (CF->isZero()) { 1232 // fma/mad(a, b, c) = a*b if c=0 1233 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " 1234 << *opr1 << "\n"); 1235 Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); 1236 replaceCall(nval); 1237 return true; 1238 } 1239 } 1240 1241 return false; 1242 } 1243 1244 // Get a scalar native builtin signle argument FP function 1245 Constant* AMDGPULibCalls::getNativeFunction(Module* M, const FuncInfo& FInfo) { 1246 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1247 return nullptr; 1248 FuncInfo nf = FInfo; 1249 nf.setPrefix(AMDGPULibFunc::NATIVE); 1250 return getFunction(M, nf); 1251 } 1252 1253 // fold sqrt -> native_sqrt (x) 1254 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, 1255 const FuncInfo &FInfo) { 1256 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && 1257 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { 1258 if (Constant *FPExpr = getNativeFunction( 1259 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1260 Value *opr0 = CI->getArgOperand(0); 1261 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1262 << "sqrt(" << *opr0 << ")\n"); 1263 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); 1264 replaceCall(nval); 1265 return true; 1266 } 1267 } 1268 return false; 1269 } 1270 1271 // fold sin, cos -> sincos. 1272 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, 1273 AliasAnalysis *AA) { 1274 AMDGPULibFunc fInfo; 1275 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) 1276 return false; 1277 1278 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1279 fInfo.getId() == AMDGPULibFunc::EI_COS); 1280 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1281 1282 Value *CArgVal = CI->getArgOperand(0); 1283 BasicBlock * const CBB = CI->getParent(); 1284 1285 int const MaxScan = 30; 1286 1287 { // fold in load value. 1288 LoadInst *LI = dyn_cast<LoadInst>(CArgVal); 1289 if (LI && LI->getParent() == CBB) { 1290 BasicBlock::iterator BBI = LI->getIterator(); 1291 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); 1292 if (AvailableVal) { 1293 CArgVal->replaceAllUsesWith(AvailableVal); 1294 if (CArgVal->getNumUses() == 0) 1295 LI->eraseFromParent(); 1296 CArgVal = CI->getArgOperand(0); 1297 } 1298 } 1299 } 1300 1301 Module *M = CI->getModule(); 1302 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); 1303 std::string const PairName = fInfo.mangle(); 1304 1305 CallInst *UI = nullptr; 1306 for (User* U : CArgVal->users()) { 1307 CallInst *XI = dyn_cast_or_null<CallInst>(U); 1308 if (!XI || XI == CI || XI->getParent() != CBB) 1309 continue; 1310 1311 Function *UCallee = XI->getCalledFunction(); 1312 if (!UCallee || !UCallee->getName().equals(PairName)) 1313 continue; 1314 1315 BasicBlock::iterator BBI = CI->getIterator(); 1316 if (BBI == CI->getParent()->begin()) 1317 break; 1318 --BBI; 1319 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { 1320 if (cast<Instruction>(BBI) == XI) { 1321 UI = XI; 1322 break; 1323 } 1324 } 1325 if (UI) break; 1326 } 1327 1328 if (!UI) return false; 1329 1330 // Merge the sin and cos. 1331 1332 // for OpenCL 2.0 we have only generic implementation of sincos 1333 // function. 1334 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); 1335 nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1336 Function *Fsincos = dyn_cast_or_null<Function>(getFunction(M, nf)); 1337 if (!Fsincos) return false; 1338 1339 BasicBlock::iterator ItOld = B.GetInsertPoint(); 1340 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); 1341 B.SetInsertPoint(UI); 1342 1343 Value *P = Alloc; 1344 Type *PTy = Fsincos->getFunctionType()->getParamType(1); 1345 // The allocaInst allocates the memory in private address space. This need 1346 // to be bitcasted to point to the address space of cos pointer type. 1347 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1348 if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) 1349 P = B.CreateAddrSpaceCast(Alloc, PTy); 1350 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); 1351 1352 LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " 1353 << *Call << "\n"); 1354 1355 if (!isSin) { // CI->cos, UI->sin 1356 B.SetInsertPoint(&*ItOld); 1357 UI->replaceAllUsesWith(&*Call); 1358 Instruction *Reload = B.CreateLoad(Alloc); 1359 CI->replaceAllUsesWith(Reload); 1360 UI->eraseFromParent(); 1361 CI->eraseFromParent(); 1362 } else { // CI->sin, UI->cos 1363 Instruction *Reload = B.CreateLoad(Alloc); 1364 UI->replaceAllUsesWith(Reload); 1365 CI->replaceAllUsesWith(Call); 1366 UI->eraseFromParent(); 1367 CI->eraseFromParent(); 1368 } 1369 return true; 1370 } 1371 1372 // Get insertion point at entry. 1373 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { 1374 Function * Func = UI->getParent()->getParent(); 1375 BasicBlock * BB = &Func->getEntryBlock(); 1376 assert(BB && "Entry block not found!"); 1377 BasicBlock::iterator ItNew = BB->begin(); 1378 return ItNew; 1379 } 1380 1381 // Insert a AllocsInst at the beginning of function entry block. 1382 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, 1383 const char *prefix) { 1384 BasicBlock::iterator ItNew = getEntryIns(UI); 1385 Function *UCallee = UI->getCalledFunction(); 1386 Type *RetType = UCallee->getReturnType(); 1387 B.SetInsertPoint(&*ItNew); 1388 AllocaInst *Alloc = B.CreateAlloca(RetType, 0, 1389 std::string(prefix) + UI->getName()); 1390 Alloc->setAlignment(UCallee->getParent()->getDataLayout() 1391 .getTypeAllocSize(RetType)); 1392 return Alloc; 1393 } 1394 1395 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo, 1396 double& Res0, double& Res1, 1397 Constant *copr0, Constant *copr1, 1398 Constant *copr2) { 1399 // By default, opr0/opr1/opr3 holds values of float/double type. 1400 // If they are not float/double, each function has to its 1401 // operand separately. 1402 double opr0=0.0, opr1=0.0, opr2=0.0; 1403 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1404 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1405 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); 1406 if (fpopr0) { 1407 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1408 ? fpopr0->getValueAPF().convertToDouble() 1409 : (double)fpopr0->getValueAPF().convertToFloat(); 1410 } 1411 1412 if (fpopr1) { 1413 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1414 ? fpopr1->getValueAPF().convertToDouble() 1415 : (double)fpopr1->getValueAPF().convertToFloat(); 1416 } 1417 1418 if (fpopr2) { 1419 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1420 ? fpopr2->getValueAPF().convertToDouble() 1421 : (double)fpopr2->getValueAPF().convertToFloat(); 1422 } 1423 1424 switch (FInfo.getId()) { 1425 default : return false; 1426 1427 case AMDGPULibFunc::EI_ACOS: 1428 Res0 = acos(opr0); 1429 return true; 1430 1431 case AMDGPULibFunc::EI_ACOSH: 1432 // acosh(x) == log(x + sqrt(x*x - 1)) 1433 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1434 return true; 1435 1436 case AMDGPULibFunc::EI_ACOSPI: 1437 Res0 = acos(opr0) / MATH_PI; 1438 return true; 1439 1440 case AMDGPULibFunc::EI_ASIN: 1441 Res0 = asin(opr0); 1442 return true; 1443 1444 case AMDGPULibFunc::EI_ASINH: 1445 // asinh(x) == log(x + sqrt(x*x + 1)) 1446 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1447 return true; 1448 1449 case AMDGPULibFunc::EI_ASINPI: 1450 Res0 = asin(opr0) / MATH_PI; 1451 return true; 1452 1453 case AMDGPULibFunc::EI_ATAN: 1454 Res0 = atan(opr0); 1455 return true; 1456 1457 case AMDGPULibFunc::EI_ATANH: 1458 // atanh(x) == (log(x+1) - log(x-1))/2; 1459 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1460 return true; 1461 1462 case AMDGPULibFunc::EI_ATANPI: 1463 Res0 = atan(opr0) / MATH_PI; 1464 return true; 1465 1466 case AMDGPULibFunc::EI_CBRT: 1467 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1468 return true; 1469 1470 case AMDGPULibFunc::EI_COS: 1471 Res0 = cos(opr0); 1472 return true; 1473 1474 case AMDGPULibFunc::EI_COSH: 1475 Res0 = cosh(opr0); 1476 return true; 1477 1478 case AMDGPULibFunc::EI_COSPI: 1479 Res0 = cos(MATH_PI * opr0); 1480 return true; 1481 1482 case AMDGPULibFunc::EI_EXP: 1483 Res0 = exp(opr0); 1484 return true; 1485 1486 case AMDGPULibFunc::EI_EXP2: 1487 Res0 = pow(2.0, opr0); 1488 return true; 1489 1490 case AMDGPULibFunc::EI_EXP10: 1491 Res0 = pow(10.0, opr0); 1492 return true; 1493 1494 case AMDGPULibFunc::EI_EXPM1: 1495 Res0 = exp(opr0) - 1.0; 1496 return true; 1497 1498 case AMDGPULibFunc::EI_LOG: 1499 Res0 = log(opr0); 1500 return true; 1501 1502 case AMDGPULibFunc::EI_LOG2: 1503 Res0 = log(opr0) / log(2.0); 1504 return true; 1505 1506 case AMDGPULibFunc::EI_LOG10: 1507 Res0 = log(opr0) / log(10.0); 1508 return true; 1509 1510 case AMDGPULibFunc::EI_RSQRT: 1511 Res0 = 1.0 / sqrt(opr0); 1512 return true; 1513 1514 case AMDGPULibFunc::EI_SIN: 1515 Res0 = sin(opr0); 1516 return true; 1517 1518 case AMDGPULibFunc::EI_SINH: 1519 Res0 = sinh(opr0); 1520 return true; 1521 1522 case AMDGPULibFunc::EI_SINPI: 1523 Res0 = sin(MATH_PI * opr0); 1524 return true; 1525 1526 case AMDGPULibFunc::EI_SQRT: 1527 Res0 = sqrt(opr0); 1528 return true; 1529 1530 case AMDGPULibFunc::EI_TAN: 1531 Res0 = tan(opr0); 1532 return true; 1533 1534 case AMDGPULibFunc::EI_TANH: 1535 Res0 = tanh(opr0); 1536 return true; 1537 1538 case AMDGPULibFunc::EI_TANPI: 1539 Res0 = tan(MATH_PI * opr0); 1540 return true; 1541 1542 case AMDGPULibFunc::EI_RECIP: 1543 Res0 = 1.0 / opr0; 1544 return true; 1545 1546 // two-arg functions 1547 case AMDGPULibFunc::EI_DIVIDE: 1548 Res0 = opr0 / opr1; 1549 return true; 1550 1551 case AMDGPULibFunc::EI_POW: 1552 case AMDGPULibFunc::EI_POWR: 1553 Res0 = pow(opr0, opr1); 1554 return true; 1555 1556 case AMDGPULibFunc::EI_POWN: { 1557 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1558 double val = (double)iopr1->getSExtValue(); 1559 Res0 = pow(opr0, val); 1560 return true; 1561 } 1562 return false; 1563 } 1564 1565 case AMDGPULibFunc::EI_ROOTN: { 1566 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1567 double val = (double)iopr1->getSExtValue(); 1568 Res0 = pow(opr0, 1.0 / val); 1569 return true; 1570 } 1571 return false; 1572 } 1573 1574 // with ptr arg 1575 case AMDGPULibFunc::EI_SINCOS: 1576 Res0 = sin(opr0); 1577 Res1 = cos(opr0); 1578 return true; 1579 1580 // three-arg functions 1581 case AMDGPULibFunc::EI_FMA: 1582 case AMDGPULibFunc::EI_MAD: 1583 Res0 = opr0 * opr1 + opr2; 1584 return true; 1585 } 1586 1587 return false; 1588 } 1589 1590 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) { 1591 int numArgs = (int)aCI->getNumArgOperands(); 1592 if (numArgs > 3) 1593 return false; 1594 1595 Constant *copr0 = nullptr; 1596 Constant *copr1 = nullptr; 1597 Constant *copr2 = nullptr; 1598 if (numArgs > 0) { 1599 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1600 return false; 1601 } 1602 1603 if (numArgs > 1) { 1604 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1605 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1606 return false; 1607 } 1608 } 1609 1610 if (numArgs > 2) { 1611 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) 1612 return false; 1613 } 1614 1615 // At this point, all arguments to aCI are constants. 1616 1617 // max vector size is 16, and sincos will generate two results. 1618 double DVal0[16], DVal1[16]; 1619 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1620 if (getVecSize(FInfo) == 1) { 1621 if (!evaluateScalarMathFunc(FInfo, DVal0[0], 1622 DVal1[0], copr0, copr1, copr2)) { 1623 return false; 1624 } 1625 } else { 1626 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1627 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1628 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); 1629 for (int i=0; i < getVecSize(FInfo); ++i) { 1630 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1631 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1632 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; 1633 if (!evaluateScalarMathFunc(FInfo, DVal0[i], 1634 DVal1[i], celt0, celt1, celt2)) { 1635 return false; 1636 } 1637 } 1638 } 1639 1640 LLVMContext &context = CI->getParent()->getParent()->getContext(); 1641 Constant *nval0, *nval1; 1642 if (getVecSize(FInfo) == 1) { 1643 nval0 = ConstantFP::get(CI->getType(), DVal0[0]); 1644 if (hasTwoResults) 1645 nval1 = ConstantFP::get(CI->getType(), DVal1[0]); 1646 } else { 1647 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1648 SmallVector <float, 0> FVal0, FVal1; 1649 for (int i=0; i < getVecSize(FInfo); ++i) 1650 FVal0.push_back((float)DVal0[i]); 1651 ArrayRef<float> tmp0(FVal0); 1652 nval0 = ConstantDataVector::get(context, tmp0); 1653 if (hasTwoResults) { 1654 for (int i=0; i < getVecSize(FInfo); ++i) 1655 FVal1.push_back((float)DVal1[i]); 1656 ArrayRef<float> tmp1(FVal1); 1657 nval1 = ConstantDataVector::get(context, tmp1); 1658 } 1659 } else { 1660 ArrayRef<double> tmp0(DVal0); 1661 nval0 = ConstantDataVector::get(context, tmp0); 1662 if (hasTwoResults) { 1663 ArrayRef<double> tmp1(DVal1); 1664 nval1 = ConstantDataVector::get(context, tmp1); 1665 } 1666 } 1667 } 1668 1669 if (hasTwoResults) { 1670 // sincos 1671 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1672 "math function with ptr arg not supported yet"); 1673 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1674 } 1675 1676 replaceCall(nval0); 1677 return true; 1678 } 1679 1680 // Public interface to the Simplify LibCalls pass. 1681 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt) { 1682 return new AMDGPUSimplifyLibCalls(Opt); 1683 } 1684 1685 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { 1686 return new AMDGPUUseNativeCalls(); 1687 } 1688 1689 static bool setFastFlags(Function &F, const TargetOptions &Options) { 1690 AttrBuilder B; 1691 1692 if (Options.UnsafeFPMath || Options.NoInfsFPMath) 1693 B.addAttribute("no-infs-fp-math", "true"); 1694 if (Options.UnsafeFPMath || Options.NoNaNsFPMath) 1695 B.addAttribute("no-nans-fp-math", "true"); 1696 if (Options.UnsafeFPMath) { 1697 B.addAttribute("less-precise-fpmad", "true"); 1698 B.addAttribute("unsafe-fp-math", "true"); 1699 } 1700 1701 if (!B.hasAttributes()) 1702 return false; 1703 1704 F.addAttributes(AttributeList::FunctionIndex, B); 1705 1706 return true; 1707 } 1708 1709 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { 1710 if (skipFunction(F)) 1711 return false; 1712 1713 bool Changed = false; 1714 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1715 1716 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1717 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1718 1719 if (!EnablePreLink) 1720 Changed |= setFastFlags(F, Options); 1721 1722 for (auto &BB : F) { 1723 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1724 // Ignore non-calls. 1725 CallInst *CI = dyn_cast<CallInst>(I); 1726 ++I; 1727 if (!CI) continue; 1728 1729 // Ignore indirect calls. 1730 Function *Callee = CI->getCalledFunction(); 1731 if (Callee == 0) continue; 1732 1733 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1734 dbgs().flush()); 1735 if(Simplifier.fold(CI, AA)) 1736 Changed = true; 1737 } 1738 } 1739 return Changed; 1740 } 1741 1742 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { 1743 if (skipFunction(F) || UseNative.empty()) 1744 return false; 1745 1746 bool Changed = false; 1747 for (auto &BB : F) { 1748 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1749 // Ignore non-calls. 1750 CallInst *CI = dyn_cast<CallInst>(I); 1751 ++I; 1752 if (!CI) continue; 1753 1754 // Ignore indirect calls. 1755 Function *Callee = CI->getCalledFunction(); 1756 if (Callee == 0) continue; 1757 1758 if(Simplifier.useNative(CI)) 1759 Changed = true; 1760 } 1761 } 1762 return Changed; 1763 } 1764