1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPULibFunc.h" 16 #include "GCNSubtarget.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/AttributeMask.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/InitializePasses.h" 27 #include <cmath> 28 29 #define DEBUG_TYPE "amdgpu-simplifylib" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 35 cl::desc("Enable pre-link mode optimizations"), 36 cl::init(false), 37 cl::Hidden); 38 39 static cl::list<std::string> UseNative("amdgpu-use-native", 40 cl::desc("Comma separated list of functions to replace with native, or all"), 41 cl::CommaSeparated, cl::ValueOptional, 42 cl::Hidden); 43 44 #define MATH_PI numbers::pi 45 #define MATH_E numbers::e 46 #define MATH_SQRT2 numbers::sqrt2 47 #define MATH_SQRT1_2 numbers::inv_sqrt2 48 49 namespace llvm { 50 51 class AMDGPULibCalls { 52 private: 53 const TargetLibraryInfo *TLInfo = nullptr; 54 AssumptionCache *AC = nullptr; 55 DominatorTree *DT = nullptr; 56 57 typedef llvm::AMDGPULibFunc FuncInfo; 58 59 bool UnsafeFPMath = false; 60 61 // -fuse-native. 62 bool AllNative = false; 63 64 bool useNativeFunc(const StringRef F) const; 65 66 // Return a pointer (pointer expr) to the function if function definition with 67 // "FuncName" exists. It may create a new function prototype in pre-link mode. 68 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 69 70 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo); 71 72 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 73 74 /* Specialized optimizations */ 75 76 // pow/powr/pown 77 bool fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); 78 79 // rootn 80 bool fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); 81 82 // -fuse-native for sincos 83 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 84 85 // evaluate calls if calls' arguments are constants. 86 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, double &Res1, 87 Constant *copr0, Constant *copr1); 88 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo); 89 90 /// Insert a value to sincos function \p Fsincos. Returns (value of sin, value 91 /// of cos, sincos call). 92 std::tuple<Value *, Value *, Value *> insertSinCos(Value *Arg, 93 FastMathFlags FMF, 94 IRBuilder<> &B, 95 FunctionCallee Fsincos); 96 97 // sin/cos 98 bool fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); 99 100 // __read_pipe/__write_pipe 101 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 102 const FuncInfo &FInfo); 103 104 // Get a scalar native builtin single argument FP function 105 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 106 107 /// Substitute a call to a known libcall with an intrinsic call. If \p 108 /// AllowMinSize is true, allow the replacement in a minsize function. 109 bool shouldReplaceLibcallWithIntrinsic(const CallInst *CI, 110 bool AllowMinSizeF32 = false, 111 bool AllowF64 = false, 112 bool AllowStrictFP = false); 113 void replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI, 114 Intrinsic::ID IntrID); 115 116 bool tryReplaceLibcallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI, 117 Intrinsic::ID IntrID, 118 bool AllowMinSizeF32 = false, 119 bool AllowF64 = false, 120 bool AllowStrictFP = false); 121 122 protected: 123 bool isUnsafeMath(const FPMathOperator *FPOp) const; 124 bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const; 125 126 bool canIncreasePrecisionOfConstantFold(const FPMathOperator *FPOp) const; 127 128 static void replaceCall(Instruction *I, Value *With) { 129 I->replaceAllUsesWith(With); 130 I->eraseFromParent(); 131 } 132 133 static void replaceCall(FPMathOperator *I, Value *With) { 134 replaceCall(cast<Instruction>(I), With); 135 } 136 137 public: 138 AMDGPULibCalls() {} 139 140 bool fold(CallInst *CI); 141 142 void initFunction(Function &F, FunctionAnalysisManager &FAM); 143 void initNativeFuncs(); 144 145 // Replace a normal math function call with that native version 146 bool useNative(CallInst *CI); 147 }; 148 149 } // end llvm namespace 150 151 template <typename IRB> 152 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 153 const Twine &Name = "") { 154 CallInst *R = B.CreateCall(Callee, Arg, Name); 155 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 156 R->setCallingConv(F->getCallingConv()); 157 return R; 158 } 159 160 template <typename IRB> 161 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 162 Value *Arg2, const Twine &Name = "") { 163 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 164 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 165 R->setCallingConv(F->getCallingConv()); 166 return R; 167 } 168 169 static FunctionType *getPownType(FunctionType *FT) { 170 Type *PowNExpTy = Type::getInt32Ty(FT->getContext()); 171 if (VectorType *VecTy = dyn_cast<VectorType>(FT->getReturnType())) 172 PowNExpTy = VectorType::get(PowNExpTy, VecTy->getElementCount()); 173 174 return FunctionType::get(FT->getReturnType(), 175 {FT->getParamType(0), PowNExpTy}, false); 176 } 177 178 // Data structures for table-driven optimizations. 179 // FuncTbl works for both f32 and f64 functions with 1 input argument 180 181 struct TableEntry { 182 double result; 183 double input; 184 }; 185 186 /* a list of {result, input} */ 187 static const TableEntry tbl_acos[] = { 188 {MATH_PI / 2.0, 0.0}, 189 {MATH_PI / 2.0, -0.0}, 190 {0.0, 1.0}, 191 {MATH_PI, -1.0} 192 }; 193 static const TableEntry tbl_acosh[] = { 194 {0.0, 1.0} 195 }; 196 static const TableEntry tbl_acospi[] = { 197 {0.5, 0.0}, 198 {0.5, -0.0}, 199 {0.0, 1.0}, 200 {1.0, -1.0} 201 }; 202 static const TableEntry tbl_asin[] = { 203 {0.0, 0.0}, 204 {-0.0, -0.0}, 205 {MATH_PI / 2.0, 1.0}, 206 {-MATH_PI / 2.0, -1.0} 207 }; 208 static const TableEntry tbl_asinh[] = { 209 {0.0, 0.0}, 210 {-0.0, -0.0} 211 }; 212 static const TableEntry tbl_asinpi[] = { 213 {0.0, 0.0}, 214 {-0.0, -0.0}, 215 {0.5, 1.0}, 216 {-0.5, -1.0} 217 }; 218 static const TableEntry tbl_atan[] = { 219 {0.0, 0.0}, 220 {-0.0, -0.0}, 221 {MATH_PI / 4.0, 1.0}, 222 {-MATH_PI / 4.0, -1.0} 223 }; 224 static const TableEntry tbl_atanh[] = { 225 {0.0, 0.0}, 226 {-0.0, -0.0} 227 }; 228 static const TableEntry tbl_atanpi[] = { 229 {0.0, 0.0}, 230 {-0.0, -0.0}, 231 {0.25, 1.0}, 232 {-0.25, -1.0} 233 }; 234 static const TableEntry tbl_cbrt[] = { 235 {0.0, 0.0}, 236 {-0.0, -0.0}, 237 {1.0, 1.0}, 238 {-1.0, -1.0}, 239 }; 240 static const TableEntry tbl_cos[] = { 241 {1.0, 0.0}, 242 {1.0, -0.0} 243 }; 244 static const TableEntry tbl_cosh[] = { 245 {1.0, 0.0}, 246 {1.0, -0.0} 247 }; 248 static const TableEntry tbl_cospi[] = { 249 {1.0, 0.0}, 250 {1.0, -0.0} 251 }; 252 static const TableEntry tbl_erfc[] = { 253 {1.0, 0.0}, 254 {1.0, -0.0} 255 }; 256 static const TableEntry tbl_erf[] = { 257 {0.0, 0.0}, 258 {-0.0, -0.0} 259 }; 260 static const TableEntry tbl_exp[] = { 261 {1.0, 0.0}, 262 {1.0, -0.0}, 263 {MATH_E, 1.0} 264 }; 265 static const TableEntry tbl_exp2[] = { 266 {1.0, 0.0}, 267 {1.0, -0.0}, 268 {2.0, 1.0} 269 }; 270 static const TableEntry tbl_exp10[] = { 271 {1.0, 0.0}, 272 {1.0, -0.0}, 273 {10.0, 1.0} 274 }; 275 static const TableEntry tbl_expm1[] = { 276 {0.0, 0.0}, 277 {-0.0, -0.0} 278 }; 279 static const TableEntry tbl_log[] = { 280 {0.0, 1.0}, 281 {1.0, MATH_E} 282 }; 283 static const TableEntry tbl_log2[] = { 284 {0.0, 1.0}, 285 {1.0, 2.0} 286 }; 287 static const TableEntry tbl_log10[] = { 288 {0.0, 1.0}, 289 {1.0, 10.0} 290 }; 291 static const TableEntry tbl_rsqrt[] = { 292 {1.0, 1.0}, 293 {MATH_SQRT1_2, 2.0} 294 }; 295 static const TableEntry tbl_sin[] = { 296 {0.0, 0.0}, 297 {-0.0, -0.0} 298 }; 299 static const TableEntry tbl_sinh[] = { 300 {0.0, 0.0}, 301 {-0.0, -0.0} 302 }; 303 static const TableEntry tbl_sinpi[] = { 304 {0.0, 0.0}, 305 {-0.0, -0.0} 306 }; 307 static const TableEntry tbl_sqrt[] = { 308 {0.0, 0.0}, 309 {1.0, 1.0}, 310 {MATH_SQRT2, 2.0} 311 }; 312 static const TableEntry tbl_tan[] = { 313 {0.0, 0.0}, 314 {-0.0, -0.0} 315 }; 316 static const TableEntry tbl_tanh[] = { 317 {0.0, 0.0}, 318 {-0.0, -0.0} 319 }; 320 static const TableEntry tbl_tanpi[] = { 321 {0.0, 0.0}, 322 {-0.0, -0.0} 323 }; 324 static const TableEntry tbl_tgamma[] = { 325 {1.0, 1.0}, 326 {1.0, 2.0}, 327 {2.0, 3.0}, 328 {6.0, 4.0} 329 }; 330 331 static bool HasNative(AMDGPULibFunc::EFuncId id) { 332 switch(id) { 333 case AMDGPULibFunc::EI_DIVIDE: 334 case AMDGPULibFunc::EI_COS: 335 case AMDGPULibFunc::EI_EXP: 336 case AMDGPULibFunc::EI_EXP2: 337 case AMDGPULibFunc::EI_EXP10: 338 case AMDGPULibFunc::EI_LOG: 339 case AMDGPULibFunc::EI_LOG2: 340 case AMDGPULibFunc::EI_LOG10: 341 case AMDGPULibFunc::EI_POWR: 342 case AMDGPULibFunc::EI_RECIP: 343 case AMDGPULibFunc::EI_RSQRT: 344 case AMDGPULibFunc::EI_SIN: 345 case AMDGPULibFunc::EI_SINCOS: 346 case AMDGPULibFunc::EI_SQRT: 347 case AMDGPULibFunc::EI_TAN: 348 return true; 349 default:; 350 } 351 return false; 352 } 353 354 using TableRef = ArrayRef<TableEntry>; 355 356 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 357 switch(id) { 358 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 359 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 360 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 361 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 362 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 363 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 364 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 365 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 366 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 367 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 368 case AMDGPULibFunc::EI_NCOS: 369 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 370 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 371 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 372 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 373 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 374 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 375 case AMDGPULibFunc::EI_NEXP2: 376 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 377 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 378 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 379 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 380 case AMDGPULibFunc::EI_NLOG2: 381 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 382 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 383 case AMDGPULibFunc::EI_NRSQRT: 384 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 385 case AMDGPULibFunc::EI_NSIN: 386 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 387 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 388 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 389 case AMDGPULibFunc::EI_NSQRT: 390 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 391 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 392 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 393 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 394 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 395 default:; 396 } 397 return TableRef(); 398 } 399 400 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 401 return FInfo.getLeads()[0].VectorSize; 402 } 403 404 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 405 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 406 } 407 408 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 409 // If we are doing PreLinkOpt, the function is external. So it is safe to 410 // use getOrInsertFunction() at this stage. 411 412 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 413 : AMDGPULibFunc::getFunction(M, fInfo); 414 } 415 416 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName, 417 FuncInfo &FInfo) { 418 return AMDGPULibFunc::parse(FMangledName, FInfo); 419 } 420 421 bool AMDGPULibCalls::isUnsafeMath(const FPMathOperator *FPOp) const { 422 return UnsafeFPMath || FPOp->isFast(); 423 } 424 425 bool AMDGPULibCalls::isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const { 426 return UnsafeFPMath || 427 (FPOp->hasApproxFunc() && FPOp->hasNoNaNs() && FPOp->hasNoInfs()); 428 } 429 430 bool AMDGPULibCalls::canIncreasePrecisionOfConstantFold( 431 const FPMathOperator *FPOp) const { 432 // TODO: Refine to approxFunc or contract 433 return isUnsafeMath(FPOp); 434 } 435 436 void AMDGPULibCalls::initFunction(Function &F, FunctionAnalysisManager &FAM) { 437 UnsafeFPMath = F.getFnAttribute("unsafe-fp-math").getValueAsBool(); 438 AC = &FAM.getResult<AssumptionAnalysis>(F); 439 TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); 440 DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 441 } 442 443 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 444 return AllNative || llvm::is_contained(UseNative, F); 445 } 446 447 void AMDGPULibCalls::initNativeFuncs() { 448 AllNative = useNativeFunc("all") || 449 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 450 UseNative.begin()->empty()); 451 } 452 453 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 454 bool native_sin = useNativeFunc("sin"); 455 bool native_cos = useNativeFunc("cos"); 456 457 if (native_sin && native_cos) { 458 Module *M = aCI->getModule(); 459 Value *opr0 = aCI->getArgOperand(0); 460 461 AMDGPULibFunc nf; 462 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 463 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 464 465 nf.setPrefix(AMDGPULibFunc::NATIVE); 466 nf.setId(AMDGPULibFunc::EI_SIN); 467 FunctionCallee sinExpr = getFunction(M, nf); 468 469 nf.setPrefix(AMDGPULibFunc::NATIVE); 470 nf.setId(AMDGPULibFunc::EI_COS); 471 FunctionCallee cosExpr = getFunction(M, nf); 472 if (sinExpr && cosExpr) { 473 Value *sinval = 474 CallInst::Create(sinExpr, opr0, "splitsin", aCI->getIterator()); 475 Value *cosval = 476 CallInst::Create(cosExpr, opr0, "splitcos", aCI->getIterator()); 477 new StoreInst(cosval, aCI->getArgOperand(1), aCI->getIterator()); 478 479 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 480 << " with native version of sin/cos"); 481 482 replaceCall(aCI, sinval); 483 return true; 484 } 485 } 486 return false; 487 } 488 489 bool AMDGPULibCalls::useNative(CallInst *aCI) { 490 Function *Callee = aCI->getCalledFunction(); 491 if (!Callee || aCI->isNoBuiltin()) 492 return false; 493 494 FuncInfo FInfo; 495 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() || 496 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 497 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 498 !(AllNative || useNativeFunc(FInfo.getName()))) { 499 return false; 500 } 501 502 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 503 return sincosUseNative(aCI, FInfo); 504 505 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 506 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 507 if (!F) 508 return false; 509 510 aCI->setCalledFunction(F); 511 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 512 << " with native version"); 513 return true; 514 } 515 516 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 517 // builtin, with appended type size and alignment arguments, where 2 or 4 518 // indicates the original number of arguments. The library has optimized version 519 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 520 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 521 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 522 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 523 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 524 const FuncInfo &FInfo) { 525 auto *Callee = CI->getCalledFunction(); 526 if (!Callee->isDeclaration()) 527 return false; 528 529 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 530 auto *M = Callee->getParent(); 531 std::string Name = std::string(Callee->getName()); 532 auto NumArg = CI->arg_size(); 533 if (NumArg != 4 && NumArg != 6) 534 return false; 535 ConstantInt *PacketSize = 536 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 2)); 537 ConstantInt *PacketAlign = 538 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 1)); 539 if (!PacketSize || !PacketAlign) 540 return false; 541 542 unsigned Size = PacketSize->getZExtValue(); 543 Align Alignment = PacketAlign->getAlignValue(); 544 if (Alignment != Size) 545 return false; 546 547 unsigned PtrArgLoc = CI->arg_size() - 3; 548 Value *PtrArg = CI->getArgOperand(PtrArgLoc); 549 Type *PtrTy = PtrArg->getType(); 550 551 SmallVector<llvm::Type *, 6> ArgTys; 552 for (unsigned I = 0; I != PtrArgLoc; ++I) 553 ArgTys.push_back(CI->getArgOperand(I)->getType()); 554 ArgTys.push_back(PtrTy); 555 556 Name = Name + "_" + std::to_string(Size); 557 auto *FTy = FunctionType::get(Callee->getReturnType(), 558 ArrayRef<Type *>(ArgTys), false); 559 AMDGPULibFunc NewLibFunc(Name, FTy); 560 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 561 if (!F) 562 return false; 563 564 SmallVector<Value *, 6> Args; 565 for (unsigned I = 0; I != PtrArgLoc; ++I) 566 Args.push_back(CI->getArgOperand(I)); 567 Args.push_back(PtrArg); 568 569 auto *NCI = B.CreateCall(F, Args); 570 NCI->setAttributes(CI->getAttributes()); 571 CI->replaceAllUsesWith(NCI); 572 CI->dropAllReferences(); 573 CI->eraseFromParent(); 574 575 return true; 576 } 577 578 static bool isKnownIntegral(const Value *V, const DataLayout &DL, 579 FastMathFlags FMF) { 580 if (isa<UndefValue>(V)) 581 return true; 582 583 if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) 584 return CF->getValueAPF().isInteger(); 585 586 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 587 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 588 Constant *ConstElt = CDV->getElementAsConstant(i); 589 if (isa<UndefValue>(ConstElt)) 590 continue; 591 const ConstantFP *CFP = dyn_cast<ConstantFP>(ConstElt); 592 if (!CFP || !CFP->getValue().isInteger()) 593 return false; 594 } 595 596 return true; 597 } 598 599 const Instruction *I = dyn_cast<Instruction>(V); 600 if (!I) 601 return false; 602 603 switch (I->getOpcode()) { 604 case Instruction::SIToFP: 605 case Instruction::UIToFP: 606 // TODO: Could check nofpclass(inf) on incoming argument 607 if (FMF.noInfs()) 608 return true; 609 610 // Need to check int size cannot produce infinity, which computeKnownFPClass 611 // knows how to do already. 612 return isKnownNeverInfinity(I, /*Depth=*/0, SimplifyQuery(DL)); 613 case Instruction::Call: { 614 const CallInst *CI = cast<CallInst>(I); 615 switch (CI->getIntrinsicID()) { 616 case Intrinsic::trunc: 617 case Intrinsic::floor: 618 case Intrinsic::ceil: 619 case Intrinsic::rint: 620 case Intrinsic::nearbyint: 621 case Intrinsic::round: 622 case Intrinsic::roundeven: 623 return (FMF.noInfs() && FMF.noNaNs()) || 624 isKnownNeverInfOrNaN(I, /*Depth=*/0, SimplifyQuery(DL)); 625 default: 626 break; 627 } 628 629 break; 630 } 631 default: 632 break; 633 } 634 635 return false; 636 } 637 638 // This function returns false if no change; return true otherwise. 639 bool AMDGPULibCalls::fold(CallInst *CI) { 640 Function *Callee = CI->getCalledFunction(); 641 // Ignore indirect calls. 642 if (!Callee || Callee->isIntrinsic() || CI->isNoBuiltin()) 643 return false; 644 645 FuncInfo FInfo; 646 if (!parseFunctionName(Callee->getName(), FInfo)) 647 return false; 648 649 // Further check the number of arguments to see if they match. 650 // TODO: Check calling convention matches too 651 if (!FInfo.isCompatibleSignature(CI->getFunctionType())) 652 return false; 653 654 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << '\n'); 655 656 if (TDOFold(CI, FInfo)) 657 return true; 658 659 IRBuilder<> B(CI); 660 if (CI->isStrictFP()) 661 B.setIsFPConstrained(true); 662 663 if (FPMathOperator *FPOp = dyn_cast<FPMathOperator>(CI)) { 664 // Under unsafe-math, evaluate calls if possible. 665 // According to Brian Sumner, we can do this for all f32 function calls 666 // using host's double function calls. 667 if (canIncreasePrecisionOfConstantFold(FPOp) && evaluateCall(CI, FInfo)) 668 return true; 669 670 // Copy fast flags from the original call. 671 FastMathFlags FMF = FPOp->getFastMathFlags(); 672 B.setFastMathFlags(FMF); 673 674 // Specialized optimizations for each function call. 675 // 676 // TODO: Handle native functions 677 switch (FInfo.getId()) { 678 case AMDGPULibFunc::EI_EXP: 679 if (FMF.none()) 680 return false; 681 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp, 682 FMF.approxFunc()); 683 case AMDGPULibFunc::EI_EXP2: 684 if (FMF.none()) 685 return false; 686 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp2, 687 FMF.approxFunc()); 688 case AMDGPULibFunc::EI_LOG: 689 if (FMF.none()) 690 return false; 691 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log, 692 FMF.approxFunc()); 693 case AMDGPULibFunc::EI_LOG2: 694 if (FMF.none()) 695 return false; 696 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log2, 697 FMF.approxFunc()); 698 case AMDGPULibFunc::EI_LOG10: 699 if (FMF.none()) 700 return false; 701 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log10, 702 FMF.approxFunc()); 703 case AMDGPULibFunc::EI_FMIN: 704 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::minnum, 705 true, true); 706 case AMDGPULibFunc::EI_FMAX: 707 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::maxnum, 708 true, true); 709 case AMDGPULibFunc::EI_FMA: 710 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fma, true, 711 true); 712 case AMDGPULibFunc::EI_MAD: 713 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fmuladd, 714 true, true); 715 case AMDGPULibFunc::EI_FABS: 716 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fabs, true, 717 true, true); 718 case AMDGPULibFunc::EI_COPYSIGN: 719 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::copysign, 720 true, true, true); 721 case AMDGPULibFunc::EI_FLOOR: 722 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::floor, true, 723 true); 724 case AMDGPULibFunc::EI_CEIL: 725 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::ceil, true, 726 true); 727 case AMDGPULibFunc::EI_TRUNC: 728 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::trunc, true, 729 true); 730 case AMDGPULibFunc::EI_RINT: 731 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::rint, true, 732 true); 733 case AMDGPULibFunc::EI_ROUND: 734 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::round, true, 735 true); 736 case AMDGPULibFunc::EI_LDEXP: { 737 if (!shouldReplaceLibcallWithIntrinsic(CI, true, true)) 738 return false; 739 740 Value *Arg1 = CI->getArgOperand(1); 741 if (VectorType *VecTy = dyn_cast<VectorType>(CI->getType()); 742 VecTy && !isa<VectorType>(Arg1->getType())) { 743 Value *SplatArg1 = B.CreateVectorSplat(VecTy->getElementCount(), Arg1); 744 CI->setArgOperand(1, SplatArg1); 745 } 746 747 CI->setCalledFunction(Intrinsic::getDeclaration( 748 CI->getModule(), Intrinsic::ldexp, 749 {CI->getType(), CI->getArgOperand(1)->getType()})); 750 return true; 751 } 752 case AMDGPULibFunc::EI_POW: { 753 Module *M = Callee->getParent(); 754 AMDGPULibFunc PowrInfo(AMDGPULibFunc::EI_POWR, FInfo); 755 FunctionCallee PowrFunc = getFunction(M, PowrInfo); 756 CallInst *Call = cast<CallInst>(FPOp); 757 758 // pow(x, y) -> powr(x, y) for x >= -0.0 759 // TODO: Account for flags on current call 760 if (PowrFunc && 761 cannotBeOrderedLessThanZero( 762 FPOp->getOperand(0), /*Depth=*/0, 763 SimplifyQuery(M->getDataLayout(), TLInfo, DT, AC, Call))) { 764 Call->setCalledFunction(PowrFunc); 765 return fold_pow(FPOp, B, PowrInfo) || true; 766 } 767 768 // pow(x, y) -> pown(x, y) for known integral y 769 if (isKnownIntegral(FPOp->getOperand(1), M->getDataLayout(), 770 FPOp->getFastMathFlags())) { 771 FunctionType *PownType = getPownType(CI->getFunctionType()); 772 AMDGPULibFunc PownInfo(AMDGPULibFunc::EI_POWN, PownType, true); 773 FunctionCallee PownFunc = getFunction(M, PownInfo); 774 if (PownFunc) { 775 // TODO: If the incoming integral value is an sitofp/uitofp, it won't 776 // fold out without a known range. We can probably take the source 777 // value directly. 778 Value *CastedArg = 779 B.CreateFPToSI(FPOp->getOperand(1), PownType->getParamType(1)); 780 // Have to drop any nofpclass attributes on the original call site. 781 Call->removeParamAttrs( 782 1, AttributeFuncs::typeIncompatible(CastedArg->getType())); 783 Call->setCalledFunction(PownFunc); 784 Call->setArgOperand(1, CastedArg); 785 return fold_pow(FPOp, B, PownInfo) || true; 786 } 787 } 788 789 return fold_pow(FPOp, B, FInfo); 790 } 791 case AMDGPULibFunc::EI_POWR: 792 case AMDGPULibFunc::EI_POWN: 793 return fold_pow(FPOp, B, FInfo); 794 case AMDGPULibFunc::EI_ROOTN: 795 return fold_rootn(FPOp, B, FInfo); 796 case AMDGPULibFunc::EI_SQRT: 797 // TODO: Allow with strictfp + constrained intrinsic 798 return tryReplaceLibcallWithSimpleIntrinsic( 799 B, CI, Intrinsic::sqrt, true, true, /*AllowStrictFP=*/false); 800 case AMDGPULibFunc::EI_COS: 801 case AMDGPULibFunc::EI_SIN: 802 return fold_sincos(FPOp, B, FInfo); 803 default: 804 break; 805 } 806 } else { 807 // Specialized optimizations for each function call 808 switch (FInfo.getId()) { 809 case AMDGPULibFunc::EI_READ_PIPE_2: 810 case AMDGPULibFunc::EI_READ_PIPE_4: 811 case AMDGPULibFunc::EI_WRITE_PIPE_2: 812 case AMDGPULibFunc::EI_WRITE_PIPE_4: 813 return fold_read_write_pipe(CI, B, FInfo); 814 default: 815 break; 816 } 817 } 818 819 return false; 820 } 821 822 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 823 // Table-Driven optimization 824 const TableRef tr = getOptTable(FInfo.getId()); 825 if (tr.empty()) 826 return false; 827 828 int const sz = (int)tr.size(); 829 Value *opr0 = CI->getArgOperand(0); 830 831 if (getVecSize(FInfo) > 1) { 832 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 833 SmallVector<double, 0> DVal; 834 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 835 ConstantFP *eltval = dyn_cast<ConstantFP>( 836 CV->getElementAsConstant((unsigned)eltNo)); 837 assert(eltval && "Non-FP arguments in math function!"); 838 bool found = false; 839 for (int i=0; i < sz; ++i) { 840 if (eltval->isExactlyValue(tr[i].input)) { 841 DVal.push_back(tr[i].result); 842 found = true; 843 break; 844 } 845 } 846 if (!found) { 847 // This vector constants not handled yet. 848 return false; 849 } 850 } 851 LLVMContext &context = CI->getParent()->getParent()->getContext(); 852 Constant *nval; 853 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 854 SmallVector<float, 0> FVal; 855 for (unsigned i = 0; i < DVal.size(); ++i) { 856 FVal.push_back((float)DVal[i]); 857 } 858 ArrayRef<float> tmp(FVal); 859 nval = ConstantDataVector::get(context, tmp); 860 } else { // F64 861 ArrayRef<double> tmp(DVal); 862 nval = ConstantDataVector::get(context, tmp); 863 } 864 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 865 replaceCall(CI, nval); 866 return true; 867 } 868 } else { 869 // Scalar version 870 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 871 for (int i = 0; i < sz; ++i) { 872 if (CF->isExactlyValue(tr[i].input)) { 873 Value *nval = ConstantFP::get(CF->getType(), tr[i].result); 874 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 875 replaceCall(CI, nval); 876 return true; 877 } 878 } 879 } 880 } 881 882 return false; 883 } 884 885 namespace llvm { 886 static double log2(double V) { 887 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 888 return ::log2(V); 889 #else 890 return log(V) / numbers::ln2; 891 #endif 892 } 893 } 894 895 bool AMDGPULibCalls::fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, 896 const FuncInfo &FInfo) { 897 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 898 FInfo.getId() == AMDGPULibFunc::EI_POWR || 899 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 900 "fold_pow: encounter a wrong function call"); 901 902 Module *M = B.GetInsertBlock()->getModule(); 903 Type *eltType = FPOp->getType()->getScalarType(); 904 Value *opr0 = FPOp->getOperand(0); 905 Value *opr1 = FPOp->getOperand(1); 906 907 const APFloat *CF = nullptr; 908 const APInt *CINT = nullptr; 909 if (!match(opr1, m_APFloatAllowPoison(CF))) 910 match(opr1, m_APIntAllowPoison(CINT)); 911 912 // 0x1111111 means that we don't do anything for this call. 913 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 914 915 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0)) { 916 // pow/powr/pown(x, 0) == 1 917 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1\n"); 918 Constant *cnval = ConstantFP::get(eltType, 1.0); 919 if (getVecSize(FInfo) > 1) { 920 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 921 } 922 replaceCall(FPOp, cnval); 923 return true; 924 } 925 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 926 // pow/powr/pown(x, 1.0) = x 927 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << "\n"); 928 replaceCall(FPOp, opr0); 929 return true; 930 } 931 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 932 // pow/powr/pown(x, 2.0) = x*x 933 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << " * " 934 << *opr0 << "\n"); 935 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 936 replaceCall(FPOp, nval); 937 return true; 938 } 939 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 940 // pow/powr/pown(x, -1.0) = 1.0/x 941 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1 / " << *opr0 << "\n"); 942 Constant *cnval = ConstantFP::get(eltType, 1.0); 943 if (getVecSize(FInfo) > 1) { 944 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 945 } 946 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 947 replaceCall(FPOp, nval); 948 return true; 949 } 950 951 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 952 // pow[r](x, [-]0.5) = sqrt(x) 953 bool issqrt = CF->isExactlyValue(0.5); 954 if (FunctionCallee FPExpr = 955 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 956 : AMDGPULibFunc::EI_RSQRT, 957 FInfo))) { 958 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << FInfo.getName() 959 << '(' << *opr0 << ")\n"); 960 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 961 : "__pow2rsqrt"); 962 replaceCall(FPOp, nval); 963 return true; 964 } 965 } 966 967 if (!isUnsafeFiniteOnlyMath(FPOp)) 968 return false; 969 970 // Unsafe Math optimization 971 972 // Remember that ci_opr1 is set if opr1 is integral 973 if (CF) { 974 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 975 ? (double)CF->convertToFloat() 976 : CF->convertToDouble(); 977 int ival = (int)dval; 978 if ((double)ival == dval) { 979 ci_opr1 = ival; 980 } else 981 ci_opr1 = 0x11111111; 982 } 983 984 // pow/powr/pown(x, c) = [1/](x*x*..x); where 985 // trunc(c) == c && the number of x == c && |c| <= 12 986 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 987 if (abs_opr1 <= 12) { 988 Constant *cnval; 989 Value *nval; 990 if (abs_opr1 == 0) { 991 cnval = ConstantFP::get(eltType, 1.0); 992 if (getVecSize(FInfo) > 1) { 993 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 994 } 995 nval = cnval; 996 } else { 997 Value *valx2 = nullptr; 998 nval = nullptr; 999 while (abs_opr1 > 0) { 1000 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 1001 if (abs_opr1 & 1) { 1002 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 1003 } 1004 abs_opr1 >>= 1; 1005 } 1006 } 1007 1008 if (ci_opr1 < 0) { 1009 cnval = ConstantFP::get(eltType, 1.0); 1010 if (getVecSize(FInfo) > 1) { 1011 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 1012 } 1013 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 1014 } 1015 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " 1016 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 1017 << ")\n"); 1018 replaceCall(FPOp, nval); 1019 return true; 1020 } 1021 1022 // If we should use the generic intrinsic instead of emitting a libcall 1023 const bool ShouldUseIntrinsic = eltType->isFloatTy() || eltType->isHalfTy(); 1024 1025 // powr ---> exp2(y * log2(x)) 1026 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 1027 FunctionCallee ExpExpr; 1028 if (ShouldUseIntrinsic) 1029 ExpExpr = Intrinsic::getDeclaration(M, Intrinsic::exp2, {FPOp->getType()}); 1030 else { 1031 ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 1032 if (!ExpExpr) 1033 return false; 1034 } 1035 1036 bool needlog = false; 1037 bool needabs = false; 1038 bool needcopysign = false; 1039 Constant *cnval = nullptr; 1040 if (getVecSize(FInfo) == 1) { 1041 CF = nullptr; 1042 match(opr0, m_APFloatAllowPoison(CF)); 1043 1044 if (CF) { 1045 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1046 ? (double)CF->convertToFloat() 1047 : CF->convertToDouble(); 1048 1049 V = log2(std::abs(V)); 1050 cnval = ConstantFP::get(eltType, V); 1051 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 1052 CF->isNegative(); 1053 } else { 1054 needlog = true; 1055 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1056 } 1057 } else { 1058 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1059 1060 if (!CDV) { 1061 needlog = true; 1062 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1063 } else { 1064 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1065 "Wrong vector size detected"); 1066 1067 SmallVector<double, 0> DVal; 1068 for (int i=0; i < getVecSize(FInfo); ++i) { 1069 double V = CDV->getElementAsAPFloat(i).convertToDouble(); 1070 if (V < 0.0) needcopysign = true; 1071 V = log2(std::abs(V)); 1072 DVal.push_back(V); 1073 } 1074 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1075 SmallVector<float, 0> FVal; 1076 for (unsigned i=0; i < DVal.size(); ++i) { 1077 FVal.push_back((float)DVal[i]); 1078 } 1079 ArrayRef<float> tmp(FVal); 1080 cnval = ConstantDataVector::get(M->getContext(), tmp); 1081 } else { 1082 ArrayRef<double> tmp(DVal); 1083 cnval = ConstantDataVector::get(M->getContext(), tmp); 1084 } 1085 } 1086 } 1087 1088 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1089 // We cannot handle corner cases for a general pow() function, give up 1090 // unless y is a constant integral value. Then proceed as if it were pown. 1091 if (!isKnownIntegral(opr1, M->getDataLayout(), FPOp->getFastMathFlags())) 1092 return false; 1093 } 1094 1095 Value *nval; 1096 if (needabs) { 1097 nval = B.CreateUnaryIntrinsic(Intrinsic::fabs, opr0, nullptr, "__fabs"); 1098 } else { 1099 nval = cnval ? cnval : opr0; 1100 } 1101 if (needlog) { 1102 FunctionCallee LogExpr; 1103 if (ShouldUseIntrinsic) { 1104 LogExpr = 1105 Intrinsic::getDeclaration(M, Intrinsic::log2, {FPOp->getType()}); 1106 } else { 1107 LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1108 if (!LogExpr) 1109 return false; 1110 } 1111 1112 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1113 } 1114 1115 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1116 // convert int(32) to fp(f32 or f64) 1117 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1118 } 1119 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1120 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1121 1122 if (needcopysign) { 1123 Value *opr_n; 1124 Type* rTy = opr0->getType(); 1125 Type* nTyS = B.getIntNTy(eltType->getPrimitiveSizeInBits()); 1126 Type *nTy = nTyS; 1127 if (const auto *vTy = dyn_cast<FixedVectorType>(rTy)) 1128 nTy = FixedVectorType::get(nTyS, vTy); 1129 unsigned size = nTy->getScalarSizeInBits(); 1130 opr_n = FPOp->getOperand(1); 1131 if (opr_n->getType()->isIntegerTy()) 1132 opr_n = B.CreateZExtOrTrunc(opr_n, nTy, "__ytou"); 1133 else 1134 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1135 1136 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1137 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1138 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1139 nval = B.CreateBitCast(nval, opr0->getType()); 1140 } 1141 1142 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " 1143 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1144 replaceCall(FPOp, nval); 1145 1146 return true; 1147 } 1148 1149 bool AMDGPULibCalls::fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, 1150 const FuncInfo &FInfo) { 1151 // skip vector function 1152 if (getVecSize(FInfo) != 1) 1153 return false; 1154 1155 Value *opr0 = FPOp->getOperand(0); 1156 Value *opr1 = FPOp->getOperand(1); 1157 1158 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1159 if (!CINT) { 1160 return false; 1161 } 1162 int ci_opr1 = (int)CINT->getSExtValue(); 1163 if (ci_opr1 == 1) { // rootn(x, 1) = x 1164 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << "\n"); 1165 replaceCall(FPOp, opr0); 1166 return true; 1167 } 1168 1169 Module *M = B.GetInsertBlock()->getModule(); 1170 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1171 if (FunctionCallee FPExpr = 1172 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1173 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> sqrt(" << *opr0 1174 << ")\n"); 1175 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1176 replaceCall(FPOp, nval); 1177 return true; 1178 } 1179 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1180 if (FunctionCallee FPExpr = 1181 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1182 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> cbrt(" << *opr0 1183 << ")\n"); 1184 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1185 replaceCall(FPOp, nval); 1186 return true; 1187 } 1188 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1189 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1.0 / " << *opr0 << "\n"); 1190 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1191 opr0, 1192 "__rootn2div"); 1193 replaceCall(FPOp, nval); 1194 return true; 1195 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1196 if (FunctionCallee FPExpr = 1197 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { 1198 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> rsqrt(" << *opr0 1199 << ")\n"); 1200 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1201 replaceCall(FPOp, nval); 1202 return true; 1203 } 1204 } 1205 return false; 1206 } 1207 1208 // Get a scalar native builtin single argument FP function 1209 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1210 const FuncInfo &FInfo) { 1211 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1212 return nullptr; 1213 FuncInfo nf = FInfo; 1214 nf.setPrefix(AMDGPULibFunc::NATIVE); 1215 return getFunction(M, nf); 1216 } 1217 1218 // Some library calls are just wrappers around llvm intrinsics, but compiled 1219 // conservatively. Preserve the flags from the original call site by 1220 // substituting them with direct calls with all the flags. 1221 bool AMDGPULibCalls::shouldReplaceLibcallWithIntrinsic(const CallInst *CI, 1222 bool AllowMinSizeF32, 1223 bool AllowF64, 1224 bool AllowStrictFP) { 1225 Type *FltTy = CI->getType()->getScalarType(); 1226 const bool IsF32 = FltTy->isFloatTy(); 1227 1228 // f64 intrinsics aren't implemented for most operations. 1229 if (!IsF32 && !FltTy->isHalfTy() && (!AllowF64 || !FltTy->isDoubleTy())) 1230 return false; 1231 1232 // We're implicitly inlining by replacing the libcall with the intrinsic, so 1233 // don't do it for noinline call sites. 1234 if (CI->isNoInline()) 1235 return false; 1236 1237 const Function *ParentF = CI->getFunction(); 1238 // TODO: Handle strictfp 1239 if (!AllowStrictFP && ParentF->hasFnAttribute(Attribute::StrictFP)) 1240 return false; 1241 1242 if (IsF32 && !AllowMinSizeF32 && ParentF->hasMinSize()) 1243 return false; 1244 return true; 1245 } 1246 1247 void AMDGPULibCalls::replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, 1248 CallInst *CI, 1249 Intrinsic::ID IntrID) { 1250 if (CI->arg_size() == 2) { 1251 Value *Arg0 = CI->getArgOperand(0); 1252 Value *Arg1 = CI->getArgOperand(1); 1253 VectorType *Arg0VecTy = dyn_cast<VectorType>(Arg0->getType()); 1254 VectorType *Arg1VecTy = dyn_cast<VectorType>(Arg1->getType()); 1255 if (Arg0VecTy && !Arg1VecTy) { 1256 Value *SplatRHS = B.CreateVectorSplat(Arg0VecTy->getElementCount(), Arg1); 1257 CI->setArgOperand(1, SplatRHS); 1258 } else if (!Arg0VecTy && Arg1VecTy) { 1259 Value *SplatLHS = B.CreateVectorSplat(Arg1VecTy->getElementCount(), Arg0); 1260 CI->setArgOperand(0, SplatLHS); 1261 } 1262 } 1263 1264 CI->setCalledFunction( 1265 Intrinsic::getDeclaration(CI->getModule(), IntrID, {CI->getType()})); 1266 } 1267 1268 bool AMDGPULibCalls::tryReplaceLibcallWithSimpleIntrinsic( 1269 IRBuilder<> &B, CallInst *CI, Intrinsic::ID IntrID, bool AllowMinSizeF32, 1270 bool AllowF64, bool AllowStrictFP) { 1271 if (!shouldReplaceLibcallWithIntrinsic(CI, AllowMinSizeF32, AllowF64, 1272 AllowStrictFP)) 1273 return false; 1274 replaceLibCallWithSimpleIntrinsic(B, CI, IntrID); 1275 return true; 1276 } 1277 1278 std::tuple<Value *, Value *, Value *> 1279 AMDGPULibCalls::insertSinCos(Value *Arg, FastMathFlags FMF, IRBuilder<> &B, 1280 FunctionCallee Fsincos) { 1281 DebugLoc DL = B.getCurrentDebugLocation(); 1282 Function *F = B.GetInsertBlock()->getParent(); 1283 B.SetInsertPointPastAllocas(F); 1284 1285 AllocaInst *Alloc = B.CreateAlloca(Arg->getType(), nullptr, "__sincos_"); 1286 1287 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1288 // If the argument is an instruction, it must dominate all uses so put our 1289 // sincos call there. Otherwise, right after the allocas works well enough 1290 // if it's an argument or constant. 1291 1292 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1293 1294 // SetInsertPoint unwelcomely always tries to set the debug loc. 1295 B.SetCurrentDebugLocation(DL); 1296 } 1297 1298 Type *CosPtrTy = Fsincos.getFunctionType()->getParamType(1); 1299 1300 // The allocaInst allocates the memory in private address space. This need 1301 // to be addrspacecasted to point to the address space of cos pointer type. 1302 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1303 Value *CastAlloc = B.CreateAddrSpaceCast(Alloc, CosPtrTy); 1304 1305 CallInst *SinCos = CreateCallEx2(B, Fsincos, Arg, CastAlloc); 1306 1307 // TODO: Is it worth trying to preserve the location for the cos calls for the 1308 // load? 1309 1310 LoadInst *LoadCos = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1311 return {SinCos, LoadCos, SinCos}; 1312 } 1313 1314 // fold sin, cos -> sincos. 1315 bool AMDGPULibCalls::fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, 1316 const FuncInfo &fInfo) { 1317 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1318 fInfo.getId() == AMDGPULibFunc::EI_COS); 1319 1320 if ((getArgType(fInfo) != AMDGPULibFunc::F32 && 1321 getArgType(fInfo) != AMDGPULibFunc::F64) || 1322 fInfo.getPrefix() != AMDGPULibFunc::NOPFX) 1323 return false; 1324 1325 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1326 1327 Value *CArgVal = FPOp->getOperand(0); 1328 CallInst *CI = cast<CallInst>(FPOp); 1329 1330 Function *F = B.GetInsertBlock()->getParent(); 1331 Module *M = F->getParent(); 1332 1333 // Merge the sin and cos. For OpenCL 2.0, there may only be a generic pointer 1334 // implementation. Prefer the private form if available. 1335 AMDGPULibFunc SinCosLibFuncPrivate(AMDGPULibFunc::EI_SINCOS, fInfo); 1336 SinCosLibFuncPrivate.getLeads()[0].PtrKind = 1337 AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::PRIVATE_ADDRESS); 1338 1339 AMDGPULibFunc SinCosLibFuncGeneric(AMDGPULibFunc::EI_SINCOS, fInfo); 1340 SinCosLibFuncGeneric.getLeads()[0].PtrKind = 1341 AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1342 1343 FunctionCallee FSinCosPrivate = getFunction(M, SinCosLibFuncPrivate); 1344 FunctionCallee FSinCosGeneric = getFunction(M, SinCosLibFuncGeneric); 1345 FunctionCallee FSinCos = FSinCosPrivate ? FSinCosPrivate : FSinCosGeneric; 1346 if (!FSinCos) 1347 return false; 1348 1349 SmallVector<CallInst *> SinCalls; 1350 SmallVector<CallInst *> CosCalls; 1351 SmallVector<CallInst *> SinCosCalls; 1352 FuncInfo PartnerInfo(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN, 1353 fInfo); 1354 const std::string PairName = PartnerInfo.mangle(); 1355 1356 StringRef SinName = isSin ? CI->getCalledFunction()->getName() : PairName; 1357 StringRef CosName = isSin ? PairName : CI->getCalledFunction()->getName(); 1358 const std::string SinCosPrivateName = SinCosLibFuncPrivate.mangle(); 1359 const std::string SinCosGenericName = SinCosLibFuncGeneric.mangle(); 1360 1361 // Intersect the two sets of flags. 1362 FastMathFlags FMF = FPOp->getFastMathFlags(); 1363 MDNode *FPMath = CI->getMetadata(LLVMContext::MD_fpmath); 1364 1365 SmallVector<DILocation *> MergeDbgLocs = {CI->getDebugLoc()}; 1366 1367 for (User* U : CArgVal->users()) { 1368 CallInst *XI = dyn_cast<CallInst>(U); 1369 if (!XI || XI->getFunction() != F || XI->isNoBuiltin()) 1370 continue; 1371 1372 Function *UCallee = XI->getCalledFunction(); 1373 if (!UCallee) 1374 continue; 1375 1376 bool Handled = true; 1377 1378 if (UCallee->getName() == SinName) 1379 SinCalls.push_back(XI); 1380 else if (UCallee->getName() == CosName) 1381 CosCalls.push_back(XI); 1382 else if (UCallee->getName() == SinCosPrivateName || 1383 UCallee->getName() == SinCosGenericName) 1384 SinCosCalls.push_back(XI); 1385 else 1386 Handled = false; 1387 1388 if (Handled) { 1389 MergeDbgLocs.push_back(XI->getDebugLoc()); 1390 auto *OtherOp = cast<FPMathOperator>(XI); 1391 FMF &= OtherOp->getFastMathFlags(); 1392 FPMath = MDNode::getMostGenericFPMath( 1393 FPMath, XI->getMetadata(LLVMContext::MD_fpmath)); 1394 } 1395 } 1396 1397 if (SinCalls.empty() || CosCalls.empty()) 1398 return false; 1399 1400 B.setFastMathFlags(FMF); 1401 B.setDefaultFPMathTag(FPMath); 1402 DILocation *DbgLoc = DILocation::getMergedLocations(MergeDbgLocs); 1403 B.SetCurrentDebugLocation(DbgLoc); 1404 1405 auto [Sin, Cos, SinCos] = insertSinCos(CArgVal, FMF, B, FSinCos); 1406 1407 auto replaceTrigInsts = [](ArrayRef<CallInst *> Calls, Value *Res) { 1408 for (CallInst *C : Calls) 1409 C->replaceAllUsesWith(Res); 1410 1411 // Leave the other dead instructions to avoid clobbering iterators. 1412 }; 1413 1414 replaceTrigInsts(SinCalls, Sin); 1415 replaceTrigInsts(CosCalls, Cos); 1416 replaceTrigInsts(SinCosCalls, SinCos); 1417 1418 // It's safe to delete the original now. 1419 CI->eraseFromParent(); 1420 return true; 1421 } 1422 1423 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, 1424 double &Res1, Constant *copr0, 1425 Constant *copr1) { 1426 // By default, opr0/opr1/opr3 holds values of float/double type. 1427 // If they are not float/double, each function has to its 1428 // operand separately. 1429 double opr0 = 0.0, opr1 = 0.0; 1430 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1431 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1432 if (fpopr0) { 1433 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1434 ? fpopr0->getValueAPF().convertToDouble() 1435 : (double)fpopr0->getValueAPF().convertToFloat(); 1436 } 1437 1438 if (fpopr1) { 1439 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1440 ? fpopr1->getValueAPF().convertToDouble() 1441 : (double)fpopr1->getValueAPF().convertToFloat(); 1442 } 1443 1444 switch (FInfo.getId()) { 1445 default : return false; 1446 1447 case AMDGPULibFunc::EI_ACOS: 1448 Res0 = acos(opr0); 1449 return true; 1450 1451 case AMDGPULibFunc::EI_ACOSH: 1452 // acosh(x) == log(x + sqrt(x*x - 1)) 1453 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1454 return true; 1455 1456 case AMDGPULibFunc::EI_ACOSPI: 1457 Res0 = acos(opr0) / MATH_PI; 1458 return true; 1459 1460 case AMDGPULibFunc::EI_ASIN: 1461 Res0 = asin(opr0); 1462 return true; 1463 1464 case AMDGPULibFunc::EI_ASINH: 1465 // asinh(x) == log(x + sqrt(x*x + 1)) 1466 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1467 return true; 1468 1469 case AMDGPULibFunc::EI_ASINPI: 1470 Res0 = asin(opr0) / MATH_PI; 1471 return true; 1472 1473 case AMDGPULibFunc::EI_ATAN: 1474 Res0 = atan(opr0); 1475 return true; 1476 1477 case AMDGPULibFunc::EI_ATANH: 1478 // atanh(x) == (log(x+1) - log(x-1))/2; 1479 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1480 return true; 1481 1482 case AMDGPULibFunc::EI_ATANPI: 1483 Res0 = atan(opr0) / MATH_PI; 1484 return true; 1485 1486 case AMDGPULibFunc::EI_CBRT: 1487 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1488 return true; 1489 1490 case AMDGPULibFunc::EI_COS: 1491 Res0 = cos(opr0); 1492 return true; 1493 1494 case AMDGPULibFunc::EI_COSH: 1495 Res0 = cosh(opr0); 1496 return true; 1497 1498 case AMDGPULibFunc::EI_COSPI: 1499 Res0 = cos(MATH_PI * opr0); 1500 return true; 1501 1502 case AMDGPULibFunc::EI_EXP: 1503 Res0 = exp(opr0); 1504 return true; 1505 1506 case AMDGPULibFunc::EI_EXP2: 1507 Res0 = pow(2.0, opr0); 1508 return true; 1509 1510 case AMDGPULibFunc::EI_EXP10: 1511 Res0 = pow(10.0, opr0); 1512 return true; 1513 1514 case AMDGPULibFunc::EI_LOG: 1515 Res0 = log(opr0); 1516 return true; 1517 1518 case AMDGPULibFunc::EI_LOG2: 1519 Res0 = log(opr0) / log(2.0); 1520 return true; 1521 1522 case AMDGPULibFunc::EI_LOG10: 1523 Res0 = log(opr0) / log(10.0); 1524 return true; 1525 1526 case AMDGPULibFunc::EI_RSQRT: 1527 Res0 = 1.0 / sqrt(opr0); 1528 return true; 1529 1530 case AMDGPULibFunc::EI_SIN: 1531 Res0 = sin(opr0); 1532 return true; 1533 1534 case AMDGPULibFunc::EI_SINH: 1535 Res0 = sinh(opr0); 1536 return true; 1537 1538 case AMDGPULibFunc::EI_SINPI: 1539 Res0 = sin(MATH_PI * opr0); 1540 return true; 1541 1542 case AMDGPULibFunc::EI_TAN: 1543 Res0 = tan(opr0); 1544 return true; 1545 1546 case AMDGPULibFunc::EI_TANH: 1547 Res0 = tanh(opr0); 1548 return true; 1549 1550 case AMDGPULibFunc::EI_TANPI: 1551 Res0 = tan(MATH_PI * opr0); 1552 return true; 1553 1554 // two-arg functions 1555 case AMDGPULibFunc::EI_POW: 1556 case AMDGPULibFunc::EI_POWR: 1557 Res0 = pow(opr0, opr1); 1558 return true; 1559 1560 case AMDGPULibFunc::EI_POWN: { 1561 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1562 double val = (double)iopr1->getSExtValue(); 1563 Res0 = pow(opr0, val); 1564 return true; 1565 } 1566 return false; 1567 } 1568 1569 case AMDGPULibFunc::EI_ROOTN: { 1570 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1571 double val = (double)iopr1->getSExtValue(); 1572 Res0 = pow(opr0, 1.0 / val); 1573 return true; 1574 } 1575 return false; 1576 } 1577 1578 // with ptr arg 1579 case AMDGPULibFunc::EI_SINCOS: 1580 Res0 = sin(opr0); 1581 Res1 = cos(opr0); 1582 return true; 1583 } 1584 1585 return false; 1586 } 1587 1588 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) { 1589 int numArgs = (int)aCI->arg_size(); 1590 if (numArgs > 3) 1591 return false; 1592 1593 Constant *copr0 = nullptr; 1594 Constant *copr1 = nullptr; 1595 if (numArgs > 0) { 1596 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1597 return false; 1598 } 1599 1600 if (numArgs > 1) { 1601 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1602 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1603 return false; 1604 } 1605 } 1606 1607 // At this point, all arguments to aCI are constants. 1608 1609 // max vector size is 16, and sincos will generate two results. 1610 double DVal0[16], DVal1[16]; 1611 int FuncVecSize = getVecSize(FInfo); 1612 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1613 if (FuncVecSize == 1) { 1614 if (!evaluateScalarMathFunc(FInfo, DVal0[0], DVal1[0], copr0, copr1)) { 1615 return false; 1616 } 1617 } else { 1618 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1619 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1620 for (int i = 0; i < FuncVecSize; ++i) { 1621 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1622 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1623 if (!evaluateScalarMathFunc(FInfo, DVal0[i], DVal1[i], celt0, celt1)) { 1624 return false; 1625 } 1626 } 1627 } 1628 1629 LLVMContext &context = aCI->getContext(); 1630 Constant *nval0, *nval1; 1631 if (FuncVecSize == 1) { 1632 nval0 = ConstantFP::get(aCI->getType(), DVal0[0]); 1633 if (hasTwoResults) 1634 nval1 = ConstantFP::get(aCI->getType(), DVal1[0]); 1635 } else { 1636 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1637 SmallVector <float, 0> FVal0, FVal1; 1638 for (int i = 0; i < FuncVecSize; ++i) 1639 FVal0.push_back((float)DVal0[i]); 1640 ArrayRef<float> tmp0(FVal0); 1641 nval0 = ConstantDataVector::get(context, tmp0); 1642 if (hasTwoResults) { 1643 for (int i = 0; i < FuncVecSize; ++i) 1644 FVal1.push_back((float)DVal1[i]); 1645 ArrayRef<float> tmp1(FVal1); 1646 nval1 = ConstantDataVector::get(context, tmp1); 1647 } 1648 } else { 1649 ArrayRef<double> tmp0(DVal0); 1650 nval0 = ConstantDataVector::get(context, tmp0); 1651 if (hasTwoResults) { 1652 ArrayRef<double> tmp1(DVal1); 1653 nval1 = ConstantDataVector::get(context, tmp1); 1654 } 1655 } 1656 } 1657 1658 if (hasTwoResults) { 1659 // sincos 1660 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1661 "math function with ptr arg not supported yet"); 1662 new StoreInst(nval1, aCI->getArgOperand(1), aCI->getIterator()); 1663 } 1664 1665 replaceCall(aCI, nval0); 1666 return true; 1667 } 1668 1669 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F, 1670 FunctionAnalysisManager &AM) { 1671 AMDGPULibCalls Simplifier; 1672 Simplifier.initNativeFuncs(); 1673 Simplifier.initFunction(F, AM); 1674 1675 bool Changed = false; 1676 1677 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1678 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1679 1680 for (auto &BB : F) { 1681 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1682 // Ignore non-calls. 1683 CallInst *CI = dyn_cast<CallInst>(I); 1684 ++I; 1685 1686 if (CI) { 1687 if (Simplifier.fold(CI)) 1688 Changed = true; 1689 } 1690 } 1691 } 1692 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1693 } 1694 1695 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F, 1696 FunctionAnalysisManager &AM) { 1697 if (UseNative.empty()) 1698 return PreservedAnalyses::all(); 1699 1700 AMDGPULibCalls Simplifier; 1701 Simplifier.initNativeFuncs(); 1702 Simplifier.initFunction(F, AM); 1703 1704 bool Changed = false; 1705 for (auto &BB : F) { 1706 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1707 // Ignore non-calls. 1708 CallInst *CI = dyn_cast<CallInst>(I); 1709 ++I; 1710 if (CI && Simplifier.useNative(CI)) 1711 Changed = true; 1712 } 1713 } 1714 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1715 } 1716