1 //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "GCNSubtarget.h" 20 #include "llvm/ADT/FloatingPointMode.h" 21 #include "llvm/IR/IntrinsicsAMDGPU.h" 22 #include "llvm/Transforms/InstCombine/InstCombiner.h" 23 #include <optional> 24 25 using namespace llvm; 26 using namespace llvm::PatternMatch; 27 28 #define DEBUG_TYPE "AMDGPUtti" 29 30 namespace { 31 32 struct AMDGPUImageDMaskIntrinsic { 33 unsigned Intr; 34 }; 35 36 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 37 #include "InstCombineTables.inc" 38 39 } // end anonymous namespace 40 41 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. 42 // 43 // A single NaN input is folded to minnum, so we rely on that folding for 44 // handling NaNs. 45 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, 46 const APFloat &Src2) { 47 APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); 48 49 APFloat::cmpResult Cmp0 = Max3.compare(Src0); 50 assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); 51 if (Cmp0 == APFloat::cmpEqual) 52 return maxnum(Src1, Src2); 53 54 APFloat::cmpResult Cmp1 = Max3.compare(Src1); 55 assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); 56 if (Cmp1 == APFloat::cmpEqual) 57 return maxnum(Src0, Src2); 58 59 return maxnum(Src0, Src1); 60 } 61 62 // Check if a value can be converted to a 16-bit value without losing 63 // precision. 64 // The value is expected to be either a float (IsFloat = true) or an unsigned 65 // integer (IsFloat = false). 66 static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) { 67 Type *VTy = V.getType(); 68 if (VTy->isHalfTy() || VTy->isIntegerTy(16)) { 69 // The value is already 16-bit, so we don't want to convert to 16-bit again! 70 return false; 71 } 72 if (IsFloat) { 73 if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) { 74 // We need to check that if we cast the index down to a half, we do not 75 // lose precision. 76 APFloat FloatValue(ConstFloat->getValueAPF()); 77 bool LosesInfo = true; 78 FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero, 79 &LosesInfo); 80 return !LosesInfo; 81 } 82 } else { 83 if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(&V)) { 84 // We need to check that if we cast the index down to an i16, we do not 85 // lose precision. 86 APInt IntValue(ConstInt->getValue()); 87 return IntValue.getActiveBits() <= 16; 88 } 89 } 90 91 Value *CastSrc; 92 bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc))) 93 : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc))); 94 if (IsExt) { 95 Type *CastSrcTy = CastSrc->getType(); 96 if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16)) 97 return true; 98 } 99 100 return false; 101 } 102 103 // Convert a value to 16-bit. 104 static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { 105 Type *VTy = V.getType(); 106 if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V)) 107 return cast<Instruction>(&V)->getOperand(0); 108 if (VTy->isIntegerTy()) 109 return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false); 110 if (VTy->isFloatingPointTy()) 111 return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext())); 112 113 llvm_unreachable("Should never be called!"); 114 } 115 116 /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with 117 /// modified arguments (based on OldIntr) and replaces InstToReplace with 118 /// this newly created intrinsic call. 119 static std::optional<Instruction *> modifyIntrinsicCall( 120 IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr, 121 InstCombiner &IC, 122 std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)> 123 Func) { 124 SmallVector<Type *, 4> ArgTys; 125 if (!Intrinsic::getIntrinsicSignature(OldIntr.getCalledFunction(), ArgTys)) 126 return std::nullopt; 127 128 SmallVector<Value *, 8> Args(OldIntr.args()); 129 130 // Modify arguments and types 131 Func(Args, ArgTys); 132 133 Function *I = Intrinsic::getDeclaration(OldIntr.getModule(), NewIntr, ArgTys); 134 135 CallInst *NewCall = IC.Builder.CreateCall(I, Args); 136 NewCall->takeName(&OldIntr); 137 NewCall->copyMetadata(OldIntr); 138 if (isa<FPMathOperator>(NewCall)) 139 NewCall->copyFastMathFlags(&OldIntr); 140 141 // Erase and replace uses 142 if (!InstToReplace.getType()->isVoidTy()) 143 IC.replaceInstUsesWith(InstToReplace, NewCall); 144 145 bool RemoveOldIntr = &OldIntr != &InstToReplace; 146 147 auto RetValue = IC.eraseInstFromFunction(InstToReplace); 148 if (RemoveOldIntr) 149 IC.eraseInstFromFunction(OldIntr); 150 151 return RetValue; 152 } 153 154 static std::optional<Instruction *> 155 simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, 156 const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, 157 IntrinsicInst &II, InstCombiner &IC) { 158 // Optimize _L to _LZ when _L is zero 159 if (const auto *LZMappingInfo = 160 AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { 161 if (auto *ConstantLod = 162 dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->LodIndex))) { 163 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 164 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 165 AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ, 166 ImageDimIntr->Dim); 167 return modifyIntrinsicCall( 168 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 169 Args.erase(Args.begin() + ImageDimIntr->LodIndex); 170 }); 171 } 172 } 173 } 174 175 // Optimize _mip away, when 'lod' is zero 176 if (const auto *MIPMappingInfo = 177 AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { 178 if (auto *ConstantMip = 179 dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->MipIndex))) { 180 if (ConstantMip->isZero()) { 181 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 182 AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP, 183 ImageDimIntr->Dim); 184 return modifyIntrinsicCall( 185 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 186 Args.erase(Args.begin() + ImageDimIntr->MipIndex); 187 }); 188 } 189 } 190 } 191 192 // Optimize _bias away when 'bias' is zero 193 if (const auto *BiasMappingInfo = 194 AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) { 195 if (auto *ConstantBias = 196 dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->BiasIndex))) { 197 if (ConstantBias->isZero()) { 198 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 199 AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias, 200 ImageDimIntr->Dim); 201 return modifyIntrinsicCall( 202 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 203 Args.erase(Args.begin() + ImageDimIntr->BiasIndex); 204 ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg); 205 }); 206 } 207 } 208 } 209 210 // Optimize _offset away when 'offset' is zero 211 if (const auto *OffsetMappingInfo = 212 AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) { 213 if (auto *ConstantOffset = 214 dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->OffsetIndex))) { 215 if (ConstantOffset->isZero()) { 216 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 217 AMDGPU::getImageDimIntrinsicByBaseOpcode( 218 OffsetMappingInfo->NoOffset, ImageDimIntr->Dim); 219 return modifyIntrinsicCall( 220 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 221 Args.erase(Args.begin() + ImageDimIntr->OffsetIndex); 222 }); 223 } 224 } 225 } 226 227 // Try to use D16 228 if (ST->hasD16Images()) { 229 230 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 231 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode); 232 233 if (BaseOpcode->HasD16) { 234 235 // If the only use of image intrinsic is a fptrunc (with conversion to 236 // half) then both fptrunc and image intrinsic will be replaced with image 237 // intrinsic with D16 flag. 238 if (II.hasOneUse()) { 239 Instruction *User = II.user_back(); 240 241 if (User->getOpcode() == Instruction::FPTrunc && 242 User->getType()->getScalarType()->isHalfTy()) { 243 244 return modifyIntrinsicCall(II, *User, ImageDimIntr->Intr, IC, 245 [&](auto &Args, auto &ArgTys) { 246 // Change return type of image intrinsic. 247 // Set it to return type of fptrunc. 248 ArgTys[0] = User->getType(); 249 }); 250 } 251 } 252 } 253 } 254 255 // Try to use A16 or G16 256 if (!ST->hasA16() && !ST->hasG16()) 257 return std::nullopt; 258 259 // Address is interpreted as float if the instruction has a sampler or as 260 // unsigned int if there is no sampler. 261 bool HasSampler = 262 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler; 263 bool FloatCoord = false; 264 // true means derivatives can be converted to 16 bit, coordinates not 265 bool OnlyDerivatives = false; 266 267 for (unsigned OperandIndex = ImageDimIntr->GradientStart; 268 OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { 269 Value *Coord = II.getOperand(OperandIndex); 270 // If the values are not derived from 16-bit values, we cannot optimize. 271 if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) { 272 if (OperandIndex < ImageDimIntr->CoordStart || 273 ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { 274 return std::nullopt; 275 } 276 // All gradients can be converted, so convert only them 277 OnlyDerivatives = true; 278 break; 279 } 280 281 assert(OperandIndex == ImageDimIntr->GradientStart || 282 FloatCoord == Coord->getType()->isFloatingPointTy()); 283 FloatCoord = Coord->getType()->isFloatingPointTy(); 284 } 285 286 if (!OnlyDerivatives && !ST->hasA16()) 287 OnlyDerivatives = true; // Only supports G16 288 289 // Check if there is a bias parameter and if it can be converted to f16 290 if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 291 Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 292 assert(HasSampler && 293 "Only image instructions with a sampler can have a bias"); 294 if (!canSafelyConvertTo16Bit(*Bias, HasSampler)) 295 OnlyDerivatives = true; 296 } 297 298 if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart == 299 ImageDimIntr->CoordStart)) 300 return std::nullopt; 301 302 Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext()) 303 : Type::getInt16Ty(II.getContext()); 304 305 return modifyIntrinsicCall( 306 II, II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) { 307 ArgTys[ImageDimIntr->GradientTyArg] = CoordType; 308 if (!OnlyDerivatives) { 309 ArgTys[ImageDimIntr->CoordTyArg] = CoordType; 310 311 // Change the bias type 312 if (ImageDimIntr->NumBiasArgs != 0) 313 ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext()); 314 } 315 316 unsigned EndIndex = 317 OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; 318 for (unsigned OperandIndex = ImageDimIntr->GradientStart; 319 OperandIndex < EndIndex; OperandIndex++) { 320 Args[OperandIndex] = 321 convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder); 322 } 323 324 // Convert the bias 325 if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 326 Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 327 Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder); 328 } 329 }); 330 } 331 332 bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I, 333 const Value *Op0, const Value *Op1, 334 InstCombiner &IC) const { 335 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 336 // infinity, gives +0.0. If we can prove we don't have one of the special 337 // cases then we can use a normal multiply instead. 338 // TODO: Create and use isKnownFiniteNonZero instead of just matching 339 // constants here. 340 if (match(Op0, PatternMatch::m_FiniteNonZero()) || 341 match(Op1, PatternMatch::m_FiniteNonZero())) { 342 // One operand is not zero or infinity or NaN. 343 return true; 344 } 345 346 auto *TLI = &IC.getTargetLibraryInfo(); 347 if (isKnownNeverInfOrNaN(Op0, IC.getDataLayout(), TLI, 0, 348 &IC.getAssumptionCache(), &I, 349 &IC.getDominatorTree()) && 350 isKnownNeverInfOrNaN(Op1, IC.getDataLayout(), TLI, 0, 351 &IC.getAssumptionCache(), &I, 352 &IC.getDominatorTree())) { 353 // Neither operand is infinity or NaN. 354 return true; 355 } 356 return false; 357 } 358 359 /// Match an fpext from half to float, or a constant we can convert. 360 static bool matchFPExtFromF16(Value *Arg, Value *&FPExtSrc) { 361 if (match(Arg, m_OneUse(m_FPExt(m_Value(FPExtSrc))))) 362 return FPExtSrc->getType()->isHalfTy(); 363 364 ConstantFP *CFP; 365 if (match(Arg, m_ConstantFP(CFP))) { 366 bool LosesInfo; 367 APFloat Val(CFP->getValueAPF()); 368 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); 369 if (LosesInfo) 370 return false; 371 372 FPExtSrc = ConstantFP::get(Type::getHalfTy(Arg->getContext()), Val); 373 return true; 374 } 375 376 return false; 377 } 378 379 std::optional<Instruction *> 380 GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 381 Intrinsic::ID IID = II.getIntrinsicID(); 382 switch (IID) { 383 case Intrinsic::amdgcn_rcp: { 384 Value *Src = II.getArgOperand(0); 385 386 // TODO: Move to ConstantFolding/InstSimplify? 387 if (isa<UndefValue>(Src)) { 388 Type *Ty = II.getType(); 389 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 390 return IC.replaceInstUsesWith(II, QNaN); 391 } 392 393 if (II.isStrictFP()) 394 break; 395 396 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 397 const APFloat &ArgVal = C->getValueAPF(); 398 APFloat Val(ArgVal.getSemantics(), 1); 399 Val.divide(ArgVal, APFloat::rmNearestTiesToEven); 400 401 // This is more precise than the instruction may give. 402 // 403 // TODO: The instruction always flushes denormal results (except for f16), 404 // should this also? 405 return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val)); 406 } 407 408 break; 409 } 410 case Intrinsic::amdgcn_sqrt: 411 case Intrinsic::amdgcn_rsq: { 412 Value *Src = II.getArgOperand(0); 413 414 // TODO: Move to ConstantFolding/InstSimplify? 415 if (isa<UndefValue>(Src)) { 416 Type *Ty = II.getType(); 417 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 418 return IC.replaceInstUsesWith(II, QNaN); 419 } 420 421 break; 422 } 423 case Intrinsic::amdgcn_frexp_mant: 424 case Intrinsic::amdgcn_frexp_exp: { 425 Value *Src = II.getArgOperand(0); 426 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 427 int Exp; 428 APFloat Significand = 429 frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); 430 431 if (IID == Intrinsic::amdgcn_frexp_mant) { 432 return IC.replaceInstUsesWith( 433 II, ConstantFP::get(II.getContext(), Significand)); 434 } 435 436 // Match instruction special case behavior. 437 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) 438 Exp = 0; 439 440 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp)); 441 } 442 443 if (isa<UndefValue>(Src)) { 444 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 445 } 446 447 break; 448 } 449 case Intrinsic::amdgcn_class: { 450 Value *Src0 = II.getArgOperand(0); 451 Value *Src1 = II.getArgOperand(1); 452 const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); 453 if (CMask) { 454 II.setCalledOperand(Intrinsic::getDeclaration( 455 II.getModule(), Intrinsic::is_fpclass, Src0->getType())); 456 457 // Clamp any excess bits, as they're illegal for the generic intrinsic. 458 II.setArgOperand(1, ConstantInt::get(Src1->getType(), 459 CMask->getZExtValue() & fcAllFlags)); 460 return &II; 461 } 462 463 // Propagate poison. 464 if (isa<PoisonValue>(Src0) || isa<PoisonValue>(Src1)) 465 return IC.replaceInstUsesWith(II, PoisonValue::get(II.getType())); 466 467 // llvm.amdgcn.class(_, undef) -> false 468 if (IC.getSimplifyQuery().isUndefValue(Src1)) 469 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false)); 470 471 // llvm.amdgcn.class(undef, mask) -> mask != 0 472 if (IC.getSimplifyQuery().isUndefValue(Src0)) { 473 Value *CmpMask = IC.Builder.CreateICmpNE( 474 Src1, ConstantInt::getNullValue(Src1->getType())); 475 return IC.replaceInstUsesWith(II, CmpMask); 476 } 477 break; 478 } 479 case Intrinsic::amdgcn_cvt_pkrtz: { 480 Value *Src0 = II.getArgOperand(0); 481 Value *Src1 = II.getArgOperand(1); 482 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 483 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 484 const fltSemantics &HalfSem = 485 II.getType()->getScalarType()->getFltSemantics(); 486 bool LosesInfo; 487 APFloat Val0 = C0->getValueAPF(); 488 APFloat Val1 = C1->getValueAPF(); 489 Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 490 Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 491 492 Constant *Folded = 493 ConstantVector::get({ConstantFP::get(II.getContext(), Val0), 494 ConstantFP::get(II.getContext(), Val1)}); 495 return IC.replaceInstUsesWith(II, Folded); 496 } 497 } 498 499 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 500 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 501 } 502 503 break; 504 } 505 case Intrinsic::amdgcn_cvt_pknorm_i16: 506 case Intrinsic::amdgcn_cvt_pknorm_u16: 507 case Intrinsic::amdgcn_cvt_pk_i16: 508 case Intrinsic::amdgcn_cvt_pk_u16: { 509 Value *Src0 = II.getArgOperand(0); 510 Value *Src1 = II.getArgOperand(1); 511 512 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 513 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 514 } 515 516 break; 517 } 518 case Intrinsic::amdgcn_ubfe: 519 case Intrinsic::amdgcn_sbfe: { 520 // Decompose simple cases into standard shifts. 521 Value *Src = II.getArgOperand(0); 522 if (isa<UndefValue>(Src)) { 523 return IC.replaceInstUsesWith(II, Src); 524 } 525 526 unsigned Width; 527 Type *Ty = II.getType(); 528 unsigned IntSize = Ty->getIntegerBitWidth(); 529 530 ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2)); 531 if (CWidth) { 532 Width = CWidth->getZExtValue(); 533 if ((Width & (IntSize - 1)) == 0) { 534 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty)); 535 } 536 537 // Hardware ignores high bits, so remove those. 538 if (Width >= IntSize) { 539 return IC.replaceOperand( 540 II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); 541 } 542 } 543 544 unsigned Offset; 545 ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1)); 546 if (COffset) { 547 Offset = COffset->getZExtValue(); 548 if (Offset >= IntSize) { 549 return IC.replaceOperand( 550 II, 1, 551 ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); 552 } 553 } 554 555 bool Signed = IID == Intrinsic::amdgcn_sbfe; 556 557 if (!CWidth || !COffset) 558 break; 559 560 // The case of Width == 0 is handled above, which makes this transformation 561 // safe. If Width == 0, then the ashr and lshr instructions become poison 562 // value since the shift amount would be equal to the bit size. 563 assert(Width != 0); 564 565 // TODO: This allows folding to undef when the hardware has specific 566 // behavior? 567 if (Offset + Width < IntSize) { 568 Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width); 569 Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width) 570 : IC.Builder.CreateLShr(Shl, IntSize - Width); 571 RightShift->takeName(&II); 572 return IC.replaceInstUsesWith(II, RightShift); 573 } 574 575 Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset) 576 : IC.Builder.CreateLShr(Src, Offset); 577 578 RightShift->takeName(&II); 579 return IC.replaceInstUsesWith(II, RightShift); 580 } 581 case Intrinsic::amdgcn_exp: 582 case Intrinsic::amdgcn_exp_row: 583 case Intrinsic::amdgcn_exp_compr: { 584 ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1)); 585 unsigned EnBits = En->getZExtValue(); 586 if (EnBits == 0xf) 587 break; // All inputs enabled. 588 589 bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; 590 bool Changed = false; 591 for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { 592 if ((!IsCompr && (EnBits & (1 << I)) == 0) || 593 (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { 594 Value *Src = II.getArgOperand(I + 2); 595 if (!isa<UndefValue>(Src)) { 596 IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType())); 597 Changed = true; 598 } 599 } 600 } 601 602 if (Changed) { 603 return &II; 604 } 605 606 break; 607 } 608 case Intrinsic::amdgcn_fmed3: { 609 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled 610 // for the shader. 611 612 Value *Src0 = II.getArgOperand(0); 613 Value *Src1 = II.getArgOperand(1); 614 Value *Src2 = II.getArgOperand(2); 615 616 // Checking for NaN before canonicalization provides better fidelity when 617 // mapping other operations onto fmed3 since the order of operands is 618 // unchanged. 619 CallInst *NewCall = nullptr; 620 if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) { 621 NewCall = IC.Builder.CreateMinNum(Src1, Src2); 622 } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) { 623 NewCall = IC.Builder.CreateMinNum(Src0, Src2); 624 } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) { 625 NewCall = IC.Builder.CreateMaxNum(Src0, Src1); 626 } 627 628 if (NewCall) { 629 NewCall->copyFastMathFlags(&II); 630 NewCall->takeName(&II); 631 return IC.replaceInstUsesWith(II, NewCall); 632 } 633 634 bool Swap = false; 635 // Canonicalize constants to RHS operands. 636 // 637 // fmed3(c0, x, c1) -> fmed3(x, c0, c1) 638 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 639 std::swap(Src0, Src1); 640 Swap = true; 641 } 642 643 if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { 644 std::swap(Src1, Src2); 645 Swap = true; 646 } 647 648 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 649 std::swap(Src0, Src1); 650 Swap = true; 651 } 652 653 if (Swap) { 654 II.setArgOperand(0, Src0); 655 II.setArgOperand(1, Src1); 656 II.setArgOperand(2, Src2); 657 return &II; 658 } 659 660 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 661 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 662 if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { 663 APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), 664 C2->getValueAPF()); 665 return IC.replaceInstUsesWith( 666 II, ConstantFP::get(IC.Builder.getContext(), Result)); 667 } 668 } 669 } 670 671 if (!ST->hasMed3_16()) 672 break; 673 674 Value *X, *Y, *Z; 675 676 // Repeat floating-point width reduction done for minnum/maxnum. 677 // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z)) 678 if (matchFPExtFromF16(Src0, X) && matchFPExtFromF16(Src1, Y) && 679 matchFPExtFromF16(Src2, Z)) { 680 Value *NewCall = IC.Builder.CreateIntrinsic(IID, {X->getType()}, 681 {X, Y, Z}, &II, II.getName()); 682 return new FPExtInst(NewCall, II.getType()); 683 } 684 685 break; 686 } 687 case Intrinsic::amdgcn_icmp: 688 case Intrinsic::amdgcn_fcmp: { 689 const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2)); 690 // Guard against invalid arguments. 691 int64_t CCVal = CC->getZExtValue(); 692 bool IsInteger = IID == Intrinsic::amdgcn_icmp; 693 if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || 694 CCVal > CmpInst::LAST_ICMP_PREDICATE)) || 695 (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || 696 CCVal > CmpInst::LAST_FCMP_PREDICATE))) 697 break; 698 699 Value *Src0 = II.getArgOperand(0); 700 Value *Src1 = II.getArgOperand(1); 701 702 if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { 703 if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { 704 Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); 705 if (CCmp->isNullValue()) { 706 return IC.replaceInstUsesWith( 707 II, ConstantExpr::getSExt(CCmp, II.getType())); 708 } 709 710 // The result of V_ICMP/V_FCMP assembly instructions (which this 711 // intrinsic exposes) is one bit per thread, masked with the EXEC 712 // register (which contains the bitmask of live threads). So a 713 // comparison that always returns true is the same as a read of the 714 // EXEC register. 715 Function *NewF = Intrinsic::getDeclaration( 716 II.getModule(), Intrinsic::read_register, II.getType()); 717 Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")}; 718 MDNode *MD = MDNode::get(II.getContext(), MDArgs); 719 Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 720 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 721 NewCall->addFnAttr(Attribute::Convergent); 722 NewCall->takeName(&II); 723 return IC.replaceInstUsesWith(II, NewCall); 724 } 725 726 // Canonicalize constants to RHS. 727 CmpInst::Predicate SwapPred = 728 CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); 729 II.setArgOperand(0, Src1); 730 II.setArgOperand(1, Src0); 731 II.setArgOperand( 732 2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred))); 733 return &II; 734 } 735 736 if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) 737 break; 738 739 // Canonicalize compare eq with true value to compare != 0 740 // llvm.amdgcn.icmp(zext (i1 x), 1, eq) 741 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) 742 // llvm.amdgcn.icmp(sext (i1 x), -1, eq) 743 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) 744 Value *ExtSrc; 745 if (CCVal == CmpInst::ICMP_EQ && 746 ((match(Src1, PatternMatch::m_One()) && 747 match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) || 748 (match(Src1, PatternMatch::m_AllOnes()) && 749 match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) && 750 ExtSrc->getType()->isIntegerTy(1)) { 751 IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType())); 752 IC.replaceOperand(II, 2, 753 ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); 754 return &II; 755 } 756 757 CmpInst::Predicate SrcPred; 758 Value *SrcLHS; 759 Value *SrcRHS; 760 761 // Fold compare eq/ne with 0 from a compare result as the predicate to the 762 // intrinsic. The typical use is a wave vote function in the library, which 763 // will be fed from a user code condition compared with 0. Fold in the 764 // redundant compare. 765 766 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) 767 // -> llvm.amdgcn.[if]cmp(a, b, pred) 768 // 769 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) 770 // -> llvm.amdgcn.[if]cmp(a, b, inv pred) 771 if (match(Src1, PatternMatch::m_Zero()) && 772 match(Src0, PatternMatch::m_ZExtOrSExt( 773 m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS), 774 PatternMatch::m_Value(SrcRHS))))) { 775 if (CCVal == CmpInst::ICMP_EQ) 776 SrcPred = CmpInst::getInversePredicate(SrcPred); 777 778 Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) 779 ? Intrinsic::amdgcn_fcmp 780 : Intrinsic::amdgcn_icmp; 781 782 Type *Ty = SrcLHS->getType(); 783 if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { 784 // Promote to next legal integer type. 785 unsigned Width = CmpType->getBitWidth(); 786 unsigned NewWidth = Width; 787 788 // Don't do anything for i1 comparisons. 789 if (Width == 1) 790 break; 791 792 if (Width <= 16) 793 NewWidth = 16; 794 else if (Width <= 32) 795 NewWidth = 32; 796 else if (Width <= 64) 797 NewWidth = 64; 798 else if (Width > 64) 799 break; // Can't handle this. 800 801 if (Width != NewWidth) { 802 IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth); 803 if (CmpInst::isSigned(SrcPred)) { 804 SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy); 805 SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy); 806 } else { 807 SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy); 808 SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy); 809 } 810 } 811 } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) 812 break; 813 814 Function *NewF = Intrinsic::getDeclaration( 815 II.getModule(), NewIID, {II.getType(), SrcLHS->getType()}); 816 Value *Args[] = {SrcLHS, SrcRHS, 817 ConstantInt::get(CC->getType(), SrcPred)}; 818 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 819 NewCall->takeName(&II); 820 return IC.replaceInstUsesWith(II, NewCall); 821 } 822 823 break; 824 } 825 case Intrinsic::amdgcn_ballot: { 826 if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) { 827 if (Src->isZero()) { 828 // amdgcn.ballot(i1 0) is zero. 829 return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType())); 830 } 831 832 if (Src->isOne()) { 833 // amdgcn.ballot(i1 1) is exec. 834 const char *RegName = "exec"; 835 if (II.getType()->isIntegerTy(32)) 836 RegName = "exec_lo"; 837 else if (!II.getType()->isIntegerTy(64)) 838 break; 839 840 Function *NewF = Intrinsic::getDeclaration( 841 II.getModule(), Intrinsic::read_register, II.getType()); 842 Metadata *MDArgs[] = {MDString::get(II.getContext(), RegName)}; 843 MDNode *MD = MDNode::get(II.getContext(), MDArgs); 844 Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 845 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 846 NewCall->addFnAttr(Attribute::Convergent); 847 NewCall->takeName(&II); 848 return IC.replaceInstUsesWith(II, NewCall); 849 } 850 } 851 break; 852 } 853 case Intrinsic::amdgcn_wqm_vote: { 854 // wqm_vote is identity when the argument is constant. 855 if (!isa<Constant>(II.getArgOperand(0))) 856 break; 857 858 return IC.replaceInstUsesWith(II, II.getArgOperand(0)); 859 } 860 case Intrinsic::amdgcn_kill: { 861 const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0)); 862 if (!C || !C->getZExtValue()) 863 break; 864 865 // amdgcn.kill(i1 1) is a no-op 866 return IC.eraseInstFromFunction(II); 867 } 868 case Intrinsic::amdgcn_update_dpp: { 869 Value *Old = II.getArgOperand(0); 870 871 auto *BC = cast<ConstantInt>(II.getArgOperand(5)); 872 auto *RM = cast<ConstantInt>(II.getArgOperand(3)); 873 auto *BM = cast<ConstantInt>(II.getArgOperand(4)); 874 if (BC->isZeroValue() || RM->getZExtValue() != 0xF || 875 BM->getZExtValue() != 0xF || isa<UndefValue>(Old)) 876 break; 877 878 // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. 879 return IC.replaceOperand(II, 0, UndefValue::get(Old->getType())); 880 } 881 case Intrinsic::amdgcn_permlane16: 882 case Intrinsic::amdgcn_permlanex16: { 883 // Discard vdst_in if it's not going to be read. 884 Value *VDstIn = II.getArgOperand(0); 885 if (isa<UndefValue>(VDstIn)) 886 break; 887 888 ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(4)); 889 ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(5)); 890 if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) 891 break; 892 893 return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType())); 894 } 895 case Intrinsic::amdgcn_permlane64: 896 // A constant value is trivially uniform. 897 if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 898 return IC.replaceInstUsesWith(II, C); 899 } 900 break; 901 case Intrinsic::amdgcn_readfirstlane: 902 case Intrinsic::amdgcn_readlane: { 903 // A constant value is trivially uniform. 904 if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 905 return IC.replaceInstUsesWith(II, C); 906 } 907 908 // The rest of these may not be safe if the exec may not be the same between 909 // the def and use. 910 Value *Src = II.getArgOperand(0); 911 Instruction *SrcInst = dyn_cast<Instruction>(Src); 912 if (SrcInst && SrcInst->getParent() != II.getParent()) 913 break; 914 915 // readfirstlane (readfirstlane x) -> readfirstlane x 916 // readlane (readfirstlane x), y -> readfirstlane x 917 if (match(Src, 918 PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) { 919 return IC.replaceInstUsesWith(II, Src); 920 } 921 922 if (IID == Intrinsic::amdgcn_readfirstlane) { 923 // readfirstlane (readlane x, y) -> readlane x, y 924 if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) { 925 return IC.replaceInstUsesWith(II, Src); 926 } 927 } else { 928 // readlane (readlane x, y), y -> readlane x, y 929 if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>( 930 PatternMatch::m_Value(), 931 PatternMatch::m_Specific(II.getArgOperand(1))))) { 932 return IC.replaceInstUsesWith(II, Src); 933 } 934 } 935 936 break; 937 } 938 case Intrinsic::amdgcn_ldexp: { 939 // FIXME: This doesn't introduce new instructions and belongs in 940 // InstructionSimplify. 941 Type *Ty = II.getType(); 942 Value *Op0 = II.getArgOperand(0); 943 Value *Op1 = II.getArgOperand(1); 944 945 // Folding undef to qnan is safe regardless of the FP mode. 946 if (isa<UndefValue>(Op0)) { 947 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 948 return IC.replaceInstUsesWith(II, QNaN); 949 } 950 951 const APFloat *C = nullptr; 952 match(Op0, PatternMatch::m_APFloat(C)); 953 954 // FIXME: Should flush denorms depending on FP mode, but that's ignored 955 // everywhere else. 956 // 957 // These cases should be safe, even with strictfp. 958 // ldexp(0.0, x) -> 0.0 959 // ldexp(-0.0, x) -> -0.0 960 // ldexp(inf, x) -> inf 961 // ldexp(-inf, x) -> -inf 962 if (C && (C->isZero() || C->isInfinity())) { 963 return IC.replaceInstUsesWith(II, Op0); 964 } 965 966 // With strictfp, be more careful about possibly needing to flush denormals 967 // or not, and snan behavior depends on ieee_mode. 968 if (II.isStrictFP()) 969 break; 970 971 if (C && C->isNaN()) 972 return IC.replaceInstUsesWith(II, ConstantFP::get(Ty, C->makeQuiet())); 973 974 // ldexp(x, 0) -> x 975 // ldexp(x, undef) -> x 976 if (isa<UndefValue>(Op1) || match(Op1, PatternMatch::m_ZeroInt())) { 977 return IC.replaceInstUsesWith(II, Op0); 978 } 979 980 break; 981 } 982 case Intrinsic::amdgcn_fmul_legacy: { 983 Value *Op0 = II.getArgOperand(0); 984 Value *Op1 = II.getArgOperand(1); 985 986 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 987 // infinity, gives +0.0. 988 // TODO: Move to InstSimplify? 989 if (match(Op0, PatternMatch::m_AnyZeroFP()) || 990 match(Op1, PatternMatch::m_AnyZeroFP())) 991 return IC.replaceInstUsesWith(II, ConstantFP::getZero(II.getType())); 992 993 // If we can prove we don't have one of the special cases then we can use a 994 // normal fmul instruction instead. 995 if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 996 auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II); 997 FMul->takeName(&II); 998 return IC.replaceInstUsesWith(II, FMul); 999 } 1000 break; 1001 } 1002 case Intrinsic::amdgcn_fma_legacy: { 1003 Value *Op0 = II.getArgOperand(0); 1004 Value *Op1 = II.getArgOperand(1); 1005 Value *Op2 = II.getArgOperand(2); 1006 1007 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1008 // infinity, gives +0.0. 1009 // TODO: Move to InstSimplify? 1010 if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1011 match(Op1, PatternMatch::m_AnyZeroFP())) { 1012 // It's tempting to just return Op2 here, but that would give the wrong 1013 // result if Op2 was -0.0. 1014 auto *Zero = ConstantFP::getZero(II.getType()); 1015 auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II); 1016 FAdd->takeName(&II); 1017 return IC.replaceInstUsesWith(II, FAdd); 1018 } 1019 1020 // If we can prove we don't have one of the special cases then we can use a 1021 // normal fma instead. 1022 if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1023 II.setCalledOperand(Intrinsic::getDeclaration( 1024 II.getModule(), Intrinsic::fma, II.getType())); 1025 return &II; 1026 } 1027 break; 1028 } 1029 case Intrinsic::amdgcn_is_shared: 1030 case Intrinsic::amdgcn_is_private: { 1031 if (isa<UndefValue>(II.getArgOperand(0))) 1032 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 1033 1034 if (isa<ConstantPointerNull>(II.getArgOperand(0))) 1035 return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType())); 1036 break; 1037 } 1038 default: { 1039 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 1040 AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) { 1041 return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); 1042 } 1043 } 1044 } 1045 return std::nullopt; 1046 } 1047 1048 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1049 /// 1050 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1051 /// struct returns. 1052 static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 1053 IntrinsicInst &II, 1054 APInt DemandedElts, 1055 int DMaskIdx = -1) { 1056 1057 auto *IIVTy = cast<FixedVectorType>(II.getType()); 1058 unsigned VWidth = IIVTy->getNumElements(); 1059 if (VWidth == 1) 1060 return nullptr; 1061 Type *EltTy = IIVTy->getElementType(); 1062 1063 IRBuilderBase::InsertPointGuard Guard(IC.Builder); 1064 IC.Builder.SetInsertPoint(&II); 1065 1066 // Assume the arguments are unchanged and later override them, if needed. 1067 SmallVector<Value *, 16> Args(II.args()); 1068 1069 if (DMaskIdx < 0) { 1070 // Buffer case. 1071 1072 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1073 const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero(); 1074 1075 // Start assuming the prefix of elements is demanded, but possibly clear 1076 // some other bits if there are trailing zeros (unused components at front) 1077 // and update offset. 1078 DemandedElts = (1 << ActiveBits) - 1; 1079 1080 if (UnusedComponentsAtFront > 0) { 1081 static const unsigned InvalidOffsetIdx = 0xf; 1082 1083 unsigned OffsetIdx; 1084 switch (II.getIntrinsicID()) { 1085 case Intrinsic::amdgcn_raw_buffer_load: 1086 OffsetIdx = 1; 1087 break; 1088 case Intrinsic::amdgcn_s_buffer_load: 1089 // If resulting type is vec3, there is no point in trimming the 1090 // load with updated offset, as the vec3 would most likely be widened to 1091 // vec4 anyway during lowering. 1092 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1093 OffsetIdx = InvalidOffsetIdx; 1094 else 1095 OffsetIdx = 1; 1096 break; 1097 case Intrinsic::amdgcn_struct_buffer_load: 1098 OffsetIdx = 2; 1099 break; 1100 default: 1101 // TODO: handle tbuffer* intrinsics. 1102 OffsetIdx = InvalidOffsetIdx; 1103 break; 1104 } 1105 1106 if (OffsetIdx != InvalidOffsetIdx) { 1107 // Clear demanded bits and update the offset. 1108 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1109 auto *Offset = Args[OffsetIdx]; 1110 unsigned SingleComponentSizeInBits = 1111 IC.getDataLayout().getTypeSizeInBits(EltTy); 1112 unsigned OffsetAdd = 1113 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1114 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1115 Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal); 1116 } 1117 } 1118 } else { 1119 // Image case. 1120 1121 ConstantInt *DMask = cast<ConstantInt>(Args[DMaskIdx]); 1122 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1123 1124 // Mask off values that are undefined because the dmask doesn't cover them 1125 DemandedElts &= (1 << llvm::popcount(DMaskVal)) - 1; 1126 1127 unsigned NewDMaskVal = 0; 1128 unsigned OrigLoadIdx = 0; 1129 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1130 const unsigned Bit = 1 << SrcIdx; 1131 if (!!(DMaskVal & Bit)) { 1132 if (!!DemandedElts[OrigLoadIdx]) 1133 NewDMaskVal |= Bit; 1134 OrigLoadIdx++; 1135 } 1136 } 1137 1138 if (DMaskVal != NewDMaskVal) 1139 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1140 } 1141 1142 unsigned NewNumElts = DemandedElts.popcount(); 1143 if (!NewNumElts) 1144 return UndefValue::get(IIVTy); 1145 1146 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1147 if (DMaskIdx >= 0) 1148 II.setArgOperand(DMaskIdx, Args[DMaskIdx]); 1149 return nullptr; 1150 } 1151 1152 // Validate function argument and return types, extracting overloaded types 1153 // along the way. 1154 SmallVector<Type *, 6> OverloadTys; 1155 if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys)) 1156 return nullptr; 1157 1158 Type *NewTy = 1159 (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts); 1160 OverloadTys[0] = NewTy; 1161 1162 Function *NewIntrin = Intrinsic::getDeclaration( 1163 II.getModule(), II.getIntrinsicID(), OverloadTys); 1164 CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args); 1165 NewCall->takeName(&II); 1166 NewCall->copyMetadata(II); 1167 1168 if (NewNumElts == 1) { 1169 return IC.Builder.CreateInsertElement(UndefValue::get(IIVTy), NewCall, 1170 DemandedElts.countr_zero()); 1171 } 1172 1173 SmallVector<int, 8> EltMask; 1174 unsigned NewLoadIdx = 0; 1175 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1176 if (!!DemandedElts[OrigLoadIdx]) 1177 EltMask.push_back(NewLoadIdx++); 1178 else 1179 EltMask.push_back(NewNumElts); 1180 } 1181 1182 Value *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask); 1183 1184 return Shuffle; 1185 } 1186 1187 std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( 1188 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 1189 APInt &UndefElts2, APInt &UndefElts3, 1190 std::function<void(Instruction *, unsigned, APInt, APInt &)> 1191 SimplifyAndSetOp) const { 1192 switch (II.getIntrinsicID()) { 1193 case Intrinsic::amdgcn_buffer_load: 1194 case Intrinsic::amdgcn_buffer_load_format: 1195 case Intrinsic::amdgcn_raw_buffer_load: 1196 case Intrinsic::amdgcn_raw_buffer_load_format: 1197 case Intrinsic::amdgcn_raw_tbuffer_load: 1198 case Intrinsic::amdgcn_s_buffer_load: 1199 case Intrinsic::amdgcn_struct_buffer_load: 1200 case Intrinsic::amdgcn_struct_buffer_load_format: 1201 case Intrinsic::amdgcn_struct_tbuffer_load: 1202 case Intrinsic::amdgcn_tbuffer_load: 1203 return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); 1204 default: { 1205 if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) { 1206 return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0); 1207 } 1208 break; 1209 } 1210 } 1211 return std::nullopt; 1212 } 1213