1 //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "GCNSubtarget.h" 20 #include "llvm/ADT/FloatingPointMode.h" 21 #include "llvm/IR/IntrinsicsAMDGPU.h" 22 #include "llvm/Transforms/InstCombine/InstCombiner.h" 23 #include <optional> 24 25 using namespace llvm; 26 using namespace llvm::PatternMatch; 27 28 #define DEBUG_TYPE "AMDGPUtti" 29 30 namespace { 31 32 struct AMDGPUImageDMaskIntrinsic { 33 unsigned Intr; 34 }; 35 36 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 37 #include "InstCombineTables.inc" 38 39 } // end anonymous namespace 40 41 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. 42 // 43 // A single NaN input is folded to minnum, so we rely on that folding for 44 // handling NaNs. 45 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, 46 const APFloat &Src2) { 47 APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); 48 49 APFloat::cmpResult Cmp0 = Max3.compare(Src0); 50 assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); 51 if (Cmp0 == APFloat::cmpEqual) 52 return maxnum(Src1, Src2); 53 54 APFloat::cmpResult Cmp1 = Max3.compare(Src1); 55 assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); 56 if (Cmp1 == APFloat::cmpEqual) 57 return maxnum(Src0, Src2); 58 59 return maxnum(Src0, Src1); 60 } 61 62 // Check if a value can be converted to a 16-bit value without losing 63 // precision. 64 // The value is expected to be either a float (IsFloat = true) or an unsigned 65 // integer (IsFloat = false). 66 static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) { 67 Type *VTy = V.getType(); 68 if (VTy->isHalfTy() || VTy->isIntegerTy(16)) { 69 // The value is already 16-bit, so we don't want to convert to 16-bit again! 70 return false; 71 } 72 if (IsFloat) { 73 if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) { 74 // We need to check that if we cast the index down to a half, we do not 75 // lose precision. 76 APFloat FloatValue(ConstFloat->getValueAPF()); 77 bool LosesInfo = true; 78 FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero, 79 &LosesInfo); 80 return !LosesInfo; 81 } 82 } else { 83 if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(&V)) { 84 // We need to check that if we cast the index down to an i16, we do not 85 // lose precision. 86 APInt IntValue(ConstInt->getValue()); 87 return IntValue.getActiveBits() <= 16; 88 } 89 } 90 91 Value *CastSrc; 92 bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc))) 93 : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc))); 94 if (IsExt) { 95 Type *CastSrcTy = CastSrc->getType(); 96 if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16)) 97 return true; 98 } 99 100 return false; 101 } 102 103 // Convert a value to 16-bit. 104 static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { 105 Type *VTy = V.getType(); 106 if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V)) 107 return cast<Instruction>(&V)->getOperand(0); 108 if (VTy->isIntegerTy()) 109 return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false); 110 if (VTy->isFloatingPointTy()) 111 return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext())); 112 113 llvm_unreachable("Should never be called!"); 114 } 115 116 /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with 117 /// modified arguments (based on OldIntr) and replaces InstToReplace with 118 /// this newly created intrinsic call. 119 static std::optional<Instruction *> modifyIntrinsicCall( 120 IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr, 121 InstCombiner &IC, 122 std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)> 123 Func) { 124 SmallVector<Type *, 4> ArgTys; 125 if (!Intrinsic::getIntrinsicSignature(OldIntr.getCalledFunction(), ArgTys)) 126 return std::nullopt; 127 128 SmallVector<Value *, 8> Args(OldIntr.args()); 129 130 // Modify arguments and types 131 Func(Args, ArgTys); 132 133 Function *I = Intrinsic::getDeclaration(OldIntr.getModule(), NewIntr, ArgTys); 134 135 CallInst *NewCall = IC.Builder.CreateCall(I, Args); 136 NewCall->takeName(&OldIntr); 137 NewCall->copyMetadata(OldIntr); 138 if (isa<FPMathOperator>(NewCall)) 139 NewCall->copyFastMathFlags(&OldIntr); 140 141 // Erase and replace uses 142 if (!InstToReplace.getType()->isVoidTy()) 143 IC.replaceInstUsesWith(InstToReplace, NewCall); 144 145 bool RemoveOldIntr = &OldIntr != &InstToReplace; 146 147 auto RetValue = IC.eraseInstFromFunction(InstToReplace); 148 if (RemoveOldIntr) 149 IC.eraseInstFromFunction(OldIntr); 150 151 return RetValue; 152 } 153 154 static std::optional<Instruction *> 155 simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, 156 const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, 157 IntrinsicInst &II, InstCombiner &IC) { 158 // Optimize _L to _LZ when _L is zero 159 if (const auto *LZMappingInfo = 160 AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { 161 if (auto *ConstantLod = 162 dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->LodIndex))) { 163 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 164 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 165 AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ, 166 ImageDimIntr->Dim); 167 return modifyIntrinsicCall( 168 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 169 Args.erase(Args.begin() + ImageDimIntr->LodIndex); 170 }); 171 } 172 } 173 } 174 175 // Optimize _mip away, when 'lod' is zero 176 if (const auto *MIPMappingInfo = 177 AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { 178 if (auto *ConstantMip = 179 dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->MipIndex))) { 180 if (ConstantMip->isZero()) { 181 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 182 AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP, 183 ImageDimIntr->Dim); 184 return modifyIntrinsicCall( 185 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 186 Args.erase(Args.begin() + ImageDimIntr->MipIndex); 187 }); 188 } 189 } 190 } 191 192 // Optimize _bias away when 'bias' is zero 193 if (const auto *BiasMappingInfo = 194 AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) { 195 if (auto *ConstantBias = 196 dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->BiasIndex))) { 197 if (ConstantBias->isZero()) { 198 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 199 AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias, 200 ImageDimIntr->Dim); 201 return modifyIntrinsicCall( 202 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 203 Args.erase(Args.begin() + ImageDimIntr->BiasIndex); 204 ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg); 205 }); 206 } 207 } 208 } 209 210 // Optimize _offset away when 'offset' is zero 211 if (const auto *OffsetMappingInfo = 212 AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) { 213 if (auto *ConstantOffset = 214 dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->OffsetIndex))) { 215 if (ConstantOffset->isZero()) { 216 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 217 AMDGPU::getImageDimIntrinsicByBaseOpcode( 218 OffsetMappingInfo->NoOffset, ImageDimIntr->Dim); 219 return modifyIntrinsicCall( 220 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 221 Args.erase(Args.begin() + ImageDimIntr->OffsetIndex); 222 }); 223 } 224 } 225 } 226 227 // Try to use D16 228 if (ST->hasD16Images()) { 229 230 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 231 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode); 232 233 if (BaseOpcode->HasD16) { 234 235 // If the only use of image intrinsic is a fptrunc (with conversion to 236 // half) then both fptrunc and image intrinsic will be replaced with image 237 // intrinsic with D16 flag. 238 if (II.hasOneUse()) { 239 Instruction *User = II.user_back(); 240 241 if (User->getOpcode() == Instruction::FPTrunc && 242 User->getType()->getScalarType()->isHalfTy()) { 243 244 return modifyIntrinsicCall(II, *User, ImageDimIntr->Intr, IC, 245 [&](auto &Args, auto &ArgTys) { 246 // Change return type of image intrinsic. 247 // Set it to return type of fptrunc. 248 ArgTys[0] = User->getType(); 249 }); 250 } 251 } 252 } 253 } 254 255 // Try to use A16 or G16 256 if (!ST->hasA16() && !ST->hasG16()) 257 return std::nullopt; 258 259 // Address is interpreted as float if the instruction has a sampler or as 260 // unsigned int if there is no sampler. 261 bool HasSampler = 262 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler; 263 bool FloatCoord = false; 264 // true means derivatives can be converted to 16 bit, coordinates not 265 bool OnlyDerivatives = false; 266 267 for (unsigned OperandIndex = ImageDimIntr->GradientStart; 268 OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { 269 Value *Coord = II.getOperand(OperandIndex); 270 // If the values are not derived from 16-bit values, we cannot optimize. 271 if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) { 272 if (OperandIndex < ImageDimIntr->CoordStart || 273 ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { 274 return std::nullopt; 275 } 276 // All gradients can be converted, so convert only them 277 OnlyDerivatives = true; 278 break; 279 } 280 281 assert(OperandIndex == ImageDimIntr->GradientStart || 282 FloatCoord == Coord->getType()->isFloatingPointTy()); 283 FloatCoord = Coord->getType()->isFloatingPointTy(); 284 } 285 286 if (!OnlyDerivatives && !ST->hasA16()) 287 OnlyDerivatives = true; // Only supports G16 288 289 // Check if there is a bias parameter and if it can be converted to f16 290 if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 291 Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 292 assert(HasSampler && 293 "Only image instructions with a sampler can have a bias"); 294 if (!canSafelyConvertTo16Bit(*Bias, HasSampler)) 295 OnlyDerivatives = true; 296 } 297 298 if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart == 299 ImageDimIntr->CoordStart)) 300 return std::nullopt; 301 302 Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext()) 303 : Type::getInt16Ty(II.getContext()); 304 305 return modifyIntrinsicCall( 306 II, II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) { 307 ArgTys[ImageDimIntr->GradientTyArg] = CoordType; 308 if (!OnlyDerivatives) { 309 ArgTys[ImageDimIntr->CoordTyArg] = CoordType; 310 311 // Change the bias type 312 if (ImageDimIntr->NumBiasArgs != 0) 313 ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext()); 314 } 315 316 unsigned EndIndex = 317 OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; 318 for (unsigned OperandIndex = ImageDimIntr->GradientStart; 319 OperandIndex < EndIndex; OperandIndex++) { 320 Args[OperandIndex] = 321 convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder); 322 } 323 324 // Convert the bias 325 if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 326 Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 327 Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder); 328 } 329 }); 330 } 331 332 bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I, 333 const Value *Op0, const Value *Op1, 334 InstCombiner &IC) const { 335 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 336 // infinity, gives +0.0. If we can prove we don't have one of the special 337 // cases then we can use a normal multiply instead. 338 // TODO: Create and use isKnownFiniteNonZero instead of just matching 339 // constants here. 340 if (match(Op0, PatternMatch::m_FiniteNonZero()) || 341 match(Op1, PatternMatch::m_FiniteNonZero())) { 342 // One operand is not zero or infinity or NaN. 343 return true; 344 } 345 346 auto *TLI = &IC.getTargetLibraryInfo(); 347 if (isKnownNeverInfOrNaN(Op0, IC.getDataLayout(), TLI, 0, 348 &IC.getAssumptionCache(), &I, 349 &IC.getDominatorTree()) && 350 isKnownNeverInfOrNaN(Op1, IC.getDataLayout(), TLI, 0, 351 &IC.getAssumptionCache(), &I, 352 &IC.getDominatorTree())) { 353 // Neither operand is infinity or NaN. 354 return true; 355 } 356 return false; 357 } 358 359 /// Match an fpext from half to float, or a constant we can convert. 360 static bool matchFPExtFromF16(Value *Arg, Value *&FPExtSrc) { 361 if (match(Arg, m_OneUse(m_FPExt(m_Value(FPExtSrc))))) 362 return FPExtSrc->getType()->isHalfTy(); 363 364 ConstantFP *CFP; 365 if (match(Arg, m_ConstantFP(CFP))) { 366 bool LosesInfo; 367 APFloat Val(CFP->getValueAPF()); 368 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); 369 if (LosesInfo) 370 return false; 371 372 FPExtSrc = ConstantFP::get(Type::getHalfTy(Arg->getContext()), Val); 373 return true; 374 } 375 376 return false; 377 } 378 379 // Trim all zero components from the end of the vector \p UseV and return 380 // an appropriate bitset with known elements. 381 static APInt trimTrailingZerosInVector(InstCombiner &IC, Value *UseV, 382 Instruction *I) { 383 auto *VTy = cast<FixedVectorType>(UseV->getType()); 384 unsigned VWidth = VTy->getNumElements(); 385 APInt DemandedElts = APInt::getAllOnes(VWidth); 386 387 for (int i = VWidth - 1; i > 0; --i) { 388 APInt DemandOneElt = APInt::getOneBitSet(VWidth, i); 389 KnownFPClass KnownFPClass = 390 computeKnownFPClass(UseV, DemandOneElt, IC.getDataLayout(), 391 /*InterestedClasses=*/fcAllFlags, 392 /*Depth=*/0, &IC.getTargetLibraryInfo(), 393 &IC.getAssumptionCache(), I, 394 &IC.getDominatorTree()); 395 if (KnownFPClass.KnownFPClasses != fcPosZero) 396 break; 397 DemandedElts.clearBit(i); 398 } 399 return DemandedElts; 400 } 401 402 static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 403 IntrinsicInst &II, 404 APInt DemandedElts, 405 int DMaskIdx = -1, 406 bool IsLoad = true); 407 408 std::optional<Instruction *> 409 GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 410 Intrinsic::ID IID = II.getIntrinsicID(); 411 switch (IID) { 412 case Intrinsic::amdgcn_rcp: { 413 Value *Src = II.getArgOperand(0); 414 415 // TODO: Move to ConstantFolding/InstSimplify? 416 if (isa<UndefValue>(Src)) { 417 Type *Ty = II.getType(); 418 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 419 return IC.replaceInstUsesWith(II, QNaN); 420 } 421 422 if (II.isStrictFP()) 423 break; 424 425 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 426 const APFloat &ArgVal = C->getValueAPF(); 427 APFloat Val(ArgVal.getSemantics(), 1); 428 Val.divide(ArgVal, APFloat::rmNearestTiesToEven); 429 430 // This is more precise than the instruction may give. 431 // 432 // TODO: The instruction always flushes denormal results (except for f16), 433 // should this also? 434 return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val)); 435 } 436 437 break; 438 } 439 case Intrinsic::amdgcn_sqrt: 440 case Intrinsic::amdgcn_rsq: { 441 Value *Src = II.getArgOperand(0); 442 443 // TODO: Move to ConstantFolding/InstSimplify? 444 if (isa<UndefValue>(Src)) { 445 Type *Ty = II.getType(); 446 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 447 return IC.replaceInstUsesWith(II, QNaN); 448 } 449 450 break; 451 } 452 case Intrinsic::amdgcn_log: { 453 Value *Src = II.getArgOperand(0); 454 Type *Ty = II.getType(); 455 456 if (isa<PoisonValue>(Src)) 457 return IC.replaceInstUsesWith(II, Src); 458 459 if (IC.getSimplifyQuery().isUndefValue(Src)) 460 return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 461 462 if (ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 463 if (C->isInfinity() && !C->isNegative()) 464 return IC.replaceInstUsesWith(II, C); 465 466 if (II.isStrictFP()) 467 break; 468 469 if (C->isNaN()) { 470 Constant *Quieted = ConstantFP::get(Ty, C->getValue().makeQuiet()); 471 return IC.replaceInstUsesWith(II, Quieted); 472 } 473 474 // f32 instruction doesn't handle denormals, f16 does. 475 if (C->isZero() || (C->getValue().isDenormal() && Ty->isFloatTy())) 476 return IC.replaceInstUsesWith(II, ConstantFP::getInfinity(Ty, true)); 477 478 if (C->isNegative()) 479 return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 480 481 // TODO: Full constant folding matching hardware behavior. 482 } 483 484 break; 485 } 486 case Intrinsic::amdgcn_frexp_mant: 487 case Intrinsic::amdgcn_frexp_exp: { 488 Value *Src = II.getArgOperand(0); 489 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 490 int Exp; 491 APFloat Significand = 492 frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); 493 494 if (IID == Intrinsic::amdgcn_frexp_mant) { 495 return IC.replaceInstUsesWith( 496 II, ConstantFP::get(II.getContext(), Significand)); 497 } 498 499 // Match instruction special case behavior. 500 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) 501 Exp = 0; 502 503 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp)); 504 } 505 506 if (isa<UndefValue>(Src)) { 507 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 508 } 509 510 break; 511 } 512 case Intrinsic::amdgcn_class: { 513 Value *Src0 = II.getArgOperand(0); 514 Value *Src1 = II.getArgOperand(1); 515 const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); 516 if (CMask) { 517 II.setCalledOperand(Intrinsic::getDeclaration( 518 II.getModule(), Intrinsic::is_fpclass, Src0->getType())); 519 520 // Clamp any excess bits, as they're illegal for the generic intrinsic. 521 II.setArgOperand(1, ConstantInt::get(Src1->getType(), 522 CMask->getZExtValue() & fcAllFlags)); 523 return &II; 524 } 525 526 // Propagate poison. 527 if (isa<PoisonValue>(Src0) || isa<PoisonValue>(Src1)) 528 return IC.replaceInstUsesWith(II, PoisonValue::get(II.getType())); 529 530 // llvm.amdgcn.class(_, undef) -> false 531 if (IC.getSimplifyQuery().isUndefValue(Src1)) 532 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false)); 533 534 // llvm.amdgcn.class(undef, mask) -> mask != 0 535 if (IC.getSimplifyQuery().isUndefValue(Src0)) { 536 Value *CmpMask = IC.Builder.CreateICmpNE( 537 Src1, ConstantInt::getNullValue(Src1->getType())); 538 return IC.replaceInstUsesWith(II, CmpMask); 539 } 540 break; 541 } 542 case Intrinsic::amdgcn_cvt_pkrtz: { 543 Value *Src0 = II.getArgOperand(0); 544 Value *Src1 = II.getArgOperand(1); 545 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 546 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 547 const fltSemantics &HalfSem = 548 II.getType()->getScalarType()->getFltSemantics(); 549 bool LosesInfo; 550 APFloat Val0 = C0->getValueAPF(); 551 APFloat Val1 = C1->getValueAPF(); 552 Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 553 Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 554 555 Constant *Folded = 556 ConstantVector::get({ConstantFP::get(II.getContext(), Val0), 557 ConstantFP::get(II.getContext(), Val1)}); 558 return IC.replaceInstUsesWith(II, Folded); 559 } 560 } 561 562 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 563 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 564 } 565 566 break; 567 } 568 case Intrinsic::amdgcn_cvt_pknorm_i16: 569 case Intrinsic::amdgcn_cvt_pknorm_u16: 570 case Intrinsic::amdgcn_cvt_pk_i16: 571 case Intrinsic::amdgcn_cvt_pk_u16: { 572 Value *Src0 = II.getArgOperand(0); 573 Value *Src1 = II.getArgOperand(1); 574 575 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 576 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 577 } 578 579 break; 580 } 581 case Intrinsic::amdgcn_ubfe: 582 case Intrinsic::amdgcn_sbfe: { 583 // Decompose simple cases into standard shifts. 584 Value *Src = II.getArgOperand(0); 585 if (isa<UndefValue>(Src)) { 586 return IC.replaceInstUsesWith(II, Src); 587 } 588 589 unsigned Width; 590 Type *Ty = II.getType(); 591 unsigned IntSize = Ty->getIntegerBitWidth(); 592 593 ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2)); 594 if (CWidth) { 595 Width = CWidth->getZExtValue(); 596 if ((Width & (IntSize - 1)) == 0) { 597 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty)); 598 } 599 600 // Hardware ignores high bits, so remove those. 601 if (Width >= IntSize) { 602 return IC.replaceOperand( 603 II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); 604 } 605 } 606 607 unsigned Offset; 608 ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1)); 609 if (COffset) { 610 Offset = COffset->getZExtValue(); 611 if (Offset >= IntSize) { 612 return IC.replaceOperand( 613 II, 1, 614 ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); 615 } 616 } 617 618 bool Signed = IID == Intrinsic::amdgcn_sbfe; 619 620 if (!CWidth || !COffset) 621 break; 622 623 // The case of Width == 0 is handled above, which makes this transformation 624 // safe. If Width == 0, then the ashr and lshr instructions become poison 625 // value since the shift amount would be equal to the bit size. 626 assert(Width != 0); 627 628 // TODO: This allows folding to undef when the hardware has specific 629 // behavior? 630 if (Offset + Width < IntSize) { 631 Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width); 632 Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width) 633 : IC.Builder.CreateLShr(Shl, IntSize - Width); 634 RightShift->takeName(&II); 635 return IC.replaceInstUsesWith(II, RightShift); 636 } 637 638 Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset) 639 : IC.Builder.CreateLShr(Src, Offset); 640 641 RightShift->takeName(&II); 642 return IC.replaceInstUsesWith(II, RightShift); 643 } 644 case Intrinsic::amdgcn_exp: 645 case Intrinsic::amdgcn_exp_row: 646 case Intrinsic::amdgcn_exp_compr: { 647 ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1)); 648 unsigned EnBits = En->getZExtValue(); 649 if (EnBits == 0xf) 650 break; // All inputs enabled. 651 652 bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; 653 bool Changed = false; 654 for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { 655 if ((!IsCompr && (EnBits & (1 << I)) == 0) || 656 (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { 657 Value *Src = II.getArgOperand(I + 2); 658 if (!isa<UndefValue>(Src)) { 659 IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType())); 660 Changed = true; 661 } 662 } 663 } 664 665 if (Changed) { 666 return &II; 667 } 668 669 break; 670 } 671 case Intrinsic::amdgcn_fmed3: { 672 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled 673 // for the shader. 674 675 Value *Src0 = II.getArgOperand(0); 676 Value *Src1 = II.getArgOperand(1); 677 Value *Src2 = II.getArgOperand(2); 678 679 // Checking for NaN before canonicalization provides better fidelity when 680 // mapping other operations onto fmed3 since the order of operands is 681 // unchanged. 682 CallInst *NewCall = nullptr; 683 if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) { 684 NewCall = IC.Builder.CreateMinNum(Src1, Src2); 685 } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) { 686 NewCall = IC.Builder.CreateMinNum(Src0, Src2); 687 } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) { 688 NewCall = IC.Builder.CreateMaxNum(Src0, Src1); 689 } 690 691 if (NewCall) { 692 NewCall->copyFastMathFlags(&II); 693 NewCall->takeName(&II); 694 return IC.replaceInstUsesWith(II, NewCall); 695 } 696 697 bool Swap = false; 698 // Canonicalize constants to RHS operands. 699 // 700 // fmed3(c0, x, c1) -> fmed3(x, c0, c1) 701 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 702 std::swap(Src0, Src1); 703 Swap = true; 704 } 705 706 if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { 707 std::swap(Src1, Src2); 708 Swap = true; 709 } 710 711 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 712 std::swap(Src0, Src1); 713 Swap = true; 714 } 715 716 if (Swap) { 717 II.setArgOperand(0, Src0); 718 II.setArgOperand(1, Src1); 719 II.setArgOperand(2, Src2); 720 return &II; 721 } 722 723 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 724 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 725 if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { 726 APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), 727 C2->getValueAPF()); 728 return IC.replaceInstUsesWith( 729 II, ConstantFP::get(IC.Builder.getContext(), Result)); 730 } 731 } 732 } 733 734 if (!ST->hasMed3_16()) 735 break; 736 737 Value *X, *Y, *Z; 738 739 // Repeat floating-point width reduction done for minnum/maxnum. 740 // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z)) 741 if (matchFPExtFromF16(Src0, X) && matchFPExtFromF16(Src1, Y) && 742 matchFPExtFromF16(Src2, Z)) { 743 Value *NewCall = IC.Builder.CreateIntrinsic(IID, {X->getType()}, 744 {X, Y, Z}, &II, II.getName()); 745 return new FPExtInst(NewCall, II.getType()); 746 } 747 748 break; 749 } 750 case Intrinsic::amdgcn_icmp: 751 case Intrinsic::amdgcn_fcmp: { 752 const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2)); 753 // Guard against invalid arguments. 754 int64_t CCVal = CC->getZExtValue(); 755 bool IsInteger = IID == Intrinsic::amdgcn_icmp; 756 if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || 757 CCVal > CmpInst::LAST_ICMP_PREDICATE)) || 758 (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || 759 CCVal > CmpInst::LAST_FCMP_PREDICATE))) 760 break; 761 762 Value *Src0 = II.getArgOperand(0); 763 Value *Src1 = II.getArgOperand(1); 764 765 if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { 766 if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { 767 Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); 768 if (CCmp->isNullValue()) { 769 return IC.replaceInstUsesWith( 770 II, ConstantExpr::getSExt(CCmp, II.getType())); 771 } 772 773 // The result of V_ICMP/V_FCMP assembly instructions (which this 774 // intrinsic exposes) is one bit per thread, masked with the EXEC 775 // register (which contains the bitmask of live threads). So a 776 // comparison that always returns true is the same as a read of the 777 // EXEC register. 778 Function *NewF = Intrinsic::getDeclaration( 779 II.getModule(), Intrinsic::read_register, II.getType()); 780 Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")}; 781 MDNode *MD = MDNode::get(II.getContext(), MDArgs); 782 Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 783 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 784 NewCall->addFnAttr(Attribute::Convergent); 785 NewCall->takeName(&II); 786 return IC.replaceInstUsesWith(II, NewCall); 787 } 788 789 // Canonicalize constants to RHS. 790 CmpInst::Predicate SwapPred = 791 CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); 792 II.setArgOperand(0, Src1); 793 II.setArgOperand(1, Src0); 794 II.setArgOperand( 795 2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred))); 796 return &II; 797 } 798 799 if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) 800 break; 801 802 // Canonicalize compare eq with true value to compare != 0 803 // llvm.amdgcn.icmp(zext (i1 x), 1, eq) 804 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) 805 // llvm.amdgcn.icmp(sext (i1 x), -1, eq) 806 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) 807 Value *ExtSrc; 808 if (CCVal == CmpInst::ICMP_EQ && 809 ((match(Src1, PatternMatch::m_One()) && 810 match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) || 811 (match(Src1, PatternMatch::m_AllOnes()) && 812 match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) && 813 ExtSrc->getType()->isIntegerTy(1)) { 814 IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType())); 815 IC.replaceOperand(II, 2, 816 ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); 817 return &II; 818 } 819 820 CmpInst::Predicate SrcPred; 821 Value *SrcLHS; 822 Value *SrcRHS; 823 824 // Fold compare eq/ne with 0 from a compare result as the predicate to the 825 // intrinsic. The typical use is a wave vote function in the library, which 826 // will be fed from a user code condition compared with 0. Fold in the 827 // redundant compare. 828 829 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) 830 // -> llvm.amdgcn.[if]cmp(a, b, pred) 831 // 832 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) 833 // -> llvm.amdgcn.[if]cmp(a, b, inv pred) 834 if (match(Src1, PatternMatch::m_Zero()) && 835 match(Src0, PatternMatch::m_ZExtOrSExt( 836 m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS), 837 PatternMatch::m_Value(SrcRHS))))) { 838 if (CCVal == CmpInst::ICMP_EQ) 839 SrcPred = CmpInst::getInversePredicate(SrcPred); 840 841 Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) 842 ? Intrinsic::amdgcn_fcmp 843 : Intrinsic::amdgcn_icmp; 844 845 Type *Ty = SrcLHS->getType(); 846 if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { 847 // Promote to next legal integer type. 848 unsigned Width = CmpType->getBitWidth(); 849 unsigned NewWidth = Width; 850 851 // Don't do anything for i1 comparisons. 852 if (Width == 1) 853 break; 854 855 if (Width <= 16) 856 NewWidth = 16; 857 else if (Width <= 32) 858 NewWidth = 32; 859 else if (Width <= 64) 860 NewWidth = 64; 861 else if (Width > 64) 862 break; // Can't handle this. 863 864 if (Width != NewWidth) { 865 IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth); 866 if (CmpInst::isSigned(SrcPred)) { 867 SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy); 868 SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy); 869 } else { 870 SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy); 871 SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy); 872 } 873 } 874 } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) 875 break; 876 877 Function *NewF = Intrinsic::getDeclaration( 878 II.getModule(), NewIID, {II.getType(), SrcLHS->getType()}); 879 Value *Args[] = {SrcLHS, SrcRHS, 880 ConstantInt::get(CC->getType(), SrcPred)}; 881 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 882 NewCall->takeName(&II); 883 return IC.replaceInstUsesWith(II, NewCall); 884 } 885 886 break; 887 } 888 case Intrinsic::amdgcn_ballot: { 889 if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) { 890 if (Src->isZero()) { 891 // amdgcn.ballot(i1 0) is zero. 892 return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType())); 893 } 894 895 if (Src->isOne()) { 896 // amdgcn.ballot(i1 1) is exec. 897 const char *RegName = "exec"; 898 if (II.getType()->isIntegerTy(32)) 899 RegName = "exec_lo"; 900 else if (!II.getType()->isIntegerTy(64)) 901 break; 902 903 Function *NewF = Intrinsic::getDeclaration( 904 II.getModule(), Intrinsic::read_register, II.getType()); 905 Metadata *MDArgs[] = {MDString::get(II.getContext(), RegName)}; 906 MDNode *MD = MDNode::get(II.getContext(), MDArgs); 907 Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 908 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 909 NewCall->addFnAttr(Attribute::Convergent); 910 NewCall->takeName(&II); 911 return IC.replaceInstUsesWith(II, NewCall); 912 } 913 } 914 break; 915 } 916 case Intrinsic::amdgcn_wqm_vote: { 917 // wqm_vote is identity when the argument is constant. 918 if (!isa<Constant>(II.getArgOperand(0))) 919 break; 920 921 return IC.replaceInstUsesWith(II, II.getArgOperand(0)); 922 } 923 case Intrinsic::amdgcn_kill: { 924 const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0)); 925 if (!C || !C->getZExtValue()) 926 break; 927 928 // amdgcn.kill(i1 1) is a no-op 929 return IC.eraseInstFromFunction(II); 930 } 931 case Intrinsic::amdgcn_update_dpp: { 932 Value *Old = II.getArgOperand(0); 933 934 auto *BC = cast<ConstantInt>(II.getArgOperand(5)); 935 auto *RM = cast<ConstantInt>(II.getArgOperand(3)); 936 auto *BM = cast<ConstantInt>(II.getArgOperand(4)); 937 if (BC->isZeroValue() || RM->getZExtValue() != 0xF || 938 BM->getZExtValue() != 0xF || isa<UndefValue>(Old)) 939 break; 940 941 // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. 942 return IC.replaceOperand(II, 0, UndefValue::get(Old->getType())); 943 } 944 case Intrinsic::amdgcn_permlane16: 945 case Intrinsic::amdgcn_permlanex16: { 946 // Discard vdst_in if it's not going to be read. 947 Value *VDstIn = II.getArgOperand(0); 948 if (isa<UndefValue>(VDstIn)) 949 break; 950 951 ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(4)); 952 ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(5)); 953 if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) 954 break; 955 956 return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType())); 957 } 958 case Intrinsic::amdgcn_permlane64: 959 // A constant value is trivially uniform. 960 if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 961 return IC.replaceInstUsesWith(II, C); 962 } 963 break; 964 case Intrinsic::amdgcn_readfirstlane: 965 case Intrinsic::amdgcn_readlane: { 966 // A constant value is trivially uniform. 967 if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 968 return IC.replaceInstUsesWith(II, C); 969 } 970 971 // The rest of these may not be safe if the exec may not be the same between 972 // the def and use. 973 Value *Src = II.getArgOperand(0); 974 Instruction *SrcInst = dyn_cast<Instruction>(Src); 975 if (SrcInst && SrcInst->getParent() != II.getParent()) 976 break; 977 978 // readfirstlane (readfirstlane x) -> readfirstlane x 979 // readlane (readfirstlane x), y -> readfirstlane x 980 if (match(Src, 981 PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) { 982 return IC.replaceInstUsesWith(II, Src); 983 } 984 985 if (IID == Intrinsic::amdgcn_readfirstlane) { 986 // readfirstlane (readlane x, y) -> readlane x, y 987 if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) { 988 return IC.replaceInstUsesWith(II, Src); 989 } 990 } else { 991 // readlane (readlane x, y), y -> readlane x, y 992 if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>( 993 PatternMatch::m_Value(), 994 PatternMatch::m_Specific(II.getArgOperand(1))))) { 995 return IC.replaceInstUsesWith(II, Src); 996 } 997 } 998 999 break; 1000 } 1001 case Intrinsic::amdgcn_ldexp: { 1002 // FIXME: This doesn't introduce new instructions and belongs in 1003 // InstructionSimplify. 1004 Type *Ty = II.getType(); 1005 Value *Op0 = II.getArgOperand(0); 1006 Value *Op1 = II.getArgOperand(1); 1007 1008 // Folding undef to qnan is safe regardless of the FP mode. 1009 if (isa<UndefValue>(Op0)) { 1010 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 1011 return IC.replaceInstUsesWith(II, QNaN); 1012 } 1013 1014 const APFloat *C = nullptr; 1015 match(Op0, PatternMatch::m_APFloat(C)); 1016 1017 // FIXME: Should flush denorms depending on FP mode, but that's ignored 1018 // everywhere else. 1019 // 1020 // These cases should be safe, even with strictfp. 1021 // ldexp(0.0, x) -> 0.0 1022 // ldexp(-0.0, x) -> -0.0 1023 // ldexp(inf, x) -> inf 1024 // ldexp(-inf, x) -> -inf 1025 if (C && (C->isZero() || C->isInfinity())) { 1026 return IC.replaceInstUsesWith(II, Op0); 1027 } 1028 1029 // With strictfp, be more careful about possibly needing to flush denormals 1030 // or not, and snan behavior depends on ieee_mode. 1031 if (II.isStrictFP()) 1032 break; 1033 1034 if (C && C->isNaN()) 1035 return IC.replaceInstUsesWith(II, ConstantFP::get(Ty, C->makeQuiet())); 1036 1037 // ldexp(x, 0) -> x 1038 // ldexp(x, undef) -> x 1039 if (isa<UndefValue>(Op1) || match(Op1, PatternMatch::m_ZeroInt())) { 1040 return IC.replaceInstUsesWith(II, Op0); 1041 } 1042 1043 break; 1044 } 1045 case Intrinsic::amdgcn_fmul_legacy: { 1046 Value *Op0 = II.getArgOperand(0); 1047 Value *Op1 = II.getArgOperand(1); 1048 1049 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1050 // infinity, gives +0.0. 1051 // TODO: Move to InstSimplify? 1052 if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1053 match(Op1, PatternMatch::m_AnyZeroFP())) 1054 return IC.replaceInstUsesWith(II, ConstantFP::getZero(II.getType())); 1055 1056 // If we can prove we don't have one of the special cases then we can use a 1057 // normal fmul instruction instead. 1058 if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1059 auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II); 1060 FMul->takeName(&II); 1061 return IC.replaceInstUsesWith(II, FMul); 1062 } 1063 break; 1064 } 1065 case Intrinsic::amdgcn_fma_legacy: { 1066 Value *Op0 = II.getArgOperand(0); 1067 Value *Op1 = II.getArgOperand(1); 1068 Value *Op2 = II.getArgOperand(2); 1069 1070 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1071 // infinity, gives +0.0. 1072 // TODO: Move to InstSimplify? 1073 if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1074 match(Op1, PatternMatch::m_AnyZeroFP())) { 1075 // It's tempting to just return Op2 here, but that would give the wrong 1076 // result if Op2 was -0.0. 1077 auto *Zero = ConstantFP::getZero(II.getType()); 1078 auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II); 1079 FAdd->takeName(&II); 1080 return IC.replaceInstUsesWith(II, FAdd); 1081 } 1082 1083 // If we can prove we don't have one of the special cases then we can use a 1084 // normal fma instead. 1085 if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1086 II.setCalledOperand(Intrinsic::getDeclaration( 1087 II.getModule(), Intrinsic::fma, II.getType())); 1088 return &II; 1089 } 1090 break; 1091 } 1092 case Intrinsic::amdgcn_is_shared: 1093 case Intrinsic::amdgcn_is_private: { 1094 if (isa<UndefValue>(II.getArgOperand(0))) 1095 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 1096 1097 if (isa<ConstantPointerNull>(II.getArgOperand(0))) 1098 return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType())); 1099 break; 1100 } 1101 case Intrinsic::amdgcn_buffer_store_format: 1102 case Intrinsic::amdgcn_raw_buffer_store_format: 1103 case Intrinsic::amdgcn_struct_buffer_store_format: 1104 case Intrinsic::amdgcn_raw_tbuffer_store: 1105 case Intrinsic::amdgcn_struct_tbuffer_store: 1106 case Intrinsic::amdgcn_tbuffer_store: 1107 case Intrinsic::amdgcn_image_store_1d: 1108 case Intrinsic::amdgcn_image_store_1darray: 1109 case Intrinsic::amdgcn_image_store_2d: 1110 case Intrinsic::amdgcn_image_store_2darray: 1111 case Intrinsic::amdgcn_image_store_2darraymsaa: 1112 case Intrinsic::amdgcn_image_store_2dmsaa: 1113 case Intrinsic::amdgcn_image_store_3d: 1114 case Intrinsic::amdgcn_image_store_cube: 1115 case Intrinsic::amdgcn_image_store_mip_1d: 1116 case Intrinsic::amdgcn_image_store_mip_1darray: 1117 case Intrinsic::amdgcn_image_store_mip_2d: 1118 case Intrinsic::amdgcn_image_store_mip_2darray: 1119 case Intrinsic::amdgcn_image_store_mip_3d: 1120 case Intrinsic::amdgcn_image_store_mip_cube: { 1121 if (!isa<FixedVectorType>(II.getArgOperand(0)->getType())) 1122 break; 1123 1124 APInt DemandedElts = 1125 trimTrailingZerosInVector(IC, II.getArgOperand(0), &II); 1126 1127 int DMaskIdx = getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID()) ? 1 : -1; 1128 if (simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx, 1129 false)) { 1130 return IC.eraseInstFromFunction(II); 1131 } 1132 1133 break; 1134 } 1135 } 1136 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 1137 AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) { 1138 return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); 1139 } 1140 return std::nullopt; 1141 } 1142 1143 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1144 /// 1145 /// The result of simplifying amdgcn image and buffer store intrinsics is updating 1146 /// definitions of the intrinsics vector argument, not Uses of the result like 1147 /// image and buffer loads. 1148 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1149 /// struct returns. 1150 static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 1151 IntrinsicInst &II, 1152 APInt DemandedElts, 1153 int DMaskIdx, bool IsLoad) { 1154 1155 auto *IIVTy = cast<FixedVectorType>(IsLoad ? II.getType() 1156 : II.getOperand(0)->getType()); 1157 unsigned VWidth = IIVTy->getNumElements(); 1158 if (VWidth == 1) 1159 return nullptr; 1160 Type *EltTy = IIVTy->getElementType(); 1161 1162 IRBuilderBase::InsertPointGuard Guard(IC.Builder); 1163 IC.Builder.SetInsertPoint(&II); 1164 1165 // Assume the arguments are unchanged and later override them, if needed. 1166 SmallVector<Value *, 16> Args(II.args()); 1167 1168 if (DMaskIdx < 0) { 1169 // Buffer case. 1170 1171 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1172 const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero(); 1173 1174 // Start assuming the prefix of elements is demanded, but possibly clear 1175 // some other bits if there are trailing zeros (unused components at front) 1176 // and update offset. 1177 DemandedElts = (1 << ActiveBits) - 1; 1178 1179 if (UnusedComponentsAtFront > 0) { 1180 static const unsigned InvalidOffsetIdx = 0xf; 1181 1182 unsigned OffsetIdx; 1183 switch (II.getIntrinsicID()) { 1184 case Intrinsic::amdgcn_raw_buffer_load: 1185 case Intrinsic::amdgcn_raw_ptr_buffer_load: 1186 OffsetIdx = 1; 1187 break; 1188 case Intrinsic::amdgcn_s_buffer_load: 1189 // If resulting type is vec3, there is no point in trimming the 1190 // load with updated offset, as the vec3 would most likely be widened to 1191 // vec4 anyway during lowering. 1192 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1193 OffsetIdx = InvalidOffsetIdx; 1194 else 1195 OffsetIdx = 1; 1196 break; 1197 case Intrinsic::amdgcn_struct_buffer_load: 1198 case Intrinsic::amdgcn_struct_ptr_buffer_load: 1199 OffsetIdx = 2; 1200 break; 1201 default: 1202 // TODO: handle tbuffer* intrinsics. 1203 OffsetIdx = InvalidOffsetIdx; 1204 break; 1205 } 1206 1207 if (OffsetIdx != InvalidOffsetIdx) { 1208 // Clear demanded bits and update the offset. 1209 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1210 auto *Offset = Args[OffsetIdx]; 1211 unsigned SingleComponentSizeInBits = 1212 IC.getDataLayout().getTypeSizeInBits(EltTy); 1213 unsigned OffsetAdd = 1214 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1215 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1216 Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal); 1217 } 1218 } 1219 } else { 1220 // Image case. 1221 1222 ConstantInt *DMask = cast<ConstantInt>(Args[DMaskIdx]); 1223 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1224 1225 // Mask off values that are undefined because the dmask doesn't cover them 1226 DemandedElts &= (1 << llvm::popcount(DMaskVal)) - 1; 1227 1228 unsigned NewDMaskVal = 0; 1229 unsigned OrigLdStIdx = 0; 1230 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1231 const unsigned Bit = 1 << SrcIdx; 1232 if (!!(DMaskVal & Bit)) { 1233 if (!!DemandedElts[OrigLdStIdx]) 1234 NewDMaskVal |= Bit; 1235 OrigLdStIdx++; 1236 } 1237 } 1238 1239 if (DMaskVal != NewDMaskVal) 1240 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1241 } 1242 1243 unsigned NewNumElts = DemandedElts.popcount(); 1244 if (!NewNumElts) 1245 return UndefValue::get(IIVTy); 1246 1247 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1248 if (DMaskIdx >= 0) 1249 II.setArgOperand(DMaskIdx, Args[DMaskIdx]); 1250 return nullptr; 1251 } 1252 1253 // Validate function argument and return types, extracting overloaded types 1254 // along the way. 1255 SmallVector<Type *, 6> OverloadTys; 1256 if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys)) 1257 return nullptr; 1258 1259 Type *NewTy = 1260 (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts); 1261 OverloadTys[0] = NewTy; 1262 1263 if (!IsLoad) { 1264 SmallVector<int, 8> EltMask; 1265 for (unsigned OrigStoreIdx = 0; OrigStoreIdx < VWidth; ++OrigStoreIdx) 1266 if (DemandedElts[OrigStoreIdx]) 1267 EltMask.push_back(OrigStoreIdx); 1268 1269 if (NewNumElts == 1) 1270 Args[0] = IC.Builder.CreateExtractElement(II.getOperand(0), EltMask[0]); 1271 else 1272 Args[0] = IC.Builder.CreateShuffleVector(II.getOperand(0), EltMask); 1273 } 1274 1275 Function *NewIntrin = Intrinsic::getDeclaration( 1276 II.getModule(), II.getIntrinsicID(), OverloadTys); 1277 CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args); 1278 NewCall->takeName(&II); 1279 NewCall->copyMetadata(II); 1280 1281 if (IsLoad) { 1282 if (NewNumElts == 1) { 1283 return IC.Builder.CreateInsertElement(UndefValue::get(IIVTy), NewCall, 1284 DemandedElts.countr_zero()); 1285 } 1286 1287 SmallVector<int, 8> EltMask; 1288 unsigned NewLoadIdx = 0; 1289 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1290 if (!!DemandedElts[OrigLoadIdx]) 1291 EltMask.push_back(NewLoadIdx++); 1292 else 1293 EltMask.push_back(NewNumElts); 1294 } 1295 1296 auto *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask); 1297 1298 return Shuffle; 1299 } 1300 1301 return NewCall; 1302 } 1303 1304 std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( 1305 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 1306 APInt &UndefElts2, APInt &UndefElts3, 1307 std::function<void(Instruction *, unsigned, APInt, APInt &)> 1308 SimplifyAndSetOp) const { 1309 switch (II.getIntrinsicID()) { 1310 case Intrinsic::amdgcn_buffer_load: 1311 case Intrinsic::amdgcn_buffer_load_format: 1312 case Intrinsic::amdgcn_raw_buffer_load: 1313 case Intrinsic::amdgcn_raw_ptr_buffer_load: 1314 case Intrinsic::amdgcn_raw_buffer_load_format: 1315 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: 1316 case Intrinsic::amdgcn_raw_tbuffer_load: 1317 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: 1318 case Intrinsic::amdgcn_s_buffer_load: 1319 case Intrinsic::amdgcn_struct_buffer_load: 1320 case Intrinsic::amdgcn_struct_ptr_buffer_load: 1321 case Intrinsic::amdgcn_struct_buffer_load_format: 1322 case Intrinsic::amdgcn_struct_ptr_buffer_load_format: 1323 case Intrinsic::amdgcn_struct_tbuffer_load: 1324 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: 1325 case Intrinsic::amdgcn_tbuffer_load: 1326 return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); 1327 default: { 1328 if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) { 1329 return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0); 1330 } 1331 break; 1332 } 1333 } 1334 return std::nullopt; 1335 } 1336