1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "SIModeRegisterDefaults.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/UniformityAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/InstVisitor.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/Utils/IntegerDivision.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 35 #define DEBUG_TYPE "amdgpu-codegenprepare" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 namespace { 41 42 static cl::opt<bool> WidenLoads( 43 "amdgpu-codegenprepare-widen-constant-loads", 44 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 45 cl::ReallyHidden, 46 cl::init(false)); 47 48 static cl::opt<bool> Widen16BitOps( 49 "amdgpu-codegenprepare-widen-16-bit-ops", 50 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 51 cl::ReallyHidden, 52 cl::init(true)); 53 54 static cl::opt<bool> 55 ScalarizeLargePHIs("amdgpu-codegenprepare-break-large-phis", 56 cl::desc("Break large PHI nodes for DAGISel"), 57 cl::ReallyHidden, cl::init(true)); 58 59 static cl::opt<bool> 60 ForceScalarizeLargePHIs("amdgpu-codegenprepare-force-break-large-phis", 61 cl::desc("For testing purposes, always break large " 62 "PHIs even if it isn't profitable."), 63 cl::ReallyHidden, cl::init(false)); 64 65 static cl::opt<unsigned> ScalarizeLargePHIsThreshold( 66 "amdgpu-codegenprepare-break-large-phis-threshold", 67 cl::desc("Minimum type size in bits for breaking large PHI nodes"), 68 cl::ReallyHidden, cl::init(32)); 69 70 static cl::opt<bool> UseMul24Intrin( 71 "amdgpu-codegenprepare-mul24", 72 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Legalize 64-bit division by using the generic IR expansion. 77 static cl::opt<bool> ExpandDiv64InIR( 78 "amdgpu-codegenprepare-expand-div64", 79 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 80 cl::ReallyHidden, 81 cl::init(false)); 82 83 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 84 // and is used for testing the legalizer. 85 static cl::opt<bool> DisableIDivExpand( 86 "amdgpu-codegenprepare-disable-idiv-expansion", 87 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 88 cl::ReallyHidden, 89 cl::init(false)); 90 91 class AMDGPUCodeGenPrepareImpl 92 : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { 93 public: 94 const GCNSubtarget *ST = nullptr; 95 const TargetLibraryInfo *TLInfo = nullptr; 96 AssumptionCache *AC = nullptr; 97 DominatorTree *DT = nullptr; 98 UniformityInfo *UA = nullptr; 99 Module *Mod = nullptr; 100 const DataLayout *DL = nullptr; 101 bool HasUnsafeFPMath = false; 102 bool HasFP32DenormalFlush = false; 103 bool FlowChanged = false; 104 105 DenseMap<const PHINode *, bool> BreakPhiNodesCache; 106 107 bool canBreakPHINode(const PHINode &I); 108 109 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 110 /// binary operation \p V. 111 /// 112 /// \returns Binary operation \p V. 113 /// \returns \p T's base element bit width. 114 unsigned getBaseElementBitWidth(const Type *T) const; 115 116 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 117 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 118 /// is returned. 119 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 120 121 /// \returns True if binary operation \p I is a signed binary operation, false 122 /// otherwise. 123 bool isSigned(const BinaryOperator &I) const; 124 125 /// \returns True if the condition of 'select' operation \p I comes from a 126 /// signed 'icmp' operation, false otherwise. 127 bool isSigned(const SelectInst &I) const; 128 129 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 130 /// false otherwise. 131 bool needsPromotionToI32(const Type *T) const; 132 133 /// Return true if \p T is a legal scalar floating point type. 134 bool isLegalFloatingTy(const Type *T) const; 135 136 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 137 /// operation. 138 /// 139 /// \details \p I's base element bit width must be greater than 1 and less 140 /// than or equal 16. Promotion is done by sign or zero extending operands to 141 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 142 /// truncating the result of 32 bit binary operation back to \p I's original 143 /// type. Division operation is not promoted. 144 /// 145 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 146 /// false otherwise. 147 bool promoteUniformOpToI32(BinaryOperator &I) const; 148 149 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 150 /// 151 /// \details \p I's base element bit width must be greater than 1 and less 152 /// than or equal 16. Promotion is done by sign or zero extending operands to 153 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 154 /// 155 /// \returns True. 156 bool promoteUniformOpToI32(ICmpInst &I) const; 157 158 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 159 /// operation. 160 /// 161 /// \details \p I's base element bit width must be greater than 1 and less 162 /// than or equal 16. Promotion is done by sign or zero extending operands to 163 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 164 /// result of 32 bit 'select' operation back to \p I's original type. 165 /// 166 /// \returns True. 167 bool promoteUniformOpToI32(SelectInst &I) const; 168 169 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 170 /// intrinsic. 171 /// 172 /// \details \p I's base element bit width must be greater than 1 and less 173 /// than or equal 16. Promotion is done by zero extending the operand to 32 174 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 175 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 176 /// shift amount is 32 minus \p I's base element bit width), and truncating 177 /// the result of the shift operation back to \p I's original type. 178 /// 179 /// \returns True. 180 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 181 182 /// \returns The minimum number of bits needed to store the value of \Op as an 183 /// unsigned integer. Truncating to this size and then zero-extending to 184 /// the original will not change the value. 185 unsigned numBitsUnsigned(Value *Op) const; 186 187 /// \returns The minimum number of bits needed to store the value of \Op as a 188 /// signed integer. Truncating to this size and then sign-extending to 189 /// the original size will not change the value. 190 unsigned numBitsSigned(Value *Op) const; 191 192 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 193 /// SelectionDAG has an issue where an and asserting the bits are known 194 bool replaceMulWithMul24(BinaryOperator &I) const; 195 196 /// Perform same function as equivalently named function in DAGCombiner. Since 197 /// we expand some divisions here, we need to perform this before obscuring. 198 bool foldBinOpIntoSelect(BinaryOperator &I) const; 199 200 bool divHasSpecialOptimization(BinaryOperator &I, 201 Value *Num, Value *Den) const; 202 int getDivNumBits(BinaryOperator &I, 203 Value *Num, Value *Den, 204 unsigned AtLeast, bool Signed) const; 205 206 /// Expands 24 bit div or rem. 207 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 208 Value *Num, Value *Den, 209 bool IsDiv, bool IsSigned) const; 210 211 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 212 Value *Num, Value *Den, unsigned NumBits, 213 bool IsDiv, bool IsSigned) const; 214 215 /// Expands 32 bit div or rem. 216 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 217 Value *Num, Value *Den) const; 218 219 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 220 Value *Num, Value *Den) const; 221 void expandDivRem64(BinaryOperator &I) const; 222 223 /// Widen a scalar load. 224 /// 225 /// \details \p Widen scalar load for uniform, small type loads from constant 226 // memory / to a full 32-bits and then truncate the input to allow a scalar 227 // load instead of a vector load. 228 // 229 /// \returns True. 230 231 bool canWidenScalarExtLoad(LoadInst &I) const; 232 233 Value *matchFractPat(IntrinsicInst &I); 234 Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); 235 236 public: 237 bool visitFDiv(BinaryOperator &I); 238 239 bool visitInstruction(Instruction &I) { return false; } 240 bool visitBinaryOperator(BinaryOperator &I); 241 bool visitLoadInst(LoadInst &I); 242 bool visitICmpInst(ICmpInst &I); 243 bool visitSelectInst(SelectInst &I); 244 bool visitPHINode(PHINode &I); 245 246 bool visitIntrinsicInst(IntrinsicInst &I); 247 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 248 bool visitMinNum(IntrinsicInst &I); 249 bool run(Function &F); 250 }; 251 252 class AMDGPUCodeGenPrepare : public FunctionPass { 253 private: 254 AMDGPUCodeGenPrepareImpl Impl; 255 256 public: 257 static char ID; 258 AMDGPUCodeGenPrepare() : FunctionPass(ID) { 259 initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); 260 } 261 void getAnalysisUsage(AnalysisUsage &AU) const override { 262 AU.addRequired<AssumptionCacheTracker>(); 263 AU.addRequired<UniformityInfoWrapperPass>(); 264 AU.addRequired<TargetLibraryInfoWrapperPass>(); 265 266 // FIXME: Division expansion needs to preserve the dominator tree. 267 if (!ExpandDiv64InIR) 268 AU.setPreservesAll(); 269 } 270 bool runOnFunction(Function &F) override; 271 bool doInitialization(Module &M) override; 272 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 273 }; 274 275 } // end anonymous namespace 276 277 bool AMDGPUCodeGenPrepareImpl::run(Function &F) { 278 bool MadeChange = false; 279 280 Function::iterator NextBB; 281 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 282 BasicBlock *BB = &*FI; 283 NextBB = std::next(FI); 284 285 BasicBlock::iterator Next; 286 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 287 I = Next) { 288 Next = std::next(I); 289 290 MadeChange |= visit(*I); 291 292 if (Next != E) { // Control flow changed 293 BasicBlock *NextInstBB = Next->getParent(); 294 if (NextInstBB != BB) { 295 BB = NextInstBB; 296 E = BB->end(); 297 FE = F.end(); 298 } 299 } 300 } 301 } 302 return MadeChange; 303 } 304 305 unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { 306 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 307 308 if (T->isIntegerTy()) 309 return T->getIntegerBitWidth(); 310 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 311 } 312 313 Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { 314 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 315 316 if (T->isIntegerTy()) 317 return B.getInt32Ty(); 318 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 319 } 320 321 bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { 322 return I.getOpcode() == Instruction::AShr || 323 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 324 } 325 326 bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { 327 return isa<ICmpInst>(I.getOperand(0)) ? 328 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 329 } 330 331 bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { 332 if (!Widen16BitOps) 333 return false; 334 335 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 336 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 337 return true; 338 339 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 340 // TODO: The set of packed operations is more limited, so may want to 341 // promote some anyway. 342 if (ST->hasVOP3PInsts()) 343 return false; 344 345 return needsPromotionToI32(VT->getElementType()); 346 } 347 348 return false; 349 } 350 351 bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { 352 return Ty->isFloatTy() || Ty->isDoubleTy() || 353 (Ty->isHalfTy() && ST->has16BitInsts()); 354 } 355 356 // Return true if the op promoted to i32 should have nsw set. 357 static bool promotedOpIsNSW(const Instruction &I) { 358 switch (I.getOpcode()) { 359 case Instruction::Shl: 360 case Instruction::Add: 361 case Instruction::Sub: 362 return true; 363 case Instruction::Mul: 364 return I.hasNoUnsignedWrap(); 365 default: 366 return false; 367 } 368 } 369 370 // Return true if the op promoted to i32 should have nuw set. 371 static bool promotedOpIsNUW(const Instruction &I) { 372 switch (I.getOpcode()) { 373 case Instruction::Shl: 374 case Instruction::Add: 375 case Instruction::Mul: 376 return true; 377 case Instruction::Sub: 378 return I.hasNoUnsignedWrap(); 379 default: 380 return false; 381 } 382 } 383 384 bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { 385 Type *Ty = I.getType(); 386 const DataLayout &DL = Mod->getDataLayout(); 387 int TySize = DL.getTypeSizeInBits(Ty); 388 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 389 390 return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); 391 } 392 393 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { 394 assert(needsPromotionToI32(I.getType()) && 395 "I does not need promotion to i32"); 396 397 if (I.getOpcode() == Instruction::SDiv || 398 I.getOpcode() == Instruction::UDiv || 399 I.getOpcode() == Instruction::SRem || 400 I.getOpcode() == Instruction::URem) 401 return false; 402 403 IRBuilder<> Builder(&I); 404 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 405 406 Type *I32Ty = getI32Ty(Builder, I.getType()); 407 Value *ExtOp0 = nullptr; 408 Value *ExtOp1 = nullptr; 409 Value *ExtRes = nullptr; 410 Value *TruncRes = nullptr; 411 412 if (isSigned(I)) { 413 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 414 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 415 } else { 416 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 417 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 418 } 419 420 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 421 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 422 if (promotedOpIsNSW(cast<Instruction>(I))) 423 Inst->setHasNoSignedWrap(); 424 425 if (promotedOpIsNUW(cast<Instruction>(I))) 426 Inst->setHasNoUnsignedWrap(); 427 428 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 429 Inst->setIsExact(ExactOp->isExact()); 430 } 431 432 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 433 434 I.replaceAllUsesWith(TruncRes); 435 I.eraseFromParent(); 436 437 return true; 438 } 439 440 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { 441 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 442 "I does not need promotion to i32"); 443 444 IRBuilder<> Builder(&I); 445 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 446 447 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 448 Value *ExtOp0 = nullptr; 449 Value *ExtOp1 = nullptr; 450 Value *NewICmp = nullptr; 451 452 if (I.isSigned()) { 453 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 454 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 455 } else { 456 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 457 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 458 } 459 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 460 461 I.replaceAllUsesWith(NewICmp); 462 I.eraseFromParent(); 463 464 return true; 465 } 466 467 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { 468 assert(needsPromotionToI32(I.getType()) && 469 "I does not need promotion to i32"); 470 471 IRBuilder<> Builder(&I); 472 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 473 474 Type *I32Ty = getI32Ty(Builder, I.getType()); 475 Value *ExtOp1 = nullptr; 476 Value *ExtOp2 = nullptr; 477 Value *ExtRes = nullptr; 478 Value *TruncRes = nullptr; 479 480 if (isSigned(I)) { 481 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 482 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 483 } else { 484 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 485 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 486 } 487 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 488 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 489 490 I.replaceAllUsesWith(TruncRes); 491 I.eraseFromParent(); 492 493 return true; 494 } 495 496 bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( 497 IntrinsicInst &I) const { 498 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 499 "I must be bitreverse intrinsic"); 500 assert(needsPromotionToI32(I.getType()) && 501 "I does not need promotion to i32"); 502 503 IRBuilder<> Builder(&I); 504 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 505 506 Type *I32Ty = getI32Ty(Builder, I.getType()); 507 Function *I32 = 508 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 509 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 510 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 511 Value *LShrOp = 512 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 513 Value *TruncRes = 514 Builder.CreateTrunc(LShrOp, I.getType()); 515 516 I.replaceAllUsesWith(TruncRes); 517 I.eraseFromParent(); 518 519 return true; 520 } 521 522 unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { 523 return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); 524 } 525 526 unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { 527 return ComputeMaxSignificantBits(Op, *DL, 0, AC); 528 } 529 530 static void extractValues(IRBuilder<> &Builder, 531 SmallVectorImpl<Value *> &Values, Value *V) { 532 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 533 if (!VT) { 534 Values.push_back(V); 535 return; 536 } 537 538 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 539 Values.push_back(Builder.CreateExtractElement(V, I)); 540 } 541 542 static Value *insertValues(IRBuilder<> &Builder, 543 Type *Ty, 544 SmallVectorImpl<Value *> &Values) { 545 if (!Ty->isVectorTy()) { 546 assert(Values.size() == 1); 547 return Values[0]; 548 } 549 550 Value *NewVal = PoisonValue::get(Ty); 551 for (int I = 0, E = Values.size(); I != E; ++I) 552 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 553 554 return NewVal; 555 } 556 557 // Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and 558 // `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the 559 // width of the original destination. 560 static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS, 561 unsigned Size, unsigned NumBits, bool IsSigned) { 562 if (Size <= 32 || NumBits <= 32) { 563 Intrinsic::ID ID = 564 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 565 return Builder.CreateIntrinsic(ID, {}, {LHS, RHS}); 566 } 567 568 assert(NumBits <= 48); 569 570 Intrinsic::ID LoID = 571 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 572 Intrinsic::ID HiID = 573 IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24; 574 575 Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS}); 576 Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS}); 577 578 IntegerType *I64Ty = Builder.getInt64Ty(); 579 Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty); 580 Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty); 581 582 return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32)); 583 } 584 585 bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { 586 if (I.getOpcode() != Instruction::Mul) 587 return false; 588 589 Type *Ty = I.getType(); 590 unsigned Size = Ty->getScalarSizeInBits(); 591 if (Size <= 16 && ST->has16BitInsts()) 592 return false; 593 594 // Prefer scalar if this could be s_mul_i32 595 if (UA->isUniform(&I)) 596 return false; 597 598 Value *LHS = I.getOperand(0); 599 Value *RHS = I.getOperand(1); 600 IRBuilder<> Builder(&I); 601 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 602 603 unsigned LHSBits = 0, RHSBits = 0; 604 bool IsSigned = false; 605 606 if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 607 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 608 IsSigned = false; 609 610 } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 611 (RHSBits = numBitsSigned(RHS)) <= 24) { 612 IsSigned = true; 613 614 } else 615 return false; 616 617 SmallVector<Value *, 4> LHSVals; 618 SmallVector<Value *, 4> RHSVals; 619 SmallVector<Value *, 4> ResultVals; 620 extractValues(Builder, LHSVals, LHS); 621 extractValues(Builder, RHSVals, RHS); 622 623 IntegerType *I32Ty = Builder.getInt32Ty(); 624 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 625 Value *LHS, *RHS; 626 if (IsSigned) { 627 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 628 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 629 } else { 630 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 631 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 632 } 633 634 Value *Result = 635 getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned); 636 637 if (IsSigned) { 638 ResultVals.push_back( 639 Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType())); 640 } else { 641 ResultVals.push_back( 642 Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType())); 643 } 644 } 645 646 Value *NewVal = insertValues(Builder, Ty, ResultVals); 647 NewVal->takeName(&I); 648 I.replaceAllUsesWith(NewVal); 649 I.eraseFromParent(); 650 651 return true; 652 } 653 654 // Find a select instruction, which may have been casted. This is mostly to deal 655 // with cases where i16 selects were promoted here to i32. 656 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 657 Cast = nullptr; 658 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 659 return Sel; 660 661 if ((Cast = dyn_cast<CastInst>(V))) { 662 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 663 return Sel; 664 } 665 666 return nullptr; 667 } 668 669 bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { 670 // Don't do this unless the old select is going away. We want to eliminate the 671 // binary operator, not replace a binop with a select. 672 int SelOpNo = 0; 673 674 CastInst *CastOp; 675 676 // TODO: Should probably try to handle some cases with multiple 677 // users. Duplicating the select may be profitable for division. 678 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 679 if (!Sel || !Sel->hasOneUse()) { 680 SelOpNo = 1; 681 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 682 } 683 684 if (!Sel || !Sel->hasOneUse()) 685 return false; 686 687 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 688 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 689 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 690 if (!CBO || !CT || !CF) 691 return false; 692 693 if (CastOp) { 694 if (!CastOp->hasOneUse()) 695 return false; 696 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 697 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 698 } 699 700 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 701 // need to handle divisions here. 702 Constant *FoldedT = SelOpNo ? 703 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 704 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 705 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 706 return false; 707 708 Constant *FoldedF = SelOpNo ? 709 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 710 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 711 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 712 return false; 713 714 IRBuilder<> Builder(&BO); 715 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 716 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 717 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 718 719 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 720 FoldedT, FoldedF); 721 NewSelect->takeName(&BO); 722 BO.replaceAllUsesWith(NewSelect); 723 BO.eraseFromParent(); 724 if (CastOp) 725 CastOp->eraseFromParent(); 726 Sel->eraseFromParent(); 727 return true; 728 } 729 730 // Optimize fdiv with rcp: 731 // 732 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 733 // allowed with unsafe-fp-math or afn. 734 // 735 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 736 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 737 bool RcpIsAccurate, IRBuilder<> &Builder, 738 Module *Mod) { 739 740 if (!AllowInaccurateRcp && !RcpIsAccurate) 741 return nullptr; 742 743 Type *Ty = Den->getType(); 744 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 745 if (AllowInaccurateRcp || RcpIsAccurate) { 746 if (CLHS->isExactlyValue(1.0)) { 747 Function *Decl = Intrinsic::getDeclaration( 748 Mod, Intrinsic::amdgcn_rcp, Ty); 749 750 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 751 // the CI documentation has a worst case error of 1 ulp. 752 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 753 // use it as long as we aren't trying to use denormals. 754 // 755 // v_rcp_f16 and v_rsq_f16 DO support denormals. 756 757 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 758 // insert rsq intrinsic here. 759 760 // 1.0 / x -> rcp(x) 761 return Builder.CreateCall(Decl, { Den }); 762 } 763 764 // Same as for 1.0, but expand the sign out of the constant. 765 if (CLHS->isExactlyValue(-1.0)) { 766 Function *Decl = Intrinsic::getDeclaration( 767 Mod, Intrinsic::amdgcn_rcp, Ty); 768 769 // -1.0 / x -> rcp (fneg x) 770 Value *FNeg = Builder.CreateFNeg(Den); 771 return Builder.CreateCall(Decl, { FNeg }); 772 } 773 } 774 } 775 776 if (AllowInaccurateRcp) { 777 Function *Decl = Intrinsic::getDeclaration( 778 Mod, Intrinsic::amdgcn_rcp, Ty); 779 780 // Turn into multiply by the reciprocal. 781 // x / y -> x * (1.0 / y) 782 Value *Recip = Builder.CreateCall(Decl, { Den }); 783 return Builder.CreateFMul(Num, Recip); 784 } 785 return nullptr; 786 } 787 788 // optimize with fdiv.fast: 789 // 790 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 791 // 792 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 793 // 794 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 795 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 796 bool HasFP32DenormalFlush, 797 IRBuilder<> &Builder, Module *Mod) { 798 // fdiv.fast can achieve 2.5 ULP accuracy. 799 if (ReqdAccuracy < 2.5f) 800 return nullptr; 801 802 // Only have fdiv.fast for f32. 803 Type *Ty = Den->getType(); 804 if (!Ty->isFloatTy()) 805 return nullptr; 806 807 bool NumIsOne = false; 808 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 809 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 810 NumIsOne = true; 811 } 812 813 // fdiv does not support denormals. But 1.0/x is always fine to use it. 814 if (!HasFP32DenormalFlush && !NumIsOne) 815 return nullptr; 816 817 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 818 return Builder.CreateCall(Decl, { Num, Den }); 819 } 820 821 // Optimizations is performed based on fpmath, fast math flags as well as 822 // denormals to optimize fdiv with either rcp or fdiv.fast. 823 // 824 // With rcp: 825 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 826 // allowed with unsafe-fp-math or afn. 827 // 828 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 829 // 830 // With fdiv.fast: 831 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 832 // 833 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 834 // 835 // NOTE: rcp is the preference in cases that both are legal. 836 bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { 837 Type *Ty = FDiv.getType()->getScalarType(); 838 if (!Ty->isFloatTy()) 839 return false; 840 841 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 842 // expansion around them in codegen. f16 is good enough to always use. 843 844 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 845 const float ReqdAccuracy = FPOp->getFPAccuracy(); 846 847 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 848 FastMathFlags FMF = FPOp->getFastMathFlags(); 849 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 850 851 // rcp_f16 is accurate to 0.51 ulp. 852 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 853 // rcp_f64 is never accurate. 854 const bool RcpIsAccurate = HasFP32DenormalFlush && ReqdAccuracy >= 1.0f; 855 856 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 857 Builder.setFastMathFlags(FMF); 858 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 859 860 Value *Num = FDiv.getOperand(0); 861 Value *Den = FDiv.getOperand(1); 862 863 Value *NewFDiv = nullptr; 864 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 865 NewFDiv = PoisonValue::get(VT); 866 867 // FIXME: Doesn't do the right thing for cases where the vector is partially 868 // constant. This works when the scalarizer pass is run first. 869 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 870 Value *NumEltI = Builder.CreateExtractElement(Num, I); 871 Value *DenEltI = Builder.CreateExtractElement(Den, I); 872 // Try rcp first. 873 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 874 RcpIsAccurate, Builder, Mod); 875 if (!NewElt) // Try fdiv.fast. 876 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 877 HasFP32DenormalFlush, Builder, Mod); 878 if (!NewElt) // Keep the original. 879 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 880 881 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 882 } 883 } else { // Scalar FDiv. 884 // Try rcp first. 885 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 886 Builder, Mod); 887 if (!NewFDiv) { // Try fdiv.fast. 888 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, 889 HasFP32DenormalFlush, Builder, Mod); 890 } 891 } 892 893 if (NewFDiv) { 894 FDiv.replaceAllUsesWith(NewFDiv); 895 NewFDiv->takeName(&FDiv); 896 FDiv.eraseFromParent(); 897 } 898 899 return !!NewFDiv; 900 } 901 902 static bool hasUnsafeFPMath(const Function &F) { 903 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 904 return Attr.getValueAsBool(); 905 } 906 907 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 908 Value *LHS, Value *RHS) { 909 Type *I32Ty = Builder.getInt32Ty(); 910 Type *I64Ty = Builder.getInt64Ty(); 911 912 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 913 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 914 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 915 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 916 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 917 Hi = Builder.CreateTrunc(Hi, I32Ty); 918 return std::pair(Lo, Hi); 919 } 920 921 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 922 return getMul64(Builder, LHS, RHS).second; 923 } 924 925 /// Figure out how many bits are really needed for this division. \p AtLeast is 926 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 927 /// first one is insufficient. Returns -1 on failure. 928 int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, 929 Value *Den, unsigned AtLeast, 930 bool IsSigned) const { 931 const DataLayout &DL = Mod->getDataLayout(); 932 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 933 if (LHSSignBits < AtLeast) 934 return -1; 935 936 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 937 if (RHSSignBits < AtLeast) 938 return -1; 939 940 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 941 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 942 if (IsSigned) 943 ++DivBits; 944 return DivBits; 945 } 946 947 // The fractional part of a float is enough to accurately represent up to 948 // a 24-bit signed integer. 949 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, 950 BinaryOperator &I, Value *Num, 951 Value *Den, bool IsDiv, 952 bool IsSigned) const { 953 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 954 if (DivBits == -1) 955 return nullptr; 956 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 957 } 958 959 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( 960 IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, 961 unsigned DivBits, bool IsDiv, bool IsSigned) const { 962 Type *I32Ty = Builder.getInt32Ty(); 963 Num = Builder.CreateTrunc(Num, I32Ty); 964 Den = Builder.CreateTrunc(Den, I32Ty); 965 966 Type *F32Ty = Builder.getFloatTy(); 967 ConstantInt *One = Builder.getInt32(1); 968 Value *JQ = One; 969 970 if (IsSigned) { 971 // char|short jq = ia ^ ib; 972 JQ = Builder.CreateXor(Num, Den); 973 974 // jq = jq >> (bitsize - 2) 975 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 976 977 // jq = jq | 0x1 978 JQ = Builder.CreateOr(JQ, One); 979 } 980 981 // int ia = (int)LHS; 982 Value *IA = Num; 983 984 // int ib, (int)RHS; 985 Value *IB = Den; 986 987 // float fa = (float)ia; 988 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 989 : Builder.CreateUIToFP(IA, F32Ty); 990 991 // float fb = (float)ib; 992 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 993 : Builder.CreateUIToFP(IB,F32Ty); 994 995 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 996 Builder.getFloatTy()); 997 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 998 Value *FQM = Builder.CreateFMul(FA, RCP); 999 1000 // fq = trunc(fqm); 1001 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 1002 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 1003 1004 // float fqneg = -fq; 1005 Value *FQNeg = Builder.CreateFNeg(FQ); 1006 1007 // float fr = mad(fqneg, fb, fa); 1008 auto FMAD = !ST->hasMadMacF32Insts() 1009 ? Intrinsic::fma 1010 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 1011 Value *FR = Builder.CreateIntrinsic(FMAD, 1012 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 1013 1014 // int iq = (int)fq; 1015 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 1016 : Builder.CreateFPToUI(FQ, I32Ty); 1017 1018 // fr = fabs(fr); 1019 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 1020 1021 // fb = fabs(fb); 1022 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 1023 1024 // int cv = fr >= fb; 1025 Value *CV = Builder.CreateFCmpOGE(FR, FB); 1026 1027 // jq = (cv ? jq : 0); 1028 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 1029 1030 // dst = iq + jq; 1031 Value *Div = Builder.CreateAdd(IQ, JQ); 1032 1033 Value *Res = Div; 1034 if (!IsDiv) { 1035 // Rem needs compensation, it's easier to recompute it 1036 Value *Rem = Builder.CreateMul(Div, Den); 1037 Res = Builder.CreateSub(Num, Rem); 1038 } 1039 1040 if (DivBits != 0 && DivBits < 32) { 1041 // Extend in register from the number of bits this divide really is. 1042 if (IsSigned) { 1043 int InRegBits = 32 - DivBits; 1044 1045 Res = Builder.CreateShl(Res, InRegBits); 1046 Res = Builder.CreateAShr(Res, InRegBits); 1047 } else { 1048 ConstantInt *TruncMask 1049 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1050 Res = Builder.CreateAnd(Res, TruncMask); 1051 } 1052 } 1053 1054 return Res; 1055 } 1056 1057 // Try to recognize special cases the DAG will emit special, better expansions 1058 // than the general expansion we do here. 1059 1060 // TODO: It would be better to just directly handle those optimizations here. 1061 bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, 1062 Value *Num, 1063 Value *Den) const { 1064 if (Constant *C = dyn_cast<Constant>(Den)) { 1065 // Arbitrary constants get a better expansion as long as a wider mulhi is 1066 // legal. 1067 if (C->getType()->getScalarSizeInBits() <= 32) 1068 return true; 1069 1070 // TODO: Sdiv check for not exact for some reason. 1071 1072 // If there's no wider mulhi, there's only a better expansion for powers of 1073 // two. 1074 // TODO: Should really know for each vector element. 1075 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1076 return true; 1077 1078 return false; 1079 } 1080 1081 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1082 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1083 if (BinOpDen->getOpcode() == Instruction::Shl && 1084 isa<Constant>(BinOpDen->getOperand(0)) && 1085 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1086 0, AC, &I, DT)) { 1087 return true; 1088 } 1089 } 1090 1091 return false; 1092 } 1093 1094 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1095 // Check whether the sign can be determined statically. 1096 KnownBits Known = computeKnownBits(V, *DL); 1097 if (Known.isNegative()) 1098 return Constant::getAllOnesValue(V->getType()); 1099 if (Known.isNonNegative()) 1100 return Constant::getNullValue(V->getType()); 1101 return Builder.CreateAShr(V, Builder.getInt32(31)); 1102 } 1103 1104 Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, 1105 BinaryOperator &I, Value *X, 1106 Value *Y) const { 1107 Instruction::BinaryOps Opc = I.getOpcode(); 1108 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1109 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1110 1111 FastMathFlags FMF; 1112 FMF.setFast(); 1113 Builder.setFastMathFlags(FMF); 1114 1115 if (divHasSpecialOptimization(I, X, Y)) 1116 return nullptr; // Keep it for later optimization. 1117 1118 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1119 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1120 1121 Type *Ty = X->getType(); 1122 Type *I32Ty = Builder.getInt32Ty(); 1123 Type *F32Ty = Builder.getFloatTy(); 1124 1125 if (Ty->getScalarSizeInBits() < 32) { 1126 if (IsSigned) { 1127 X = Builder.CreateSExt(X, I32Ty); 1128 Y = Builder.CreateSExt(Y, I32Ty); 1129 } else { 1130 X = Builder.CreateZExt(X, I32Ty); 1131 Y = Builder.CreateZExt(Y, I32Ty); 1132 } 1133 } 1134 1135 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1136 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1137 Builder.CreateZExtOrTrunc(Res, Ty); 1138 } 1139 1140 ConstantInt *Zero = Builder.getInt32(0); 1141 ConstantInt *One = Builder.getInt32(1); 1142 1143 Value *Sign = nullptr; 1144 if (IsSigned) { 1145 Value *SignX = getSign32(X, Builder, DL); 1146 Value *SignY = getSign32(Y, Builder, DL); 1147 // Remainder sign is the same as LHS 1148 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1149 1150 X = Builder.CreateAdd(X, SignX); 1151 Y = Builder.CreateAdd(Y, SignY); 1152 1153 X = Builder.CreateXor(X, SignX); 1154 Y = Builder.CreateXor(Y, SignY); 1155 } 1156 1157 // The algorithm here is based on ideas from "Software Integer Division", Tom 1158 // Rodeheffer, August 2008. 1159 // 1160 // unsigned udiv(unsigned x, unsigned y) { 1161 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1162 // // that this is a lower bound on inv(y), even if some of the calculations 1163 // // round up. 1164 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1165 // 1166 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1167 // // Empirically this is guaranteed to give a "two-y" lower bound on 1168 // // inv(y). 1169 // z += umulh(z, -y * z); 1170 // 1171 // // Quotient/remainder estimate. 1172 // unsigned q = umulh(x, z); 1173 // unsigned r = x - q * y; 1174 // 1175 // // Two rounds of quotient/remainder refinement. 1176 // if (r >= y) { 1177 // ++q; 1178 // r -= y; 1179 // } 1180 // if (r >= y) { 1181 // ++q; 1182 // r -= y; 1183 // } 1184 // 1185 // return q; 1186 // } 1187 1188 // Initial estimate of inv(y). 1189 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1190 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1191 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1192 Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 1193 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1194 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1195 1196 // One round of UNR. 1197 Value *NegY = Builder.CreateSub(Zero, Y); 1198 Value *NegYZ = Builder.CreateMul(NegY, Z); 1199 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1200 1201 // Quotient/remainder estimate. 1202 Value *Q = getMulHu(Builder, X, Z); 1203 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1204 1205 // First quotient/remainder refinement. 1206 Value *Cond = Builder.CreateICmpUGE(R, Y); 1207 if (IsDiv) 1208 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1209 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1210 1211 // Second quotient/remainder refinement. 1212 Cond = Builder.CreateICmpUGE(R, Y); 1213 Value *Res; 1214 if (IsDiv) 1215 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1216 else 1217 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1218 1219 if (IsSigned) { 1220 Res = Builder.CreateXor(Res, Sign); 1221 Res = Builder.CreateSub(Res, Sign); 1222 } 1223 1224 Res = Builder.CreateTrunc(Res, Ty); 1225 1226 return Res; 1227 } 1228 1229 Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, 1230 BinaryOperator &I, Value *Num, 1231 Value *Den) const { 1232 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1233 return nullptr; // Keep it for later optimization. 1234 1235 Instruction::BinaryOps Opc = I.getOpcode(); 1236 1237 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1238 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1239 1240 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1241 if (NumDivBits == -1) 1242 return nullptr; 1243 1244 Value *Narrowed = nullptr; 1245 if (NumDivBits <= 24) { 1246 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1247 IsDiv, IsSigned); 1248 } else if (NumDivBits <= 32) { 1249 Narrowed = expandDivRem32(Builder, I, Num, Den); 1250 } 1251 1252 if (Narrowed) { 1253 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1254 Builder.CreateZExt(Narrowed, Num->getType()); 1255 } 1256 1257 return nullptr; 1258 } 1259 1260 void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { 1261 Instruction::BinaryOps Opc = I.getOpcode(); 1262 // Do the general expansion. 1263 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1264 expandDivisionUpTo64Bits(&I); 1265 return; 1266 } 1267 1268 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1269 expandRemainderUpTo64Bits(&I); 1270 return; 1271 } 1272 1273 llvm_unreachable("not a division"); 1274 } 1275 1276 bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { 1277 if (foldBinOpIntoSelect(I)) 1278 return true; 1279 1280 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1281 UA->isUniform(&I) && promoteUniformOpToI32(I)) 1282 return true; 1283 1284 if (UseMul24Intrin && replaceMulWithMul24(I)) 1285 return true; 1286 1287 bool Changed = false; 1288 Instruction::BinaryOps Opc = I.getOpcode(); 1289 Type *Ty = I.getType(); 1290 Value *NewDiv = nullptr; 1291 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1292 1293 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1294 1295 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1296 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1297 ScalarSize <= 64 && 1298 !DisableIDivExpand) { 1299 Value *Num = I.getOperand(0); 1300 Value *Den = I.getOperand(1); 1301 IRBuilder<> Builder(&I); 1302 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1303 1304 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1305 NewDiv = PoisonValue::get(VT); 1306 1307 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1308 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1309 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1310 1311 Value *NewElt; 1312 if (ScalarSize <= 32) { 1313 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1314 if (!NewElt) 1315 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1316 } else { 1317 // See if this 64-bit division can be shrunk to 32/24-bits before 1318 // producing the general expansion. 1319 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1320 if (!NewElt) { 1321 // The general 64-bit expansion introduces control flow and doesn't 1322 // return the new value. Just insert a scalar copy and defer 1323 // expanding it. 1324 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1325 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1326 } 1327 } 1328 1329 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1330 } 1331 } else { 1332 if (ScalarSize <= 32) 1333 NewDiv = expandDivRem32(Builder, I, Num, Den); 1334 else { 1335 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1336 if (!NewDiv) 1337 Div64ToExpand.push_back(&I); 1338 } 1339 } 1340 1341 if (NewDiv) { 1342 I.replaceAllUsesWith(NewDiv); 1343 I.eraseFromParent(); 1344 Changed = true; 1345 } 1346 } 1347 1348 if (ExpandDiv64InIR) { 1349 // TODO: We get much worse code in specially handled constant cases. 1350 for (BinaryOperator *Div : Div64ToExpand) { 1351 expandDivRem64(*Div); 1352 FlowChanged = true; 1353 Changed = true; 1354 } 1355 } 1356 1357 return Changed; 1358 } 1359 1360 bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { 1361 if (!WidenLoads) 1362 return false; 1363 1364 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1365 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1366 canWidenScalarExtLoad(I)) { 1367 IRBuilder<> Builder(&I); 1368 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1369 1370 Type *I32Ty = Builder.getInt32Ty(); 1371 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); 1372 WidenLoad->copyMetadata(I); 1373 1374 // If we have range metadata, we need to convert the type, and not make 1375 // assumptions about the high bits. 1376 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1377 ConstantInt *Lower = 1378 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1379 1380 if (Lower->isNullValue()) { 1381 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1382 } else { 1383 Metadata *LowAndHigh[] = { 1384 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1385 // Don't make assumptions about the high bits. 1386 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1387 }; 1388 1389 WidenLoad->setMetadata(LLVMContext::MD_range, 1390 MDNode::get(Mod->getContext(), LowAndHigh)); 1391 } 1392 } 1393 1394 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1395 Type *IntNTy = Builder.getIntNTy(TySize); 1396 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1397 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1398 I.replaceAllUsesWith(ValOrig); 1399 I.eraseFromParent(); 1400 return true; 1401 } 1402 1403 return false; 1404 } 1405 1406 bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { 1407 bool Changed = false; 1408 1409 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1410 UA->isUniform(&I)) 1411 Changed |= promoteUniformOpToI32(I); 1412 1413 return Changed; 1414 } 1415 1416 bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { 1417 Value *Cond = I.getCondition(); 1418 Value *TrueVal = I.getTrueValue(); 1419 Value *FalseVal = I.getFalseValue(); 1420 Value *CmpVal; 1421 FCmpInst::Predicate Pred; 1422 1423 if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) { 1424 if (UA->isUniform(&I)) 1425 return promoteUniformOpToI32(I); 1426 return false; 1427 } 1428 1429 // Match fract pattern with nan check. 1430 if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) 1431 return false; 1432 1433 FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); 1434 if (!FPOp) 1435 return false; 1436 1437 IRBuilder<> Builder(&I); 1438 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 1439 1440 auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); 1441 auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); 1442 1443 Value *Fract = nullptr; 1444 if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && 1445 CmpVal == matchFractPat(*IIFalse)) { 1446 // isnan(x) ? x : fract(x) 1447 Fract = applyFractPat(Builder, CmpVal); 1448 } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && 1449 CmpVal == matchFractPat(*IITrue)) { 1450 // !isnan(x) ? fract(x) : x 1451 Fract = applyFractPat(Builder, CmpVal); 1452 } else 1453 return false; 1454 1455 Fract->takeName(&I); 1456 I.replaceAllUsesWith(Fract); 1457 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 1458 return true; 1459 } 1460 1461 static bool areInSameBB(const Value *A, const Value *B) { 1462 const auto *IA = dyn_cast<Instruction>(A); 1463 const auto *IB = dyn_cast<Instruction>(B); 1464 return IA && IB && IA->getParent() == IB->getParent(); 1465 } 1466 1467 // Helper for breaking large PHIs that returns true when an extractelement on V 1468 // is likely to be folded away by the DAG combiner. 1469 static bool isInterestingPHIIncomingValue(const Value *V) { 1470 const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); 1471 if (!FVT) 1472 return false; 1473 1474 const Value *CurVal = V; 1475 1476 // Check for insertelements, keeping track of the elements covered. 1477 BitVector EltsCovered(FVT->getNumElements()); 1478 while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { 1479 const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); 1480 1481 // Non constant index/out of bounds index -> folding is unlikely. 1482 // The latter is more of a sanity check because canonical IR should just 1483 // have replaced those with poison. 1484 if (!Idx || Idx->getSExtValue() >= FVT->getNumElements()) 1485 return false; 1486 1487 const auto *VecSrc = IE->getOperand(0); 1488 1489 // If the vector source is another instruction, it must be in the same basic 1490 // block. Otherwise, the DAGCombiner won't see the whole thing and is 1491 // unlikely to be able to do anything interesting here. 1492 if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) 1493 return false; 1494 1495 CurVal = VecSrc; 1496 EltsCovered.set(Idx->getSExtValue()); 1497 1498 // All elements covered. 1499 if (EltsCovered.all()) 1500 return true; 1501 } 1502 1503 // We either didn't find a single insertelement, or the insertelement chain 1504 // ended before all elements were covered. Check for other interesting values. 1505 1506 // Constants are always interesting because we can just constant fold the 1507 // extractelements. 1508 if (isa<Constant>(CurVal)) 1509 return true; 1510 1511 // shufflevector is likely to be profitable if either operand is a constant, 1512 // or if either source is in the same block. 1513 // This is because shufflevector is most often lowered as a series of 1514 // insert/extract elements anyway. 1515 if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { 1516 return isa<Constant>(SV->getOperand(1)) || 1517 areInSameBB(SV, SV->getOperand(0)) || 1518 areInSameBB(SV, SV->getOperand(1)); 1519 } 1520 1521 return false; 1522 } 1523 1524 bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { 1525 // Check in the cache, or add an entry for this node. 1526 // 1527 // We init with false because we consider all PHI nodes unbreakable until we 1528 // reach a conclusion. Doing the opposite - assuming they're break-able until 1529 // proven otherwise - can be harmful in some pathological cases so we're 1530 // conservative for now. 1531 const auto [It, DidInsert] = BreakPhiNodesCache.insert({&I, false}); 1532 if (!DidInsert) 1533 return It->second; 1534 1535 // This function may recurse, so to guard against infinite looping, this PHI 1536 // is conservatively considered unbreakable until we reach a conclusion. 1537 1538 // Don't break PHIs that have no interesting incoming values. That is, where 1539 // there is no clear opportunity to fold the "extractelement" instructions we 1540 // would add. 1541 // 1542 // Note: IC does not run after this pass, so we're only interested in the 1543 // foldings that the DAG combiner can do. 1544 if (none_of(I.incoming_values(), 1545 [&](Value *V) { return isInterestingPHIIncomingValue(V); })) 1546 return false; 1547 1548 // Now, check users for unbreakable PHI nodes. If we have an unbreakable PHI 1549 // node as user, we don't want to break this PHI either because it's unlikely 1550 // to be beneficial. We would just explode the vector and reassemble it 1551 // directly, wasting instructions. 1552 // 1553 // In the case where multiple users are PHI nodes, we want at least half of 1554 // them to be breakable. 1555 int Score = 0; 1556 for (const Value *U : I.users()) { 1557 if (const auto *PU = dyn_cast<PHINode>(U)) 1558 Score += canBreakPHINode(*PU) ? 1 : -1; 1559 } 1560 1561 if (Score < 0) 1562 return false; 1563 1564 return BreakPhiNodesCache[&I] = true; 1565 } 1566 1567 /// Helper class for "break large PHIs" (visitPHINode). 1568 /// 1569 /// This represents a slice of a PHI's incoming value, which is made up of: 1570 /// - The type of the slice (Ty) 1571 /// - The index in the incoming value's vector where the slice starts (Idx) 1572 /// - The number of elements in the slice (NumElts). 1573 /// It also keeps track of the NewPHI node inserted for this particular slice. 1574 /// 1575 /// Slice examples: 1576 /// <4 x i64> -> Split into four i64 slices. 1577 /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] 1578 /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. 1579 /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] 1580 class VectorSlice { 1581 public: 1582 VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) 1583 : Ty(Ty), Idx(Idx), NumElts(NumElts) {} 1584 1585 Type *Ty = nullptr; 1586 unsigned Idx = 0; 1587 unsigned NumElts = 0; 1588 PHINode *NewPHI = nullptr; 1589 1590 /// Slice \p Inc according to the information contained within this slice. 1591 /// This is cached, so if called multiple times for the same \p BB & \p Inc 1592 /// pair, it returns the same Sliced value as well. 1593 /// 1594 /// Note this *intentionally* does not return the same value for, say, 1595 /// [%bb.0, %0] & [%bb.1, %0] as: 1596 /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then 1597 /// the value in bb.1 may not be reachable from bb.0 if it's its 1598 /// predecessor.) 1599 /// - We also want to make our extract instructions as local as possible so 1600 /// the DAG has better chances of folding them out. Duplicating them like 1601 /// that is beneficial in that regard. 1602 /// 1603 /// This is both a minor optimization to avoid creating duplicate 1604 /// instructions, but also a requirement for correctness. It is not forbidden 1605 /// for a PHI node to have the same [BB, Val] pair multiple times. If we 1606 /// returned a new value each time, those previously identical pairs would all 1607 /// have different incoming values (from the same block) and it'd cause a "PHI 1608 /// node has multiple entries for the same basic block with different incoming 1609 /// values!" verifier error. 1610 Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { 1611 Value *&Res = SlicedVals[{BB, Inc}]; 1612 if (Res) 1613 return Res; 1614 1615 IRBuilder<> B(BB->getTerminator()); 1616 if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 1617 B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 1618 1619 if (NumElts > 1) { 1620 SmallVector<int, 4> Mask; 1621 for (unsigned K = Idx; K < (Idx + NumElts); ++K) 1622 Mask.push_back(K); 1623 Res = B.CreateShuffleVector(Inc, Mask, NewValName); 1624 } else 1625 Res = B.CreateExtractElement(Inc, Idx, NewValName); 1626 1627 return Res; 1628 } 1629 1630 private: 1631 SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; 1632 }; 1633 1634 bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { 1635 // Break-up fixed-vector PHIs into smaller pieces. 1636 // Default threshold is 32, so it breaks up any vector that's >32 bits into 1637 // its elements, or into 32-bit pieces (for 8/16 bit elts). 1638 // 1639 // This is only helpful for DAGISel because it doesn't handle large PHIs as 1640 // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 1641 // With large, odd-sized PHIs we may end up needing many `build_vector` 1642 // operations with most elements being "undef". This inhibits a lot of 1643 // optimization opportunities and can result in unreasonably high register 1644 // pressure and the inevitable stack spilling. 1645 if (!ScalarizeLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 1646 return false; 1647 1648 FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1649 if (!FVT || DL->getTypeSizeInBits(FVT) <= ScalarizeLargePHIsThreshold) 1650 return false; 1651 1652 if (!ForceScalarizeLargePHIs && !canBreakPHINode(I)) 1653 return false; 1654 1655 std::vector<VectorSlice> Slices; 1656 1657 Type *EltTy = FVT->getElementType(); 1658 { 1659 unsigned Idx = 0; 1660 // For 8/16 bits type, don't scalarize fully but break it up into as many 1661 // 32-bit slices as we can, and scalarize the tail. 1662 const unsigned EltSize = DL->getTypeSizeInBits(EltTy); 1663 const unsigned NumElts = FVT->getNumElements(); 1664 if (EltSize == 8 || EltSize == 16) { 1665 const unsigned SubVecSize = (32 / EltSize); 1666 Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 1667 for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 1668 Idx += SubVecSize) 1669 Slices.emplace_back(SubVecTy, Idx, SubVecSize); 1670 } 1671 1672 // Scalarize all remaining elements. 1673 for (; Idx < NumElts; ++Idx) 1674 Slices.emplace_back(EltTy, Idx, 1); 1675 } 1676 1677 if (Slices.size() == 1) 1678 return false; 1679 1680 // Create one PHI per vector piece. The "VectorSlice" class takes care of 1681 // creating the necessary instruction to extract the relevant slices of each 1682 // incoming value. 1683 IRBuilder<> B(I.getParent()); 1684 B.SetCurrentDebugLocation(I.getDebugLoc()); 1685 1686 unsigned IncNameSuffix = 0; 1687 for (VectorSlice &S : Slices) { 1688 // We need to reset the build on each iteration, because getSlicedVal may 1689 // have inserted something into I's BB. 1690 B.SetInsertPoint(I.getParent()->getFirstNonPHI()); 1691 S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 1692 1693 for (const auto &[Idx, BB] : enumerate(I.blocks())) { 1694 S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), 1695 "largephi.extractslice" + 1696 std::to_string(IncNameSuffix++)), 1697 BB); 1698 } 1699 } 1700 1701 // And replace this PHI with a vector of all the previous PHI values. 1702 Value *Vec = PoisonValue::get(FVT); 1703 unsigned NameSuffix = 0; 1704 for (VectorSlice &S : Slices) { 1705 const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 1706 if (S.NumElts > 1) 1707 Vec = 1708 B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 1709 else 1710 Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 1711 } 1712 1713 I.replaceAllUsesWith(Vec); 1714 I.eraseFromParent(); 1715 return true; 1716 } 1717 1718 bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { 1719 switch (I.getIntrinsicID()) { 1720 case Intrinsic::bitreverse: 1721 return visitBitreverseIntrinsicInst(I); 1722 case Intrinsic::minnum: 1723 return visitMinNum(I); 1724 default: 1725 return false; 1726 } 1727 } 1728 1729 bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1730 bool Changed = false; 1731 1732 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1733 UA->isUniform(&I)) 1734 Changed |= promoteUniformBitreverseToI32(I); 1735 1736 return Changed; 1737 } 1738 1739 /// Match non-nan fract pattern. 1740 /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) 1741 /// 1742 /// If fract is a useful instruction for the subtarget. Does not account for the 1743 /// nan handling; the instruction has a nan check on the input value. 1744 Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { 1745 if (ST->hasFractBug()) 1746 return nullptr; 1747 1748 if (I.getIntrinsicID() != Intrinsic::minnum) 1749 return nullptr; 1750 1751 Type *Ty = I.getType(); 1752 if (!isLegalFloatingTy(Ty->getScalarType())) 1753 return nullptr; 1754 1755 Value *Arg0 = I.getArgOperand(0); 1756 Value *Arg1 = I.getArgOperand(1); 1757 1758 const APFloat *C; 1759 if (!match(Arg1, m_APFloat(C))) 1760 return nullptr; 1761 1762 APFloat One(1.0); 1763 bool LosesInfo; 1764 One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); 1765 1766 // Match nextafter(1.0, -1) 1767 One.next(true); 1768 if (One != *C) 1769 return nullptr; 1770 1771 Value *FloorSrc; 1772 if (match(Arg0, m_FSub(m_Value(FloorSrc), 1773 m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) 1774 return FloorSrc; 1775 return nullptr; 1776 } 1777 1778 Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, 1779 Value *FractArg) { 1780 SmallVector<Value *, 4> FractVals; 1781 extractValues(Builder, FractVals, FractArg); 1782 1783 SmallVector<Value *, 4> ResultVals(FractVals.size()); 1784 1785 Type *Ty = FractArg->getType()->getScalarType(); 1786 for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { 1787 ResultVals[I] = 1788 Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); 1789 } 1790 1791 return insertValues(Builder, FractArg->getType(), ResultVals); 1792 } 1793 1794 bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { 1795 Value *FractArg = matchFractPat(I); 1796 if (!FractArg) 1797 return false; 1798 1799 // Match pattern for fract intrinsic in contexts where the nan check has been 1800 // optimized out (and hope the knowledge the source can't be nan wasn't lost). 1801 if (!I.hasNoNaNs() && !isKnownNeverNaN(FractArg, *DL, TLInfo)) 1802 return false; 1803 1804 IRBuilder<> Builder(&I); 1805 FastMathFlags FMF = I.getFastMathFlags(); 1806 FMF.setNoNaNs(); 1807 Builder.setFastMathFlags(FMF); 1808 1809 Value *Fract = applyFractPat(Builder, FractArg); 1810 Fract->takeName(&I); 1811 I.replaceAllUsesWith(Fract); 1812 1813 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 1814 return true; 1815 } 1816 1817 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1818 Impl.Mod = &M; 1819 Impl.DL = &Impl.Mod->getDataLayout(); 1820 return false; 1821 } 1822 1823 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1824 if (skipFunction(F)) 1825 return false; 1826 1827 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1828 if (!TPC) 1829 return false; 1830 1831 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1832 Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1833 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 1834 Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1835 Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 1836 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1837 Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr; 1838 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 1839 SIModeRegisterDefaults Mode(F); 1840 Impl.HasFP32DenormalFlush = 1841 Mode.FP32Denormals == DenormalMode::getPreserveSign(); 1842 return Impl.run(F); 1843 } 1844 1845 PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, 1846 FunctionAnalysisManager &FAM) { 1847 AMDGPUCodeGenPrepareImpl Impl; 1848 Impl.Mod = F.getParent(); 1849 Impl.DL = &Impl.Mod->getDataLayout(); 1850 Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); 1851 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 1852 Impl.AC = &FAM.getResult<AssumptionAnalysis>(F); 1853 Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F); 1854 Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 1855 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 1856 SIModeRegisterDefaults Mode(F); 1857 Impl.HasFP32DenormalFlush = 1858 Mode.FP32Denormals == DenormalMode::getPreserveSign(); 1859 PreservedAnalyses PA = PreservedAnalyses::none(); 1860 if (!Impl.FlowChanged) 1861 PA.preserveSet<CFGAnalyses>(); 1862 return Impl.run(F) ? PA : PreservedAnalyses::all(); 1863 } 1864 1865 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1866 "AMDGPU IR optimizations", false, false) 1867 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1868 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1869 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 1870 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1871 false, false) 1872 1873 char AMDGPUCodeGenPrepare::ID = 0; 1874 1875 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1876 return new AMDGPUCodeGenPrepare(); 1877 } 1878