1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/TargetPassConfig.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/InstVisitor.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/KnownBits.h" 29 #include "llvm/Transforms/Utils/IntegerDivision.h" 30 31 #define DEBUG_TYPE "amdgpu-codegenprepare" 32 33 using namespace llvm; 34 35 namespace { 36 37 static cl::opt<bool> WidenLoads( 38 "amdgpu-codegenprepare-widen-constant-loads", 39 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 40 cl::ReallyHidden, 41 cl::init(false)); 42 43 static cl::opt<bool> Widen16BitOps( 44 "amdgpu-codegenprepare-widen-16-bit-ops", 45 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 46 cl::ReallyHidden, 47 cl::init(true)); 48 49 static cl::opt<bool> UseMul24Intrin( 50 "amdgpu-codegenprepare-mul24", 51 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 52 cl::ReallyHidden, 53 cl::init(true)); 54 55 // Legalize 64-bit division by using the generic IR expansion. 56 static cl::opt<bool> ExpandDiv64InIR( 57 "amdgpu-codegenprepare-expand-div64", 58 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 59 cl::ReallyHidden, 60 cl::init(false)); 61 62 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 63 // and is used for testing the legalizer. 64 static cl::opt<bool> DisableIDivExpand( 65 "amdgpu-codegenprepare-disable-idiv-expansion", 66 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 67 cl::ReallyHidden, 68 cl::init(false)); 69 70 class AMDGPUCodeGenPrepare : public FunctionPass, 71 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 72 const GCNSubtarget *ST = nullptr; 73 AssumptionCache *AC = nullptr; 74 DominatorTree *DT = nullptr; 75 LegacyDivergenceAnalysis *DA = nullptr; 76 Module *Mod = nullptr; 77 const DataLayout *DL = nullptr; 78 bool HasUnsafeFPMath = false; 79 bool HasFP32Denormals = false; 80 81 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 82 /// binary operation \p V. 83 /// 84 /// \returns Binary operation \p V. 85 /// \returns \p T's base element bit width. 86 unsigned getBaseElementBitWidth(const Type *T) const; 87 88 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 89 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 90 /// is returned. 91 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 92 93 /// \returns True if binary operation \p I is a signed binary operation, false 94 /// otherwise. 95 bool isSigned(const BinaryOperator &I) const; 96 97 /// \returns True if the condition of 'select' operation \p I comes from a 98 /// signed 'icmp' operation, false otherwise. 99 bool isSigned(const SelectInst &I) const; 100 101 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 102 /// false otherwise. 103 bool needsPromotionToI32(const Type *T) const; 104 105 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 106 /// operation. 107 /// 108 /// \details \p I's base element bit width must be greater than 1 and less 109 /// than or equal 16. Promotion is done by sign or zero extending operands to 110 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 111 /// truncating the result of 32 bit binary operation back to \p I's original 112 /// type. Division operation is not promoted. 113 /// 114 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 115 /// false otherwise. 116 bool promoteUniformOpToI32(BinaryOperator &I) const; 117 118 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 119 /// 120 /// \details \p I's base element bit width must be greater than 1 and less 121 /// than or equal 16. Promotion is done by sign or zero extending operands to 122 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 123 /// 124 /// \returns True. 125 bool promoteUniformOpToI32(ICmpInst &I) const; 126 127 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 128 /// operation. 129 /// 130 /// \details \p I's base element bit width must be greater than 1 and less 131 /// than or equal 16. Promotion is done by sign or zero extending operands to 132 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 133 /// result of 32 bit 'select' operation back to \p I's original type. 134 /// 135 /// \returns True. 136 bool promoteUniformOpToI32(SelectInst &I) const; 137 138 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 139 /// intrinsic. 140 /// 141 /// \details \p I's base element bit width must be greater than 1 and less 142 /// than or equal 16. Promotion is done by zero extending the operand to 32 143 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 144 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 145 /// shift amount is 32 minus \p I's base element bit width), and truncating 146 /// the result of the shift operation back to \p I's original type. 147 /// 148 /// \returns True. 149 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 150 151 152 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 153 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 154 155 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 156 /// SelectionDAG has an issue where an and asserting the bits are known 157 bool replaceMulWithMul24(BinaryOperator &I) const; 158 159 /// Perform same function as equivalently named function in DAGCombiner. Since 160 /// we expand some divisions here, we need to perform this before obscuring. 161 bool foldBinOpIntoSelect(BinaryOperator &I) const; 162 163 bool divHasSpecialOptimization(BinaryOperator &I, 164 Value *Num, Value *Den) const; 165 int getDivNumBits(BinaryOperator &I, 166 Value *Num, Value *Den, 167 unsigned AtLeast, bool Signed) const; 168 169 /// Expands 24 bit div or rem. 170 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 171 Value *Num, Value *Den, 172 bool IsDiv, bool IsSigned) const; 173 174 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 175 Value *Num, Value *Den, unsigned NumBits, 176 bool IsDiv, bool IsSigned) const; 177 178 /// Expands 32 bit div or rem. 179 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 180 Value *Num, Value *Den) const; 181 182 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 183 Value *Num, Value *Den) const; 184 void expandDivRem64(BinaryOperator &I) const; 185 186 /// Widen a scalar load. 187 /// 188 /// \details \p Widen scalar load for uniform, small type loads from constant 189 // memory / to a full 32-bits and then truncate the input to allow a scalar 190 // load instead of a vector load. 191 // 192 /// \returns True. 193 194 bool canWidenScalarExtLoad(LoadInst &I) const; 195 196 public: 197 static char ID; 198 199 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 200 201 bool visitFDiv(BinaryOperator &I); 202 bool visitXor(BinaryOperator &I); 203 204 bool visitInstruction(Instruction &I) { return false; } 205 bool visitBinaryOperator(BinaryOperator &I); 206 bool visitLoadInst(LoadInst &I); 207 bool visitICmpInst(ICmpInst &I); 208 bool visitSelectInst(SelectInst &I); 209 210 bool visitIntrinsicInst(IntrinsicInst &I); 211 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 212 213 bool doInitialization(Module &M) override; 214 bool runOnFunction(Function &F) override; 215 216 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 217 218 void getAnalysisUsage(AnalysisUsage &AU) const override { 219 AU.addRequired<AssumptionCacheTracker>(); 220 AU.addRequired<LegacyDivergenceAnalysis>(); 221 222 // FIXME: Division expansion needs to preserve the dominator tree. 223 if (!ExpandDiv64InIR) 224 AU.setPreservesAll(); 225 } 226 }; 227 228 } // end anonymous namespace 229 230 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 231 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 232 233 if (T->isIntegerTy()) 234 return T->getIntegerBitWidth(); 235 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 236 } 237 238 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 239 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 240 241 if (T->isIntegerTy()) 242 return B.getInt32Ty(); 243 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 244 } 245 246 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 247 return I.getOpcode() == Instruction::AShr || 248 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 249 } 250 251 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 252 return isa<ICmpInst>(I.getOperand(0)) ? 253 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 254 } 255 256 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 257 if (!Widen16BitOps) 258 return false; 259 260 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 261 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 262 return true; 263 264 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 265 // TODO: The set of packed operations is more limited, so may want to 266 // promote some anyway. 267 if (ST->hasVOP3PInsts()) 268 return false; 269 270 return needsPromotionToI32(VT->getElementType()); 271 } 272 273 return false; 274 } 275 276 // Return true if the op promoted to i32 should have nsw set. 277 static bool promotedOpIsNSW(const Instruction &I) { 278 switch (I.getOpcode()) { 279 case Instruction::Shl: 280 case Instruction::Add: 281 case Instruction::Sub: 282 return true; 283 case Instruction::Mul: 284 return I.hasNoUnsignedWrap(); 285 default: 286 return false; 287 } 288 } 289 290 // Return true if the op promoted to i32 should have nuw set. 291 static bool promotedOpIsNUW(const Instruction &I) { 292 switch (I.getOpcode()) { 293 case Instruction::Shl: 294 case Instruction::Add: 295 case Instruction::Mul: 296 return true; 297 case Instruction::Sub: 298 return I.hasNoUnsignedWrap(); 299 default: 300 return false; 301 } 302 } 303 304 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 305 Type *Ty = I.getType(); 306 const DataLayout &DL = Mod->getDataLayout(); 307 int TySize = DL.getTypeSizeInBits(Ty); 308 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 309 310 return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I); 311 } 312 313 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 314 assert(needsPromotionToI32(I.getType()) && 315 "I does not need promotion to i32"); 316 317 if (I.getOpcode() == Instruction::SDiv || 318 I.getOpcode() == Instruction::UDiv || 319 I.getOpcode() == Instruction::SRem || 320 I.getOpcode() == Instruction::URem) 321 return false; 322 323 IRBuilder<> Builder(&I); 324 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 325 326 Type *I32Ty = getI32Ty(Builder, I.getType()); 327 Value *ExtOp0 = nullptr; 328 Value *ExtOp1 = nullptr; 329 Value *ExtRes = nullptr; 330 Value *TruncRes = nullptr; 331 332 if (isSigned(I)) { 333 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 334 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 335 } else { 336 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 337 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 338 } 339 340 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 341 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 342 if (promotedOpIsNSW(cast<Instruction>(I))) 343 Inst->setHasNoSignedWrap(); 344 345 if (promotedOpIsNUW(cast<Instruction>(I))) 346 Inst->setHasNoUnsignedWrap(); 347 348 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 349 Inst->setIsExact(ExactOp->isExact()); 350 } 351 352 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 353 354 I.replaceAllUsesWith(TruncRes); 355 I.eraseFromParent(); 356 357 return true; 358 } 359 360 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 361 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 362 "I does not need promotion to i32"); 363 364 IRBuilder<> Builder(&I); 365 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 366 367 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 368 Value *ExtOp0 = nullptr; 369 Value *ExtOp1 = nullptr; 370 Value *NewICmp = nullptr; 371 372 if (I.isSigned()) { 373 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 374 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 375 } else { 376 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 377 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 378 } 379 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 380 381 I.replaceAllUsesWith(NewICmp); 382 I.eraseFromParent(); 383 384 return true; 385 } 386 387 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 388 assert(needsPromotionToI32(I.getType()) && 389 "I does not need promotion to i32"); 390 391 IRBuilder<> Builder(&I); 392 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 393 394 Type *I32Ty = getI32Ty(Builder, I.getType()); 395 Value *ExtOp1 = nullptr; 396 Value *ExtOp2 = nullptr; 397 Value *ExtRes = nullptr; 398 Value *TruncRes = nullptr; 399 400 if (isSigned(I)) { 401 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 402 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 403 } else { 404 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 405 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 406 } 407 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 408 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 409 410 I.replaceAllUsesWith(TruncRes); 411 I.eraseFromParent(); 412 413 return true; 414 } 415 416 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 417 IntrinsicInst &I) const { 418 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 419 "I must be bitreverse intrinsic"); 420 assert(needsPromotionToI32(I.getType()) && 421 "I does not need promotion to i32"); 422 423 IRBuilder<> Builder(&I); 424 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 425 426 Type *I32Ty = getI32Ty(Builder, I.getType()); 427 Function *I32 = 428 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 429 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 430 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 431 Value *LShrOp = 432 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 433 Value *TruncRes = 434 Builder.CreateTrunc(LShrOp, I.getType()); 435 436 I.replaceAllUsesWith(TruncRes); 437 I.eraseFromParent(); 438 439 return true; 440 } 441 442 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 443 unsigned ScalarSize) const { 444 KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 445 return ScalarSize - Known.countMinLeadingZeros(); 446 } 447 448 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 449 unsigned ScalarSize) const { 450 // In order for this to be a signed 24-bit value, bit 23, must 451 // be a sign bit. 452 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 453 } 454 455 static void extractValues(IRBuilder<> &Builder, 456 SmallVectorImpl<Value *> &Values, Value *V) { 457 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 458 if (!VT) { 459 Values.push_back(V); 460 return; 461 } 462 463 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 464 Values.push_back(Builder.CreateExtractElement(V, I)); 465 } 466 467 static Value *insertValues(IRBuilder<> &Builder, 468 Type *Ty, 469 SmallVectorImpl<Value *> &Values) { 470 if (Values.size() == 1) 471 return Values[0]; 472 473 Value *NewVal = UndefValue::get(Ty); 474 for (int I = 0, E = Values.size(); I != E; ++I) 475 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 476 477 return NewVal; 478 } 479 480 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 481 if (I.getOpcode() != Instruction::Mul) 482 return false; 483 484 Type *Ty = I.getType(); 485 unsigned Size = Ty->getScalarSizeInBits(); 486 if (Size <= 16 && ST->has16BitInsts()) 487 return false; 488 489 // Prefer scalar if this could be s_mul_i32 490 if (DA->isUniform(&I)) 491 return false; 492 493 Value *LHS = I.getOperand(0); 494 Value *RHS = I.getOperand(1); 495 IRBuilder<> Builder(&I); 496 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 497 498 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 499 500 unsigned LHSBits = 0, RHSBits = 0; 501 502 if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS, Size)) <= 24 && 503 (RHSBits = numBitsUnsigned(RHS, Size)) <= 24) { 504 // The mul24 instruction yields the low-order 32 bits. If the original 505 // result and the destination is wider than 32 bits, the mul24 would 506 // truncate the result. 507 if (Size > 32 && LHSBits + RHSBits > 32) 508 return false; 509 510 IntrID = Intrinsic::amdgcn_mul_u24; 511 } else if (ST->hasMulI24() && 512 (LHSBits = numBitsSigned(LHS, Size)) < 24 && 513 (RHSBits = numBitsSigned(RHS, Size)) < 24) { 514 // The original result is positive if its destination is wider than 32 bits 515 // and its highest set bit is at bit 31. Generating mul24 and sign-extending 516 // it would yield a negative value. 517 if (Size > 32 && LHSBits + RHSBits > 30) 518 return false; 519 520 IntrID = Intrinsic::amdgcn_mul_i24; 521 } else 522 return false; 523 524 SmallVector<Value *, 4> LHSVals; 525 SmallVector<Value *, 4> RHSVals; 526 SmallVector<Value *, 4> ResultVals; 527 extractValues(Builder, LHSVals, LHS); 528 extractValues(Builder, RHSVals, RHS); 529 530 531 IntegerType *I32Ty = Builder.getInt32Ty(); 532 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 533 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 534 Value *LHS, *RHS; 535 if (IntrID == Intrinsic::amdgcn_mul_u24) { 536 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 537 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 538 } else { 539 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 540 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 541 } 542 543 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 544 545 if (IntrID == Intrinsic::amdgcn_mul_u24) { 546 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 547 LHSVals[I]->getType())); 548 } else { 549 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 550 LHSVals[I]->getType())); 551 } 552 } 553 554 Value *NewVal = insertValues(Builder, Ty, ResultVals); 555 NewVal->takeName(&I); 556 I.replaceAllUsesWith(NewVal); 557 I.eraseFromParent(); 558 559 return true; 560 } 561 562 // Find a select instruction, which may have been casted. This is mostly to deal 563 // with cases where i16 selects were promoted here to i32. 564 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 565 Cast = nullptr; 566 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 567 return Sel; 568 569 if ((Cast = dyn_cast<CastInst>(V))) { 570 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 571 return Sel; 572 } 573 574 return nullptr; 575 } 576 577 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 578 // Don't do this unless the old select is going away. We want to eliminate the 579 // binary operator, not replace a binop with a select. 580 int SelOpNo = 0; 581 582 CastInst *CastOp; 583 584 // TODO: Should probably try to handle some cases with multiple 585 // users. Duplicating the select may be profitable for division. 586 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 587 if (!Sel || !Sel->hasOneUse()) { 588 SelOpNo = 1; 589 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 590 } 591 592 if (!Sel || !Sel->hasOneUse()) 593 return false; 594 595 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 596 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 597 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 598 if (!CBO || !CT || !CF) 599 return false; 600 601 if (CastOp) { 602 if (!CastOp->hasOneUse()) 603 return false; 604 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 605 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 606 } 607 608 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 609 // need to handle divisions here. 610 Constant *FoldedT = SelOpNo ? 611 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 612 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 613 if (isa<ConstantExpr>(FoldedT)) 614 return false; 615 616 Constant *FoldedF = SelOpNo ? 617 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 618 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 619 if (isa<ConstantExpr>(FoldedF)) 620 return false; 621 622 IRBuilder<> Builder(&BO); 623 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 624 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 625 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 626 627 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 628 FoldedT, FoldedF); 629 NewSelect->takeName(&BO); 630 BO.replaceAllUsesWith(NewSelect); 631 BO.eraseFromParent(); 632 if (CastOp) 633 CastOp->eraseFromParent(); 634 Sel->eraseFromParent(); 635 return true; 636 } 637 638 // Optimize fdiv with rcp: 639 // 640 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 641 // allowed with unsafe-fp-math or afn. 642 // 643 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 644 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 645 bool RcpIsAccurate, IRBuilder<> &Builder, 646 Module *Mod) { 647 648 if (!AllowInaccurateRcp && !RcpIsAccurate) 649 return nullptr; 650 651 Type *Ty = Den->getType(); 652 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 653 if (AllowInaccurateRcp || RcpIsAccurate) { 654 if (CLHS->isExactlyValue(1.0)) { 655 Function *Decl = Intrinsic::getDeclaration( 656 Mod, Intrinsic::amdgcn_rcp, Ty); 657 658 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 659 // the CI documentation has a worst case error of 1 ulp. 660 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 661 // use it as long as we aren't trying to use denormals. 662 // 663 // v_rcp_f16 and v_rsq_f16 DO support denormals. 664 665 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 666 // insert rsq intrinsic here. 667 668 // 1.0 / x -> rcp(x) 669 return Builder.CreateCall(Decl, { Den }); 670 } 671 672 // Same as for 1.0, but expand the sign out of the constant. 673 if (CLHS->isExactlyValue(-1.0)) { 674 Function *Decl = Intrinsic::getDeclaration( 675 Mod, Intrinsic::amdgcn_rcp, Ty); 676 677 // -1.0 / x -> rcp (fneg x) 678 Value *FNeg = Builder.CreateFNeg(Den); 679 return Builder.CreateCall(Decl, { FNeg }); 680 } 681 } 682 } 683 684 if (AllowInaccurateRcp) { 685 Function *Decl = Intrinsic::getDeclaration( 686 Mod, Intrinsic::amdgcn_rcp, Ty); 687 688 // Turn into multiply by the reciprocal. 689 // x / y -> x * (1.0 / y) 690 Value *Recip = Builder.CreateCall(Decl, { Den }); 691 return Builder.CreateFMul(Num, Recip); 692 } 693 return nullptr; 694 } 695 696 // optimize with fdiv.fast: 697 // 698 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 699 // 700 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 701 // 702 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 703 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 704 bool HasDenormals, IRBuilder<> &Builder, 705 Module *Mod) { 706 // fdiv.fast can achieve 2.5 ULP accuracy. 707 if (ReqdAccuracy < 2.5f) 708 return nullptr; 709 710 // Only have fdiv.fast for f32. 711 Type *Ty = Den->getType(); 712 if (!Ty->isFloatTy()) 713 return nullptr; 714 715 bool NumIsOne = false; 716 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 717 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 718 NumIsOne = true; 719 } 720 721 // fdiv does not support denormals. But 1.0/x is always fine to use it. 722 if (HasDenormals && !NumIsOne) 723 return nullptr; 724 725 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 726 return Builder.CreateCall(Decl, { Num, Den }); 727 } 728 729 // Optimizations is performed based on fpmath, fast math flags as well as 730 // denormals to optimize fdiv with either rcp or fdiv.fast. 731 // 732 // With rcp: 733 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 734 // allowed with unsafe-fp-math or afn. 735 // 736 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 737 // 738 // With fdiv.fast: 739 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 740 // 741 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 742 // 743 // NOTE: rcp is the preference in cases that both are legal. 744 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 745 746 Type *Ty = FDiv.getType()->getScalarType(); 747 748 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 749 // expansion around them in codegen. 750 if (Ty->isDoubleTy()) 751 return false; 752 753 // No intrinsic for fdiv16 if target does not support f16. 754 if (Ty->isHalfTy() && !ST->has16BitInsts()) 755 return false; 756 757 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 758 const float ReqdAccuracy = FPOp->getFPAccuracy(); 759 760 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 761 FastMathFlags FMF = FPOp->getFastMathFlags(); 762 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 763 764 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 765 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 766 // rcp_f64 is never accurate. 767 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 768 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 769 770 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 771 Builder.setFastMathFlags(FMF); 772 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 773 774 Value *Num = FDiv.getOperand(0); 775 Value *Den = FDiv.getOperand(1); 776 777 Value *NewFDiv = nullptr; 778 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 779 NewFDiv = UndefValue::get(VT); 780 781 // FIXME: Doesn't do the right thing for cases where the vector is partially 782 // constant. This works when the scalarizer pass is run first. 783 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 784 Value *NumEltI = Builder.CreateExtractElement(Num, I); 785 Value *DenEltI = Builder.CreateExtractElement(Den, I); 786 // Try rcp first. 787 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 788 RcpIsAccurate, Builder, Mod); 789 if (!NewElt) // Try fdiv.fast. 790 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 791 HasFP32Denormals, Builder, Mod); 792 if (!NewElt) // Keep the original. 793 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 794 795 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 796 } 797 } else { // Scalar FDiv. 798 // Try rcp first. 799 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 800 Builder, Mod); 801 if (!NewFDiv) { // Try fdiv.fast. 802 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 803 Builder, Mod); 804 } 805 } 806 807 if (NewFDiv) { 808 FDiv.replaceAllUsesWith(NewFDiv); 809 NewFDiv->takeName(&FDiv); 810 FDiv.eraseFromParent(); 811 } 812 813 return !!NewFDiv; 814 } 815 816 bool AMDGPUCodeGenPrepare::visitXor(BinaryOperator &I) { 817 // Match the Xor instruction, its type and its operands 818 IntrinsicInst *IntrinsicCall = dyn_cast<IntrinsicInst>(I.getOperand(0)); 819 ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1)); 820 if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1) 821 return visitBinaryOperator(I); 822 823 // Check if the Call is an intrinsic instruction to amdgcn_class intrinsic 824 // has only one use 825 if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class || 826 !IntrinsicCall->hasOneUse()) 827 return visitBinaryOperator(I); 828 829 // "Not" the second argument of the intrinsic call 830 ConstantInt *Arg = dyn_cast<ConstantInt>(IntrinsicCall->getOperand(1)); 831 if (!Arg) 832 return visitBinaryOperator(I); 833 834 IntrinsicCall->setOperand( 835 1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff)); 836 I.replaceAllUsesWith(IntrinsicCall); 837 I.eraseFromParent(); 838 return true; 839 } 840 841 static bool hasUnsafeFPMath(const Function &F) { 842 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 843 return Attr.getValueAsBool(); 844 } 845 846 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 847 Value *LHS, Value *RHS) { 848 Type *I32Ty = Builder.getInt32Ty(); 849 Type *I64Ty = Builder.getInt64Ty(); 850 851 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 852 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 853 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 854 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 855 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 856 Hi = Builder.CreateTrunc(Hi, I32Ty); 857 return std::make_pair(Lo, Hi); 858 } 859 860 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 861 return getMul64(Builder, LHS, RHS).second; 862 } 863 864 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is 865 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 866 /// first one is insufficient. Returns -1 on failure. 867 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I, 868 Value *Num, Value *Den, 869 unsigned AtLeast, bool IsSigned) const { 870 const DataLayout &DL = Mod->getDataLayout(); 871 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 872 if (LHSSignBits < AtLeast) 873 return -1; 874 875 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 876 if (RHSSignBits < AtLeast) 877 return -1; 878 879 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 880 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 881 if (IsSigned) 882 ++DivBits; 883 return DivBits; 884 } 885 886 // The fractional part of a float is enough to accurately represent up to 887 // a 24-bit signed integer. 888 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 889 BinaryOperator &I, 890 Value *Num, Value *Den, 891 bool IsDiv, bool IsSigned) const { 892 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 893 if (DivBits == -1) 894 return nullptr; 895 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 896 } 897 898 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder, 899 BinaryOperator &I, 900 Value *Num, Value *Den, 901 unsigned DivBits, 902 bool IsDiv, bool IsSigned) const { 903 Type *I32Ty = Builder.getInt32Ty(); 904 Num = Builder.CreateTrunc(Num, I32Ty); 905 Den = Builder.CreateTrunc(Den, I32Ty); 906 907 Type *F32Ty = Builder.getFloatTy(); 908 ConstantInt *One = Builder.getInt32(1); 909 Value *JQ = One; 910 911 if (IsSigned) { 912 // char|short jq = ia ^ ib; 913 JQ = Builder.CreateXor(Num, Den); 914 915 // jq = jq >> (bitsize - 2) 916 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 917 918 // jq = jq | 0x1 919 JQ = Builder.CreateOr(JQ, One); 920 } 921 922 // int ia = (int)LHS; 923 Value *IA = Num; 924 925 // int ib, (int)RHS; 926 Value *IB = Den; 927 928 // float fa = (float)ia; 929 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 930 : Builder.CreateUIToFP(IA, F32Ty); 931 932 // float fb = (float)ib; 933 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 934 : Builder.CreateUIToFP(IB,F32Ty); 935 936 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 937 Builder.getFloatTy()); 938 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 939 Value *FQM = Builder.CreateFMul(FA, RCP); 940 941 // fq = trunc(fqm); 942 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 943 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 944 945 // float fqneg = -fq; 946 Value *FQNeg = Builder.CreateFNeg(FQ); 947 948 // float fr = mad(fqneg, fb, fa); 949 auto FMAD = !ST->hasMadMacF32Insts() 950 ? Intrinsic::fma 951 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 952 Value *FR = Builder.CreateIntrinsic(FMAD, 953 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 954 955 // int iq = (int)fq; 956 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 957 : Builder.CreateFPToUI(FQ, I32Ty); 958 959 // fr = fabs(fr); 960 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 961 962 // fb = fabs(fb); 963 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 964 965 // int cv = fr >= fb; 966 Value *CV = Builder.CreateFCmpOGE(FR, FB); 967 968 // jq = (cv ? jq : 0); 969 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 970 971 // dst = iq + jq; 972 Value *Div = Builder.CreateAdd(IQ, JQ); 973 974 Value *Res = Div; 975 if (!IsDiv) { 976 // Rem needs compensation, it's easier to recompute it 977 Value *Rem = Builder.CreateMul(Div, Den); 978 Res = Builder.CreateSub(Num, Rem); 979 } 980 981 if (DivBits != 0 && DivBits < 32) { 982 // Extend in register from the number of bits this divide really is. 983 if (IsSigned) { 984 int InRegBits = 32 - DivBits; 985 986 Res = Builder.CreateShl(Res, InRegBits); 987 Res = Builder.CreateAShr(Res, InRegBits); 988 } else { 989 ConstantInt *TruncMask 990 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 991 Res = Builder.CreateAnd(Res, TruncMask); 992 } 993 } 994 995 return Res; 996 } 997 998 // Try to recognize special cases the DAG will emit special, better expansions 999 // than the general expansion we do here. 1000 1001 // TODO: It would be better to just directly handle those optimizations here. 1002 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( 1003 BinaryOperator &I, Value *Num, Value *Den) const { 1004 if (Constant *C = dyn_cast<Constant>(Den)) { 1005 // Arbitrary constants get a better expansion as long as a wider mulhi is 1006 // legal. 1007 if (C->getType()->getScalarSizeInBits() <= 32) 1008 return true; 1009 1010 // TODO: Sdiv check for not exact for some reason. 1011 1012 // If there's no wider mulhi, there's only a better expansion for powers of 1013 // two. 1014 // TODO: Should really know for each vector element. 1015 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1016 return true; 1017 1018 return false; 1019 } 1020 1021 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1022 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1023 if (BinOpDen->getOpcode() == Instruction::Shl && 1024 isa<Constant>(BinOpDen->getOperand(0)) && 1025 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1026 0, AC, &I, DT)) { 1027 return true; 1028 } 1029 } 1030 1031 return false; 1032 } 1033 1034 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1035 // Check whether the sign can be determined statically. 1036 KnownBits Known = computeKnownBits(V, *DL); 1037 if (Known.isNegative()) 1038 return Constant::getAllOnesValue(V->getType()); 1039 if (Known.isNonNegative()) 1040 return Constant::getNullValue(V->getType()); 1041 return Builder.CreateAShr(V, Builder.getInt32(31)); 1042 } 1043 1044 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 1045 BinaryOperator &I, Value *X, 1046 Value *Y) const { 1047 Instruction::BinaryOps Opc = I.getOpcode(); 1048 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1049 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1050 1051 FastMathFlags FMF; 1052 FMF.setFast(); 1053 Builder.setFastMathFlags(FMF); 1054 1055 if (divHasSpecialOptimization(I, X, Y)) 1056 return nullptr; // Keep it for later optimization. 1057 1058 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1059 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1060 1061 Type *Ty = X->getType(); 1062 Type *I32Ty = Builder.getInt32Ty(); 1063 Type *F32Ty = Builder.getFloatTy(); 1064 1065 if (Ty->getScalarSizeInBits() < 32) { 1066 if (IsSigned) { 1067 X = Builder.CreateSExt(X, I32Ty); 1068 Y = Builder.CreateSExt(Y, I32Ty); 1069 } else { 1070 X = Builder.CreateZExt(X, I32Ty); 1071 Y = Builder.CreateZExt(Y, I32Ty); 1072 } 1073 } 1074 1075 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1076 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1077 Builder.CreateZExtOrTrunc(Res, Ty); 1078 } 1079 1080 ConstantInt *Zero = Builder.getInt32(0); 1081 ConstantInt *One = Builder.getInt32(1); 1082 1083 Value *Sign = nullptr; 1084 if (IsSigned) { 1085 Value *SignX = getSign32(X, Builder, DL); 1086 Value *SignY = getSign32(Y, Builder, DL); 1087 // Remainder sign is the same as LHS 1088 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1089 1090 X = Builder.CreateAdd(X, SignX); 1091 Y = Builder.CreateAdd(Y, SignY); 1092 1093 X = Builder.CreateXor(X, SignX); 1094 Y = Builder.CreateXor(Y, SignY); 1095 } 1096 1097 // The algorithm here is based on ideas from "Software Integer Division", Tom 1098 // Rodeheffer, August 2008. 1099 // 1100 // unsigned udiv(unsigned x, unsigned y) { 1101 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1102 // // that this is a lower bound on inv(y), even if some of the calculations 1103 // // round up. 1104 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1105 // 1106 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1107 // // Empirically this is guaranteed to give a "two-y" lower bound on 1108 // // inv(y). 1109 // z += umulh(z, -y * z); 1110 // 1111 // // Quotient/remainder estimate. 1112 // unsigned q = umulh(x, z); 1113 // unsigned r = x - q * y; 1114 // 1115 // // Two rounds of quotient/remainder refinement. 1116 // if (r >= y) { 1117 // ++q; 1118 // r -= y; 1119 // } 1120 // if (r >= y) { 1121 // ++q; 1122 // r -= y; 1123 // } 1124 // 1125 // return q; 1126 // } 1127 1128 // Initial estimate of inv(y). 1129 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1130 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1131 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1132 Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE)); 1133 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1134 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1135 1136 // One round of UNR. 1137 Value *NegY = Builder.CreateSub(Zero, Y); 1138 Value *NegYZ = Builder.CreateMul(NegY, Z); 1139 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1140 1141 // Quotient/remainder estimate. 1142 Value *Q = getMulHu(Builder, X, Z); 1143 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1144 1145 // First quotient/remainder refinement. 1146 Value *Cond = Builder.CreateICmpUGE(R, Y); 1147 if (IsDiv) 1148 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1149 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1150 1151 // Second quotient/remainder refinement. 1152 Cond = Builder.CreateICmpUGE(R, Y); 1153 Value *Res; 1154 if (IsDiv) 1155 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1156 else 1157 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1158 1159 if (IsSigned) { 1160 Res = Builder.CreateXor(Res, Sign); 1161 Res = Builder.CreateSub(Res, Sign); 1162 } 1163 1164 Res = Builder.CreateTrunc(Res, Ty); 1165 1166 return Res; 1167 } 1168 1169 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder, 1170 BinaryOperator &I, 1171 Value *Num, Value *Den) const { 1172 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1173 return nullptr; // Keep it for later optimization. 1174 1175 Instruction::BinaryOps Opc = I.getOpcode(); 1176 1177 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1178 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1179 1180 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1181 if (NumDivBits == -1) 1182 return nullptr; 1183 1184 Value *Narrowed = nullptr; 1185 if (NumDivBits <= 24) { 1186 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1187 IsDiv, IsSigned); 1188 } else if (NumDivBits <= 32) { 1189 Narrowed = expandDivRem32(Builder, I, Num, Den); 1190 } 1191 1192 if (Narrowed) { 1193 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1194 Builder.CreateZExt(Narrowed, Num->getType()); 1195 } 1196 1197 return nullptr; 1198 } 1199 1200 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const { 1201 Instruction::BinaryOps Opc = I.getOpcode(); 1202 // Do the general expansion. 1203 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1204 expandDivisionUpTo64Bits(&I); 1205 return; 1206 } 1207 1208 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1209 expandRemainderUpTo64Bits(&I); 1210 return; 1211 } 1212 1213 llvm_unreachable("not a division"); 1214 } 1215 1216 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1217 if (foldBinOpIntoSelect(I)) 1218 return true; 1219 1220 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1221 DA->isUniform(&I) && promoteUniformOpToI32(I)) 1222 return true; 1223 1224 if (UseMul24Intrin && replaceMulWithMul24(I)) 1225 return true; 1226 1227 bool Changed = false; 1228 Instruction::BinaryOps Opc = I.getOpcode(); 1229 Type *Ty = I.getType(); 1230 Value *NewDiv = nullptr; 1231 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1232 1233 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1234 1235 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1236 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1237 ScalarSize <= 64 && 1238 !DisableIDivExpand) { 1239 Value *Num = I.getOperand(0); 1240 Value *Den = I.getOperand(1); 1241 IRBuilder<> Builder(&I); 1242 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1243 1244 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1245 NewDiv = UndefValue::get(VT); 1246 1247 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1248 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1249 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1250 1251 Value *NewElt; 1252 if (ScalarSize <= 32) { 1253 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1254 if (!NewElt) 1255 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1256 } else { 1257 // See if this 64-bit division can be shrunk to 32/24-bits before 1258 // producing the general expansion. 1259 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1260 if (!NewElt) { 1261 // The general 64-bit expansion introduces control flow and doesn't 1262 // return the new value. Just insert a scalar copy and defer 1263 // expanding it. 1264 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1265 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1266 } 1267 } 1268 1269 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1270 } 1271 } else { 1272 if (ScalarSize <= 32) 1273 NewDiv = expandDivRem32(Builder, I, Num, Den); 1274 else { 1275 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1276 if (!NewDiv) 1277 Div64ToExpand.push_back(&I); 1278 } 1279 } 1280 1281 if (NewDiv) { 1282 I.replaceAllUsesWith(NewDiv); 1283 I.eraseFromParent(); 1284 Changed = true; 1285 } 1286 } 1287 1288 if (ExpandDiv64InIR) { 1289 // TODO: We get much worse code in specially handled constant cases. 1290 for (BinaryOperator *Div : Div64ToExpand) { 1291 expandDivRem64(*Div); 1292 Changed = true; 1293 } 1294 } 1295 1296 return Changed; 1297 } 1298 1299 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1300 if (!WidenLoads) 1301 return false; 1302 1303 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1304 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1305 canWidenScalarExtLoad(I)) { 1306 IRBuilder<> Builder(&I); 1307 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1308 1309 Type *I32Ty = Builder.getInt32Ty(); 1310 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1311 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1312 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1313 WidenLoad->copyMetadata(I); 1314 1315 // If we have range metadata, we need to convert the type, and not make 1316 // assumptions about the high bits. 1317 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1318 ConstantInt *Lower = 1319 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1320 1321 if (Lower->isNullValue()) { 1322 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1323 } else { 1324 Metadata *LowAndHigh[] = { 1325 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1326 // Don't make assumptions about the high bits. 1327 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1328 }; 1329 1330 WidenLoad->setMetadata(LLVMContext::MD_range, 1331 MDNode::get(Mod->getContext(), LowAndHigh)); 1332 } 1333 } 1334 1335 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1336 Type *IntNTy = Builder.getIntNTy(TySize); 1337 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1338 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1339 I.replaceAllUsesWith(ValOrig); 1340 I.eraseFromParent(); 1341 return true; 1342 } 1343 1344 return false; 1345 } 1346 1347 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1348 bool Changed = false; 1349 1350 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1351 DA->isUniform(&I)) 1352 Changed |= promoteUniformOpToI32(I); 1353 1354 return Changed; 1355 } 1356 1357 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1358 bool Changed = false; 1359 1360 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1361 DA->isUniform(&I)) 1362 Changed |= promoteUniformOpToI32(I); 1363 1364 return Changed; 1365 } 1366 1367 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1368 switch (I.getIntrinsicID()) { 1369 case Intrinsic::bitreverse: 1370 return visitBitreverseIntrinsicInst(I); 1371 default: 1372 return false; 1373 } 1374 } 1375 1376 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1377 bool Changed = false; 1378 1379 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1380 DA->isUniform(&I)) 1381 Changed |= promoteUniformBitreverseToI32(I); 1382 1383 return Changed; 1384 } 1385 1386 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1387 Mod = &M; 1388 DL = &Mod->getDataLayout(); 1389 return false; 1390 } 1391 1392 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1393 if (skipFunction(F)) 1394 return false; 1395 1396 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1397 if (!TPC) 1398 return false; 1399 1400 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1401 ST = &TM.getSubtarget<GCNSubtarget>(F); 1402 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1403 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1404 1405 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1406 DT = DTWP ? &DTWP->getDomTree() : nullptr; 1407 1408 HasUnsafeFPMath = hasUnsafeFPMath(F); 1409 1410 AMDGPU::SIModeRegisterDefaults Mode(F); 1411 HasFP32Denormals = Mode.allFP32Denormals(); 1412 1413 bool MadeChange = false; 1414 1415 Function::iterator NextBB; 1416 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 1417 BasicBlock *BB = &*FI; 1418 NextBB = std::next(FI); 1419 1420 BasicBlock::iterator Next; 1421 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { 1422 Next = std::next(I); 1423 1424 MadeChange |= visit(*I); 1425 1426 if (Next != E) { // Control flow changed 1427 BasicBlock *NextInstBB = Next->getParent(); 1428 if (NextInstBB != BB) { 1429 BB = NextInstBB; 1430 E = BB->end(); 1431 FE = F.end(); 1432 } 1433 } 1434 } 1435 } 1436 1437 return MadeChange; 1438 } 1439 1440 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1441 "AMDGPU IR optimizations", false, false) 1442 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1443 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1444 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1445 false, false) 1446 1447 char AMDGPUCodeGenPrepare::ID = 0; 1448 1449 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1450 return new AMDGPUCodeGenPrepare(); 1451 } 1452